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1 Introduction

In economics, to rationalize choice behavior means to look for a rationale (namely a pref-

erence relation) such that the choices are maximal according to that rationale across the

entire domain of choice. Psychologists and students of bounded rationality, however, tend

to model choices in ways that depart from the standard revealed preference model in (at

least) two fundamental ways. First, choices are often seen as the result of the application

of multiple criteria or rationales. Second, the rationales are applied sequentially rather

than simultaneously, eliminating ‘inferior’ alternatives in successive steps, until only one

alternative is left. This is natural when limited mental resources favor focussing, during

the decision process, on just one rationale at a time.1

In this paper we aim to explain, using the conventional tools of economic theory rather

than the language of psychology, choice behavior by means of sequentially applied criteria.

At first blush it might seem that with a sufficiently large number of criteria any conceivable

choice pattern could be explained. To the contrary, we find that explaining choices in this

way provides a concept of rationality that poses a strong, though not obvious, demarcation

between rational and irrational behavior. Compared with the classical axioms of revealed

preference theory, our axioms allow several forms of menu-dependence. This means that

revealing a preference for one alternative over another in some choice set is not equivalent

to revealing the same preference in another set including both alternatives. That is, the

condition of binariness of choice is violated2 though not, as we will show, in arbitrary

ways.

To be more precise, our first contribution is to introduce the concept of a sequentially

rationalizable choice function. This is a (single valued) choice function for which there

exists a fixed sequence of asymmetric binary relations (the rationales) that allows the

retrieval of the choice from each feasible set by means of the following procedure. Take

the maximal set according to the first relation. If this is a singleton, then this is the

choice. Otherwise, take the maximal set according to the second relation applied to the

previous maximal set. If this is a singleton, then this is the choice. Otherwise continue

applying rationales in this fashion until a singleton maximal set is found. Note well: the

same sequence of rationales is applied to each and every possible choice set.

Our idea of sequential rationalizability is thus in line with the general notion of eco-

1The best known early ‘elimination heuristic’ is Tversky’s [23] Elimination By Aspects model. More

recently, Gigerenzer and Todd [7] have promoted the general concept of ‘fast and frugal’ heuristics. Lexi-

cographic choice heuristics are also referred to as non-compensatory choice heuristics in the psychological

literature, to distinguish them from utility based approaches where a single indicator summarizes all

characteristics of any given alternative, so that better and worse features of it compensate each other.
2See Nehring [18] and Sen [21] for a formalization and thorough discussion of menu-dependence and

binariness. Their focus is however different from that of this paper.

2



nomic rationality as ‘consistency ’ across decision situations, even though it may violate

binariness and even produce very ‘strange’ choice patterns, including cyclical ones. How-

ever not every violation of binariness is allowed for sequentially rationalizable choice. We

will show which restrictions of menu-independence conditions are implied by sequential

rationalizability.

Observe that there is no question of each single rationale being a complete relation. In

fact the sequentiality of rationalization will normally allow, and in fact demand, rationales

to be incomplete relations (corresponding to psychologists’ ‘fast and frugal’ heuristics).

In the standard revealed preference theory the fact that an alternative x is chosen from

a set S while y is contained in S is taken as an expression of ‘revealed preference’ for x

over y. This however assumes implicitly (1) that preferences are complete, and (2) that

there is only one preference. If preferences are not necessarily complete or unique, what

could the above choice pattern imply? For one, they could imply that while x might not

necessarily be preferred to y, something else in S, say z, justifies the elimination of y at

some stage, while x and z are not necessarily comparable at this stage. On the other

hand, if we insist that a choice is made also between all alternatives, including x and z,

it must be the case that x and z are compared using a later criterion than the one used

to compare y and z.

For a concrete example, consider the case of an arbitrator who excludes from the

possible partitions of an asset among claimants all those which are Pareto dominated

(incomplete rationale). Then, he chooses among the remaining partitions one that he

considers not to be dominated on fairness grounds. From this consistency perspective,

the decision maker is rational: he employs sequentially a given set of criteria which is

unchanging whatever the feasible set. However, he is not rational in the standard economic

sense, since application of the procedure does not ‘reveal’ any single binary preference

relation which is being maximized. In fact, this procedure may fail to satisfy the usual

‘independence of irrelevant alternatives’ property that if something is chosen from a large

set then it must also be chosen from a smaller set. But is it unreasonable? Suppose that

given the possible partitions A, B and C, A is Pareto-dominated by division B while

no other Pareto comparisons can be made. So A will not be chosen from the grand set.

However, why should A not be chosen were only A and C to be available? The first

rationale to be used (Pareto) is now ineffective, and since A is fairer than C, the second

rationale favors A. On the other hand, this story would be inconsistent with the arbitrator

choosing A from a set in which B is present: so the rationalization in terms of the two

criteria of Pareto and fairness does indeed restrict the extent of menu-dependence.

This example also illustrates another important point. Often just two criteria are

enough to explain consistent menu dependent choices (even seemingly ‘wild’ ones, for

example those that exhibit cycles). The arbitrator example mentioned above fits this
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description; other situations where choice can be made ‘in two steps’ are for instance:

• An investor can compare the expected returns of all portfolios, but she is unsure
of how to rank all portfolios in terms of risk (although she can make some partial

judgments). For her, risk is the primary consideration. So she focuses first on all

portfolios which are not dominated in terms of risk. Then, she chooses among these

the one with the highest expected return.

• A university hiring panel first discards all the candidates whose research falls in

certain areas, and then chooses on the basis of publications.

To deal with this type of examples we define the notion of a ‘Rational Shortlist Method ’:

the decision maker first identifies a shortlist of surviving alternatives based on some initial

criterion, and then formulates his ‘final’ choice by selecting one of the shortlisted candi-

dates using a second rationale. We will illustrate the power of rational shortlist methods

by applying them in two contexts. We show how choice functions exhibiting certain types

of time inconsistencies (preference reversal) and violations of von Neumann-Morgenstern

independence in choice over lotteries (the ratio effect) are rational shortlist methods (see

section 6).

The main result of this paper is a complete characterization of rational shortlist meth-

ods in terms of just two properties. One is the classical Expansion property (or property

τ ) requiring that when the choice from two distinct sets is the same, then it is also the

choice from the union of the sets. The second is a weakening of the Weak Axiom of Re-

vealed Preferences where we require that whenever some alternative is revealed preferred

to another both in pairwise choices and in some other set, then in no subset can this

revealed preference be overturned.

An interesting fact is that the transitivity or even the acyclicity of choice behavior is not

at all a feature of the type of sequential consistency we study. Sequentially rationalizable

choices, including rational shortlist methods, can well produce choice cycles. Indeed one of

our results shows that (at least in the finite case) a choice function which is not standard

rationalizable but is sequentially rationalizable involves pairwise cycles of choice.

This shows how sequential rationality is a substantial extension of traditional rational-

ization of choice functions. Yet, sequential rationalization is not a vacuous concept, in the

sense that there exist choice functions which cannot be rationalized by sequential appli-

cation of any number of rationales3, including some well known procedures (e.g. ‘Luce’s

dinner’, ‘choose the median’ and ‘second best’ - see section 3) We identify some neces-

sary conditions for sequential rationalizability by an arbitrary large but finite number of

rationales. Finding sufficient conditions is still an open problem.

