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1 Introduction

This paper derives an analytical form for transitions probabilities following an exogenous

shock to the deterministic component in the conditional logit model (McFadden 1974),

a commonplace discrete choice framework in empirical economics. The premise behind

discrete choice models is that agents in many circumstances cannot optimize to a continuous

or unconstrained decision variable, but only choose from a discrete set of exclusive states.

One example is the labor supply decision where agents typically face a limited range of hours

contracts, like full-time and part-time. An advantage of the discrete choice framework is

that the budget set of the sample units needs to be determined only at a relatively small

number of discrete points. It is perhaps mainly for this reason that following van Soest

(1995) and Duncan and Giles (1996) qualitative models are increasingly in use for behavioral

microsimulation of transitions effected by economic policy reforms.

Despite the popularity of the approach, the methods to predict state transitions in

discrete choice models are somewhat underdeveloped. Creedy and Duncan (2002) distin-

guish between three approaches, which might be called the aggregate probability method,

the maximum probability method and the calibration method. The aggregate probability

approach is the most common one. Here the choice probabilities of each state, predicted

by agent, are summed up over the entire sample, in order to compare the aggregate prob-

abilities of each state before and after the simulated shock. A serious shortcoming of this

method is that it ignores the probabilistic nature of state transitions at the individual level.

As a result, one can gauge neither the impact of the shock in terms of individual costs or

benefits, nor the specific response of agents who initially occupy a particular state.

The maximum probability method improves upon the aggregate probability method

by allocating each agent to a unique state, which is the state with the highest choice

probability conditional on observable characteristics. Transitions probabilities are derived

from comparing the most likely state for each individual before and after the shock, which

leads to a matrix of transitions frequencies. A problem with this approach is that it wastes

information. It ignores the relative distance of the predicted probability levels and moreover

the impact of unobserved heterogeneity, as the observed state is not necessarily the state

with the highest predicted choice probability. As a consequence, especially when some

states are sparsely populated, even well-specified discrete choice models have a tendency
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for systematic underprediction and overprediction of certain state frequencies, which in turn

biases simulated transitions frequencies.

This was shown by Duncan and Weeks (1998) who propose to approximate transitions

probabilities on the basis of calibration. The first step is to draw realizations of the latent

stochastic elements in the discrete choice model such that the predicted choice probability

is maximized at the observed state. The calibration guarantees that all transitions start

from a situation where each sample unit occupies its chosen state. In a second step, the

maximum probability rule is applied to derive the preferred choice after the simulated shock

given the calibrated random terms. If these two steps are repeated several times, individual

transitions probabilities can be approximated by taking the mean of the predicted transi-

tions between states over the repetitions. Although Monte Carlo simulations performed by

Duncan and Weeks (1998) indicate that the calibration method might generate satisfactory

estimates of transitions frequencies, it is comparatively rare in behavioral microsimulation

studies; see Gerfin and Leu (2003) and Bargain (2003) for examples. The main drawback of

the method is that resampling of the error terms will be computationally time-consuming

in many applications. However, if only a small number of replications is used, the approxi-

mation of transitions probabilities obtained by calibration might be unreliable.

The present paper solves this problem for the conditional logit framework. We start

from an analytical representation of the distribution of the unobserved heterogeneity terms,

which the calibration method approximates through resampling. Post-estimation, on the

basis of a direct utility maximization interpretation of agents’ revealed choice, the distribu-

tion of the random error terms conditional on the estimated model parameters is identified

in relative terms— the possible values of the prediction error in each state are determined

relative to the value of the prediction error in the utility maximizing state. Transitions

probabilities in response to a shock to the deterministic part in the model can be derived

from the joint conditional distribution of the relative conditional prediction errors, by in-

tegrating over the relevant range of relative utility shifts induced by the shock. While this

strategy would apply to any discrete choice model, it yields analytical transitions probabil-

ities only in the special case of the conditional logit model. Here the specific distributional

assumption on the unobserved random disturbances keeps the solution feasable irrespective

of the number of choice dimensions.
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A comparison of analytical versus calibrated transitions probabilities using stylized

examples indicates that the latter might only converge slowly to the former. In order to

judge the reliability of results found in the previous literature, we compare analytical and

calibrated transitions frequencies in a typical empirical application, which studies the labor

supply impact of an income allowance for social security contributions using German data.

The example suggests that results obtained by calibration probably accurately reflect the

direction of the incentive effects, while slightly underestimating small transitions frequen-

cies. Of course, the analytical solution is preferable, not the least as a way of circumventing

the burdensome resampling procedure.

The structure of the paper is as follows. Section 2 reviews the conditional logit frame-

work and derives an analytical form for transitions probabilities following an exogenous

shock. Section 3 compares the predictive performance of the analytical and the calibration

procedures. Section 4 concludes.

