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jobs. Despite this observational equivalence, we provide several reasons for why it is 
important to understand what happens inside the black box of job creation. We calibrate a 
combined model with both mechanisms to administrative German wage and labor market 
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to replicate the observed negative time trend in estimated matching functions. In addition, the 
full nonlinear combined model generates highly asymmetric business cycle responses to 
large aggregate shocks. 
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1 Introduction
“The matching function is a modeling device that occupies the same place in

the macroeconomist’s tool kit as other aggregate function, such as the
production function (. . . ). Like the other aggregate functions its usefulness
depends on its empirical viability and on how successful it is in capturing the

key implications of heterogeneities and frictions in macro models.”
(Petrongolo and Pissarides, 2001, 391-392)

There is widespread empirical evidence for a Cobb-Douglas constant returns
matching function across countries, occupations or other disaggregation lev-
els (see Blanchard and Diamond (1990) for an early work and Petrongolo and
Pissarides (2001) for a survey). The coefficients from these matching function
estimations are often used to parametrize Cobb-Douglas contact functions in
theoretical models.1 Thus, the job creation mechanism in search and matching
models is usually exclusively driven by a theoretical contact function.2 In real-
ity, job creation consists of more than one margin. After workers and firms get
in contact (e.g. in an interview), only a certain fraction of workers is selected.
Not all workers are suitable for an employer and thus only those with the best
characteristics (e.g. idiosyncratic shocks) are selected. This second mechanism
is also well established in the literature.3 However, most existing macro-labor
business cycle papers use a degenerate selection mechanism (i.e. idiosyncratic
shocks play no meaningful role).4

In this paper, we approach the matching function from a completely differ-
ent angle. We focus on the potential role of idiosyncratic productivity for job
creation. We start by choosing the opposite polar case to the existing literature,
namely by assuming a degenerate contact function. Every worker gets in contact
with some constant probability. Firms only select those workers with the largest
idiosyncratic productivity.5 In such a framework, due to the degenerate contact
function, more vacancies do not lead to more matches in aggregate. However,
both vacancies and the job-finding rate are procyclical. Imagine a positive ag-
gregate productivity shock. This leads to a rise of the ex-ante expected profits
in firms’ vacancy free entry condition and thereby stimulates vacancy creation.

1In what follows, “contact function” refers to the theoretical function that establishes con-
tacts between workers and firms. Due to idiosyncratic shocks, not all of the contacts may
become matches. “Matching function” refers to the empirical connection between matches on
the one hand and vacancies and unemployment on the other hand.

2See e.g. Hall (2005); Hagedorn and Manovskii (2008), and Shimer (2005). There are many
papers that combine a contact function, a vacancy free entry condition and idiosyncratic
productivity to model endogenous separations (e.g. Krause and Lubik, 2007; Thomas and
Zanetti, 2009; Zanetti, 2011). However, in these papers idiosyncratic productivity shocks are
used to model the behavior of separations (not hirings).

3For a seminal contribution with idiosyncratic productivity see Jovanovic (1979). Tra-
ditional search models (e.g. McCall, 1970; Mortensen, 1987) rely on exogenous wage distri-
butions. If they are interpreted as the result of some underlying idiosyncratic productivity
heterogeneity, they fall into the same category of models.

4See the upper panel in Figure 6 in the Appendix for an illustration.
5Brown et al. (forthcoming); Lechthaler et al. (2010) use similar mechanisms in context of

more complex models.
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In addition, larger aggregate productivity makes it profitable for firms to hire
workers with less favorable characteristics (i.e. lower idiosyncratic productivity).
This increases the job-finding rate.

We show analytically and numerically that this opposite polar case to the
standard literature generates an observationally equivalent equilibrium comove-
ment between matches, unemployment, and vacancies. To put it differently:
Our first contribution is to show that dynamic labor market models with two
standard modeling ingredients (vacancy free entry and idiosyncratic productiv-
ity) generate a simulated time series behavior that is in line with the results
from matching function estimations (Cobb-Douglas, constant returns).6

We prove that the shape of the idiosyncratic productivity distribution at the
cutoff point determines the precise nature of the comovement, i.e. the coeffi-
cients in an estimated matching function. We use high quality German adminis-
trative wage data to impose discipline on calibrating the density function. Our
calibrated and simulated model (with degenerate contact function) generates an
equilibrium comovement that is already fairly close to the correlations of the
actual matches, unemployment, and vacancy time series in the German data.

In order to match the dynamics of the German labor market data, we re-
place the degenerate with a traditional contact function and set the weight on
vacancies such that we can replicate the correlation structure from the data.
Due to idiosyncratic productivity shocks, the required weight on vacancies in
the contact function is much smaller than the coefficient from the matching
function estimation. Thus, our paper reveals that the conventional practice to
use matching function estimations in order to parametrize contact functions has
caveats. More precisely: Assume that the weight on vacancies in the traditional
contact function is parametrized with the values obtained from a matching func-
tion estimation. Then, in a model with idiosyncratic shocks, the model based
comovement between matches, unemployment, and vacancies will not be in line
with the data any more. In this scenario, a matching function estimation based
on simulated data generates a substantially larger weight on vacancies than in
the empirical data. This is very relevant from a welfare perspective. According
to Hosios rule, an economy is constrained efficient when the bargaining power
is equal to the elasticity of the contact function with respect to vacancies.

One important insight of our paper is that there are multiple ways of gener-
ating the same comovement between matches, unemployment, and vacancies in
theoretical models. This observational equivalence applies to both the match-
ing function and the Beveridge curve. But does it matter what happens inside
the black box of job creation? We argue that it matters a lot. A model that
combines both a traditional contact function and idiosyncratic productivity has
very interesting implications. First, the combined model generates substantial
labor market asymmetries to symmetric aggregate shocks. In the full nonlinear
model,7 large negative aggregate shocks generate stronger labor market reac-

6See the lower panel in Figure 6 in the Appendix for an illustration.
7Note that all our previous arguments were based on analytical steady state elasticities

or numerical second order approximations, which are reasonable in the context of regular
business cycle fluctuations. However, for very large shocks such as the Great Recession or the
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tions than positive aggregate shocks of the same size. With large aggregate
shocks, the curvature of the idiosyncratic productivity shock distributions mat-
ters, which we calibrate with wage data. The response of unemployment and
the job-finding rate to a 5% negative productivity shock is nearly twice as large
as to a positive shock of equal size. Second, the combined model provides a ra-
tionale for why matching function estimations often show a negative time trend
(Petrongolo and Pissarides, 2001; Poeschel, 2012). When the selection margin is
active, lower vacancy posting costs (e.g. due to new technology)8 generate such
a time trend even if the contact efficiency is constant. Intuitively, lower vacancy
posting costs stimulate vacancy posting. This generates more matches via the
contact margin. However, the selection margin is not directly affected and the
number of extra jobs increases less than proportionally. An estimation of the
matching function would therefore detect a decline in the matching efficiency.
However, in a model with idiosyncratic shocks, this negative time trend would
not be a sign for a worrisome deterioration of labor market conditions.

The rest of the paper proceeds as follows. Section 2 derives a simple model
with contact function, free entry of vacancies and idiosyncratic productivity
shocks for new jobs. Section 3 provides an analytical expression for the equi-
librium comovement of the job-finding rate and the market tightness in this
framework (starting with a degenerate contact function). Section 4 first cal-
ibrates the model with a degenerate contact function. Second, it combines a
non-degenerate contact function and idiosyncratic productivity shocks to match
the estimated matching function. Section 5 shows that the combined model has
very interesting labor market dynamics and implications. Section 6 concludes.

2 A Simple Model

2.1 Model Environment
Our economy is populated with a continuum of workers who can either be
employed or unemployed. Employed workers are separated with an exogenous
probability ϕ. Unemployed workers search for a job. We assume that they get
in contact with a firm with probability pt ≤ 1. The contact probability may
either be driven by a standard contact function as in Mortensen and Pissarides
(1994) and Pissarides (2000) or it may be degenerate, as standard in search
models (e.g. McCall, 1970; Mortensen, 1987) or as assumed in selection models
(Brown et al., forthcoming; Lechthaler et al., 2010).

When unemployed workers get in contact with a firm, they draw an idiosyn-
cratic productivity realization εit, i.e. some workers are more productive than
others. This nests the case of search and matching models where endogenous
separations hit before production takes place (e.g. Krause and Lubik, 2007) or
the stochastic job matching model (Pissarides, 2000, chapter 6). Firms will

Great Depression the full nonlinear model is more appropriate.
8There is anecdotal and quantitative support for our story that vacancy posting costs have

actually declined (see e.g. Kuhn and Mansour, forthcoming).
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only hire workers when the productivity realization, εit, is at least as large as
the cutoff productivity ε̃t, that makes a firm indifferent between hiring and not
hiring. For illustration purposes, we start with a model where idiosyncratic
productivity shocks are only drawn in the first period of employment. However,
this assumption is without loss of generality. We show analytically in the Ap-
pendix that we obtain the same results for two additional polar cases. First,
when we assume that the idiosyncratic shock, ε, is redrawn every period (both
for new contacts and for existing matches) and iid across workers and time.
Second, when we assume that ε is only drawn when a new contact is made, but
it remains the same for the entire period of employment.