3So in this respect our approach is different from that in Kalai, Rubinstein and Spiegler [10].
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2 Definitions

2.1 Preliminaries

Let X be a universal set of alternatives, with |X | > 2. Given a binary relation B on X

(that isB ⊂ X×X) its dualB∗ is defined by (x, y) ∈ B∗⇔ (y, x) ∈ B, and its complement
BC by (x, y) ∈ BC ⇔ (x, y) /∈ B. Given S ⊂ X and a binary relation B denote the set of

B-maximal elements of S by max (S;B) = x ∈ S| for no y ∈ S (x, y) ∈ B∗ ∩BC .

The restriction of B ⊂ X ×X to a subset Y ⊂ X is denoted B|Y .
The transitive closure of a binary relation B is denoted Bt and defined by Bt =

B ∪BB ∪BBB ∪ ..., that is to say xBty if and only if xBy or there exist x1, ..., xn such
that xiBxi+1 for all i = 1, ...n with x1 = x and xn = y.

Let P (X) denote the set of all nonempty subsets of X.

2.2 Choice functions and ‘revealed’ relations

A choice function on X is a nonempty function γ : P (X) → X with γ (S) ∈ S for all
S ∈ P (X).
Given a choice function γ, we use a number or ‘revealed preference’ relations. These

distinctions are due to the fact that sequentially rationalizable choices will lack standard

menu-independence and ‘binariness’ properties. So it will be perfectly possible for an al-

ternative x to be ‘revealed preferred’ to another alternative y in some context (choice set),

but for that preference to be reversed in another context, or even in pairwise comparisons.

Pγ (S): Revealed preference via S. Write (x, y) ∈ Pγ (S) whenever x = γ (S) and y ∈ S.
Pγ : Base relation. Write (x, y) ∈ Pγ whenever x = γ (xy).

PBConsγ (S) = Pγ (S) ∩ Pγ: Binarily consistent revealed preference via S.
PBIncγ (S) = Pγ (S) ∩ P ∗γ : Binarily inconsistent revealed preference via S.
Pγ : Consistent binary revealed preference. Write (x, y) ∈ Pγ whenever (x, y) ∈ Pγ ∩
P ∗Cγ (S �) for all S � ∈ P (X).

So Pγ (S) denotes standard revealed preference via a set S, leaving open the issue of

whether this preference will be confirmed in other choice sets, while Pγ is the base relation.

On the other hand, PBIncγ and PBIncγ specify whether Pγ (S) is or is not, respectively,

consistent with pairwise choices. Pγ specifies that the base relation is not contradicted

by choices in other sets, that is it relates x and y whenever x is revealed preferred to y in

pairwise choices, and it never happens that y is revealed preferred to x in any other set.
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Given x ∈ X and S ∈ P(X) and a choice function γ, define the sets

Upγ (x,S) = {y ∈ S| (y, x) ∈ Pγ}

Loγ (x,S) = {y ∈ S| (x, y) ∈ Pγ}

of elements of S which are chosen over x and over which x is chosen in pairwise choices,

respectively.

Given x ∈ X, let Cγ (x) = {S ∈ P (X) |x = γ (S)}. Note that the collection Cγ (x) =
{Cγ (x) for all x ∈ X} partitions P (X), that is Cγ(x)∈Cγ(x)Cγ (x) = P (X), whileCγ (x)∩
Cγ (y) = ∅ for all x, y ∈ X with x 9= y. In what follows, in order to describe a choice

function we will sometimes use the γ notation and sometimes the Cγ notation according

to expositional convenience.

2.3 Rationalizability

We now turn to the main concept introduced in the paper.

Definition 1 A choice function γ is sequentially rationalizable whenever there exist

asymmetric relations P1, ..., PK ∈ X ×X such that, defining recursively

M0 (S) = S

Mi (S) = max (Mi−1 (S) ;Pi) , i = 1, ..., K

we have

{γ (S)} =MK (S) for all S

In that case we say that P1, ..., PK sequentially rationalize γ. We call each Pi a rationale.

So the choice from each S can be constructed through sequential rounds of elimination

of alternatives. At each round only the elements which are maximal according to a round-

specific rationale survive. But, crucially, the rationales and the sequence are invariant with

respect to the choice set,

Observe that while in the standard rationalization concept (via one relation) acyclicity

of the rationalizing relation is necessary, since otherwise the nonemptiness of the maximal

sets cannot be guaranteed, in this case acyclicity is necessary only for P1, to guarantee

that a maximal set exists in the initial round of elimination. The only other obvious

necessary condition is that each rationale Pi is asymmetric (otherwise the rationalization

of pairwise choices could not be guaranteed). But, of course, each of the rationales Pi will

have to be acyclic on the surviving alternatives at the moment of being applied, that is

when restricted to the sets Mi−1 (S).
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Among the sequentially rationalizable choice functions, naturally focal are those which

are ‘closest’ to the standard rationalizable ones, namely those which can be rationalized

by just two rationales. They correspond to the standard method of selecting candidates

(or alternatives) by first identifying a shortlist, with the additional requirement that

the shortlisting must be consistent across choice sets in the sense of deriving from a

single rationale, while the final choice is rationalized in the standard way over the sets of

shortlisted candidates. So as a notable case of sequential rationalizability we have:

Definition 2 A choice function γ is a Rational Shortlist Method (RSM) if it is

sequentially rationalizable by two rationales.

Finally, for future reference we list below some standard properties of choice functions:

Independence of Irrelevant Alternatives4: For all S, T ∈ P (X) : γ (T ) ∈ S, S ⊂
T ⇒ γ (S) = γ (T ).

Expansion: For all x ∈ X : Cγ (x) is closed under set union.

WARP: (x, y) ∈ Pγ (S) for some S ∈ P (X)⇒ (y, x) ∈ PCγ (T ) for all T 9= S, T ∈ P (X).

Condorcet: (x, y) ∈ Pγ (S) for some S ∈ P (X)⇔ (x, y) ∈ Pγ.

Congruence: There does not exist a cycle x1Pγ (S1)x2Pγ (S2) ...Pγ (Sn−1)xnPγ (Sn)x1,

Si ∈ P (X) for all i = 1, ..., n.

Recall that, at least for the finite case, Condorcet is a necessary and sufficient condi-

tion for standard rationalizability, and Independence of Irrelevant Alternatives, which is

equivalent to WARP, is a necessary and sufficient condition for standard rationalizability

with an ordering. Congruence is in general equivalent to standard rationalizability. See

e.g. Moulin [17] and Suzumura [22].

3 Some basic results on sequential rationalizability

The results in this section illuminate some features of the concept of sequential ratio-

nalizability. On the one hand, it helps rationalize choice functions which are far from

rational in the standard sense (proposition 3). On the other hand, it still provides a clear

demarcation between what is and what is not rational (proposition 4). Lastly, the third

result (proposition 6) delimits the violations of standard rationalizability which sequential

rationalizability can accommodate.

