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Abstract

IZA DP No. 10532 January 2017

Practical Procedures to Deal with
Common Support Problems in
Matching Estimation1

This paper assesses the performance of common estimators adjusting for differences in 

covariates, such as matching and regression, when faced with so-called common support 

problems. It also shows how different procedures suggested in the literature affect the 

properties of such estimators. Based on an Empirical Monte Carlo simulation design, a 

lack of common support is found to increase the root mean squared error (RMSE) of all 

investigated parametric and semiparametric estimators. Dropping observations that are off 

support usually improves their performance, although the magnitude of the improvement 

depends on the particular method used.

JEL Classification:	 C21, J68

Keywords:	 Empirical Monte Carlo Study, matching estimation, regression, 
common support, outlier, small sample performance

Corresponding author:
Michael Lechner
Swiss Institute for Empirical Economic Research (SEW)
University of St. Gallen
Varnbüelstrasse 14
CH-9000 St. Gallen
Switzerland

E-mail: Michael.Lechner@unisg.ch

1	 This project is part of the project “Regional Allocation Intensities, Effectiveness and Reform Effects of Training 
Vouchers in Active Labor Market Policies”, IAB project number 1155. This is a joint project of the Institute for 
Employment Research (IAB) and the University of Freiburg. We gratefully acknowledge financial and material support 
by the IAB. We thank Lorenzo Camponovo, Bernd Fitzenberger, and Andreas Steinmayr for helpful comments on a 
previous draft of the paper. The usual disclaimer applies.



1 

 

1 Introduction 

It is a common task in applied econometrics to compare moments or distributions of random 

variables of two subsamples that are free of differences due to some observed variables. One 

example that received much attention in the recent applied literature is the evaluation of active 

labour market programmes (ALMP) based on very informative and large administrative data 

(see the meta study by Card, Kluve, and Weber, 2010, for a comprehensive summary of this 

literature). Usually, the main goal in this literature is to compare expected future reemployment 

and earnings (‘outcomes’) of participants in a programme (‘treatment’) with non-participants. 

In many cases, identification is based on a selection-on-observable identification strategy 

exploiting the rich data available (e.g., see Imbens, 2004, for an overview). 

Essentially, all estimation procedures used in this context are based on predicting average out-

comes in one treatment state (e.g., for non-participants who are called ‘non-treated’ from now 

on) based on the distribution of exogenous variables in the other treatment state (e.g., the pro-

gramme participants who are called ‘treated’ from now on). Apparently, in this example, if the 

values of the characteristics observed for the treated are not observable among the non-treated, 

the mean outcome for the non-treated who would have such characteristics cannot be estimated 

without strong assumptions. These assumptions allow some extrapolation for such values of 

characteristics. This is the so-called no common support problem. A related (finite sample) 

problem appears when there are only a few observations in some relevant part of the covariate 

space in the particular sample at hand. This is called the thin common support problem. Such 

areas of no or thin support may increase biases and variances of estimators (e.g., Kahn and 

Tamer, 2010, Crump, Hotz, Imbens, and Mitnik, 2009). Surprisingly, and different from other 

aspects of treatment effect models, these issues have received little attention in the literature. 

Here, we investigate the impact of these problems on commonly used estimators, and analyse 

procedures proposed to address it. Similar to Huber, Lechner, and Wunsch (2013), we do this 
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in the context of a large-scale active labour market policy evaluation and use Empirical Monte 

Carlo methods. One of the contributions of this paper is to show that common support problems 

as well as the ‘remedies’ chosen matter for the results obtained (see also Busso, DiNardo, and 

McCrary, 2014a, Dehejia and Wahba, 1999, Smith and Todd, 2005). When there are support 

problems, they are addressed in different ways in applied studies. The most convenient way is 

to ignore the problem and take as given the way the specific estimators (as implemented in the 

software used) deal with it. If support problems are explicitly addressed, then one possibility is 

to change the population for which the effects are estimated to the one for which the 

distributions of characteristics overlap. This matters if the effects are heterogeneous. 

Alternatively, one may use a parametric model to predict mean outcomes in no-support regions. 

A third alternative is to give up point-identification and confine oneself to a set-identified 

parameter (e.g., Lechner, 2008).  

We stick to the more popular point-identified case and analyse several practical adjustment 

procedures proposed in the literature. For example, Rosenbaum and Rubin (1983) suggest drop-

ping treated observations for which there are no non-treated observations with the same covari-

ate values. However, this procedure may lead to drastic reductions in sample size if the covari-

ate space is large or if there are (almost) continuous covariates. Thus, most procedures used in 

practice, and analysed in this paper, focus directly on the propensity score, i.e. the conditional 

probability of treatment given the values of the covariates.  

There are also suggestions to address simultaneously problems of common support as well as 

(too) important non-treated observations. These issues are related because in regions of thin 

support, the predictions are based on only few observations. This potentially leads to finite-

sample bias and increased variance. Therefore, Imbens (2004) and Huber, Lechner, and Wun-

sch (2013) develop ways to address this issue, which appear to be effective in the simulation 

study conducted by the latter authors. Finally, Crump, Hotz, Imbens, and Mitnik (2009) suggest 
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explicitly focussing the estimation on a subsample of the data with ‘strong common support’ to 

maximise the precision of the estimators.  