Firms have to post vacancies to obtain a share of the economy wide appli-
cants (namely, the firm’s vacancy divided by the overall number of vacancies,
which is determined by a free-entry condition). With a traditional contact
function, more vacancies lead to more contacts. By contrast, with a degenerate
contact function, more vacancies do not lead to more contacts.

2.2 Contacts
Contacts are assumed to follow a Cobb-Douglas function with constant returns
to scale (CRS)

ct = µvγt u
1−γ
t , (1)

where ct denotes the overall number of contacts, µ is the contact efficiency, and
ut and vt are beginning of period unemployment and vacancies respectively. The
contact probability for a worker is thus pt = µθγt and the contact probability
for a firm qt = µθγ−1

t = pt/θt, where θt = vt/ut denotes market tightness. With
γ = 0 the contact function is degenerate in the sense that more vacancies do
not lead to more contacts and jobs in the aggregate.

2.3 The Selection Decision
Once a contact between a searching worker and the firm has been established,
firms decide whether to hire/select a particular worker or not. There is a random
worker-firm pair specific idiosyncratic productivity shock, εit, which is iid across
workers and time9, with density function f (εt) and the cumulative distribution
F (εt). εt is observed by the worker and the firm. Thus, the expected discounted
profit of hiring an unemployed worker, πE

t (εt), is equal to the current aggregate
productivity plus the idiosyncratic productivity shock, εt, minus the current
wage (which may be a function of ε), wt (εt), plus the expected discounted
future profits:

πE
t (εt) = at + εt − wt (εt) + δ (1− ϕ)Et (πt+1) , (2)

with
9Due to the iid assumption, we abstract from the worker-firm pair specific index i from

here onward.
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πt = at − wt + δ (1− ϕ)Et(πt+1), (3)

where δ is the discount factor and ϕ is the exogenous separation probability.
In the baseline scenario, incumbent worker-firm pairs are not subject to id-
iosyncratic productivity shocks, i.e. there is no εt and the wage for existing
worker-firm pairs is not dependent on any idiosyncratic shock realization.

The firm selects an unemployed worker whenever there is an expected posi-
tive surplus:

ε̃t = wt (εt)− at − δ (1− ϕ)Et (πt+1) . (4)

Thus, the selection rate is given by:

ηt =

∫ ∞

ε̃t

f (ε) dε. (5)

2.4 Vacancies
As in Pissarides (2000, chapter 1), we assume that each vacancy corresponds to
one firm. For entering the market, firms have to pay a fixed vacancy posting
cost κ. The value of a vacancy Ψ is

Ψt = −κ+ qtηtEt

[
πE
t |εt ≥ ε̃t

]
+ (1− qtηt)Ψt, (6)

where qt = ct/vt is the probability that a vacancy leads to a contact (i.e. overall
contacts divided by overall vacancies). Thus:

Ψt = −κ+ qtηt

(
at +

∫∞
ε̃t

(εt − w (εt)) f (εt) dεt

ηt
+ δ (1− ϕ)Et (πt+1)

)
+ (1− qtηt)Ψt,

(7)

Firms will post vacancies up to the point where the value is driven to zero
(free entry condition), i.e.

κ

qtηt
= at +

∫∞
ε̃t

(εt − w (εt)) f (εt) dεt

ηt
+ δ (1− ϕ)Et (πt+1) . (8)

It is straightforward to see that the model nests the standard matching
model where all workers are selected (i.e. with no role for idiosyncratic shocks),
by setting ηt = 1 and εt = 0. In this case, the right hand side is at − wt +
δ (1− ϕ)Et (πt+1) = at − wt + δ (1− ϕ)Et

κ
qt+1

.
Note that even in the case of a degenerate contact function, it is perfectly

rational for firms to enter the market. Under a positive aggregate productivity
shock, the expected returns of hiring a worker increase. Thus, more firms will
enter the market to compete for these profits until the free-entry condition holds
again. This makes vacancies procyclical in response to aggregate productivity
shocks.
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2.5 Wages
We assume that a larger idiosyncratic productivity shock leads to a proportion-
ally larger wage:

w (εt) = w̄t + αεt, (9)

where α is the proportional component. w̄t is the wage net of contemporaneous
εt realization (i.e. the wage that holds in future periods if there are no future id-
iosyncratic shocks). w̄t may be a function of current and future variables such as
aggregate productivity, market tightness, future job-finding rates, or unemploy-
ment benefits, but not the current idiosyncratic productivity realization. Thus,
our wage equation is very general and also nests standard Nash bargaining, i.e.
a privately efficient wage formation.10

2.6 Employment
We assume an economy with a fixed labor force L, which is normalized to 1. The
employment stock is thus equal to the employment rate, n. The employment
dynamics in this economy is determined by

nt+1 = (1− ϕ− ptηt)nt + ptηt. (10)

The number of searching workers is equal to the number of unemployed
workers at the beginning of period t, i.e.

ut = 1− nt. (11)

2.7 Labor Market Equilibrium
The labor market equilibrium consists of the contact function (1), the equations
for firms’ profits (3), the productivity cutoff point (4), the selection rate (5),
the vacancy free entry condition (8), the wage equation (9), the employment
dynamics equation (10) and the definition of unemployment (11).

3 Analytics
This section shows analytically that the model with degenerate contact function
and idiosyncratic shocks generates an equilibrium comovement of matches, un-
employment, and vacancies that is observationally equivalent to a model with
a traditional contact function but degenerate selection. We prove for a degen-
erate contact function that the elasticity of the job-finding rate with respect
to market tightness, which is equivalent to the weight on vacancies in an es-
timated matching function, is described by the first derivative of the expected
idiosyncratic productivity shock. We illustrate the implications for different

10In the standard search and matching model (i.e. with degenerate selection), this corre-
sponds to the well-known wage equation w (εt) = α (at − εt + κθt) + (1− α) b.
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distributions and cutoff points. In a next step, we show how our results differ
for a non-degenerate contact function. Finally, we discuss the robustness of our
results. To obtain analytical results, all derivations in this section are based on
a steady state version of our model, i.e. we assume that there is no aggregate
uncertainty and we analyze the reaction of the job-finding rate and vacancies
with respect to permanent changes in aggregate productivity.

These assumptions will be relaxed in Section 4.

3.1 Degenerate Contact Function
For illustration purposes, we start with a degenerate contact function (γ = 0).
The equilibrium comovement between the job-finding rate and market tightness
can be described by the three equations below plus one equation for the wage
formation,11 namely the hiring cutoff point ε̃, the job-finding rate pη, and the
market tightness, defined as θ = v/u:

ε̃ =
w̄ − a

(1− δ (1− ϕ)) (1− α)
, (12)

pη = p

∫ ∞

ε̃

f (ε) dε, (13)

θ =
pη

κ

(
a− w̄

(1− δ (1− ϕ))
+

(1− α)
∫∞
ε̃
εf (ε) dε

η

)
, (14)

or simplified

θ = (1− α)
pη

κ

(∫∞
ε̃
εf (ε) dε

η
− ε̃

)
. (15)

In standard empirical matching function estimations, the job-finding rate
(jfr) is regressed on market tightness, where β1 shows how strongly the job-
finding rate and market tightness comove in percentage terms and ψt is an error
term, namely:

ln jfrt = ln ptηt = βo + β1 ln θt + ψt. (16)

In a standard search and matching model with degenerate selection and a Cobb-
Douglas CRS specification, β1 is likewise the elasticity of matches with respect
to vacancies.

The job-finding rate and market tightness are both dependent on aggregate
productivity. By deriving the elasticity of the job-finding rate with respect to
productivity and by deriving the elasticity of market tightness with respect to

11We suppress this equation for expositional convenience. We show below that the precise
form of wage formation is irrelevant. Only one very general condition is required in this
context.
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productivity,12 we obtain an analytical expression for the empirical elasticity of
the job-finding rate with respect to market tightness,13 namely:

∂ ln (pη)

∂ ln a
=

−f (ε̃) ∂ε̃
∂aa

η
, (17)

∂ ln θ

∂ ln a
=

− ∂ε̃
∂aa∫ ∞

ε̃
εf(ε)dε

η − ε̃
. (18)

Thus:

∂ ln (pη)

∂ ln θ
=
f (ε̃)

η

(∫∞
ε̃
εf (ε) dε

η
− ε̃

)
. (19)

Interestingly, in equation (19) neither the wage nor the first derivative of
the cutoff with respect to productivity, ∂ε̃

∂a , shows up. We explicitly take into
account the first derivative of the wage with respect to productivity in our
derivations in the Appendix (i.e. we consider that different wage formation
regimes or parameters lead to different wage reactions). However, as long as
∂w
∂a < 1,14 this term drops out in the analytical derivations. Thus, our results
hold for a very broad set of wage formation mechanisms.