4For single-valued choice functions this conflates several properties of correspondences such as Cher-

noff’s property (S ⊂ T ⇒ γ (T ) ∩ γ (S) ⊂ γ (S)) and Arrow’s condition (S ⊂ T , γ (T ) ∩ S 9= ∅ ⇒ γ (S) =

γ (T ) ∩ S).
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The example supporting our first result formalizes and extends the examples given in

the introduction.

Proposition 3 Let X be a finite set. Then there exist sequentially rationalizable choice

functions γ on X such that Pγ is cyclic.

Proof: Suppose first that X = {x, y, z} and let γ be defined by

Cγ (x) = {xy, xyz}

Cγ (y) = {yz}

Cγ (z) = {xz}

so that the cycle xPγyPγzPγx is generated. Define P1, P2 ∈ X ×X by P1 = {(y, z)} and
P2 = {(x, y) , (z, x)}. It is immediate to check that γ (S) = max (max (S;P1) ;P2) for all
S ∈ P (xyz).
For a finite X, fix any x ∈ X and assume inductively that there exists a choice

function γ on P (X\x) which is sequentially rationalizable and which generates a base
relation cycle, and let P1, ..., PK be the rationalizing relations. Then extend γ to γ� on

P (X) by setting γ� (S) = γ (S ∩ (X\x)) for all S 9= {x}, and let P �1, ..., P �K ∈ X ×X be

defined by P �i = Pi∪ {(y, x) |y ∈ X\x}. Obviously P �1, ..., P �K sequentially rationalize γ�.

This implies in particular that sequentially rationalizable choice functions may violate

Independence of Irrelevant Alternatives. We will show below that although, as we just

proved, there may exist revealed binary preference cycles, the chosen element from a set

must always be indirectly ‘revealed preferred’ to any other element through a sequence of

binary choices.

Is the concept of sequential rationalizability vacuous? That is, is it possible to sequen-

tially rationalize every choice function? Before answering this question, let us note that

even if the answer was positive, the concept might still be of interest, because one could

for example distinguish choice functions by the minimal number of rationales needed to

rationalize them. This is the approach followed by Kalai, Rubinstein and Spiegler [10]

whose rationalizability concept is vacuous in the above sense. However, for sequential

rationalizability the answer is negative:

Proposition 4 There exist choice functions which cannot be sequentially rationalized.

8



Proof. Let x, y, z ∈ X and let

xy, xz ∈ Cγ (x)

xyz, yz ∈ Cγ (y)

Suppose by contradiction that γ was sequentially rationalizable by P1, ..., PK . Let i(x, y)

be the smallest i such that some Pi relates x and y, that is

i (x, y) = min {i ∈ {1, ...,K} | (x, y) ∈ Pi ∪ P ∗i }

and similarly let

i (x, z) = min {i ∈ {1, ...,K} | (x, z) ∈ Pi ∪ P ∗i }

Since xy ∈ Cγ (x) it must be (x, y) ∈ Pi(x,y). Given this, xyz ∈ Cγ (y) can only hold if

(z, x) ∈ Pi(x,z), which contradicts xz ∈ Cγ (x).

Interestingly, the pattern of choice over the subsets of {x, y, z} in the proof of Proposi-
tion 4 can be generated by several well-known procedures that have attracted economists’

attention. Such procedures are therefore non rationalizable not only in the standard sense,

but also in the weaker sense of this paper.

The first procedure is (a refinement of) the ‘choose the median’ procedure defined as

follows. There is a ‘fundamental’ order B on X (e.g. given by ideology from left to right)

such that xByBz. The decision-maker chooses the median according to B, breaking ties

by picking the highest element in the set of median elements.

Similarly, the choice pattern is consistent with the ‘never choose the uniquely largest’

procedure. There is again a fundamental order B on alternatives and the chosen alter-

native cannot be the unique maximizer of B. However, to interpret the choice pattern

in this way the fundamental ordering must be exactly the reverse of the one used for the

choose the median procedure, namely zByBx. Baigent and Gaertner [2] and Gaertner

and Xu ([5], [6]) have axiomatized these procedures.

A third procedure generating the choice pattern is the one described in the dinner

example by Luce and Raiffa [11] (see also [10]). Imagine that when z is not available the

decision maker chooses the greatest element according to the ordering B1 given by xB1y,

while when z is available he chooses the greatest element according to the ordering B2

given by yB2xB2z. This yields the sequentially non-rationalizable choice function. On

the other hand, if the same procedure was followed but the ordering B2 was given by

yB2zB2x (which is also in the spirit of Luce and Raiffa’s example), it would be possible

to sequentially rationalize the choice function by applying first P1 = {(z, x) , (y, z)} and
then P2 = {(x, y)}.
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We now move to the question of what type of violations of standard rationalizability

sequential rationalizability can encompass. A simple lemma will be useful in what follows.

Lemma 5 Let γ be a sequentially rationalizable choice function. Then:

(x, y) ∈ Pγ for all y ∈ S ⇒ x = γ (S)

Proof. Let i (x, y) be defined as in the proof of proposition 4. Let (x, y) ∈ Pγ for all

y ∈ S. For each y ∈ S\x we must have (x, y) ∈ Pi(x,y), so that the successive application
of the rationales eliminates all y ∈ S\x, and no rationale can eliminate x. Therefore
x = γ (S), as desired.

To glean some intuition, consider a set X = {x, y, z} with γ (X) = x. There are only

three possible configurations of choice which violate Independence of Irrelevant Alterna-

tives (hence are not standard rationalizable), namely one other alternative is chosen in

pairwise choices over x = γ (X): (i) (y, x) , (x, z) , (z, y) ∈ Pγ, (ii) (y, x) , (z, x) ∈ Pγ, and
(iii) (y, x) , (x, z) , (y, z) ∈ Pγ. Of these, only (i), which exhibits a Pγ cycle, is sequentially

rationalizable. In case (ii) x is never chosen in pairwise choices and so clearly the choice

x = γ (X) cannot be sequentially rationalized, while in case (iii) the alternative y is al-

ways chosen in pairwise comparisons when available, so by lemma 5 the only sequentially

rationalizable choice from the grand set is y = γ (X).

As it turns out, this is a general feature of sequentially rationalizable choice functions.

That is, if γ over a finite set X violates Independence of Irrelevant Alternatives but is

sequentially rationalizable, then γ generates pairwise cycles of choice.

Proposition 6 Let X be finite and let γ be a sequentially rationalizable choice function

on X. Then either γ satisfies Independence of Irrelevant Alternatives or Pγ is cyclic.

Proof. Let x = γ (X) be a sequentially rationalizable choice function that violates In-

dependence of Irrelevant Alternatives. Then we can define T := {T ⊆ X |T 6 x 9= γ (T )}
and let

S ∈ argmin
T∈T

|T |

be (one of) the smallest set(s) containing x but from which x is not chosen. It cannot be

that |S| > 2, otherwise (x, y) ∈ Pγ for all y ∈ S, and lemma 5 would imply x = γ (S),

contradicting the construction. Then it must be that |S| = 2. Let S = {x, y}. Since
x = γ (X), by lemma 5 there must exist some other alternative z ∈ X such that (z, y) ∈ Pγ

in order for γ to be sequentially rationalizable. Now if (x, z) ∈ Pγ we would have the
cycle yPγxPγzPγy, and we would be done. So let (z, x) ∈ Pγ. Then there must exist some
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other alternative w ∈ X such that (w, z) ∈ Pγ in order for x = γ (X) to be rationalized. If

either x or y where to be chosen over w in pairwise comparisons this would generate cycles

(either xPγwPγzPγx or yPγwPγzPγy), so it must be that (w, x) , (w, y) ∈ Pγ. Iterating
this argument and noting that the set X is finite, however, either there exists some a 9= x
which is chosen over all others in pairwise choices, in which case x = γ (X) cannot be

rationalized; or there are cycles.