Recently, Busso, DiNardo, and McCrary (2014a) investigated some of those procedures. They 

find that some of the approaches (i.e., those by Crump, Hotz, Imbens, and Mitnik, 2009, Dehejia 

and Wahba, 1999, Ho, Imai, King, and Stuart, 2007, and Smith and Todd, 2005, to be explained 

in detail below) have the potential to reduce the bias and partly increase the efficiency of the 

estimators. However, their simulation study is based on rather artificial distributional assump-

tions, which are unlikely to be observed in reality.  

To address the issue of using a realistic design in a simulation study, recently, Lechner and 

Wunsch (2013), and Huber, Lechner, and Wunsch (2013) advocated using what they call an 

Empirical Monte Carlo Study (EMCS). The main idea is to use a large data set, which is similar 

to the data typically used in relevant applied work. In this large data set, considered to be the 

‘population’ in the simulation exercise, a propensity score is estimated. Then, random samples 

are drawn from the subpopulation of the non-treated. For this group, the effect of treatment is 

known to be zero. Next, the estimated propensity score is used to assign a (pseudo-) treatment 

status to these non-treated. Such a procedure reflects the same selectivity observed in the popu-

lation while insuring that the true effect is known (and zero) and does not require a priori spec-

ifying the joint distribution (or conditional moments) of outcomes, confounders, and treatment.2 

Our results suggest that dropping observations that are off support improves the performance 

of many estimators, mainly by increasing their precision. For matching estimators, this im-

                                                 
2  There are alternatives in the literature that share the goal of making simulation studies more relevant but do not share this 

feature. For example, Abadie and Imbens (2011) and Busso, DiNardo, and McCrary (2014b) propose to apply more 
structural empirical simulation designs. The dependence structures between the control, treatment and outcome variables 
are estimated with real data. Afterwards, the treatment and outcome variables are simulated using the distribution of control 
variables from real data and the coefficients estimated in the first step. This approach has the advantage that the size of the 
treatment effect can be restricted, but it requires assumptions about the distribution of the ‘error terms’.  
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provement can exceed 20 standard deviations in some specifications. Even for parametric esti-

mators, the performance improvements may be non-trivial and worth pursuing. The procedures 

of Dehejia and Wahba (1999), Grzybowski et al. (2003), and Vincent et al. (2002) appear to 

improve the performance of different estimators in (almost) all specifications. We suggest drop-

ping treated observations with propensity score values above a specific threshold. Our findings 

suggest specifying the cut-off value at the maximum or the 99%-quantile of the propensity score 

in the non-treated subpopulation. This procedure might be combined with an adjustment among 

the non-treated. Non-treated observations with a high importance (in the matching) should be 

dropped in the first place. Afterwards, treated observations with propensity score values above 

a threshold are dropped, with the threshold value being specified in the remaining non-treated 

sample (two-step procedure suggested by Huber, Lechner, and Wunsch, 2013).   

The remainder of this study is organized as follows. In the next section, we introduce the econ-

ometrics framework. The underlying data and the simulation design are presented in Section 3. 

The results are presented in Section 4, and conclusions are drawn in Section 5. Furthermore, 

we provide a discussion about the detection of support problems and possibly remedies in 

Online Appendix A. Some details of the data, the simulation procedures, and supplementary 

results are provided in Online Appendices B-H. 
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2 The econometric model 

 Parameter of interest 

Consider a setup with a binary treatment D, d ∈ {0,1} (e.g., participation in a program) and an 

outcome variable Y (e.g., post-programme employment or earnings). X is a K-dimensional vec-

tor of covariates with support 𝒳𝒳 ⊂ ℝ𝐾𝐾.3 The goal of the empirical analysis is to obtain mean 

comparisons of the outcome variable in the subsamples defined by D that are free of any dif-

ferences due to the covariates X. If the covariate space is sufficiently rich, such a comparison 

will uncover parameters that have a causal interpretation, e.g., the average treatment effect on 

the treated (ATET, for details, see Imbens, 2004, or Rubin, 1974). More specifically, the focus 

is on the following estimand: 

𝛾𝛾 = 𝐸𝐸[𝑌𝑌|𝐷𝐷 = 1] − 𝐸𝐸[𝐸𝐸(𝑌𝑌|𝑋𝑋 = 𝑥𝑥,𝐷𝐷 = 0)|𝐷𝐷 = 1]. 

In analogy to this definition, one can define similar parameters for other subpopulations as well. 

Here, for simplicity, the focus is only on γ, because (i) this parameter is of interest in most 

evaluation studies, and (ii) because support problems appearing for most other parameters can 

be addressed in a symmetric way.  

Assume that an i.i.d. sample of size N is available containing measurements of yi, di, and xi. 