It is important to emphasize that the relationship between the job-finding
rate and market tightness in equation (19) is not causal. With a degenerate con-
tact function, more vacancies do not lead to more contacts and jobs in aggregate.
However, the model with idiosyncratic shocks generates a positive comovement
between the job-finding rate and market tightness in equilibrium. Thus, equa-
tion (19) shows that it is not necessary to assume a standard contact function
to obtain a positive comovement of these two variables.

To put it differently: If a model with degenerate contact function, idiosyn-
cratic shocks and free entry of vacancies is simulated and a matching function
estimation is performed based on the simulated data, the estimation will gener-
ate a positive coefficient on vacancies, although the underlying contact function
has a weight on vacancies of 0. We verify this numerically in Section 4.

What is the underlying economic mechanism and intuition? When aggregate
productivity rises, firms have an incentive to hire workers with lower idiosyn-
cratic productivity. Thus, the job-finding rate is procyclical. When productivity
rises, this also increases the returns from posting a vacancy. Thus, firms compete
for the larger pie of profits, more of them enter the market and thus increase the
market tightness in the economy. These two mechanisms combined lead to the

12See Technical Appendix for details.
13Note that Merkl and van Rens (2012) show that the job-finding rate and its dynamics are

isomorphic in a model with idiosyncratic training costs (under a Pareto distribution) and in
the search and matching model. However, their model does not contain any vacancies and is
thus silent on the shape of the matching function.

14If the wage comoves one to one with productivity (in absolute terms, e.g. wt = at + εt),
the job-finding rate and vacancies would have a zero elasticity with respect to productivity.
This trivial case is excluded from our analysis.
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positive equilibrium comovement between the job-finding rate and the market
tightness that we observe in equation (19).

Interestingly, the elasticity of the job-finding rate with respect to market
tightness derived in equation (19) has an economic interpretation. It corre-
sponds to the first derivative of the conditional expectation of idiosyncratic
productivity with respect to the cutoff point, i.e.:

∂ ln (pη)

∂ ln θ
=
f (ε̃)

η

(∫∞
ε̃
εf (ε) dε

η
− ε̃

)
=
∂

∫ ∞
ε̃

εf(ε)dε

η

∂ε̃
. (20)

Thus, up to a first order Taylor approximation, the comovement between
the job-finding rate and the market tightness is determined by equation (20),
and thus only depends on the distribution of idiosyncratic productivity and the
position of the cutoff point. The quality of this approximation will be checked
numerically in Section 4.

Figure 1 illustrates the prediction of our model for different idiosyncratic
shock distributions. The upper panel plots the density functions of ε for nor-
mal, logistic and lognormal distributions. The lower panel plots equation (20)
evaluated at the corresponding cutoff point (on the abscissa). As shown above,
this value corresponds to the elasticity of the job-finding rate with respect to
market tightness, i.e. the implied weight on vacancies in an estimated matching
function. Two observations are worth pointing out. First, for these standard
distributions the weight on vacancies is always between 0 and 1. Second, when
the cutoff point is at the left hand side of the peak of the density function, the
first derivative of the conditional expectation (i.e. the weight on vacancies) is
smaller than 0.5, while it is larger than 0.5 on the right hand side. This will be
important later on when we compute the idiosyncratic shock distribution based
on the empirical wage distribution.

Why is the elasticity of matches with respect to vacancies larger than 0.5
on the right hand side of the peak of the density function and smaller than 0.5
on the left hand side? The reason is that market tightness is driven by the free
entry condition of vacancies (see equation (15)). When aggregate productivity
increases, workers with lower idiosyncratic productivity are hired, i.e. the hiring
cutoff moves to the left. On the left hand side of the peak of the density function,
a small mass of additional workers with low idiosyncratic productivity will be
hired. Thus, vacancies move by a lot because the additional hiring activity
does not lower the average idiosyncratic productivity by much. Large vacancy
movements relative to the job-finding rate lead to a small estimated coefficient
in equation (16).

3.2 Traditional Contact Function
Now, let us assume a traditional contact function with 0 < γ < 1. In this case,
the probability for a worker to make a contact (p = c/u) depends on aggregate
productivity. In our real business cycle framework, we thus expect a procyclical
movement of the contact rate ( ∂p∂a > 0).

10



Figure 1: Predicted matching coefficients for standard distributions
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To analyze the implications of this modification, we recalculate the elastici-
ties of the job-finding rate and market tightness with respect to productivity:

∂ ln (pη)

∂ ln a
= −

f (ε̃) ∂ε̃
∂aa

η
+
∂ ln p

∂ ln a
, (21)

∂ ln θ

∂ ln a
=

− ∂ε̃
∂aa∫ ∞

ε̃
εf(ε)dε

η − ε̃
+
∂ ln p

∂ ln a
. (22)

The elasticities of the job-finding rate and market tightness with respect
to productivity are the elasticities with a fixed contact rate plus the elasticity
of the contact rate with respect to productivity. Defining ξjfr/θ = ∂ ln jfr

∂ ln θ ,

ξη/a = − f(ε̃) ∂ε̃
∂aa

η , ξθ/a =
− ∂ε̃

∂aa∫∞
ε̃

εf(ε)dε

η −ε̃
and ξp/a = ∂ ln p

∂ ln a , we can write the elasticity

of the job-finding rate with respect to market tightness as:

ξjfr/θ =
ξη/a + ξp/a

ξθ/a + ξp/a
. (23)

Taking first derivatives allows us to see how this elasticity changes with a pro-
cyclical contact rate:

∂ξjfr/θ

∂ξp/a
=

ξθ/a − ξη/a(
ξθ/a + ξp/a

)2 . (24)

In the previous section, we have shown that for a variety of standard assump-
tions and cutoff points, the elasticity of the selection rate with respect to market
tightness is smaller than 1 ( ξη/a

ξθ/a
< 1). Thus, the numerator of (24) is positive,

and ∂ξjfr/θ

∂ξp/a
> 0, i.e. a stronger procyclicality of the contact rate increases the

weight of vacancies in an estimated matching function. In different words: If
both a traditional contact function and idiosyncratic shocks are important for
match formation, both of them contribute to a positive weight on vacancies in
an estimated matching function.

3.3 Robustness Checks
The model with a degenerate contact function is most similar to the selection
model by Brown et al. (forthcoming). However, our results hold for a broad set of
models that contain idiosyncratic productivity shocks. The Technical Appendix
shows that we obtain the same analytical results in a search and matching model
with endogenous separations (where iid shocks hit every period) and in a model
where idiosyncratic shocks are drawn for the entire span of employment. In all
these cases, the elasticity of the job-finding rate with respect to market tightness
is given by equation (20).15

15For multiplicative idiosyncratic shocks, the results only change insofar as the equilibrium
comovement is determined by the derivative of the logarithm of the conditional expectation
of the shock with respect to the logarithm of the cutoff point.
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4 Theory and Evidence
Our analytical results put us in a position to use wage data as a proxy for the
idiosyncratic productivity shocks to calculate the model implied weight on va-
cancies. We first establish a reference point by estimating an empirical matching
function. We then proceed to calibrate the steady state model with individual
wage data. For a degenerate contact function we can thus directly calculate the
elasticity of matches with respect to vacancies implied by the model. We also
simulate the dynamic model and estimate a matching function from the simu-
lated data. The simulation allows us to test for the quality of our steady state
approximation and for the constant returns to scale assumption. Finally, we
add a traditional contact function to the model and explore how it has to look
like in order to obtain the same elasticity of matches with respect to vacancies
as in our empirical estimations.

For all these exercises, we use administrative labor market data for Germany
(see e.g. Dustmann et al., 2009; Schmieder et al., 2012). The German adminis-
trative database has several advantages over commonly used U.S. data. First, it
provides actual labor market transitions on a daily basis. This means that we do
not have to construct labor market flows from unemployment, employment and
duration data and we do not face the problem of a time aggregation bias (see,
e.g., Shimer, 2005, 2012; Nordmeier, 2014). Second, we can use several control
variables that might influence the search and matching process. Third, we can
observe wages for new matches. Importantly, these wages are from the same
database that we construct our flow data from. Finally, we have real vacancies
instead of a job advertising index for longer time series.16

4.1 Empirical Matching Function
We estimate a standard Cobb-Douglas CRS matching function for the German
labor market. Thus, we regress the job-finding rate jfr on labor market tight-
ness θ, a linear time trend t, and a shift dummy, d2005, which accounts for the
redefinition of unemployment in course of the so-called Hartz reforms:17

log jfrt = β0 + β1 log θt + β2t+ β3d2005 + ψt, (25)

where the job-finding rate at time t denotes all matches during month t over
the beginning-of-month-t unemployment stock and market tightness refers to
the beginning-of-month-t vacancy to unemployment ratio. The coefficient β1
represents the matching elasticity with respect to vacancies and thus is the
relevant reference point for our numerical exercises below.