4 Rational Shortlist Methods: a complete character-

ization

In this section we focus on RSM’s and prove the main characterization result of the paper.

We begin by observing that the property of Expansion would rule out the choice

function used in the proof of proposition 4. This property will be shown below to be

a necessary condition for a choice function to be an RSM. However there are domains

and choice functions on those domains which satisfy Expansion but are not sequentially

rationalizable by any number of rationales, as the following example proves.

Example 7 X = {x, y, w, z}
Cγ (w) = {wx,wy, wxy}
Cγ (x) = {xy, xz, xyz, wxyz}
Cγ (y) = {yz, wyz}
Cγ (z) = {wz,wxz}
Observe that each Cγ (.) is closed under union and therefore this choice function sat-

isfies Expansion. We now show that it cannot be rationalized. Let i (x, y) be defined as

in the proof of proposition 4. Then:

1. It cannot be i (w, x) ≤ i (z, w). If so, w would not have been eliminated when Pi(w,x)
is applied to X , so that x = γ (X) would not be rationalized;

2. It cannot be i (w, x) > i (z, w). If so, z = γ (wxz) cannot be rationalized: if

i (x, z) ≤ i (z, w) sequential application of the criteria to wxz would select γ (wxz) =
w, whereas if i (x, z) > i (z, w) sequential application of the criteria would select

γ (wxz) = x.

The base relation Pγ for example 7 is visualized in figure 1, where a → b stands for

(a, b) ∈ Pγ. Moreover, there are choice functions which satisfy Expansion but are not

RSM’s, although they are sequentially rationalizable, as shown in example 8.
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w y

z

x

Figure 1: The base relation of example 7

Example 8 X = {x, y, w, z}
Cγ (w) = {wx}
Cγ (x) = {xy, xz, xyz, wxy, wxyz}
Cγ (y) = {wy, yz, wyz}
Cγ (z) = {wz,wxz}
The base relation Pγ is visualized in figure 2. It is straightforward to verify that

this choice function is rationalized by P1 = {(y, w)}, P2 = {(z, w) , (w, x) , (x, y)} and
P3 = {(x, z) , (y, z)}. However it cannot be rationalized by just two rationales. To see
this, suppose (w, x) ∈ P1.Then x = γ (wxyz) could not be rationalized. Suppose then that

(w, x) ∈ P2. Then z = γ (wxz) cannot be rationalized, for x will eliminate z regardless of

whether (x, z) ∈ P2 or (x, z) ∈ P1.

w y

z

x

Figure 2: The base relation for example 8.

Motivated by this example, we introduce a property which is violated in it, and which

we will show below to be another necessary condition for a choice function to be an RSM.

The property is a weakening of WARP, in which the premise of the original axiom is

strengthened (by adding the requirement that the alternative which is revealed preferred

also dominates the inferior alternative in the base relation), and the conclusion is weakened
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(by restricting the set of choice sets for which the inferior alternatives cannot be in turn

be revealed preferred).

Restricted WARP: (x, y) ∈ PBConsγ (S) for some S ∈ P (X) ⇒ (y, x) ∈ PCγ (R) for all
R ⊂ S.

In other words, if x is revealed preferred to y both in the pairwise comparison and in

a larger set, then y cannot be revealed preferred to x in any ‘intermediate’ set in which

x is present. The interpretation is straightforward: the pairwise preference for x over y

does not exclude in principle that in larger sets some reason can be found to exclude x

and choose y instead. However, if a set S does not contain any such reason, no smaller

set can contain such a reason either. More vividly: if steak is chosen over chicken both

when only steak and chicken are on the menu, and when a large selection of pizzas is also

on the menu, then chicken will not be chosen when steak and a smaller selection of pizzas

are available.

Example 8 does not satisfy Restricted WARP: in particular, we have that x = γ (xz)

and x = γ (wxyz), so that it should not be possible that z is chosen when x is present.

Instead, we have z = γ (wxz) (the same applies to example 7). Restricted Warp is in fact

some form of menu independence requirement which, while not excluding menu effects

completely, confers on them a certain regularity.

The next result provides three necessary condition for a choice function to be an

RSM. Two of these are Expansion and Restricted WARP, while the other is the revealed

preference property below:

Restricted Condorcet: For all S ∈ P (X): (a) x = γ (S) ⇒ (x, y) ∈ (Pγ|S)t for all
y ∈ S; (b) (x, y) ∈ Pγ for all y ∈ S ⇒ x = γ (S).

Part (b) of Restricted Condorcet is identical to the corresponding direction of Con-

dorcet5. We have already shown in lemma 5 that this is a necessary condition for sequen-

tial rationalizability. Part (a) of this property says that the chosen alternative from a set

must be indirectly revealed preferred in the set to any other alternative by using pairwise

choices, that is via the base relation. In other words, for each unchosen alternative y in

S there exists a sequence of alternatives in S, each of which is in the base relation with

the next one, connecting the chosen alternative to y. This part is clearly a weakening

of one direction of Condorcet, in which the direct pairwise revealed preference property

has been replaced by indirect pairwise revealed preference. A choice function satisfying

Restricted Condorcet but not Condorcet will exhibit some degree of ‘menu dependence’.

5This is sometimes called condition γ. Nehring [18] studies menu-dependence by weakening condition

γ.
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Proposition 9 Let γ be a Rational Shortlist Method. Then it satisfies (i) Expansion, (ii)

Restricted Condorcet and (iii) Restricted WARP.

Proof. Let γ be an RSM and let P1 and P2 be the rationales.

(i) Expansion. Let x = γ (S) ∩ γ (T ) for S,T ∈ P (X). If for some y ∈ S ∪ T it

were (y, x) ∈ P1, this would immediately contradict x = γ (S) or x = γ (T ) and γ

being rationalized. Suppose now that for some y ∈M1 (S ∪ T ) we had (y, x) ∈ P2. Since
obviouslyM1 (S ∪ T ) ⊂M1 (S)∪M1 (T ), we have y ∈M1 (S) or y ∈M1 (T ), contradicting

x ∈M2 (S) or x ∈M2 (T ).

Therefore for all y ∈ S ∪ T we have (y, x) ∈ PC1 ∪ PC2 , x survives both rounds of
elimination and we can conclude that x = γ (S ∪ T ) .

(ii) Restricted Condorcet. (We will show later that Restricted Condorcet is necessary for

sequential rationalizability. Since an RSM is sequentially rationalizable, that result would

suffice to prove (ii). However, we give here a direct proof of part (a), which is of interest

in itself because it shows the connection between Restricted Condorcet and Expansion).