Thus, under usual regularity conditions, 𝛾𝛾 can be non-parametrically identified. However, when 

the dimension of X is high, the so-called curse of dimensionality makes reliable non-parametric 

estimation difficult to impossible. In this case, the balancing score property introduced by Ros-

enbaum and Rubin (1983) obtains practical relevance. It implies the following equality, which 

also holds in all subpopulations defined by X: 

                                                 
3  We use the convention that capital letters denote random variables, while small letters denote particular values. If small 

letters are subscripted with i, such values are observed in a random sample.  
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𝐸𝐸[𝐸𝐸(𝑌𝑌|𝑋𝑋 = 𝑥𝑥,𝐷𝐷 = 0)|𝐷𝐷 = 1] = 𝐸𝐸[𝐸𝐸(𝑌𝑌|𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥),𝐷𝐷 = 0)|𝐷𝐷 = 1]. 

p(x) = P(D=1|X=x) denotes the propensity score. In most applications, the propensity score is 

approximated by a parametric model so that the resulting non-parametric estimation problem 

becomes essentially one-dimensional. 

 The common support assumption 

Implicitly, the estimand defined above requires that for every unit with d=1, there should be a 

unit with the same (or a similar) value of p(x) among the group of units with d=0. Let 

𝑓𝑓(𝑝𝑝(𝑥𝑥)|𝐷𝐷 = 𝑑𝑑) be the density of the propensity score 𝑝𝑝(𝑥𝑥) conditional on the treatment sta-

tus 𝑑𝑑. The density 𝑓𝑓(𝑝𝑝(𝑥𝑥)|𝐷𝐷 = 1) can be consistently estimated in the treated subsample under 

some regularity conditions. The same is true for 𝑓𝑓(𝑝𝑝(𝑥𝑥)|𝐷𝐷 = 0) in the non-treated subsample. 

There are ‘support problems’ (in the population) when 𝑓𝑓(𝑝𝑝(𝑥𝑥)|𝐷𝐷 = 0) = 0 and 𝑓𝑓(𝑝𝑝(𝑥𝑥)|𝐷𝐷 =

1) > 0. The set 𝒲𝒲𝑑𝑑 = {𝑝𝑝(𝑥𝑥) ∈ (0,1):𝑓𝑓(𝑝𝑝(𝑥𝑥)|𝐷𝐷 = 𝑑𝑑) > 0} represents the support of  𝑝𝑝(𝑥𝑥) for 

d being zero or one. 

Common support assumption (CS) 

𝒲𝒲1 ⊆ 𝒲𝒲0. 

This assumption is automatically satisfied in the population when 𝑝𝑝(𝑥𝑥) < 1. However, even if 

this assumption holds in the population, the actual sample available may still be plagued by a 

lack of overlap. A comprehensive summary of different ways to detect support problems as 

well as a description of possible identification and estimation approaches in the presence of 

support problems is in Online Appendix A. 

 Balance of propensity score distributions 

Even if the common support assumption is satisfied, an imbalance in the sample propensity 

score distributions could still lead to regions with only few (or none) treated or non-treated 
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observations. Imbens (2004) suggests generating measures for the importance of each 

observation. A high importance indicates a high probability for a large imbalance in the 

conditional propensity score distributions with respect to the treatment status (for a given 

sample size). Following Huber, Lechner, and Wunsch (2013), we drop non-treated observations 

with a high importance weights, which we denote by 𝜔𝜔�𝑖𝑖 in the following. For details about the 

implementation, please, see Online Appendix A.4. 

 Estimation 

We assess the impact of support problems and their remedies on three different classes of esti-

mators. In the following, we give a brief overview of the applied estimators. The details of the 

implementation can be found in Section C.4 of Online Appendix C.  

The first class consists of parametric regressions. We use ordinary least squares (OLS) regres-

sions for continuous and discrete non-binary outcome variables. For binary outcome variables, 

we specify parametric probit models. These estimators also ‘work’ without common support. 

However, since parametric models are only approximations of the true model, one may suspect 

that their out-of-support predictions might be particularly unreliable.  

The second class of estimators considered is based on inverse probability weighting (IPW) 

using the propensity score. The estimated propensity score is obtained from a parametric probit 

model. Therefore, the common support assumption is, again, not required for this estimator 

either. However, as before, the results outside the common support depend on the correct spec-

ification of the parametric model for the propensity score. 

The third class of estimators considered are propensity score matching estimators. In particular, 

we investigate the popular modified and bias adjusted propensity score radius-matching esti-

mator suggested by Lechner, Miquel, and Wunsch (2011).  
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3 Empirical Monte Carlo study 

 Empirical Monte Carlo study 

The analysis of the common support issues is based on an Empirical Monte Carlo Study 

(EMCS), as suggested by Huber, Lechner, and Wunsch (2013) and Lechner and Wunsch 

(2013). It combines the advantages of a ‘classical’ Monte Carlo study with the advantages of 

using real data. The idea is to use a large data set, which is similar to data in the respective field 

of study. To obtain appropriate random samples for the Monte Carlo study, the first step consists 

of estimating the propensity score in the full data. This estimated model will reflect the ‘true’ 

selectivity. Subsequently, random samples from the non-treated subpopulation are drawn. A 

(pseudo) treatment is assigned according to the ‘true’ selection model. Since there are only non-

treated individuals in the samples used in the simulations, the true effect of the assigned 

treatment is known to be zero. The key advantages of this procedure are that the selectivity in 

the samples reflects the selectivity in the larger population, and that there is no need for stipu-

lating a model on how the outcomes depend on treatment and covariates. Adding some more 

structure allows varying various components of the data generating process that are deemed 

relevant in the particular analysis. We vary the sample size (N = 500, 2,000, 8,000), the share 

of treated (10%, 50%, 90%), the outcome variable (earnings, months employed, employment), 

the degree of effect heterogeneity, the propensity score specification, and the severity of the 

support problem. The details of the simulation process are described in Online Appendix C. In 

the next section, we discuss the administrative data used for the simulation. 
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 Empirical bases for the simulations: German administrative data  

3.2.1 Data base  

The German Federal Employment Agency generated the data for this study from their social 

security records. It contains information regarding individuals having received a training 

voucher in 2003 or 2004 and those who did not. Training vouchers certify the eligibility for 

public sponsored further training (see Doerr et al., 2014, for more details). Unemployed 

awarded with a voucher may redeem it at certified training providers. 