We further include observable control variables to account for the effects of
a changing unemployment pool and different search intensities on the aggregate

16See Appendix C for a detailed data description.
17In 2005, the official unemployment measure in Germany was extended to include recipients

of former social assistance.
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Table 1: Matching function estimations

jfr (1) (2)
constant -2.3498*** -4.3403**
log θ 0.2458*** 0.3463***
t -0.0003*** -0.0054**
d2005 -0.0798*** -0.0766
controls no yes
adj. R2 0.5134 0.6162
DW statistic 1.3664 1.8407
CRS t-statistic 1.0074 1.6141
Note: OLS estimations (1993-2007). ***, ** and *
indicate significance at the 1%, 5% and 10% levels
(Newey-West standard errors). Control variables: long ,
young, old, low-skilled, high-skilled, foreign, female,
married, child, UB I.

matching probability.18 Table 1 displays the estimation results of the matching
function specification with and without control variables. Both estimations show
a fairly good fit in terms of the adjusted R2 measure. However, the Durbin-
Watson statistic indicates that it is important to control for the composition
of the unemployment pool because this specification overcomes the positive
autocorrelation in the error term.19 The point estimate of β1 in our preferred
specification is 0.35 and the 95% confidence interval spans from 0.23 to 0.46.
The matching elasticities of vacancies and unemployment are thus roughly one
third and two thirds, respectively. These results are in line with the survey of
matching function estimations by Petrongolo and Pissarides (2001). Moreover,
the constant returns to scale assumption cannot be rejected. We also find a
significantly negative time trend in matching efficiency, which is a common
result in matching function estimations (see e.g. Petrongolo and Pissarides, 2001;
Poeschel, 2012).

4.2 Model Implied Comovement
How closely does a model with a degenerate contact function but with free en-
try of vacancies and idiosyncratic productivity match the estimated matching
function? To test for this, we use the wage distribution of the German admin-
istrative data for new matches to infer the shape of the actual distribution of
idiosyncratic productivity.20

18It is well known that there is duration dependence of individual job-finding rates. Recent
research by Hornstein (2012) and Barnichon and Figura (2011) suggests that this may be due
to composition effects of the unemployment pool. Katz and Meyer (1990) find evidence for
an influence of unemployment benefit receipt on workers’ job acceptance behavior.

19We also performed an IV estimation to account for an endogeneity problem in specification
(1), but the coefficients did not change notably. The results of the IV estimation are available
on request.

20See Appendix C for a description of the wage data.
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We have assumed that wages are formed according to w (εt) = w̄t + αεt,
where w̄t contains aggregate components (e.g. productivity and market tight-
ness) and εt represents match-specific idiosyncratic productivity. Given that
this wage formulation nests Nash bargaining, this is a standard assumption.
We will use the proportionality between contemporaneous idiosyncratic pro-
ductivity and the wage for our empirical analysis.

We focus on wages of a homogeneous reference group as we are not interested
in wage differentials that can be explained by observable characteristics such as
education, gender or unemployment history. We choose the following baseline
group: male, German, not married, no children, age 25-55, medium skilled
and short-term unemployed (before being hired). For comparability reasons,
we restrict our attention to full-time employment.21 As a robustness check we
report results for various other group compositions in the Appendix.

Our proportionality assumption allows us to infer the shape of the distribu-
tion of the idiosyncratic productivity directly from the wage data. In line with
our baseline model, we only use wages at the start of an employment spell.22
The histogram of wages is displayed in Figure 2. When equation (9) holds,
idiosyncratic productivity is just a scaled version of this distribution.23

Figure 2: Distribution of real daily wages
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Notes: Wages are real daily gross wages of new job entrants with the following characteris-
tics: male, German, full-time employed, not married, no children, age 25-55, mediums skilled
(Hauptschule or Realschule plus vocational training), short-term unemployed.

We only observe part of the distribution, namely the realizations of produc-
tivity that result in a hire. We assume that the distribution is smooth at the

21Controlling for year fixed effects does not alter our results.
22This has the additional advantage that we do not have to control for tenure.
23Note that the scaling does not affect the shape of the distribution at the respective cutoff

point and does not affect the calculation of equation (20).
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hiring cutoff. This allows us to be otherwise agnostic about the part of the
distribution that we do not observe.

According to our model, the relevant cutoff productivity would be deter-
mined by the lowest reported wage. In our data this wage is just below 17 Euro
per calender day. In order to rule out that our results are driven by outliers we
set the cutoff point at the 1st, 5th and 10th percentiles of the wage distribution.
These correspond to daily gross wages of 26, 33 and 37 Euro respectively. It is
quite standard in the literature to use the 10th percentile as a measure for the
lowest wage. For example, the 50th to 10th percentile ratio is a conventionally
used measure for wage dispersion (see e.g. Hornstein et al., 2011).

We fit the data non-parametrically using a kernel density estimation with
a normal kernel (see Figure 2) and numerically calculate the derivative of the
conditional expectation using equation (20). This gives us the numbers for the
elasticity of matches with respect to vacancies. Based on the wage distribution,
it is 0.12, 0.28, and 0.38 for the 1st, 5th, and 10th percentile, respectively (see
Table 2). These model based numbers already come remarkably close to our
empirical data estimate of 0.35. This is particularly interesting, given that these
results are based on a degenerate contact function so far, where vacancies do
not affect the aggregate number of contacts.

Table 2: Weight on vacancies, based on steady state approximation

1st percentile 5th percentile 10th percentile
log θ 0.12 0.28 0.38
Note: Results are calculated numerically from the non-parametric fit of the dis-
tribution using equation (20).

Before we move to the dynamic analysis, it is worthwhile discussing some
potential pitfalls of our analysis:

First, wage differentials may be driven by other factors than observables or
idiosyncratic productivity, namely luck. This would change our wage equation
to w (εt) = w̄t + αεt + ιt, where ιt is the luck component. But as long as there
is no systematic correlation between εt and ιt, the luck component simply adds
noise to our analysis, but the results remain valid.

Second, collective bargaining is still the predominant wage formation mech-
anism in Germany. If collective bargaining prevents that idiosyncratic produc-
tivity differentials show up in the wage, our analysis is not valid. However,
collective bargaining only defines a lower bound for the wage. If a worker with
certain characteristics is particularly productive, firms can easily pay a higher
wage. In addition, firms have a certain discretion into which pay scale they want
to classify a particular worker (i.e. a worker with a lower idiosyncratic produc-
tivity can be assigned to a lower pay scale). Beyond this, collective bargaining
has lost importance over the last decades. However, controlling for year fixed
effects in our wage distribution does not alter our results. This lends support to
our view that collective bargaining does not matter a lot in the context of our
paper.
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Third, we may have chosen our homogeneous reference group inappropri-
ately. In particular, we may have defined it too broadly. Here, we face of
course a trade off between the number of observations and a narrower group
definition.24 Therefore, we repeat the dynamic simulation for a set of different
reference groups (in particular a finer differentiation along age and education).
The results can be found in the Appendix and are fairly similar. We are therefore
confident that our results are not driven by the choice of the reference group. In
addition, the results in the Appendix show that our preferred reference group
represents an intermediate case with respect to the range of estimates.

4.3 Dynamics
So far, the results have been based on our comparative static equation. In
order to test for the validity of our results out of steady state, we now simulate
the model with shocks to aggregate productivity. This also allows us to check
whether non-constant returns to scale are present in the simulated data. Most
importantly, we can use the dynamic simulation to quantitatively assess the
interplay between a traditional contact function and idiosyncratic productivity.

For the dynamic simulation, we need to parametrize our model. In par-
ticular, we need to define a functional form for the idiosyncratic productivity
distribution. We therefore fit several standard distributions to the data, i.e.
we choose the parameters of the distributions that give the best fit of our data
in terms of maximum likelihood. We choose the logistic distribution because
it has the best fit. Figure 2 displays the distribution of real daily gross wages
and the corresponding logistic distribution. The match is reasonably good es-
pecially near the cutoff.25 We provide all other details on the parametrization
in Appendix D. We simulate the model 1000 times with aggregate productivity
governed by a first-order autocorrelation process. The simulation is based on
a second-order Taylor approximation.26 Each time we use 180 periods corre-
sponding to the time span used for our empirical matching function estimation.

Again, we estimate a Cobb-Douglas CRS matching function:

log jfrt = β0 + β1 log θt + ψt. (26)

Table 3 compares the estimated coefficient β1 to the comparative static re-
sults when we use equation (20). Again, we report results for different cutoff
points depending on the chosen percentile for the lowest wage. The numbers
from the simulation exercise and the comparative static exercise are literally the

24In addition, if we choose a too narrow subgroup, it may be difficult to make an inference
for the aggregate matching function.

25We enforce a specific mass and shape for the part of the wages that we do not observe.
This is without loss of generality as the non-observable part of the distribution does not affect
our results as long as there is no sharp discontinuity in the vicinity of the cutoff. We are
therefore confident that the logistic distribution provides a reasonable approximation for our
purposes.

26This explicitly allows for some nonlinearities not covered by our analytical steady state
results.
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same. This shows that our comparative statics is a very good approximation
for the dynamic exercise. Note that the discrepancy between the results in this
section and the previous section only stem from the imperfect fit of the logistic
distribution compared to the non-parametric fit.