2 Transitions Probabilities in the Conditional Logit Model

Consider a framework where decision-making is described as the utility maximizing choice

among J exclusive states. Assume that the level of utility Uij enjoyed by agent i in state

j can be expressed in terms of a vector of observable characteristics Xij , which might be

state variant, a vector of parameters β, and an unobservable component εij , such that

Uij = U(Xij |β) + εij , j = 1, . . . , J. (1)

Suppose that the random disturbance terms εij are independent across states and agents,

and that they are identically Type I Extreme Value distributed. This means that the cumu-

lative density of εij is given by Pr[εij < ε] = exp[− exp(−ε)], for any ε ∈ R. Furthermore

suppose that agents choose the state with the largest utility across the possible states. From

these assumptions, it follows that the probability Pi(m) that agent i is observed to choose

state m is given by (Maddala 1986):

Pi(m) = P [Uim > Uij ∀j 6= m] =
exp[U(Xim|β)]

∑

ij exp[U(Xij |β)]
, (2)

which summarizes the so-called conditional logit model, a variant of the multinomial logit

model. The advantage of the conditional logit specification is that the parameters of the
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distribution of the random disturbance terms are known a priori and do not need to be

estimated.

Given observations on the choices made by a set of N agents and a set of characteris-

tics in each possible state, the behavioral parameters entering the deterministic component

in the utility function (1) can be estimated by maximizing the likelihood

`(β|Xij) =
N
∏

i=1

Pim(β|Xij) (3)

over β. Denote the maximum likelihood estimate of the parameter vector by β̂, and the

observable utility component in state j, predicted for an agent with characteristics Xij , by

Ûij = U(Xij |β̂).

For the exact calculation of transitions frequencies following an exogenous shock on

an agent’s observable characteristics, it is necessary to account for the fact that the pre-

dicted value of utility Ûij deviates from the latent value by the random component εij .

Post-estimation, distributions of the unobserved random disturbances can be recovered by

exploiting the condition that the observed choice of the agent maximizes utility. Hence,

it must be true that Uim > Uik, or, inserting definition (1), that εik − εim < Ûim − Ûik,

for all k 6= m. One approach to calibrate the model would be to rely on the so-called

generalized residual E[εik − εim|εik − εim < Ûim − Ûik], i.e. the conditional expectation

of the unobserved utility differential (Gourieroux et al. 1987). The calibration method in-

stead obtains an approximation of the conditional distribution of the latent difference in the

random model components, by repeatedly drawing at random vectors of pseudo-residuals

(εi1, · · · , εiJ) satisfying Ûim + εim = maxj Ûij + εij .

However, given the specific distribution of the random components in the conditional

logit model, it is possible to derive an explicit form for the conditional probability distribu-

tion f(εik − εim|εik − εim < Ûim − Ûik), irrespective of the dimension of the analyzed choice

problem. In doing so it is important to note that the support of the conditional difference

in prediction errors depends on the random disturbances in the possible alternative states

as well. The condition εil − εim < Ûim − Ûil, for all l 6= k, m, imposes J − 2 additional

constraints on the unobserved heterogeneity term εim.

To clarify the exposition, we first analyze the special case of a trinomial choice problem

with states j = k, l, m. Results can then easily be extended to higher dimensions. In the

trinomial case, it suffices to consider the conditional bivariate distribution f(εkm, εlm|εkm <
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Ûmk, εlm < Ûml), where we simplify notation by eliminating the agent index i, defining

εkm = εik − εim, Ûmk = Ûim − Ûik, etc. Using the results that the distribution of the

difference of two Type I Extreme Value distributed variables is a logistic distribution,

and that the joint distribution of two variables with logistic distribution is a bivariate

logistic distribution (Kotz, Balakrishnan, and Johnson 2000), the joint distribution of the

conditional prediction errors is given by

f(εkm, εlm|εkm < Ûmk, εlm < Ûml) = f(εkm,εlm)

F (Ûmk,Ûml)

= 2 exp(−εkm) exp(−εlm)[1+exp(−Ûmk)+exp(−Ûml)]
[1+exp(−εkm)+exp(−εlm)]3

, (4)

or, equivalently,

f(Ukm, Ulm|Ukm < 0, Ulm < 0) = 2 exp(Ûkm−Ukm) exp(Ûlm−Ulm)[1+exp(Ûkm)+exp(Ûlm)]

[1+exp(Ûkm−Ukm)+exp(Ûlm−Ulm)]3
. (5)

Recovering the c.d.f. corresponding to (5) is straightforward:

F (Ukm, Ulm|Ukm < 0, Ulm < 0) =
1 + exp(Ûkm) + exp(Ûlm)

1 + exp(Ûkm − Ukm) + exp(Ûlm − Ulm)
. (6)

Now assume an exogenous shock that changes the set of the agent’s observable characteris-

tics, from Xj to X̃j , and denote the corresponding predicted utility level by Ũj = U(X̃j |β̂).

Given that the shock does not affect the unobserved random disturbance terms, as it is

usually assumed in behavioral microsimulation studies, the actual utility changes, relevant

for the transitions frequencies between states, are equal to the predicted utility changes.

Denote the change of utility enjoyed in state j following the shock by ∆j = Ũj − Ûj . To

find the probability that the agent stays in the initial state m, P (m|m), one has to evaluate

the probability that Um +∆m > Uj +∆j , for j = k, l, conditional on m being selected prior

to the shock

P (m|m) = P (Ukm < ∆mk, Ulm < ∆ml|Ukm < 0, Ulm < 0) , (7)

where we introduce the notation ∆mk = ∆m−∆k, etc. Provided that ∆mk < 0 and ∆ml < 0,

one can immediately calculate this probability by evaluating the cumulative density (6) at

the pair (∆mk, ∆ml).