The data contain extensive daily information on employment subject to social security contri-

butions, receipt of transfer payments during unemployment, job search, and participation in 

different active labour market programs as well as rich individual information. It is a combina-

tion of two populations: A 3% random sample of those individuals in Germany who 

experienced at least one switch from employment to non-employment in 2003 and did not 

receive any voucher are merged with all voucher recipients. We account for the treatment-based 

sampling scheme by using sampling weights when necessary. This type of data has been 

frequently used to evaluate German active labour market policies (e.g., Biewen, Fitzenberger, 

Osikominu, and Paul, 2014, Lechner, Miquel, and Wunsch, 2011, Rinne, Uhlendorff, and Zao, 

2013). It is comparable to many administrative data sets in Europe (see Lechner and Wunsch, 

2013). 

The treatment consists of receiving a voucher for further training during the first twelve months 

of unemployment. Training vouchers indicate the particular type of course for which they may 

be redeemed. We only consider vouchers awarded to obtain skills for manufacturing or service 

workers (in the following: vouchers for manufacturing and service workers, VMSW) and vouch-

ers to obtain skills for technicians (in the following: vouchers for technicians, VTEC). These 
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are interesting because their selection processes show considerable heterogeneity: The award 

of VTEC is far more selective than the award of VMSW.  

3.2.2 Control variables and common support 

The choice of control variables follows Lechner and Wunsch (2013). We consider all variables 

identified as important confounders in their study, i.e., baseline personal characteristics, timing 

of program start, regional dummies, benefit and unemployment insurance claims, pre-program 

outcomes, and the short-term labour market history. Measurements regarding individual 

characteristics refer to the time of inflow into unemployment. Further information about the 

control variables and the support of the propensity score in the different samples can be found 

in Online Appendix B. The full list of variables used for the propensity scores (including 

interaction terms) is given in Tables B.1 and B.2.  

Individuals with high educational or occupational degrees who work as technicians, profession-

als, or managers are very likely to obtain a VTEC (but not necessarily a VMSW). For simulation 

and modelling purposes, it is useful to relate the support problems to particular variables. Thus, 

three interactions between occupation and educational/vocational degree are included in the 

propensity score probit model: (i) being a technician or having an associate profession inter-

acted with a higher secondary schooling degree (𝑆𝑆1); (ii) being a professional or manager inter-

acted with a higher secondary schooling degree (𝑆𝑆2); and (iii) being a professional or manager 

interacted with a university or college degree (𝑆𝑆3).  

The three interaction terms, which are binary, are collected in the ‘support variable’ S: 

𝑆𝑆𝑖𝑖 = max
 

(𝑆𝑆1𝑖𝑖, 𝑆𝑆2𝑖𝑖, 𝑆𝑆3𝑖𝑖). 

The support variable 𝑆𝑆𝑖𝑖 equals one for 66% of all individuals who are awarded with VTEC, but 

only for 21% of all individuals who are awarded with VMSW and for 20% of those not receiving 

a voucher at all. 
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4 Results 

 General remarks 

There are results for 252 different DGPs, 46 procedures to deal with support problems, three 

outcomes, three estimators, and up to three different model specifications.4 It is not possible to 

report (and understand!) all of these results without reducing their dimensionality. Therefore, 

linear regressions provide summary measures. In these regressions, the dependent variables 

consist of measurements of the quality of the estimators, such as the root mean squared error 

(RMSE), the absolute bias, and the standard errors. The independent variables reflect different 

features of the DGPs (treatment shares, types of effect heterogeneity, sample size, and type of 

voucher), of the model specifications, of the estimators, and of the various rules to tackle the 

support problem (see Table 1 for the list of all procedures used; a more comprehensive 

description is provided in Online Appendix A).  

Controls for model specifications, treatment shares, and types of effect heterogeneity are inter-

acted with each other (but not with the dummies for the different procedures to handle support 

problems). Furthermore, separate regressions are reported for different types of vouchers, 

estimators, sample sizes, and types of support reductions as, a priori, considerable heterogeneity 

is expected with respect to those features. 