Table 3: Matching function based on simulation (degenerate contact function)

1st percentile 5th percentile 10th percentile
Simulation result

constant -2.66 -2.47 -2.32
log θ 0.14 0.22 0.28

Simulation result (unconstrained)
constant -2.65 -2.48 -2.32
log U 0.85 0.78 0.72
log V 0.14 0.22 0.28

Steady State prediction
constant - - -
log θ 0.14 0.22 0.28
Note: Steady State results are calculated numerically from the logistic fit of the
distribution using equation (20). The dynamic simulation results are OLS esti-
mates from the simulated series using a logistic distribution. Reported coefficients
are means over 1000 simulations.

We further analyze whether we have artificially imposed the CRS assumption
in our comparative static exercise. We estimate the following unconstrained
matching function:

logmt = β0 + β1 log vt + β2 log ut + ψt, (27)

where mt denotes all matches in period t. Table 3 shows that the sum of
estimated coefficients (β1+β2) is virtually 1. The estimated coefficients are also
statistically significant at the 1% level in every single run of the simulation.27

Interestingly, when we estimate other functional forms such as CES, the
Cobb-Douglas specification is confirmed. As a robustness check we have also
performed IV estimations using the lagged value of market tightness as an in-
strument. This does not alter our results.28

4.4 Traditional Contact Function and Idiosyncratic Pro-
ductivity

Finally, the dynamic simulation puts us in a position to combine idiosyncratic
productivity with a traditional contact function. Hence, we assume that the
contact probability is defined by pt(vt, ut) = µθγt with 0 < γ < 1, i.e. the
job-finding rate is not only driven by the movement of the cutoff point for
idiosyncratic productivity but also by a procyclical contact rate.

27We do not report t-statistics as means over t-values would not have a meaningful inter-
pretation.

28Results are available from the authors on request.
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We analyze how much of the empirical comovement between matches, un-
employment, and vacancies is due to the contact function and how much is due
to idiosyncratic productivity. For this purpose, we again use the logistic distri-
bution for wages (see Table 3) and determine the contact elasticity γ so as to
get an overall elasticity of matches with respect to vacancies of 0.35 as found in
the empirical matching function. The results are shown in Table 4.

Table 4: Weight on vacancies, dynamic simulations with different contact func-
tion specifications.

1st percentile 5th percentile 10th percentile
Matching function correlation with γ = 0

log θ 0.14 0.22 0.28
Calibrated elasticity of the contact function (γ)

log θ 0.24 0.17 0.09
Combined matching function correlation

log θ 0.35 0.35 0.35
Note: The dynamic simulation results are OLS estimates from the simulated series
using a logistic distribution. Reported coefficients are means over 1000 simulations.

Our numerical results are in line with our theoretical results from Section 3.2.
When a procyclical contact rate and idiosyncratic productivity are combined,
this leads to a larger weight on vacancies in an estimated matching function.
The first line in Table 4 shows the results for the model simulation with id-
iosyncratic productivity but with a degenerate matching function. The second
line shows the elasticities of a traditional contact function that would corre-
spond to the overall elasticity of matches with respect to vacancies if there
was no idiosyncratic productivity. The third line shows the combination of the
two mechanisms. Interestingly, the resulting estimated matching function has a
weight on vacancies which is roughly equal to the sum of the weight on vacancies
in the two cases.

Our calibration suggest that at least one third of the observed elasticity of
matches with respect to vacancies is actually driven by idiosyncratic productiv-
ity. When we use the 10th percentile of the wage distribution, 80% of the weight
on vacancies are driven by idiosyncratic shocks. Thus, our exercise shows that
there is a potentially large bias in standard matching function estimations if
idiosyncratic productivity plays a role. Hence, in many model applications, the
contact functions may be misspecified, assigning too large a role for vacancies
in the process of match formation.

Interestingly, when we compare the combined model in Table 4 to a standard
search and matching model with degenerate selection but with a weight on
vacancies in the contact function of 0.35, it turns out that the two models also
produce the same Beveridge curve. Thus, observational equivalence does not
only hold for the matching function but also for the Beveridge curve.

Given this observational equivalence, it is worthwhile emphasizing that the
elasticity of the contact function with respect to vacancies is very important in
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search and matching models. Hosios (1990) shows that matching models with a
CRS matching function are constrained efficient when firms’ bargaining power
in Nash bargaining is equal to the weight on vacancies in the contact function.
We have shown that using the weight on vacancies from empirical estimations is
inappropriate in the presence of idiosyncratic productivity shocks and leads to
a misspecification. Against the background of Hosios rule, welfare implications
of policy interventions may thus be judged incorrectly.

5 Why the Driving Forces of the Matching Func-
tion Matter

The theoretical section proves that idiosyncratic productivity shocks and a va-
cancy free entry condition alone generate an equilibrium comovement between
matches, vacancies, and unemployment. We have used wage data to show that
this may generate a large part of the observed comovement between these vari-
ables in the German data. Given that there are multiple ways of obtaining the
observed comovement between matches, vacancies, and unemployment, does it
matter whether the labor market is modeled with a contact function only (i.e.
degenerate selection) or with a combined model (with both a standard contact
function and idiosyncratic productivity shocks)? At the end of the previous
section, we have briefly argued that this matters from a normative perspective
(Hosios rule). This section shows that it also matters from a positive perspec-
tive. First, a model with idiosyncratic shocks and vacancy free entry generates
highly asymmetric labor market reactions to business cycles. Second, we pro-
vide a novel explanation for the puzzling fact that many empirical matching
function estimations document a decline of the matching efficiency over time.

5.1 Business Cycle Asymmetries
The analytical results in Section 3 are based on a steady state elasticity (i.e. a
first order approximation). The numerical results in Section 4.3 use a second
order approximation. Thus, in both cases higher order effects are not taken
into account. Figure 3 displays the reactions of the combined model in response
to a one percent (upper panel) and a five percent (lower panel) productivity
shock (with autocorrelation coefficient 0.95), which are solved deterministically
and fully nonlinearly.29 In order to facilitate comparison of the quantitative
responses, the responses are all in absolute terms. The upper panel shows that
the nonlinear responses to a regularly sized productivity shock generates only
minor asymmetries. Thus, our analytical results and the stochastic solution
method appear to be appropriate approximations in a normal business cycle
environment.

However, the lower panel of Figure 3 reveals large asymmetries of both the
job-finding rate and unemployment to large business cycle shocks. The responses

29From now on all calculations for the combined model are based on the calibration for the
5th percentile of the wage distribution (see Table 4).
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to a negative 5% productivity shock are almost twice as large as the responses
to an equally sized positive productivity shock.

Figure 3: Response of unemployment and job-finding rate to productivity shock
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Notes: Responses are in percent deviation from steady state. For expositional convenience,
the response of unemployment to a positive shock and the response of the job-finding rate to
a negative shock are flipped upside down.

To isolate the driving forces of this asymmetry, we use our calibration for
the 5th percentile of the wage distribution and impose a degenerate contact
and degenerate selection mechanism respectively. More precisely, we assume
that the contact rate (middle panel in Figure 4) and the selection rate (right
panel) are constant over the business cycle. All parameter values of the model
remain unchanged. Figure 4 shows that both the degenerate contact and the
degenerate selection model generate some asymmetries. These asymmetries are
particularly strong for the degenerate contact model. Or in different in words:
the selection mechanism is the key driver for this asymmetry.

The asymmetry is straightforward to see in a model with a degenerate con-
tact function, where the dynamics of the job-finding rate is exclusively driven
by the selection rate:
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Figure 4: Asymmetries with degenerate contact/selection
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Notes: Responses are in percent deviation from steady state. For expositional convenience,
the response of the job-finding rate to a negative shock is flipped upside down.

ηt =

∫ ∞

ε̃t

f (ε) dε. (28)

Although the cutoff point ε̃t moves symmetrically over the business cycle, the
selection condition generates large asymmetries. The reason is the shape of the
underlying idiosyncratic productivity distribution, which we have calibrated to
wage data (see Figure 2). In our calibration, a positive aggregate productivity
shock moves the cutoff point to a thin part in the distribution. By contrast, a
negative productivity shock pushes the cutoff point to a thick part of the distri-
bution. This explains the strong asymmetric labor reaction to larger symmetric
aggregate shocks.

Why does the contact function also generate asymmetries? This is straight-
forward to see with degenerate selection. In this case the dynamics of the
job-finding rate is exclusively driven by the contact rate. In the steady state
version, the contact rate is:

p =

(
a− w

κ(1− δ (1− ϕ))

) γ
1−γ

. (29)

Thus, there may be an asymmetry for the contact rate due to the exponent.
Note that γ is the elasticity of the contact function with respect to vacancies.
With γ = 0.5, this asymmetry would be absent (i.e. positive and negative pro-
ductivity shocks would generate the same quantitative reactions, with opposite
signs). In the mixed model, we have calibrated γ = 0.17. Thus, the exponent
is 0.20. This generates a non-negligible additional asymmetry (see right panel
in Figure 4).