Let x = γ (S). Let R be the subset of elements of S which are chosen over x in

pairwise choices, that is R = Upγ (x, S). Let Q be the subset of elements of R to which x

is pairwise indirectly revealed preferred in S, that is Q = z ∈ R| (x, z) ∈ (Pγ |S)t . Since
trivially (x, y) ∈ (Pγ|S)t for all y ∈ Loγ (x, S), the assertion of the statement is proved if
we show that R\Q is empty.
Suppose not, and let y ∈ R\Q. Suppose that there existed z ∈ Q with (z, y) ∈ Pγ.

Since (x, z) ∈ (Pγ|S)t this would imply (x, y) ∈ (Pγ|S)t, a contradiction. Therefore it
must be (y, z) ∈ Pγ for all z ∈ Q. A similar contradiction is obtained by supposing

that there existed z ∈ Loγ (x, S) such that (z, y) ∈ Pγ. Therefore (y, z) ∈ Pγ for all
z ∈ Loγ (x,S).
Note now that S can be expressed as S = {x ∪ Loγ (x, S) ∪Q ∪R\Q} . We have just

shown that yz ∈ Cγ (y) for all z ∈ Q∪Loγ (x, S), and we have proved in (i) that γ satisfies
Expansion, so that Q ∪ Loγ (x, S) ∈ Cγ (y). Moreover by assumption xy ∈ Cγ (y) and

R\Q ∈ Cγ (y). Applying Expansion again then we obtain the contradiction S ∈ Cγ (y).

We can conclude that R\Q is empty.

(iii) Restricted WARP. Let (x, y) ∈ PBConsγ (S) = Pγ (S) ∩ Pγ . Then (x, y) ∈ Pγ implies
that (x, y) ∈ P1 ∪ P2. If (x, y) ∈ P1, then the desired conclusion follows immediately.
Suppose then that (x, y) ∈ P2. The fact that (x, y) ∈ Pγ (S) implies that for all z ∈ S it
is the case that (z, x) ∈ PC1 . Therefore x ∈ M1 (R) for all R ⊂ S for which x ∈ R. Since
(x, y) ∈ P2 then y /∈M2 (R) for all such R, and thus y /∈ γ (R).

Note that the argument in the proof of (i) could not be iterated further in the case

of more than two rationales since it is not necessarily true that M2 (S ∪ T ) ⊂ M2 (S) ∪
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M2 (T ). There could in fact be y ∈ (M1 (S) ∪M1 (T )) \M1 (S ∪ T ) such that (y, z) ∈ P2
for some z ∈M1 (S)∪M1 (T ) while for all y� ∈M1 (S ∪ T ) it is the case that (y�, z) ∈ PC2 .
So if it were (z, x) ∈ P3, x could not be chosen from S ∪ T .
We can now turn to our main result, which completely characterizes RSM’s.

Theorem 10 A choice function γ is a Rational Shortlist Method if and only if it satisfies

Expansion and Restricted WARP

Proof. In view of Proposition 9 we only need to prove sufficiency. Suppose that γ satisfies

the axioms. We will explicitly construct the rationales.

For all S ∈ P(X) such that for some x, z ∈ S we have (x, z) ∈ PBIncγ (S), define

Y (z, S) = y ∈ S| (y, z) ∈ Pγ

Next define the following relations:

P2 = (z, x) ∈ X ×X|∃S ∈ P(X) with (x, z) ∈ PBIncγ (S)

P �1 = (y, z) ∈ X ×X|∃S ∈ P(X) with (x, z) ∈ PBIncγ (S) and y ∈ Y (z, S)

P ��1 = {(x, y) ∈ (X ×X) \ (P �1 ∪ P2) | (x, y) ∈ Pγ}

P1 = P
�
1 ∪ P ��1

In words: P2 relates z to x whenever x is chosen from a set S but z in S is chosen

over x in pairwise comparisons. P1 is constructed by joining two relations P �1 and P
��
1

where: P �1 relates y and z whenever there are x and z related by P2, y is chosen over z

in pairwise comparison, and in addition it never happens that z is chosen from a set in

which y is present. The pairs which have been left unallocated are related by P ��1 in a

manner consistent with pairwise choices.

All the relations defined are asymmetric, since if (x, y) ∈ Pi, i ∈ {1, 2}, then (x, y) ∈ Pγ

and Pγ is asymmetric. Also observe that P2 ∩ P1 = ∅. In fact, if (x, y) ∈ P2 then there
exists T ∈ P(X) such that (x, y) ∈ PBIncγ , which prevents (x, y) ∈ P �1; and obviously
P2 ∩ P ��1 = ∅. Finally note that P1 is acyclic. For suppose to the contrary that we have a
cycle x1P1x2P1...P1xnP1x1. Let without loss of generality x1 = γ(x1x2...xn). But then by

definition of P1 it cannot be (xn, x1) ∈ P1.
Next, we show that the set Y (z, S) in the definition of P �1 is never empty. This means

that for each S ∈ P(X) with (x, z) ∈ PBIncγ (S) it is always possible to find y ∈ S such
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that (y, z) ∈ Pγ|S and such that in addition (z, y) ∈ PCγ (T ) for all T ∈ P(X). Begin
by noting that the set Upγ (z, S) is nonempty (to see this, suppose in contradiction that

(z, w) ∈ Pγ for all w ∈ S\z. Then z cannot be eliminated either via P1 or via P2 and
the choice x = γ (S) could not be rationalized). Suppose by contradiction that for every

y ∈ Upγ (z, S) there exists a Ty ∈ P(X) such that (z, y) ∈ Pγ (Ty). Let T = y∈Upγ(z,S) Ty.

Since (z, x) ∈ Pγ by assumption and (z, y�) ∈ Pγ for all y� ∈ S\Upγ (z, S) by definition,
Expansion implies that z = γ (S ∪ T ). But then x = γ (S) contradicts Restricted WARP.

We can now check that P1 and P2 thus defined rationalize γ. Take any S ∈ P(X) and
let x = γ (S). All z ∈ S such that (z, x) ∈ Pγ are eliminated by the application of P1
(since we showed that Y (x, z, S) is nonempty for all S), while x is not eliminated by P1

as it is related to all such z only by P2 and not by P1. Therefore x must survive both

the first and the second round of elimination. For all other y ∈ S we have (x, y) ∈ Pγ,
and either there exists T ∈ P(X) such that (y, x) ∈ Pγ (T ), or not. In the former case
we have (x, y) ∈ P2 and in the latter case we have (x, y) ∈ P �1. Therefore all such y are
eliminated either in the first or in the second round.

The above Theorem relates sequential rationalizability to some classical rationality

properties. However, the proof makes it clear that a weaker single requirement also

characterizes an RSM, namely:

Neutralization: For all S ∈ P (X): (x, z) ∈ PBIncγ (S)⇒ ∃y ∈ S : (y, z) ∈ Pγ.

In words, if x is revealed preferred to z in some set S, but z is directly revealed preferred

to x in pairwise choice, then there exists some other alternative y which ‘neutralizes’ z,

in the sense that it is chosen over it in pairwise comparisons and it is never revealed

dispreferred to z. We can then state the following:

Corollary 11 A choice function γ is a Rational Shortlist Method if and only if it satisfies

Neutralization.