                                                 
4  The DGPs vary by sample size, treatment share, type of treatment (VMSW or VTEC), type of effect heterogeneity, and type 

of support restrictions. Overall, there are 90,720 different results. 
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Table 1: Procedures for handling support problems 

Procedure  Description  Rule Assumption References 
Drop treated based on fixed value of propensity score 

A  Drop no observations      
WA  Drop non-treated if weights high (𝜔𝜔� ≥ 0.04)   D Imbens (2004) 
B1  Drop if .1 < p(x) < .9    CHIM (2009) 
B2  Drop if p(x) < .9    
WBx Bx & WA    

Drop treated based on density of propensity score 
C1  Drop treated if f(p(x)) < q2  1 D HIST (1998),  

HIT (1997), Smith, 
Todd (2005)  C2  Drop treated if f(p(x)) < q10  1 D 

C3 Drop treated if f(p(x)) < qτ with τ = (100/N)*100%   
WCx Cx & WA    1 D 

Drop treated based on lack of non-treated neighbours in terms of radius of propensity score 
D1  Drop treated if no close match in 0.01 radius (u=0.01)  2 D Grzybowski et al. 

(2003), Vincent et 
al. (2002)  D2  Drop treated if no close match in 0.1 radius (u=0.1)  2 D 

WDx  Dx & WA  2 D 
Drop treated based on upper limits of distribution of propensity score among non-treated 

E1  Drop treated above highest non-treated p-score  3 D Dehejia, Wahba 
(1999)   
 
HLW (2013) 

E2  Drop treated above 99% highest non-treated p-score  3 D 
E3  Drop treated above 95% highest non-treated p-score  3 D 
WEx  Ex & WA  3 D 

Procedures that extrapolate into lack of support region 
F1  E1 & estimate Y1|N - Y0|N at highest non-treated p-score  3 E   
F2  E2 & estimate Y1|N - Y0|N at 99% highest non-treated p-score  3 E   
F3  E3 & estimate Y1|N - Y0|N at 95%highest non-treated p-score  3 E   
WFx  Fx & WA  3 E   
G1  E1 + lin. approx. of Y1|N - Y0|N above highest non-treated p-score  3 F   
G2  E2 + lin. approx. of Y1|N - Y0|N above 99% highest non-treated p-s.  3 F   
G3  E3 + lin. approx. of Y1|N - Y0|N above 95%highest non-treated p-s. 3 F   
WGx  Gx & WA  3 F   
H1  Estimate Y0|N at highest non-treated p-score  3 B   
H2  Estimate Y0|N at 99% highest non-treated p-score  3 B   
H3  Estimate Y0|N at 95% highest non-treated p-score  3 B   
WHx  Hx & WA  3 B   
I1  Lin. approx. of Y0|N above the highest non-treated p-score  3 C  
I2  Lin. approx. of Y0|N above the 99% highest non-treated p-score  3 C  
I3  Lin. approx. of Y0|N above the 95%highest non-treated p-score  3 C  
WIx  Ix & WA  3 C  

Note:  WA indicates that non-treated observations with  𝜔𝜔� ≥ 0.04 are dropped (see Section 2.3 and Online Appendix A.4). 
This procedure is used in combination with other procedures (two-step procedure). CHIM: Crump, Hotz, Imbens, 
Mitnik; HIST: Heckman, Ichimura, Smith, Todd; HIT: Heckman, Ichimura, Todd; HLW: Huber, Lechner, Wunsch. A 
complete description of all support procedures can be found in Online Appendix D. 
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In the regressions, three different outcome variables (earnings, months employed, employment) 

are pooled. Because they are measured on different scales, they are normalized by their standard 

deviation in the baseline specification (see Online Appendix D for details). Therefore, for a 

given estimation procedure, the regression coefficients of the binary control variables indicate 

by how many standard deviations the performance measure changes if this dummy turns on in 

comparison with the omitted category. Additionally, Tables H.1-H.12 in Online Appendix H 

report heterogeneous results by the type of outcome. 

The next section reports regression results for the case without additional support restrictions. 

It is followed by the case with restricted support. Detailed results are reported in Online 

Appendix G. 

 Regression results for DGPs not restricting common support 

The DGPs for which the treatment is based on the award of VMSW are expected not to be 

subject to severe support problems because of their low degree of selectivity (see Tables B.1 

and B.2 in Online Appendix B). Although the award of VTEC is more selective, even in this 

case, the population propensity scores exceed the level of 0.9 only when the treatment share is 

90%. Even then, it remains below one (see Figures B.1 and B.2 in Online Appendix B) so that 

the DGPs considered in this section show no asymptotic support problems. Nevertheless, issues 

of thin support may still be relevant. Tables 2 and 3 report the results from the regressions of 

the normalized RMSE on different procedures to handle support problems (the reference cate-

gory is ignoring the problem, i.e., Procedure A). Negative coefficients indicate improvements, 

and positive ones indicate impairments in RMSE. We report the results for selected procedures 

only. The results for the complete set of common support procedures (including the standard 

errors of the estimated coefficients and R2s), as well as for other performance measures 

(normalized absolute bias, standard deviation) can be found in Online Appendix E (Tables E.1 

to E.6). 