The initial conditions, Ukm < 0, Ulm < 0, constrain the net utility changes between

the original state and the alternative states that can enter into the transitions frequencies

to non-positive values. In other words, the probability that the agent prefers state m over
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state l is not larger if ∆ml > 0 than if ∆ml = 0. The intuition for this result is that

if ∆ml > 0, the shock makes any initial utility gap between states m and l even larger.

Therefore there is a zero probability that the agent moves from state m to state l. The

bivariate probability (7) collapses to the marginal probability P (Ukm < ∆mk|Ukm < 0).

Integrating (6) over the range of Ulm yields the following marginal c.d.f.

F (Ukm|Ukm < 0) =
1 + exp(Ûkm) + exp(Ûlm)

1 + exp(Ûkm − Ukm) + exp(Ûlm)
. (8)

A parallel argument can be made if ∆mk > 0. As a corollary, if ∆mk > 0 and ∆ml > 0, the

probability that the agent remains in the original state m is invariably identical to unity.

As a next step, consider the probability that the agent responds to the shock by

making a transition from state m to state k. First assume that ∆mk < 0 and ∆ml < 0 so

that the transitions probabilities from state m to state k and from state m to state l are

positive. The probability that the agent post reform is in state k and not state l is equal to

the probability that Uk + ∆k > Um + ∆m and Uk + ∆k > Ul + ∆l conditional on Ukm < 0

and Ulm < 0, which can be stated as

P (k|m) = P (Ukm > ∆mk, Ulm < Ukm + ∆ml − ∆mk|Ukm < 0, Ulm < 0) . (9)

The value of this probability depends on the relative order of ∆ml and ∆mk. If ∆ml ≤ ∆mk,

the upper bound on Ulm, i.e. Ukm + ∆ml − ∆mk, can never violate against the condition

Ulm < 0 since Ukm must satisfy the condition Ukm < 0. Therefore the probability is

obtained by solving the integral over the density function (5), as follows1

P (k|m) =
∫ 0
∆mk

∫ Ukm+∆ml−∆mk

−∞
f(Ukm, Ulm|Ukm < 0, Ulm < 0) dUlm dUkm

= [1+exp(Ûkm)+exp(Ûlm)] exp(Ûkm)

[exp(Ûkm)+exp(Ûlm−∆ml+∆mk)][1+exp(Ûkm)+exp(Ûlm−∆ml+∆mk)]
−

[1+exp(Ûkm)+exp(Ûlm)] exp(Ûkm)

[exp(Ûkm)+exp(Ûlm−∆ml+∆mk)][1+[exp(Ûkm)+exp(Ûlm−∆ml+∆mk)] exp(−∆mk)]
.

(10)

On the other hand, if ∆ml > ∆mk, the unconstrained upper bound on Ulm is positive for

realizations of Ukm larger than ∆mk − ∆ml. In these cases, the constraint Ulm < 0 limits

the possible range of the variable. This leads to a different solution for the probability of a

1 The procedures for solving the multi-variate integrals leading to the transitions frequencies discussed in
this paper are straightforward. The algebra can be obtained from the authors upon request.
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transition from state m to state k:

P (k|m) =
∫ ∆mk−∆ml

∆mk

∫ Ukm+∆ml−∆mk

−∞
f(Ukm, Ulm|Ukm < 0, Ulm < 0) dUlm dUkm

+
∫ 0
∆mk−∆ml

∫ 0
−∞

f(Ukm, Ulm|Ukm < 0, Ulm < 0) dUlm dUkm

= 1 − 1+exp(Ûkm)+exp(Ûlm)

1+exp(Ûkm+∆ml−∆mk)+exp(Ûlm)
+

[1+exp(Ûkm)+exp(Ûlm)] exp(Ûkm)

[exp(Ûkm)+exp(Ûlm)][1+[exp(Ûkm)+exp(Ûlm)] exp(∆ml−∆mk)]
−

[1+exp(Ûkm)+exp(Ûlm)] exp(Ûkm)

[exp(Ûkm)+exp(Ûlm)][1+[exp(Ûkm)+exp(Ûlm)] exp(−∆mk)]
.

(11)

Note that this solution contains the probability of a transition from state m to state k given

that ∆ml > 0 as a special case. The probability is obtained by evaluating (11) at ∆ml = 0.

It equals 1 − F (∆mk|Ukm < 0), where F (∆mk|Ukm < 0) is the marginal conditional c.d.f.

given by (8). Intuitively, as the transitions probabilities must sum up to unity over all

alternatives, and considering that the probability of a transition from state m to state l

is zero, the solution is the counter probability of the event that the agent stays in the

initial state. Likewise, if ∆ml > 0 and ∆mk > 0, evaluating (10) respectively (11) at

∆ml = ∆mk = 0 yields zero, as required.

The probability of a transition from state m to state l can be obtained analogously.