Proof. Sufficiency follows directly from the proof of Theorem 10. For necessity, suppose

P1 and P2 sequentially rationalize γ. Suppose that (x, z) ∈ PBIncγ (S). Then it must be

that (z, x) ∈ P2. Moreover, to rationalize x = γ (S) there must exist y ∈ S such that
(y, z) ∈ P1. This implies that there does not exist S � ∈ P (X) such that (z, y) ∈ Pγ (S �),
and therefore Neutralization must hold.

In the sequel of this section we offer some observations regarding the properties that

the rationales of an RSM may satisfy in addition to asymmetry of both and acyclicity of

P1. Although for RSM’s the acyclicity of P2 cannot be guaranteed, the weaker property

of 3-acyclicity (see e.g. Suzumura[22]) can be established. A binary relation B on X×X
is 3-acyclic if (x, y) , (y, z) ∈ B implies (z, y) ∈ BC for any three alternatives x, y, z ∈ X.
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Corollary 12 Let γ be a Rational Shortlist Method rationalized by P1 and P2. Then P2

is 3-acyclic.

Proof. Suppose not. then by the definition of P2 there must exist sets Si and alternatives

xi, i = 1, 2, 3, for which (xi, xi−1) ∈ PBIncγ (Si) for 1 < i ≤ 3 and (x1, x3) ∈ PBIncγ (S1).

Without loss of generality, let x1 = γ (x1x2x3). By Proposition 9 γ satisfies Expansion

and Restricted WARP. By Expansion we have that x3 = γ (S3 ∪ x1). This together

with (x3, x1) ∈ Pγand x1x2x3 ⊂ S3 ∪ x1 implies by Restricted WARP that (x1, x3) ∈
PCγ (x1x2x3), a contradiction.

The following axiom, derived form the classical Congruence property, will guarantee

the full acyclicity of P2.

Restricted Congruence: x1Pγ (S1)x2Pγ (S2) ...Pγ (Sn−1)xnPγ (Sn)x1, Si ∈ P (X) for
all i = 1, ..., n⇒ (xi+1, xi) ∈ PCγ for some i < n− 1 or (xn, x1) ∈ PCγ .

Restricted Congruence allows revealed preference cycles to exist. However, it requires

that in that case there should not exist a base relation cycle which goes in the opposite

direction to the revealed preference cycle.

Corollary 13 A choice function γ is a Rational Shortlist Method for which both ratio-

nales are acyclic if and only if γ satisfies Expansion, Restricted WARP and Restricted

Congruence.

Proof. Follows from Theorem 10. Restricted Congruence is immediately seen to be

equivalent to prohibiting P2 cycles with the definition of P2 given in the proof of Theorem

10, which proves sufficiency. Conversely, suppose that Restricted Congruence is violated

for some Rational Shortlist Method γ. That is, suppose that

x1Pγ (S1)x2Pγ (S2) ...Pγ (Sn−1)xnPγ (Sn)x1, Si ∈ P (X) for all i = 1, ..., n

and yet (xi+1, xi) , (xn, x1) ∈ Pγ for all i < n − 1. It is clear that any rationalization
with two rationales P1 and P2 will be such that (xi+1, xi) , (xn, x1) ∈ P2 for all i < n − 1
(otherwise xi = γ (Si) for all i could not be rationalized). Therefore P2 would be cyclic.

Clearly if P2 is acyclic, it can also be chosen to be transitive, simply by taking its

transitive closure. This however would be rather artificial, as it would include pairs which

contradict the base relation Pγ.

One may wonder whether the P1 rationale may be chosen to satisfy, beyond acyclicity,

also transitivity. We conclude this section with an example of a choice function which

satisfies Expansion and Restricted WARP (and therefore by Theorem 10 is an RSM) but

which cannot be sequentially rationalized using a transitive P1.
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Example 14 X = {x, y, w, z}
Cγ (w) = {wz}
Cγ (x) = {xz, wx, xyz, wxz, wxyz}
Cγ (y) = {xy, wy,wxy}
Cγ (z) = {yz, wyz}
Since γ satisfies Expansion and Restricted WARP it is an RSM. Because xyz ∈ Cγ (x),

xy ∈ Cγ (y) and yz ∈ Cγ (z) we must have (z, y) ∈ P1. Because wy ∈ Cγ (y), wz ∈ Cγ (w)

and wyz ∈ Cγ (z) we must have (y, w) ∈ P1. Transitivity of P1 then would imply (z, w) ∈
P1. Therefore (z, w) ∈ Pγ , contradicting Cγ (w) = {wz} and the rationalizability of γ.

w y

z

x

Figure 3: The base relation for example 14.

5 Sequential rationalizability: Some necessary con-

ditions

In this section we look for patterns of choice behavior that cannot be sequentially ratio-

nalized. Since sequential rationalizability allows menu-dependence, one way to look at the

results of this section is as a characterization of the limits that sequential rationalizability

imposes on menu dependence.

A comparison between Example 7 and Example 8 motivates the following property,

which is violated in Example 7 but not in Example 8. Recall that, given x ∈ X and

S ∈ P(X), Upγ (x, S) = {y ∈ S| (y, x) ∈ Pγ}. We define a new type of revealed relation
by writing (x, y) ∈ Pγ whenever (x, z) ∈ Pγ for all z ∈ Upγ (y, S). In words, Pγ relates
x and y whenever x is directly revealed preferred to anything that is directly revealed

preferred to y.

Menu: For all S ∈ P (X): (x, y) ∈ PBIncγ (S) ∩ Pγ ⇒ x = γ (xyz) for some z ∈ S\xy.

Menu is a contraction type property that represents a substantial weakening of Inde-

pendence of Irrelevant Alternatives. The premise of the axiom specifies a certain form of
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menu dependence. Although y is revealed preferred to x in pairwise choices, x is revealed

preferred to y both directly in the set S and indirectly in the strong sense P . Then there

must be an alternative z in S in the presence of which x is directly revealed preferred to

y. To put it more vividly, if one chooses chicken over steak, but chooses steak in a large

menu including chicken, and also chooses steak over anything that is chosen over chicken,

then steak must be chosen over chicken also in the presence of some element of the large

menu. To illustrate further, note that the property is automatically verified for any set S

of three alternatives, and in any set S of four alternatives it excludes the case in which

the choice from S is never chosen in the presence of an alternative that dominates it. This

is not an elegant axiom and we would not recommend it as a sufficient condition, but it

is interesting as a necessary condition by providing a test of sequential rationalizability.

On the other hand, restricted Condorcet, considered before, is a rather attractive

revealed preference property. We are now ready to prove that these two properties are

observable implications of sequential rationalizability. This illustrates how sequential

rationalizability limits the extent to which a choice function can be menu dependent.

Proposition 15 Let γ be a sequentially rationalizable choice function. Then it satisfies

(i) Menu and (ii) Restricted Condorcet.

Proof. Let γ be sequentially rationalizable with P1, ..., PK being the rationales. As usual,

for any (a, b) ∈ Pγ, denote i (a, b) = min {i : (a, b) ∈ Pi}.