14 

 

Table 2: Effect of support-adjustment procedures on normalized RMSE in DGPs without sup-

port restrictions for the treatment ‘award of VMSW’ 

Sample size 500 2,000 8,000 
Support Param. IPW Match. Param. IPW Match. Param. IPW Match. 
procedures (1) (2) (3) (4) (5) (6) (7) (8) (9) 

No adjustment (A: reference) 
WA .002 -.012 .003 .005 -.017 .004 0 0 0 

Drop treated based on fixed value of propensity score 
B2 -.007 -.015* -.007 .220*** .187*** .188*** .701*** .640*** .611*** 

Drop treated based on density of propensity score 
C2 .017 .019** .011 .001 0 .002 0 0 0 
WC2 .018 .007 .013 .007 -.017 .005 0 0 0 
C3 .441 -.020* .486 .209 -.021 -.021*** .104 -.015 .176 

Drop treated based on lack of non-treated neighbours in terms of radius of propensity score 
D1 -.016 .007 -.025 -.001 0 -.001 0 0 -.001 
WD1 -.016 -.006 -.025 .001 -.017 0 0 0 -.001 
D2 -.001 0 -.002 0 0 0 0 0 0 
WD2 0 -.012 .001 .005 -.017 .003 0 0 0 

Drop treated based on upper limits of distribution of propensity score among non-treated 
E1 -.013 .003 -.019*** -.013 .001 -.013** -.003 -.001 -.004 
WE1 -.013 -.009 -. 020 -.015 -.018 -.016*** -.003 -.001 -.004 
E2 -.010 -.025*** -.018 -.006 -.021 -.004 .028 -.001 .019 
WE2 -.009 -.025*** -.018 -.008 -.026* -.005 .028 -.001 .019 
E3 .037 -.004 .017 .070*** .027* .058*** .242*** .182*** .186*** 
WE3 .038 -.004 .018 .072*** .028* .059*** .242*** .182*** .186*** 

Procedures that extrapolate into lack of support region 
F2 .633 .031*** .249 .047 .259*** .006 .078 .255* .157 
WF2 .770* .034*** .251 .050 .221* .011** .078 .255* .157 
G2 .042 .013* -.002 .032 .014 .017*** .020 .004 .013 
WG2 .046 .015** -.001 .036 .013 .019*** .020 .004 .013 
H2 1.039* .023*** -.033 -.001 .448** .004 -.062** .234 -.052** 
WH2 .792** .026*** 0 .004 .544*** .009* -.062** .234 .052** 
I2 .037 .005 -.009 .022 -.003 .001 .022 -.003 .010 
WI2 .042 .007 -.007 .026 -.004 .001 .022 -.003 .010 
# of obs. 828 1,242 1,242 2,484 3,726 3,726 2,484 3,726 3,726 

Note:  The results are obtained from OLS regressions. The dependent variable is the normalized RMSE. The covariates 
contain a full set of dummy variables for the different procedures to handle support problems. The reference category 
is to drop no observations (Procedure A, a full description of the different procedures is given in Table 1). Further 
control variables are the tuning parameters of the different DGPs in a fully interacted way (see description in main 
text). Only selected coefficients for the different procedures are reported in this table. A complete set of results, 
including standard errors and R2s, is shown in Online Appendix E. ***, **, and * indicate significance at the 1-, 5-, 
and 10-percent levels, respectively (based on robust standard errors). There are fewer observations for the small N, 
because only the case of 50% treatment shares is considered. The same holds for the parametric estimations, 
because only 2 specifications are considered (instead of 3, see Online Appendix C). 
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Table 3: Effect of support-adjustment procedures on normalized RMSE in DGPs without sup-

port reduction for the treatment ‘award of VTEC’ 

Sample size 500 2,000 8,000 
Support Param. IPW Match. Param. IPW Match. Parametr. IPW Match. 
procedures (10) (11) (12) (13) (14) (15) (16) (17) (18) 

No adjustment (A: reference) 
WA  .014 -.097*** .037*** .018* -.092*** .018*** .001 -.037 .003 

Drop treated based on fixed value of propensity score 
B2  -.038* -.112*** -.069*** .163*** .036 .118*** .576*** .374*** .461*** 

Drop treated based on density of propensity score 
C2  -.007 .014 -.036*** .002 0 .003 0 0 0 
WC2  .006 -.089*** -.006 .020* -.091*** .021*** .001 -.037 .003 
C3 -.060** -.035** -.087*** -.029** -.028 -.054*** -.097*** .207 -.012 

Drop treated based on lack of non-treated neighbours in terms of radius of propensity score 
 D1  -.047** .017 -.113*** -.011 .001 -.020*** -.001 0 -.004 
 WD1  -.045** -.095*** -.112*** -.023** -.102*** -.029*** 0 -.037 -.001 
 D2  -.002 0 -.004 -.001 0 0 0 0 0 
 WD2  .006 -.099*** .021** .017 -.092*** .018*** .001 -.037 .003 

Drop treated based on upper limits of distribution of propensity score among non-treated 
 E1  -.039* .004 -.082*** -.039*** 0 -.048*** -.016 -.003 -.023 
 WE1  -.046** -.101*** -.096*** -.039*** -.106*** -.054*** -.018 -.043* -.026 
 E2  -.039* -.123*** -.098*** -.019 -.097*** -.049*** .073** -.040* .020 
 WE2  -.037 -.132*** -.098*** -.014 -.121*** -.050*** .075** -.040* .021 
 E3  .032 -.106*** -.059*** .132*** -.013 .053*** .489*** .312*** .363*** 
 WE3  .040 -.101*** -.054*** .140*** -.007 .059*** .490*** .313*** .364*** 