Before proceeding to the higher dimensional case, it is useful to re-state the two individual

probabilities of leaving the original state m valid in the trinomial framework in more general

terms. Define ∆ = (∆1, ∆2) as a vector containing the set of ∆∗

mj = min(∆mj , 0) ∀j 6= m,

in descending order. Using this notation, we can write the probability that the agent makes

the transition from the state m to state k, for any k 6= m, as follows:

P (k|m) = P (Ukj > ∆jk ∀j 6= k|Ujm < 0 ∀j 6= m)

=
∫ ∆mk−∆1

∆mk

∫ Ukm+δ1−∆mk

−∞
f(Ukm, U1|Ujm < 0 ∀j 6= m) dU1 dUkm

+ I(∆mk < ∆1)
∫ ∆mk−∆2

∆mk−∆1

∫ 0
−∞

f(Ukm, U1|Ujm < 0 ∀j 6= m) dU1 dUkm

(12)

where I(·) is an indicator function taking the value of unity if the condition in the brackets

is satisfied and zero otherwise. Furthermore, δ1 refers to the first element in a vector δ

identical to the vector ∆ but omitting the element based on ∆mk. In the trinomial case,

δ is a scalar and hence δ1 = δ. Finally, U1 refers to the difference in utilities variable Ujm

associated with the state j that is covered by δ1. To check that the expression is equivalent

to the probability statements (10) and (11), evaluate (12) for the two states j = k, l making

an assumption on the ordering of ∆ml and ∆mk.
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The analytical transitions probabilities when there is a larger number of possible

states, are obtained from a generalization of (12). For a framework with J exclusive states,

the joint conditional distribution of differences in utility Ujm ∀j 6= m is a J − 1-variate

logistic distribution. The set of ∆∗

mj = min(∆mj , 0) ∀j 6= m in descending order is repre-

sented by the vector ∆ = (∆1, . . . ,∆J−1), whereas the set of ∆∗

mj = min(∆mj , 0) ∀j 6= m, k

in descending order is denoted by the vector δ = (δ1, . . . , δJ−2). The vector (U1, . . . , UJ−2)

contains the sequence of utility differential variables corresponding to the sequence of states

in δ. The ordering enables us to represent the bounds of the relevant J−1 post shock utility

differences in a systematic manner. Using f(Ujm) as a shortcut for the conditional distri-

bution f(Ukm, U1, . . . , UJ−2|Ujm < 0 ∀j 6= m), the individual probability of a move from

state m to a particular state k 6= m can be written as

P (k|m) = P (Ukj > ∆jk ∀j 6= k|Ujm < 0 ∀j 6= m) =

∫ ∆mk−∆1

∆mk

∫ Ukm+δ1−∆mk

−∞

∫ Ukm+δ2−∆mk

−∞
. . .

∫ Ukm+δJ−2−∆mk

−∞
f(Ujm) dUJ−2 . . . dU1 dUkm

+ I(∆mk < ∆1)
∫ ∆mk−∆2

∆mk−∆1

∫ 0

−∞

∫ Ukm+δ2−∆mk

−∞
. . .

∫ Ukm+δJ−2−∆mk

−∞
f(Ujm)dUJ−2 . . . dU1 dUkm

+ I(∆mk < ∆2)
∫ ∆mk−∆3

∆mk−∆2

∫ 0

−∞

∫ 0

−∞
. . .

∫ Ukm+δJ−2−∆mk

−∞
f(Ujm)dUJ−2 . . . dU1 dUkm

+ . . .

+ I(∆mk < ∆J−2)
∫ 0

∆mk−∆J−2

∫ 0

−∞
. . .

∫ 0

−∞
f(Ujm)dUJ−2 . . . dU1 dUkm

, (13)

The integrals in (13) can be solved to yield:

P (k|m) =
(

∑

j exp(Ûjm)
)

×
∑J−1

r=1 I(∆mk < ∆r−1)
exp(Ûkm)

exp(Ûkm)+ηr

×
(

1
1+exp(∆r−∆mk)(exp(Ûkm)+ηr)+θr

− 1
1+exp(∆r−1−∆mk)(exp(Ûkm)+ηr)+θr

)

, (14)

with ∆0 = 0, ηr =
∑J−2

s=r exp(Ûs−δs +∆mk), and θr =
∑r−1

s=1 exp(Ûs), where (Û1, . . . , ÛJ−2)

represents a vector of observable utility differences corresponding to the vector of unobserv-

able utility differences (U1, . . . , UJ−2).

Equation (14) provides an analytical prediction of the transition probability from the

initial state m to a given alternative state k, for an individual member of the sample. To

evaluate the vector of transition probabilities for the agent, one has to work through all

possible states j 6= m, re-defining the vector δ accordingly. As the transition probabilities

must add up to unity over all possible states including m, the probability that the agent

8



remains in the initial state after the shock can be calculated as a remainder. Alternatively,

one might evaluate this probability by using the J − 1-variate analogue of the c.d.f. (6).

This is also useful for a validity check of the transitions frequencies evaluated on the basis

of (14). Finally, to predict the transitions matrix for the sample, one has to sum up the

transitions vectors evaluated at the individual level, over all sample units.