(i) Menu. Let (x,w) ∈ PBIncγ (S) ∩ Pγ . Note that for γ to be sequentially rationalizable
clearly it must be Upγ (w, S) 9= ∅. Now fix z ∈ Upγ (w, S). If x = γ (wxz) we have

nothing to prove. Otherwise, there can be two cases:

1. w = γ (wxz). The sequential rationalizability of γ implies that i (z, w) > i (w, x) ≥
i (x, z) or i (z,w) > i (w, x) ≥ i (x, z) or i (w, x) ≥ i (z, w) > i (x, z). These are all
the configurations ensuring that z is eliminated by x in wxz before z eliminates

w. This however makes it impossible to rationalize x = γ (S), unless there exists

some alternative y ∈ Upγ (w, S) that eliminates w before it eliminates x. Since

y ∈ Upγ (w, S) then by assumption (x, y) ∈ Pγ. So we have (y,w) ∈ Pi(y,w) with
i (y, w) < i (w, x) and i (x, y) ≥ i (y, w). If y = z this would generate a contradiction,
so let y 9= z. Then the sequential application of the rationales to the set wxy yields
x = γ (wxy), and we are done.

2. z = γ (wxz). The sequential rationalizability of γ implies that i (x, z) > i (z, w) ≥
i (w, x) or i (x, z) ≥ i (z, w) > i (w, x) or i (z,w) ≥ i (x, z) > i (w, x). These are all
the configurations ensuring that x is eliminated by w in wxz before x eliminates z.

As in case 1, this makes it impossible to rationalize x = γ (S), unless there exists y ∈
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Upγ (w, S) such that (y,w) ∈ Pi(y,w) with i (y, w) < i (w, x) and i (x, y) ≥ i (y, w).
The proof then concludes exactly as in case 1.

(ii) Restricted Condorcet. Let γ be sequentially rationalizable with P1, ..., PK being the

rationales.

Part (b) is proved in lemma 5. For part (a), let x = γ (S). If (x, y) ∈ Pγ for all
y ∈ S\x we are done, so suppose that Upγ (x, S) is nonempty.
Since γ is rationalizable then Loγ (x,S) is also nonempty. Suppose not. Then (y, x) ∈

Pγ for all y ∈ S\x and therefore (y, x) ∈ Pi(x,y), where i (x, y) is defined as above. There-
fore the successive application of the rationales to S\x must eliminate at each round ex-
actly the same alternatives as it eliminates starting from S, namelyMi (S) =Mi (S\x)∪x
for all i ∈ {1, ...,K}. But this contradicts x = γ (S) =MK (S).

Clearly the rationalizability of γ also implies that, for all y ∈ Upγ (x, S), Upγ (y, S) is
nonempty: otherwise any such y could never be eliminated by any rationale and it could

not be that x = γ (S).

LetR be the (possibly empty) subset of elements in Upγ (x, S) over which some element

of Loγ (x, S) is chosen in pairwise comparisons, that is:

R = {y ∈ Upγ (x, S) |Upγ (y, S) ∩ Loγ (x, S) 9= ∅}

Let T be the (possibly empty) subset of elements in Upγ (x, S) to which some element of

R is directly or indirectly revealed preferred in Upγ (x, S) via the base relation, that is:

T = y ∈ Upγ (x, S) | (z, y) ∈ (Pγ |Upγ (x, S))t for some z ∈ R

Finally let

Q = Upγ (x, S) \ {R ∪ T}

Suppose that Q is nonempty. Note that for all y ∈ Q it must be that (y, z) ∈ Pγ for all

z ∈ R ∪ T , since otherwise (z, y) ∈ Pγ and therefore y ∈ R ∪ T (instead of y ∈ Q). Also
obviously for all y ∈ Q we have that (y, z) ∈ Pγ for all z ∈ Loγ (x,S), otherwise y ∈ R
(instead of y ∈ Q).
At any round of elimination, if an alternative in Q survives when the starting set is

Q itself, so it must survive when the starting set is S, for there is no z ∈ S\Q such

that (z, y) ∈ Pγ for any y ∈ Q. Likewise, if an alternative in Q is eliminated at some

round when the starting set is Q itself, so it must be eliminated when the starting set is

S (by some other alternative also in Q). Therefore in particular γ (Q) must survive all

rounds of elimination when the rationales are applied to S, contradicting x = γ (S) with

γ rationalized by P1, ..., PK .
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We can thus conclude that Q is empty. But then by the construction of the sets R, T ,

and Loγ (x, S), for each y ∈ R∪ T ∪Loγ (x, S) we have that (x, y) ∈ (Pγ|S)t, as desired.

Menu and Restricted Condorcet are not, however, sufficient for sequential rationaliz-

ability, as the following example demonstrates.

Example 16 X = {w, x, y, z}
Cγ (w) = {wx,wy, wxy, wzy}
Cγ (x) = {xy, xz, xyz, wxz, wxyz}
Cγ (y) = {yz}
Cγ (z) = {wz}
It is straightforward to check that γ satisfies Menu6 and Restricted Condorcet.

In order to rationalize x = γ (X) it must be that i (z, w) ≤ min {i (y, z) , i (x, z)}.
However this implies that w = γ (wyz) cannot be rationalized.

w y

z

x

Figure 4: The base relation for example 16.

Finding a set of necessary and sufficient conditions for sequential rationalizability

remains a non trivial open question.

6 Two applications of Rational Shortlist Methods

Among sequentially rationalizable choice functions, RSMs depart from conventional the-

ories of rational choice in the smallest possible way. In section 3 we have shown how

they rule out some well known procedures. In this section, conversely, we show how

they can explain some remarkably regular departures from accepted principles of rational

choice which go beyond the axioms of revealed preferences. We present two examples,

one dealing with intertemporal choice and one with choice under risk.

6For instance (x,w) ∈ Pγ (X) ∩ Pγ ∩ P∗γ and as required by Menu xwz ∈ Cγ (x).
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6.1 Intertemporal choice

The standard model of choice over time is the exponential discounting model (EDM).

It has been observed that actual choices in experimental settings violate consistently its

predictions. The most notable violation is possibly preference reversal. Let Pγ refer to

observed pairwise choices over date outcome pairs (x, t) ∈ X × T , where X is a set of

monetary outcomes and T is a set of dates. In this context, preference reversal at time

t� is the shorthand for the following situation: (x, t)Pγ (y, t
�) and (y, t� + t��)Pγ (x, t+ t

��),

where t� ≥ t. This violates stationarity of time preferences, a premise on which the EDM
model is constructed.

This choice pattern can be easily accounted for by interpreting γ as a RSM with

rationales P1 and P2 defined as follows. For some function u : X × T → ? and number
σ > 0, (x, t)P1 (y, t

�) if and only if u (x, t) > u (y, t�) + σ, and (x, t)P2 (y, t
�) if and only if

u (y, t�) ≤ u (x, t) ≤ u (y, t�) +σ, and either x > y, or x = y and t < t�. This is compatible

with preference reversal even with an exponential discounting type of u function. Let

x < y, t < t� and u (x, t) = xδt for δ ∈ (0, 1). Suppose that xδt > yδt + σ so that (x, t)

is chosen over (y, t�). Given σ, if t�� is sufficiently large it will be xδt+t < yδt +t + σ, so

that the two date outcome pairs are not comparable via P1. That is, the decision maker

looks first at discounted value, and chooses one alternative over the other if it exceeds the

discounted value of the latter by an amount of at least σ. Otherwise he looks first at the

outcome dimension and if this is not decisive at the time dimension. The application of P2

yields the choice of (y, t� + t��) over (x, t+ t��), thus ‘reversing the (revealed) preference’.