Procedures that extrapolate into lack of support region 
 F2  .094*** .264 -.013* .048*** .156 .005 -.019 .072 .013 
 WF2  .305* .205 .001 .065*** .141 .030*** -.017 .072 .015 
 G2  .091*** -.010 -.026*** .077*** -.012 .008 .085*** -.012 .022 
 WG2  .125*** .002 -.013 .100*** -.019 .021*** .086*** -.012 .023 
 H2  .086*** -.006 -.026*** .041*** -.028 -.003 .020 -.049** -.023 
 WH2  .125*** .007 .-.010 .059*** -.037** .022*** .022 -.048** -.021 
 I2  .048*** -.059*** -.066*** .044*** -.055*** -.027*** .067** -.052* -.009 
 WI2  .067*** -.057*** -.061*** .061*** -.065*** -.019*** .068** -.051* -.008 
# of obs. 828 1,242 1,242 2,484 3,726 3,726 2,484 3,726 3,726 

Note:  See note below Table 2. 

Both tables show that for most procedures, the case with a reduction of the normalized RMSE 

(in comparison with the omitted category of dropping no observations) most likely occur in the 

smallest samples. Interestingly, it appears that almost all procedures either have no effect on 

the normalized absolute bias of the estimators (see Tables E.3 and E.5 in Online Appendix E), 
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or increase it (somewhat). However, such increases are usually (over-) compensated for by a 

reduction in the variability of the estimators (see Tables E.4 and E.6 in Online Appendix E). 

Accordingly, the performance of the estimators can be improved, even in DGPs where the sup-

port conditions are not violated in the population. This is in line with the arguments of Busso, 

DiNardo, and McCrary (2014a), Crump, Hotz, Imbens, and Mitnik (2009), and Kahn and Tamer 

(2010) suggesting that thin support issues lead to a loss of precision. Finally, note that for the 

treatment award of VTEC, with a strong selection into treatment, the potential performance 

improvements are considerably larger than for the treatment award of VMSW. Next, the perfor-

mance of the single procedures is discussed in more detail. 

Dropping observations with high importance (WA) improves only the performance of IPW es-

timators. However, when this approach is combined with other procedures, then these (joint) 

procedures (beginning with W) have the potential to improve the performance of the single 

procedure with which it is combined. This is consistent with the findings of Huber, Lechner, 

and Wunsch (2013). 

The procedure of Crump, Hotz, Imbens, and Mitnik (2009) is applied in two different specifi-

cations. First, we drop all observations with a propensity score below 0.1 and above 0.9 (B1; 

see Online Appendix E). Second, only observations with a propensity score above 0.9 (B2) are 

dropped. Although B1 and B2 seem to work for the small samples, for the larger sample, they 

lead to biases that are large enough to dominate the RMSE. 

The results for the procedure dropping treated observations with a low marginal density (C) are 

not encouraging either. While there appears to be some possibility of improvements on the 

performance of estimators if the selectivity is strong enough (Table 3), in the case of weak 

selectivity (Table 2) the small sample performance deteriorates. For procedure C3, which is 

adaptive to the sample size, we find improvements in RMSE particularly for smaller sample 

sizes. Reduction in the standard deviations and not improvements in the biases drive this result. 
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Procedure D drops treated observations for which the distance to the closest one-to-one match 

is below 𝑢𝑢, i.e., all treated observations with a propensity score difference to the closest control 

observation above 𝑢𝑢 are dropped, with 𝑢𝑢 ∈ {0.01; 0.001} (see Grzybowski et al., 2003, Vincent 

et al., 2002). Procedure E drops treated observations with a propensity score above a cut-off 

value 𝑝̅𝑝 (Dehejia and Wahba, 1999). Generally, D and E improve the performances of the 

estimators equally well. Unlike most other procedures, only in very rare cases do these 

procedures hurt the performances of the estimators in terms of normalized RMSE. The largest 

improvement (originating from the standard deviations) can most often be obtained from E. 

This procedure works better than D, particularly in larger samples, when 𝑝̅𝑝 is specified as being 

either the maximum or the value of the 99%-quantile of the propensity score in the non-treated 

sample. In the smallest sample, Procedure D appears to have slightly better properties than E. 

In most cases, D works best with 𝑢𝑢 = 0.01 for parametric and matching estimators. Using D 

with 𝑢𝑢 = 0.01 or 𝑢𝑢 = 0.1 performs about equally well for IPW estimators. Both procedures 

improve somewhat when combined with W. 

All procedures that aim to estimate the conditional treatment effect 𝛾𝛾𝑁𝑁 = 𝑌𝑌1|𝑁𝑁 − 𝑌𝑌0|𝑁𝑁 or 𝑌𝑌0|𝑁𝑁 

off support (F, G, H, I) do not perform well. In most cases, there are no performance improve-

ments. However, if any improvements show up, then they are, with rare exceptions, smaller 

than for the other procedures discussed above. A noticeable exception is support procedure H, 

which seems to be one of the few procedures that may improve the RMSE even in the absence 

of support problems. 