Keep in mind that we have performed our entire analysis about asymmetries
using the combined model and switching the contact and selection channel off
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respectively. If we did not take into account the selection mechanism and used
the standard practice of parametrizing the contact function with parameters
from our matching function estimation, we would have to set γ = 0.35. As a
consequence, the exponent in equation (29) would increase from 0.20 to 0.54.
The shown asymmetries would be reduced. Asymmetries in a standard search
and matching model (e.g. Shimer 2005) in response to a 5% productivity shock
are thus very small.30

To sum up, when we combine contact function and selection, the asymmetry
is driven by two forces. First and most importantly, the curvature of the id-
iosyncratic productivity matters for the nonlinear dynamics of the selection rate.
According to our calibration to wage data, this is a very powerful mechanism.
Second, the behavior of the contact function becomes more nonlinear (due to
the lower γ compared to a standard parametrization). To illustrate that the
asymmetry in the mixed model is very meaningful, Figure 5 shows the impact
reaction of the job-finding rate31 in response to productivity shocks ranging
from −8% to 8% in fully nonlinear simulations. The larger the shock, the larger
is the discrepancy between the response to a negative and the response to a
positive shock.

Thus, our paper establishes a mechanism for why large negative aggregate
shocks generate very severe and asymmetric labor market reactions. This is
certainly very interesting against the background of major recessions, such as
the Great Recession. In Germany, the Great Depression and the two oil price
crises might be of particular relevance here.32 These events have at least doubled
the unemployment rate in Germany and thus caused labor market effects that
were a lot larger than those after strong business cycle booms.33 In models
with symmetric labor market reactions, the strong increase of unemployment in
major recessions must be due to very severe aggregate shocks. By contrast, our
combined model with traditional contact function and idiosyncratic productivity
shocks suggests that part of the labor market responses could be due to the
particularly strong propagation for large negative aggregate shocks.

30First of all, as described, this is due to the larger elasticity of the contact function with
respect to vacancies. Second, in Shimer’s (2005) calibration, amplification to aggregate pro-
ductivity shocks is small, which makes it even more difficult for asymmetries to show up
(because the expected present value of a worker does not fluctuate a lot in response to ag-
gregate productivity shocks). The combined model has stronger amplification. First, the
selection mechanism generates extra amplification and extra asymmetry (as can be seen in
Figure 4). Second, the contact function is also somewhat more volatile than in Shimer’s cal-
ibration because the calibration of the idiosyncratic productivity shocks reduces the average
size of the surplus.

31As the job-finding rate is a forward looking variable, the reaction is largest in the impact
period.

32Note that the Great Recession in 2008/09 in Germany was different (i.e. no major job
losses). However, this is due to exceptional factors (e.g. the internal flexibility of German
firms, short-time work, the preceding wage moderation or the nature of the aggregate shock),
which are outside our model and debated in the recent literature.

33The internet boom at the end of the 1990s caused for example a decline in unemployment
from about 11.5% to 9.5%.
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Figure 5: Impact response of job-finding rate to productivity shock
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5.2 Vacancy Posting Costs and Time Trend in the Match-
ing Function

There is a lot of anecdotal evidence that new technologies such as databases
or the dissemination of the internet have made vacancy posting cheaper.34 For
example, the newspaper based job advertising index has collapsed because firms
have started using internet based advertising (e.g. Barnichon, 2010). Obviously,
firms have started substituting because there was a cheaper technology available.
However, it is difficult to quantify this reduction of vacancy posting costs.

In a standard search and matching model with degenerate selection, a de-
cline in vacancy posting costs would lead to a drop in unemployment but leave
the estimated matching function unaffected.35 In the presence of idiosyncratic
shocks, the effects of a long run downward trend in vacancy posting costs are
very different. To illustrate our point, we simulate a hypothetical situation in
the combined model where vacancy posting costs drop by 50% over 420 peri-
ods (35 years). More specifically, we simulate the nonlinear trajectory of the
economy to a new steady state, when vacancy posting costs decline linearly
over time. In addition, the economy is subject to aggregate productivity shocks
during the entire time span.36 We take 180 periods (15 years) in the middle
of this process and estimate a matching function based on the simulated data.
This corresponds to the observation period in our empirical data and a 20%
drop in vacancy posting costs during those 180 periods. We choose to estimate
a subperiod of a longer time series because we consider the decline of vacancy
posting costs as a long lasting process. In the estimations, we now also include
a time trend, which turns out to be statistically significant and negative (see
Table 5).

Table 5: Matching function with negative time trend

log jfr Coefficient Significance (+,–)
constant -2.13
log θ 0.37 100% (+)
t -0.0003 99.8% (–)
Note: The reported coefficients are means over 1000 simulations.
The coefficients are OLS estimates. The third column indicates
how often (in percent) coefficients are significantly above or below
zero (Newey-West s.e.).

34It is important to distinguish ex ante hiring costs and ex post hiring costs in search and
matching models. Given that vacancy posting costs are divided by the probability of filling a
vacancy, these are costs prior to hiring a worker.

35To give an example: In a model with contact function only a drop in vacancy posting
costs of 20% would lead to a reduction in steady state unemployment of 1.2 percentage points
with our calibration. If both mechanisms are at work, the effect is more than halved.

36Productivity follows the same AR(1) process as before. As we are interested in the
nonlinear solution, the shocks to productivity are deterministic (i.e. we pick one particular
productivity path in each simulation).
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The intuition for this negative time trend is most straightforward to under-
stand in a model with a degenerate contact function, where the job-finding rate
is solely driven by the optimal cutoff point of idiosyncratic productivity. When
vacancy posting costs drop, the number of vacancies increases (see free entry
condition). However, with a degenerate contact function this has no effect on
matches and unemployment. Thus, the job-finding rate (matches divided by un-
employment) remains constant, while the market tightness increases (vacancies
divided by unemployment). In other words, it looks as if the estimated match-
ing function has become less efficient (the job-finding rate remains constant
although the market tightness has increased). If vacancy posting costs drop
over a long time horizon, this leads to a negative time trend in the matching
function.37 If both a traditional contact function and the selection mechanism
are at work, this effect is sustained as can be seen in Table 5.

The negative time trend can also be found in our estimation in Table 1.
Interestingly, a negative time trend is a common feature of matching function
estimations. According to Poeschel (2012), the sudies surveyed in Petrongolo
and Pissarides (2001) that include a time trend “clearly suggest that there is a
highly significant negative time trend, implying that labour market performance
appears to deteriorate over time.” For Germany, Fahr and Sunde (2004) have
documented a negative time trend.38

Our paper shows that the decline in ex-ante hiring costs due to new tech-
nologies rationalizes why many matching function estimations may generate a
negative time trend. In the absence of idiosyncratic productivity shocks, this
negative time trend would be a sign for a worrisome instability of the contact
function and a deteriorating labor market performance. We provide an expla-
nation how a stable contact function and an estimated negative time trend can
be reconciled. As long as there are no reliable proxies for the development of
vacancy posting costs over time, it is impossible to control for this omitted vari-
able bias, which is captured by the time trend. However, our paper provides an
explanation that makes the observed time trend less worrisome.

37The coefficient on market tightness slightly deviates from 0.35. This is due to the fact
that we simulate the nonlinear transition from one steady state to another. The selection rate
is slightly lower in the final steady state, the weight on vacancies thus higher. Intuitively, due
to lower vacancy posting costs, firms can afford to be pickier.

38Note that some empirical studies suggest that there was a recent increase of matching
efficiency in Germany (e.g. Fahr and Sunde (2009); Klinger and Rothe (2012) or Hertweck
and Sigrist (2013)). This is often attributed to the recent German labor market reforms.
In contrast to the time trend, which is found in many different studies and for different
observation periods, the labor market reforms seem to have implied a permanent upward shift
of the matching efficiency.
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6 Conclusion
We show that a wide class of models with degenerate contact function and id-
iosyncratic productivity (selection) generates a positive equilibrium relationship
between matches on the one hand and unemployment and vacancies on the other
hand. This comovement is Cobb-Douglas and constant returns. A combined
model with traditional contact function and idiosyncratic productivity shocks
(calibrated to wage data) has interesting implications such as asymmetric re-
sponses to large aggregate shocks.

Our paper provides important insights for future theoretical and empirical
research. We have focused on a quantitative analysis with a careful calibration
to high quality German data. One of our implications is that under the presence
of idiosyncratic productivity shocks, the actual elasticity of the contact function
with respect to vacancies is much lower than the number resulting from match-
ing function estimations. Against the background of Hosios rule, the standard
bargaining power in Nash bargaining must be much lower in order to establish
constrained efficiency. It is certainly an interesting topic for future research to
evaluate efficiency and the optimal use of policy instruments (e.g. fiscal policy)
in the presence of idiosyncratic productivity shocks for new jobs.

In addition, our paper has shown that the decline in matching efficiencies
in aggregate matching function estimations may be spurious in the presence of
idiosyncratic productivity shocks and a time trend for vacancy posting costs.
This also sounds a cautionary note on the conventional practice to use matching
function estimations to quantify the effects of certain policy measures, such as
unemployment benefit reforms.

Our paper also offers an interesting laboratory to analyze the quantitative
effects of different policy interventions. We expect government spending to
generate larger fiscal multipliers in severe recessions when the cutoff point is
at a thicker part of the idiosyncratic shock distribution. This would comple-
ment theoretical results by Michaillat (2014) and empirical results by Auerbach
and Gorodnichenko (2012). A detailed quantitative analysis is left for future
research.