3 Analytical versus Calibration Results

In order to gauge the predictive performance of previous calibration-based results found in

the behavioral microsimulation literature, we compare transitions frequencies evaluated by

calibration of the unobserved utility components to those based on the analytical value of

transitions probabilities in the conditional logit framework. We begin with some stylized

examples of predicted transition probabilities at the individual level, which give us an

element of control sufficient to highlight conditions under which calibrated results might

differ more or less from analytical results. Recognizing that the observations based on

such an approach may not directly relate to the sorts of problems normally encountered

by analysts, a second part studies the reliability of calibrated transitions frequencies in the

context of a typical empirical application.

3.1 Computational Experiments

For the computational analysis, we look at several examples of transitions probabilities ob-

tained at the individual level. Both the calibration and the analytical procedure guarantee

that transitions probabilities are evaluated starting from a perfect replication of the initial

state. Therefore it seems plausible that calibrated probabilities converge to the analytical

ones when the number of replications of the random terms in the utility model increases.

However, this does not mean that the asymptotic value of the transitions probabilities is

consistent with the data generating process. At an intuitive level, it appears to be likely

that the predictions of marginal effects are unreliable, if the empirical model mapping ob-

servable characteristics into predictions of state-specific utility levels is mis-specified. But

in order to provide an answer to the question how well calibrated results perform relative

to our analytical solution, it is irrelevant whether the estimated model parameters are cor-

rect or not. For this reason, we can ignore the data generating process and refrain from

performing a Monte-Carlo experiment with a larger sample.
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In a first experiment, we simulate transitions in a design that provides the agent with

a choice between three distinct states, j = 1, 2, 3. Assume that the agent initially occupies

state 1. We examine two cases: a design where initial predicted utilities are given by a

vector Û = (0, 0, 0), and a design where this vector is given by Û = (3.64, 0, 0). The first

case represents a balanced design in which each state, ignoring the random component of

the model, is predicted to be chosen with probability one third. Note that this misleading

prediction is the starting point for the aggregate probability method of evaluating state

transitions. The second case represents an imbalanced design in which, based on the mean

utility equation, the observed choice with probability 0.95 is the utility maximizing one.

We examine transitions following an exogenous shock that changes the predictions of

state-specific utilities according to the vector ∆j = (0, 2, 1). In the balanced design, the

vector of analytical transitions probabilities, evaluated on the basis of the results contained

in the previous section, is (0.27, 0.63, 0.10). An equivalent way to express this result is

in terms of a transitions vector: (−0.73, 0.63, 0.10). This means that within 100 identical

agents, following the shock 73 would leave the initial state, 63 of whom would move into

state 2, whereas 10 would move into state 3. Note that the transitions vector obtained by

respecting the probabilistic nature of state transitions at the individual level, is substantially

different from that obtained with the aggregate utility method (−0.24, 0.33,−0.09), or that

obtained with the maximum utility approach (−1, 1, 0).2 In the unbalanced design, the

calculated vector of analytical transitions frequencies is (−0.17, 0.13, 0.03).

For the calibration design, we take independent random draws from the extreme value

distribution such that ε1 = maxj(εj), which guarantees that prior to the shock, state 1 is

the utility maximizing choice. Following the shock, we predict the new utility maximizing

choice, on the basis of n=(10, 20, 50, 100, 1000) repeats of the resampling procedure, and

evaluate transitions probabilities taking the mean over the individual repeats. To generate

confidence intervals for the calibrated transitions vectors, we replicate all steps 1000 times,

for each resampling frequency n.

The upper panel of Table 1 displays the results for this experimental design. We get

similar outcomes for the balanced and for the unbalanced design. Although the calibrated

transitions probabilities are on average broadly correct, judged by the 95 percent confidence

2 The first result is obtained by re-evaluating choice probabilities inserting the updated utility vector
Ûj + ∆j into (2). The second result is straightforward considering that state 2 is characterized by the
largest utility gain following the shock.
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band the obtained predictions only converge slowly to the analytical value. If the number of

replications is smaller than 50, as it is generally the case in applications of the calibration

method found in the literature, the predicted transitions frequencies appear to be quite

unreliable.

The comparison with the analytical benchmark also confirms the suspicion that the

calibration approach underpredicts small transition frequencies. In the balanced design,

with less than 20 replications, there is a significant chance that the calibrated results indi-

cate no transitions into state 3, although this least likely move still has a 0.10 probability

of realization. In the unbalanced design, where the smallest transitions probability is only

3 percent, qualitatively misleading results are more frequent. It takes more than 50 repe-

titions of the calibration to exclude the zero predictions. Likewise, for comparatively large

transitions frequencies, like P (1 → 1) in the unbalanced design, there is a significant chance

that application of the calibration method with few replications obtains a corner solution

at unity.

The lower panel of Table 1 shows the outcome of a second design, which uses the same

parameters for states 1 to 3 as in the previous experiment. The difference is that we add

a fourth state which is an exact copy of state 3, i.e. characterized by Û4 = 0 and ∆4 = 1.

This implies that the probabilities of a transition from state 1 to state 3 and from state 1 to

state 4 are the same. The calibration method clearly fails to replicate this qualitative result.

For example, in the balanced design with 10 replications, it might occur that P (1 → 3) is

zero, whereas P (1 → 4) is as large as 0.30, whereas the analytical prediction is 0.09. Even

the confidence bands of the predictions obtained by calibration are not always the same.