Obviously, Pγ could also be sequentially rationalized by using three rationales, where

the outcome and time dimension comparisons are used in two separate Pi.

The same model can explain cyclical intertemporal choices and other ‘anomalies’ (see

Manzini and Mariotti [14] and bibliography therein).

6.2 Choice under risk

A model similar to that of the previous section can be employed to deal with some

departures of (experimentally) observed choice from Expected Utility (EU), the standard

tool of analysis of choice under risk. Consider elementary lotteries of the form (x, p) ∈
X × [0, 1] where X is a set of monetary prizes and p is the probability with which prize x

is obtained while 1− p is the probability of obtaining zero. In this context the ‘common
ratio effect’ refers to the following situation: (x, p)Pγ (y, q) and (y, rq)Pγ (x, rp), for some

r ∈ (0, 1). This violates the Independence Axiom for choice over lotteries.
Define rationales P1 and P2 as follows. Let U : X × [0, 1]→ ? be an expected utility

function defined by U (x, p) = pu (x), where u : X → ? is a concave function, and let
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σ > 0. Let (x, p)P1 (y, q) if and only if U (x, p) > U (y, q) + σ. Let (x, p)P2 (y, q) if and

only if U (y, q) ≤ U (x, p) ≤ U (y, q) + σ, and either x > y or x = y and p > q. We now

provide a famous numerical example (see Kahneman and Tversky [9]) of actual choices

that can be explained in the context of RSM.

Consider the gambles g1 = (4000, 0.8), g2 = (3000, 1), g3 = (4000, 0.2) and g4 =

(3000, 0.25). Note that g3 and g4 are the same as g1 and g2, respectively, with the prob-

ability of the positive prize reduced by a factor r = 0.25. In experiments it is normally

found that a significant majority of choosers picks g2 over g1 and g3 over g4, violating

independence and EU. This pattern of choice requires that

u (3000) > (0.8)u (4000) + σ

(0.25) u (3000) ≤ (0.2)u (4000) + σ

(0.2)u (4000) ≤ (0.25)u (3000) + σ

The first line ensures that g2P1g1, while the last two inequalities imply that g3P2g4. The

inequalities are compatible because there exists a positive constant σ and a concave u

such that σ < u (3000) − (0.8)u (4000) and σ ≥ |(0.2)u (4000)− (0.25)u (3000)|. For
instance, take u (x) = ln (x+ 1) and σ ∈ [0.343, 1.371). This example is taken from [15]

to which we refer for further details. Interestingly, in his work on similarity Rubinstein

[20] also suggests a (partially unspecified) sequential procedure to evaluate elementary

lotteries. Since there is a formal connection between a similarity relation and a semiorder,

the approach proposed here is in the same spirit as Rubinstein [20]. However note that

crucially he focuses on similarities only on each dimension.

7 Concluding Remarks

Both economists and psychologists have tended to emphasize the contrast between ‘hyper-

rational’ decision making and choice based on rules of thumb. An economist may feel that

the psychology way of proceeding is too loose, in that by using appropriate sequences of

rationales everything, or at least too much, can be explained. Indeed, the almost universal

use of utility functions in economic models confirms that uniqueness of the rationale (and

much more) is implicitly assumed. On the other hand, the existence of an overarching

preference relation as hypothesized by economists is very stringent, creating a wide gap

between what is rationalizable according to economist and what is normally considered

‘reasonable’ behavior in practice.

We have proposed an economic approach to the type of decision making procedures

which are usually promoted by psychologists. For example Gigerenzer and Todd [7] in

their work on ‘fast and frugal’ heuristics observe that “One way to select a single option

from multiple alternatives is to follow the simple principle of elimination: successive cues
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are used to eliminate more and more alternatives and thereby reduce the set of remaining

options, until a single option can be decided upon.”. In general, such heuristics focus on

the simplicity of cues used to narrow down possible candidates for choice. Simplicity is an

essential virtue in a world in which time is pressing. An overarching preference relation -

let alone a utility function - is not a cognitively simple object, and as a consequence these

authors stress the difference from heuristics based reasoning and the ‘unlimited demonic

or supernatural reasoning’ relied upon in economics. Yet in this paper we have shown that

the standard tools and concepts of revealed preference theory can be used to formalize

such heuristics.

Our way of incorporating bounded rationality is to translate the psychological notion

of ‘cues’ into a set of not necessarily complete binary relations. Rationality for us is the

consistent application of a sequence of rationales. The order in which they are applied

may be hardwired and may depend on the specific context and on the type of decision

maker7, but it should be the same in a relevant class of decision problems. Each single

rationale in itself needs not exhibit any other strong property, such as transitivity.

Sen [21] has forcefully argued that there are many reasons why preferences may be

incomplete8. As his main objective is to show how the act of maximization (as opposed to

optimization) of a binary relation is related to the act of choice, he does not force choice

to be single valued. Eliaz and Ok [4] also look at choice correspondences that can be

explained by the maximization of a (single) incomplete preference relation. In addition,

they provide experimental evidence for a weakening of WARP which characterizes such

correspondences. Here we are instead interested in ‘inescapable’ choices, namely in how a

specific, single valued, act of choice is arrived at, and this is why we consider the sequential

application of incomplete binary relations.

The usefulness of elimination heuristics in practical decision making is self-evident9

and widely spread in fields such as clinical medicine. In this perspective the sequentiality

in the application of rationales, which lies at the core of our analysis, is an appealing

feature of our rationalization results. This is very different from rationalization by multi-

7For example, in order to ‘choose’ whether to stay or flee in the presence of a bird, a rabbit may use

as its first rationale the fact that bird is gliding, which would identify a predator. Conversely, a human

decision maker may well look first at size or shape in order to recognize the bird.
8Beside those cited in the text, Danan [3], Mandler [12], Manzini and Mariotti [15], Masatlioglu

and Ok[16] are all contributions that have, from various perspectives, advocated the use of incomplete

preference relations. Danan and Masatlioglu and Ok in particular have looked at the rationalization

issue.
9As put very effectively by Gigerenzer and Todd [7] “If we can decide quickly and with few cues

whether an approaching person or bear is interested in fighting, playing, or courting, we will have more

time to prepare and act accordingly (though in the case of the bear all three intentions may be equally

unappealing)”.
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ple rationales, known in the literature as pseudo-rationalization10, whereby all rationales

are applied simultaneously to each set. Our approach is also different from the recent

contribution by Kalai, Spiegler and Rubinstein [10]. They use multiple rationales to ex-

plain choices, but each rationale is applied to a subset of the domain of choice. This

results in all choices being rationalizable and the focus becomes that of ‘counting’ the

minimum number of rationales necessary to explain choices. Finally we should mention

the work by Ok [19] who characterizes the choice correspondences satisfying Independence

of Irrelevant Alternatives by means of a two-stage procedure.
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