Overall, our paper suggests that it is important to have a better understand-
ing what happens in the black box of matching. We have made a first step in
this direction.
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A Illustration

Figure 6
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B Theory: Derivations
This Appendix proceeds in three steps. First, we show the intermediate steps
for the results in Section 2. This corresponds to the case where the idiosyncratic
shocks is only drawn during the first period of employment. Second, we show
that the result also holds for a model with an iid shock in each period of employ-
ment, i.e. a model with endogenous separations (an assumption conventionally
used in search and matching models with endogenous separations). Third, we
show that the result does not change when workers draw an idiosyncratic shock
realization at the beginning of their employment span and this realization does
not change over time (an assumption conventionally used for the wage offer
distribution in search models).
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B.1 Baseline Results
In steady state, our model can be described by four equations: for the wage,
the cutoff point, the selection rate, and the vacancy free entry condition.

w(εi) = w̄ + αεi (30)

with

w̄ = ω(a, η, θ, x), (31)

ε̃ =
w̄ − a

(1− δ (1− ϕ))
+ αε̃, (32)

η =

∫ ∞

ε̃

f (ε) dε, (33)

θ =
pη

κ

(
a− w̄

1− δ (1− ϕ)
+

(1− α)
∫∞
ε̃
εf (ε) dε

η

)
. (34)

We account for very general wage formations, with w̄ denoting the wage net
of contemporaneous idiosyncratic productivity. We allow it to depend on all the
endogenous variables. x could be a vector of exogenous shocks and parameters,
such as unemployment compensation.

We can simplify the equations for the cutoff point and market tightness
further:

ε̃ =
w̄ − a

(1− δ (1− ϕ)) (1− α)
, (35)

θ = (1− α)
pη

κ

(∫∞
ε̃
εf (ε) dε

η
− ε̃

)
. (36)

Using the implicit function theorem, we can derive the derivatives of all the
endogenous variables with respect to productivity.

The first derivative of the selection rate with respect to productivity is

∂η

∂a
= −f (ε̃) ∂ε̃

∂a
. (37)

Thus, the elasticity of the job-finding rate with respect to productivity is

∂ ln (pη)

∂ ln a
=

−f (ε̃) ∂ε̃
∂aa

η
. (38)

The first derivative of market tightness with respect to productivity is
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∂θ

∂a
= −(1− α)

p

κ
f(ε̃)

∂ε̃

∂a

(∫∞
ε̃
εf (ε) dε

η
− ε̃

)
+ (39)

(1− α)
pη

κ

(
−ε̃f(ε̃) ∂ε̃∂aη + f(ε̃) ∂ε̃∂a

∫∞
ε̃
εf (ε) dε

η2
− ∂ε̃

∂a

)
. (40)

Simplified:

∂θ

∂a
= − (1− α)

pη

κ

(
∂ε̃

∂a

)
. (41)

Thus, the elasticity of market tightness with respect to productivity is

∂ ln θ

∂ ln a
=

− ∂ε̃
∂aa∫ ∞

ε̃
εf(ε)dε

η − ε̃
. (42)

The first derivative of the cutoff point with respect to productivity is given
by:39

∂ε̃

∂a
=

ω′
a − 1

(1− α)(1− δ(1− ϕ)) + f(ε̃)ω′
η + (1− α)ω′

θ

. (43)

This term should be strictly smaller than zero for interesting cases. Imagine,
for example, that the wage is given by w̄ = α(a + κθ) + (1 − α)b. In this case
∂ε̃/∂a = (−1/((1− δ(1− ϕ)) + κα)) < 0.

We can now combine (38) and (42) to obtain the elasticity of the job-finding
rate with respect to market tightness:

∂ ln (pη)

∂ ln θ
=

−f(ε̃) ∂ε̃
∂aa

η

− ∂ε̃
∂aa∫∞

ε̃
εf(ε)dε

η −ε̃

=
f (ε̃)

η

(∫∞
ε̃
εf (ε) dε

η
− ε̃

)

=
∂

∫ ∞
ε̃

εf(ε)dε

η

∂ε̃
.

39ω′
y denotes the partial derivative of ω, the wage function, with respect to the variable y.
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B.2 Endogenous Separations
With endogenous separations, the cutoff point is

ε̃ = w̄ − a+ αε̃+ δ (1− ϕ (ε̃))

(
w̄ − a−

(1− α)
∫∞
ε̃
εf (ε) dε

(1− ϕ (ε̃))

)
(44)

+δ2 (1− ϕ)
2

(
w̄ − a−

(1− α)
∫∞
ε̃
εf (ε) dε

(1− ϕ (ε̃))

)
+ ... (45)

ε̃ =

(
w̄ − a− δ (1− ϕ (ε̃)) (1− α)

∫ ε̃
−∞ εf(ε)dε

1−ϕ(ε̃)

)
(1− δ (1− ϕ (ε̃))) (1− α)

. (46)

As usual, the selection rate is

η =

∫ ∞

ε̃

f (ε) dε. (47)

The elasticity of the job-finding rate with respect to productivity is

∂ ln (pη)

∂ ln a
=

−f (ε̃) ∂ε̃
∂aa

η
. (48)

With endogenous separations, market tightness is:

θ =
pη

κ

a− w̄ +
(1−α)

∫∞
ε̃

εf(ε)dε

(1−ϕ(ε̃))

1− δ (1− ϕ (ε̃))

 (49)

= (1− α)
pη

κ

(∫∞
ε̃
εf (ε) dε

(1− ϕ (ε̃))
− ε̃

)
. (50)

Taking into account that η = 1− ϕ in this setting, we obtain:

∂θ

∂a
= −(1− α)

p

κ
f(ε̃)

∂ε̃

∂a

(∫∞
ε̃
εf (ε) dε

η
− ε̃

)
+ (51)

(1− α)
pη

κ

(
−ε̃f(ε̃) ∂ε̃∂aη + f(ε̃) ∂ε̃∂a

∫∞
ε̃
εf (ε) dε

η2
− ∂ε̃

∂a

)
. (52)

After some algebra:

∂θ

∂a
= − (1− α)

pη

κ

(
∂ε̃

∂a

)
. (53)

Thus, the elasticity of market tightness with respect to productivity is
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∂ ln θ

∂ ln a
=

− ∂ε̃
∂aa∫ ∞

ε̃
εf(ε)dε

η − ε̃
. (54)

Combining equations (48) and (54), we obtain the heterogeneity based match-
ing function:

∂ ln (pη)

∂ ln θ
=

−f(ε̃) ∂ε̃
∂aa

η

− ∂ε̃
∂aa∫∞

ε̃
εf(ε)dε

η −ε̃

=
f (ε̃)

η

(∫∞
ε̃
εf (ε) dε

η
− ε̃

)

=
∂

∫ ∞
ε̃

εf(ε)dε

η

∂ε̃
.

B.3 Same Idiosyncratic Shock for the Entire Employment
Span

ε̃ = w̄−a+αε̃+δ (1− ϕ) (w̄ − a− (1− α) ε̃)+δ2 (1− ϕ)
2
(w̄ − a− (1− α) ε̃)+...

(55)

ε̃ =
w̄ − a

1− α
. (56)

Selection Rate:

η =

∫ ∞

ε̃

f (ε) dε. (57)

The elasticity of the job-finding rate with respect to unemployment is

∂ ln (pη)

∂ ln a
=

−f (ε̃) ∂ε̃
∂aa∫∞

ε̃
f (ε) dε

. (58)

Market tightness:

θ =
pη

κ

a− w̄ +
(1−α)

∫∞
ε̃

εf(ε)dε

(1−ϕ)

(1− δ (1− ϕ))

 (59)

=
(1− α)

1− δ (1− ϕ)

pη

κ

(∫∞
ε̃
εf (ε) dε

(1− ϕ)
− ε̃

)
. (60)

Using η = 1− ϕ, we get:
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∂θ

∂a
= − (1− α)

1− δ (1− ϕ)

p

κ
f(ε̃)

∂ε̃

∂a

(∫∞
ε̃
εf (ε) dε

η
− ε̃

)
+ (61)

(1− α)

1− δ (1− ϕ)

pη

κ

(
−ε̃f(ε̃) ∂ε̃∂aη + f(ε̃) ∂ε̃∂a

∫∞
ε̃
εf (ε) dε

η2
− ∂ε̃

∂a

)
. (62)

After some algebra, we obtain:

∂θ

∂a
= − (1− α)

(1− δ (1− ϕ))

pη

κ

(
dε̃

da

)
. (63)

Thus, the elasticity is

∂ ln θ

∂ ln a
=

−
(
dε̃
da

)
a( ∫ ∞

ε̃
εf(ε)dε

η − ε̃
) . (64)

Combining equations (58) and (64), we obtain the heterogeneity based match-
ing function:

∂ ln (pη)

∂ ln θ
=

−f(ε̃) ∂ε̃
∂aa

η

− ∂ε̃
∂aa∫∞

ε̃
εf(ε)dε

η −ε̃

=
f (ε̃)

η

(∫∞
ε̃
εf (ε) dε

η
− ε̃

)

=
∂

∫ ∞
ε̃

εf(ε)dε

η

∂ε̃
.
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C Data Description
The German administrative database provides coherent definitions of the match-
ing function variables. We use monthly data over the time period from 1993 to
2007. Matches and unemployment are obtained from the Sample of Integrated
Labor Market Biographies (SIAB). The SIAB is a 2% random sample of all Ger-
man residents who are registered by the Federal Employment Agency because
of paying social security contributions or receiving unemployment benefits (see
Dorner et al., 2010). Unemployment benefits may cover contribution-based ben-
efits, means-tested benefits and income maintenance during training. We use
an adjusted measure of unemployment benefit receipt according to Fitzenberger
and Wilke (2010) to determine the unemployment stock. Matches are defined as
transitions from unemployment to employment subject to social security. Even
though marginal employment has become subject to social security since 1999,
we do not consider this kind of employment as it is often ascribed to a step-
ping stone into regular jobs. The number of matches is calculated continuously,
i.e. we take into account every daily transition. Hence, we do not neglect any
job findings that are reversed within a month. See Nordmeier (2014) for more
details on the time series.