The observed patterns are robust for different experimental designs. Nevertheless this

does not necessarily mean that variability of the predicted transitions probabilities at the

individual level would challenge the results of previous empirical applications using calibra-

tion. In principle, aggregation over similar agents at the sample level might compensate for

a small number of repeats at the individual level. To gauge the practical relevance of this

effect, we check the performance of calibrated transitions frequencies against the analytical

benchmark, in a typical empirical application.
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3.2 An Empirical Application

We choose to follow Kaltenborn et al. (2003) in simulating the labor supply response to

a general income allowance for payroll contributions to the social insurance system in Ger-

many. For simplicity, our discrete choice model of labor supply assumes that agents decide

on hours worked taking the labor supply decision of other household members as given.

They can select themselves into one of six regimes: employment of hj = (10, 20, 30, 40, 50)

hours per week, and non-participation (hj = 0). Actual working hours observed in the

data are rounded to fit the elements in the restricted choice set. We consider a translog

specification of the direct utilities enjoyed by agent i in state j:

Uij = x′

ijAxij + b′xij + εij (15)

where x = (yij , hj)
′, A is a symmetric 2 × 2 matrix of parameters and b is a 1 × 2 vector

of parameters. εij represents the Type I Extreme Value distributed random disturbance

term required to obtain the conditional logit model. Finally, yij stands for the (potential)

net household income of agent i working hours hj . To generate state-specific household net

incomes, we calculate individual gross earnings assuming state-invariant gross wage rates,

and derive the corresponding net income using a simplified but detailed microsimulation

model of the German tax and transfer system. For agents whose gross wage rate is not

observed, we base the calculation on a (selectivity-corrected) predicted wage rate.

The translog specification (15) implies that the interaction between hours worked and

net household income is included in the estimation, as well as the elements of x squared. To

introduce observed heterogeneity among agents, we specify parameters of the direct utility

function as dependent on individual characteristics. Labor supply behavior is estimated

on separate samples of 1729 women and 1675 men drawn from the 2000 wave of the Ger-

man Socio-Economic Panel. The selected samples cover agents of age 25-55 living in West

Germany who are not retired, self-employed, a civil servant, in education or in military

(national) service, or on parental leave. Working hours are regular working hours including

regular paid overtime. To ensure that the estimated model parameters are consistent with

the monotonicity conditions implied by economic theory, we maximize the likelihood func-

tion of the conditional logit model (3) under inclusion of a penalty function, as suggested

by Euwals and van Soest (1999).
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Table 2 shows the estimated parameters for the female and male samples. A full

discussion of the results is beyond the scope of this paper. We only note that the behavioral

parameters obtained from our empirical specification are broadly in line with earlier work.

For example, women who raise children or give care value leisure significantly more than a

reference group who does not. The same is true for disabled men. Irrespective of gender,

the parameters indicate a stigma effect of welfare recipience— agents appreciate a given

amount of leisure more when they do not depend on welfare transfers.

In demonstrating the reliability of transitions frequencies evaluated on the basis of

calibration, we simulate a hypothetical reform to the German social insurance system which

replaces the existing rules for minor employment, exempting jobs that pay earnings below

a certain threshold value (€325 per month, in 2002) from social insurance contributions,

with a monthly allowance of €250 applying to all earnings. This proposal has in fact been

put forward by the Federation of German Trade Unions. The behavioral microsimulation

of the shock is generated by revising our detailed tax and transfer model, making the

adjustments necessary to reproduce the legal state following the reform. By feeding the

simulated post-reform net incomes into the estimated utility model, we can compute the

state- and individual-specific changes in utility levels effected by the shock.

This information is sufficient to derive analytical transitions frequencies by aggregat-

ing individual transitions probabilities according to (14) over the sample. In applying the

calibration method, we draw vectors of unobserved utility components εij that maximize

pre reform utility at the observed working hours, and recalculate the new utility maximizing

choice given the simulated income change, for each agent in the sample. Tables 3 and 4

compare the analytical and the calibrated matrices of simulated transitions for the female

and male samples. The calibrated transitions matrix is obtained taking the mean over 20

repetitions.

It is apparent in Table 3 that for women the calibrated results are sufficient to cor-

rectly indicate the incentive effects of the reform— while the majority of simulated tran-

sitions are positive and mainly relate to agents not currently participating, there are also

reductions in labor supply. Some agents currently working few hours reduce their work-

ing hours or even withdraw from the labor market, since the reform raises marginal taxes

on earnings in minor employment. Furthermore, there is a pure income effect of the con-

tribution rate allowance reducing labor supply of agents currently working higher hours.
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Overall, the negative incentive effects of the reform do not compensate its positive incentive

effects. Taking the average over the entire sample, working hours increase over the pre re-

form value of 20.59. However, although the calibration results indicate the correct direction

of the incentive effects, the strength of off-diagonal transitions is generally underpredicted.

As a result, post reform average working hours based on calibration (21.51) are about 0.17

percent smaller than average working hours based on the analytical solution (21.55).

The calibrated simulated transitions matrix for men is somewhat less reliable. Pre-

dicted average working hours obtained by calibration (33.96) underpredict the analytical

value (34.05) by 0.29 percent. The intuition why the calibration method performs worse

in this case is that men generally either work full-time or do not participate at all. Hence,

several of the states permitted in our model specification initially are sparsely populated,

so that individual transitions probabilities following the shock tend to be very small. As

illustrated in section 3.1, in this situation there is high chance that the calibration method

predicts zero transitions probabilities when they are in fact slightly positive, unless the

number of repetitions in the re-sampling procedure is large. Nevertheless it is still possible

to gauge the mixed incentive effects of the reform from Table 4.

4 Conclusions

In this paper, we have derived an explicit form for transitions probabilities following an

exogenous shock to the deterministic component of a conditional logit framework with

any number of dimensions. The proposed analytical solution significantly improves upon

transitions estimators based on calibration of the unobserved model component, first of all

because it helps to avoid computationally demanding re-sampling procedures. Moreover,

computational results for stylized experimental designs confirm that calibrated transitions

frequencies might perform substantially worse compared to analytical predictions provided

that the number of repeats in an application cannot be made sufficiently large, and especially

underpredict small transitions probabilities.

Nevertheless, comparison of simulated analytical and calibrated transitions frequen-

cies in a typical empirical application focusing on the prediction of labour market transitions

in response to economic policy reform suggests, that previous calibration-based behavioral

microsimulations found in the literature probably indicate the strength and the direction
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of the incentive effects, by and large, accurately. At the sample level, aggregation of cali-

brated transitions probabilities over comparable sample units might smooth out imprecise

transitions probabilities at the individual level.

At the conclusion, it is important to point out that the suggested analytical pre-

diction method does not immediately recover ‘true’ transitions probabilities. The reason

is that the proposed solution ignores the probabilistic nature of the parameter estimates

that yield the underlying predictions for the deterministic utility component in the model.

An asymptotically exact solution can be obtained by averaging the calculated analytical

transitions probabilities over repeated draws from the distribution of the estimated model

parameters.

15



References

Bargain, O. (2003): “Tax Reform Analysis Using Flexible Models of Labor Supply,”
mimeo DELTA, Paris.

Creedy, J., and A. Duncan (2002): “Behavioural Microsimulation with Labour Supply
Responses,” Journal of Economic Surveys, 16, 1–39.

Duncan, A., and C. Giles (1996): “Labour Supply Incentives and Recent Family Credit
Reforms,” The Economic Journal, 106, 142–155.

Duncan, A., and M. Weeks (1998): “Simulating Transitions Using Discrete Choice
Models,” Proceedings of the American Statistical Association, 106, 151–156.

Euwals, R., and A. van Soest (1999): “Desired and Actual Labour Supply of Unmarried
Men and Women in the Netherlands,” Labour Economics, 6, 95–118.

Gerfin, M., and R. Leu (2003): “The Impact of In-Work Benefits on Poverty and House-
hold Labour Supply: A Simulation Study for Switzerland,” IZA Discussion Paper, No.
762, Bonn.

Gourieroux, C., A. Monfort, E. Renault, and A. Trognon (1987): “Generalized
Residuals,” Journal of Econometrics, 34, 5–32.

Kaltenborn, B., S. Koch, U. Kress, U. Walwei, and G. Zika (2003): Arbeitsmarkt-

effekte eines Freibetrags bei den Sozialabgaben. Hampp Publishers, Munich.

Kotz, S., N. Balakrishnan, and N. Johnson (2000): Continuous Multivariate Distri-

butions, vol. 1: Models and Applications. John Wiley & Sons, New York.

Maddala, G. (1986): Limited-Dependent and Qualitative Variables in Econometrics,
Econometric Society Monograps No.3. Cambridge University Press, Cambridge.

McFadden, D. (1974): “Conditional Logit Analysis of Qualitative Choice Behavior,” in
Frontiers in Economics, ed. by P. Zarembka, pp. 105–142. Academic Press, New York.

van Soest, A. (1995): “Structural Models of Family Labor Supply,” Journal of Human

Resources, 30, 63–83.