Vacancies are taken from the official statistics and cover open positions that
are reported to the Federal Employment Agency. The reported vacancies ac-
count for about 30-40% of overall vacancies in Germany. However, an adjust-
ment of the reported vacancies by using the reporting rate of the IAB Job
Vacancy Survey would not affect our estimation results because the reporting
rate does not show a cyclical pattern in our observation period.

For our calibration exercise, we exploit the wage information included in
the SIAB. Wages are shown as the employee’s gross daily wage in Euros, which
was calculated from the fixed-period earnings reported by the employer and
the duration of the employment period in calendar days. Because we focus on
new full-time jobs, we only consider wages above the marginal part-time income
threshold. We use the consumer price index (CPI) from the National Accounts
to obtain real daily wages.
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Table C.1: Description of control variables

Variables Extracted Definition
series

Unemployment long Share of long-term unemployed,
duration i.e. unemployment duration ≥ 1 year
Age young Share of unemployed with age ≤ 25 years

old Share of unemployed with age ≥ 55 years
Education low-skilled Share of unemployed without vocational

training (acc. to Fitzenberger et al., 2005)
high-skilled Share of unemployed with university degree

(acc. to Fitzenberger et al., 2005)
Nationality foreign Share of unemployed with immigration

background (see Wichert and Wilke, 2012)
Gender female Share of female unemployed
Family status married Share of married unemployed

child Share of unemployed with at least one child
Benefit receipt UB I Share of contribution-based unemployment

benefits recipients (unemployment benefits I)

Data source: SIAB.

D Parametrization of the Model
We parametrize the model on a monthly basis. For an overview of targets and
parameters see Table D.2 and D.3. Aggregate productivity in steady state is
normalized to 1. In all dynamic versions of the model productivity follows an
AR(1) process with a correlation coefficient of 0.95 and a standard deviation
for the shock of 0.44%. We have estimated these values from productivity data
from the German National Accounts.40 The discount factor is 0.99

1
3 . We set the

value of non-work to 0.8. Unemployment benefits for short-term unemployed in
Germany are 60 or 67% of the last net wage. Our value takes into account that
there is a value of home production. Although this value is high compared to
standard US calibrations, most workers are far from indifferent between working
and not working.

In line with our data we set the separation rate to 1% and target an overall
job-finding rate of 5% per month. Market tightness in the data is 0.09. Vacancy
posting costs are chosen to hit this target. The value of market tightness in our
data seems very low. This is partly due to the fact that we only consider
reported vacancies. However, the level of market tightness, and hence kappa, is
a matter of scaling only and does not affect any of our results. The relatively
high values of vacancy posting costs are also due to the very low flow rates of the
German labor market and to the fact that we abstain from hiring costs in this

40Productivity: Output per hours worked from the Federal Statistical Office (Statistisches
Bundesamt), 1991Q1 to 2013Q1.
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model. In all model versions with a Cobb-Douglas contact function we target
an overall elasticity of matches with respect to vacancies of 0.35 in line with
our estimated matching function. Taking the distribution of the idiosyncratic
shock, market tightness and the job-finding rate as given, this determines the
value of the contact efficiency parameter.

Wages are determined by Nash bargaining, which ensures private match ef-
ficiency. We set the bargaining power of workers to 0.5. Most of our findings
are robust to the exact value of the bargaining power. It only matters for the
calibration of the variance of idiosyncratic productivity, and hence for amplifi-
cation.

We calibrate the distribution of idiosyncratic productivity from the distribu-
tion of individual entry wages. If there is some proportionality between wages
and idiosyncratic productivity, the distribution of the latter is a scaled version
of the former. We fit a logistic distribution to the wage data. A nice feature
of the logistic distribution is that the derivative of the conditional expectation
- the term that determines the elasticity of matches with respect to vacancies
- is uniquely determined by the cumulative density to the right of the cutoff
point (i.e. the selection rate). The 1st, 5th, and 10th percentile of our wages
correspond to selection rates of 0.956, 0.921, and 0.885 in the fitted distribution.
Note that these do not necessarily correspond to the real selection rate as we
do not know the number of workers to the left of the distribution. However,
for the dynamics of our model it is irrelevant whether we have a low selection
rate with a high contact rate or vice versa. What matters is the shape of the
idiosyncratic shock distribution at and to the right of the cutoff point which
we calibrate with wage data. The contact rate is set to match the empirical
job-finding rate of 5% per month is steady state.

We set the standard deviation of the idiosyncratic shock such that the cross-
sectional wage dispersion in our model matches the one in the data. The cross-
sectional wage dispersion in the data is measured by the coefficient of variation
(standard deviation divided by the mean) in a given year for our homogeneous
reference group. It is around 0.3 and constant across years. Accordingly, we
target a standard deviation of wages in our model of 0.3. This implies an
unconditional standard deviation of the idiosyncratic shock of 0.7.41 The mean
of the idiosyncratic productivity distribution is then determined endogenously
to match the relevant selection rate. We interpret the mean of the entrant
productivity as fixed ex-post hiring/training costs.

Note that the mean of idiosyncratic productivity seems unrealistically low in
our parametrization. Two comments are in order. First, our baseline model is
very simple. The mean of the idiosyncratic shock could equally be interpreted
as a fixed training or hiring cost. In addition, the influence of unions may lead
to larger average wages and there could be fixed costs of production. Including
these features would lead to a larger average calibrated idiosyncratic productiv-
ity in the first period of employment. Second, our results for the elasticity of

41The standard deviation of wages is obtained by scaling with the bargaining power and by
conditioning on the realized hires.
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the matching function with respect to vacancies are independent of our parame-
trization strategy. The particular combination of mean and variance for a given
selection rate does not matter for our key results. The variance only matters
for amplification.

Table D.2: Comman parameters and targets

Parameter Value Source
Aggr. productivity 1 normalization
AR-coef. productivity 0.95 National Accounts data
SD productivity 0.0044 National Accounts data
Discount factor 0.99

1
3 set

Value of leisure 0.8 set
Bargaining power 0.5 set
Separation rate 0.01 SIAB data
Job-finding rate 0.05 SIAB data
Market tightness 0.09 SIAB and Vacancy data

Table D.3: Parameters (depending on percentile for lowest wage)

Parameter 1st 5th 10th Source and/or target
SD of log dist. 0.7 0.7 0.7 SIAB data (wages)
Selection rate 0.956 0.921 0.885 SIAB data (wages)
Mean of log dist. -11.48 -12.09 -12.47 selection rate
Vacancy posting cost 0.35 0.30 0.26 market tightness

Combined model
Contact elast. wrt vac. 0.24 0.17 0.09 match elast. wrt vac.
Contact efficiency 0.09 0.08 0.07 contact rate
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E Different Wage Groups
The results in Section 4.3 are based on the distribution of entry wages of a
homogeneous reference group. We repeat this exercise several times each time
changing certain characteristics of the reference group. We consider the follow-
ing group compositions: The reference group with...

• ... low-skilled (no vocational training) instead of medium-skilled.

• ... women instead of males.

• ... long-term instead of short-term unemployed.

• ... age further differentiated (ten year age spans).

• ... education further differentiated (no degree, vocational training degree,
high school, high school and vocational training, technical college, univer-
sity).

Table E.4 reports for each percentile the highest and the lowest estimates of
all groups along with the baseline. Our conclusions from Section 4.3 are robust
to the different group compositions. For the 5th percentile, for instance, we get
a minimum of 0.13 for the coefficient on vacancies and a maximum of 0.26.

Table E.4: Weights on vacancies and unemployment: robustness

1st percentile 5th percentile 10th percentile
minimum

constant -2.87 -2.70 -2.49
log U 0.93 0.87 0.79
log V 0.06 0.13 0.21

base
constant -2.65 -2.48 -2.32
log U 0.85 0.78 0.72
log V 0.14 0.22 0.28

maximum
constant -2.55 -2.38 -2.22
log U 0.81 0.75 0.69
log V 0.19 0.26 0.32
Note: The reported coefficients are means over 1000 simulations.
The matching function was estimated unconstrained.
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