16



Table 1: Convergence of Calibrated Transitions Probabilities

Number of Replications

10 20 50 100 1000 ∞

Transition balanced design

P (1 → 1) [0.10, 0.50] [0.10, 0.45] [0.16, 0.38] [0.20, 0.35] [0.25, 0.29] 0.27

P (1 → 2) [0.40, 0.90] [0.45, 0.80] [0.52, 0.74] [0.55, 0.71] [0.61, 0.65] 0.63

P (1 → 3) [0.00, 0.30] [0.00, 0.20] [0.04, 0.18] [0.05, 0.15] [0.09, 0.11] 0.10

Transition unbalanced design

P (1 → 1) [0.60, 1.00] [0.70, 0.95] [0.74, 0.92] [0.77, 0.89] [0.81, 0.85] 0.83

P (1 → 2) [0.00, 0.30] [0.00, 0.25] [0.06, 0.22] [0.08, 0.19] [0.12, 0.15] 0.13

P (1 → 3) [0.00, 0.10] [0.00, 0.10] [0.00, 0.08] [0.01, 0.07] [0.03, 0.04] 0.03

Transition balanced design

P (1 → 1) [0.10, 0.50] [0.15, 0.45] [0.20, 0.40] [0.22, 0.36] [0.27, 0.31] 0.29

P (1 → 2) [0.30, 0.80] [0.35, 0.70] [0.42, 0.65] [0.45, 0.62] [0.51, 0.56] 0.54

P (1 → 3) [0.00, 0.20] [0.00, 0.20] [0.02, 0.16] [0.04, 0.14] [0.08, 0.10] 0.09

P (1 → 4) [0.00, 0.30] [0.00, 0.20] [0.04, 0.16] [0.05, 0.14] [0.08, 0.10] 0.09

Transition unbalanced design

P (1 → 1) [0.60, 1.00] [0.65, 0.95] [0.71, 0.90] [0.74, 0.87] [0.78, 0.83] 0.81

P (1 → 2) [0.00, 0.30] [0.00, 0.25] [0.06, 0.22] [0.07, 0.18] [0.11, 0.14] 0.13

P (1 → 3) [0.00, 0.10] [0.00, 0.10] [0.00, 0.08] [0.01, 0.07] [0.03, 0.04] 0.03

P (1 → 4) [0.00, 0.10] [0.00, 0.10] [0.00, 0.08] [0.01, 0.07] [0.02, 0.04] 0.03
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Table 2: Parameter Estimates for Labor Supply Model

Women Men

Parameter Est. Std. Dev. Parameter Est. Std. Dev.

log income 14.33** 3.90 18.38** 4.26

(log income)2 0.13 0.18 -0.32* 0.19

log income × log leisure -2.06** 0.43 -1.51** 0.44

log leisure 33.17** 5.56 48.01** 5.87

× potential experience -0.10 0.06 -0.04 0.06

× (potential experience)2 0.00 0.00 0.00 0.00

× unskilled -0.63 0.42 -2.21** 0.39

× apprenticeship -1.34** 0.34 -2.47** 0.31

× vocational training -0.79* 0.41 -1.91** 0.39

× married -0.66* 0.32 -1.22** 0.29

× foreigner 1.01** 0.36 0.68* 0.29

× disabled 0.86 0.53 2.72** 0.53

× giving care 2.59** 0.97 -0.04 0.72

× No. of children younger than 6 4.23** 0.41 0.41* 0.23

× No. of children younger than 16 1.29** 0.16 -0.33** 0.13

× welfare recipience -0.42** 0.04 -0.14** 0.04

(log leisure)2 -1.30** 0.38 -3.78** 0.41

No. of observations 1729 1675

log likelihood -2841.6 -2919.4

Notes: Conditional logit for individual’s choice of working hours. In couples, the choice of
working hours made by the partner is treated as given. There are six possible choices of
working hours per week: (0, 10, 20, 30, 40, 50). Maximum leisure time per week is set to 80
hours. Potential experience is calculated as age minus number of years at school minus 6.
The omitted education category is university training. **, * are used to indicate that a
parameter value is significant at the one respectively five percent level.
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Table 3: Analytical and Calibrated Transitions Matrix – Women

Hours 0 10 20 30 40 50 Before

0 29.95 1.47 1.16 1.09 0.75 0.30 34.70

(30.57) (1.08) (1.20) (0.95) (0.60) (0.30)

10 0.22 5.55 0.14 0.09 0.05 0.02 6.07

(0.14) (5.66) (0.12) (0.11) (0.05) (0.01)

20 0.02 0.13 13.43 0.06 0.05 0.02 13.71

(0.01) (0.05) (13.52) (0.05) (0.06) (0.02)

30 0.00 0.07 0.16 10.38 0.02 0.01 10.64

(0.00) (0.03) (0.10) (10.47) (0.03) (0.00)

40 0.01 0.11 0.44 0.62 32.69 0.01 33.89

(0.01) (0.13) (0.27) (0.30) (33.18) (0.00)

50 0.00 0.00 0.03 0.04 0.02 0.89 0.98

(0.00) (0.00) (0.03) (0.02) (0.00) (0.93)

After 30.20 7.33 15.35 12.28 33.59 1.25 100.00

(30.73) (6.95) (15.23) (11.91) (33.92) (1.26)

Table 4: Analytical and Calibrated Transitions Matrix – Men

Hours 0 10 20 30 40 50 Before

0 13.95 0.20 0.35 0.89 1.05 0.46 16.90

(14.52) (0.11) (0.35) (0.73) (0.87) (0.31)

10 0.00 0.53 0.01 0.02 0.02 0.01 0.60

(0.00) (0.57) (0.00) (0.02) (0.01) (0.00)

20 0.00 0.00 0.64 0.00 0.00 0.00 0.66

(0.00) (0.00) (0.65) (0.01) (0.00) (0.00)

30 0.00 0.01 0.01 1.41 0.00 0.00 1.43

(0.00) (0.00) (0.00) (1.43) (0.00) (0.00)

40 0.01 0.16 0.59 1.14 72.80 0.11 74.81

(0.00) (0.15) (0.36) (0.55) (73.73) (0.01)

50 0.00 0.01 0.04 0.09 0.09 5.38 5.61

(0.00) (0.00) (0.04) (0.08) (0.05) (5.44)

After 13.95 0.91 1.65 3.55 73.97 5.96 100.00

(14.53) (0.84) (1.40) (2.81) (74.67) (5.76)

Notes: See Table 3.
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