 Regression results for DGPs with reductions of common support 

Next, DGPs are considered for which the support with respect to S is restricted in a way that 

causes (serious) support problems. For this purpose, we restrict 𝑃𝑃(𝐷𝐷 = 1|𝑆𝑆 = 1) . In particular, 

we replace 𝑃𝑃(𝐷𝐷 = 1|𝑆𝑆 = 1)  by 𝑃𝑃(𝐷𝐷 = 1|𝑆𝑆 = 1)′ = 1 − 𝜙𝜙, where the prime indicates the 
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restricted conditional treatment probability. If 𝜙𝜙 = 0, then even asymptotically, there is no 

common support. When 0 < 𝜙𝜙 < 1, there is common support in the population, but it may be 

thin when 𝜙𝜙 is small. Remember, the share of observations with 𝑆𝑆 = 1 is much larger for 

individuals awarded with VTEC than with VMSW.5 Accordingly, the treatment award of VTEC 

is considerably more affected by the support reductions than the treatment award of VMSW. 

Figure F.1 in Online Appendix F shows the performance of parametric, IPW, and matching 

estimators when no observations are dropped (A). In this figure, 𝑃𝑃(𝐷𝐷 = 1|𝑆𝑆 = 1)′ is gradually 

increased based on the grid {0.9,0.91, … , 1}. To be precise, the figures show the coefficients of 

the indicator variables for the different points of the grid based on the same regressions reported 

before but pooled for the two treatments. We find an increase in the average normalized RMSE 

between 0.1 and 1 standard deviation if 𝑃𝑃(𝐷𝐷 = 1|𝑆𝑆 = 1)′ = 0.9 in comparison with the specifi-

cations with no support restrictions. However, if 𝑃𝑃(𝐷𝐷 = 1|𝑆𝑆 = 1)′ = 1, the average normalized 

RMSE can be increased by up to eight standard deviations. Support reductions have the strong-

est impact on the matching estimator. Interestingly, matching estimators appear to have on av-

erage lower normalized absolute biases than parametric and IPW estimators. This is in line with 

the findings of Busso, DiNardo, and McCrary (2014b), who report that the biases of matching 

estimators are less affected by overlap problems than the bias of IPW estimators. The normal-

ized absolute bias of matching estimators exceeds those of parametric and IPW estimators, only 

for very strong support reductions. However, the average normalized standard deviation of 

matching estimators becomes very large under strong support restrictions. This is the main 

reason for the bad performance of matching in the specifications with strong support reductions. 

For parametric and IPW estimators the performance in terms of average normalized absolute 

bias and average normalized standard deviation is more balanced in this situation. However, 

                                                 
5  From Section 3.2, we obtain 𝑃𝑃(𝑆𝑆 = 1)′ =  𝛿𝛿𝛿𝛿(𝐷𝐷 = 1) with 𝛿𝛿 = 0.21 for VMSW and 𝛿𝛿 = 0.66 for VTEC. 
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the average normalized RMSE, average normalized absolute bias, and average normalized 

standard deviation of these estimators may increase by up to one standard deviation when 

support reductions are substantial. The performance of these estimators is almost linearly 

decreasing when the support is reduced. 

Tables 5 and 6 report the results from regression for the normalized RMSE for the case of such 

support reductions. For the sake of computation time, only specifications with 𝜙𝜙 = 0 and 𝜙𝜙 =

0.01 are included because these two scenarios lead to the most serious support problems. Thus, 

the specification of the OLS regressions is similar to the one used in the previous section. The 

only difference is that an additional dummy variable for the case 𝑃𝑃(𝐷𝐷 = 1|𝑆𝑆 = 1)′ = 0.99 is 

included. As before, Tables 4 and 5 report only a subset of the results. The complete set of 

results can be found in Online Appendix F (Tables F.1 to F.6).  

Not surprisingly, the performance improvements for the different estimators are more pro-

nounced than for the DGPs without support restrictions. Furthermore, parametric, IPW, and 

matching estimators have very different properties for the DGPs with restricted support (see 

Tables 4 and 5 as well as Tables F.1 and F.2 in Online Appendix F). The greatest improvements 

occur for matching estimators for which all procedures handling support problems work well. 

However, note that various procedures improve the performance of parametric and IPW esti-

mators as well: their normalized RMSE improves by up to 0.7 standard deviations.  

Noticeably, the performance of the matching estimator improves when the sample size 

increases, while the performance of the parametric and IPW estimator is much less affected by 

the sample size. This finding suggests that the matching estimator can address support problems 

appropriately when the sample size is increasing and thin support regions are filled. Under the 

strong support restrictions we simulate, the performance improvements of parametric and IPW 

estimators does not increase with sample size. 
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As before, Procedure WA used alone only improves the performance of IPW estimators, but 

when combined with other procedures, such two-step procedures may improve the performance 

of all estimators.  

Procedure B strongly reduces the normalized standard deviation of all estimators (the paramet-

ric estimators in the largest sample are an exception; see Tables F.5 and F.6 in Online Appendix 

F). However, as the normalized absolute bias increases (see Tables F.3 and F.4 in Online Ap-

pendix F), the overall effect on the normalized RMSE is ambiguous. It is only for the matching 

estimators that this procedure always leads to such performance improvements.  

In contrast, Procedure C has again only little impact on the performance of the different esti-

mators. With few exceptions, C neither harms nor improves their performance. Additionally, 

the data-adaptive procedure C3, which adjusts to the sample size, does (with few exceptions) 

not affect the performance of the estimators. 

Procedures D and E have the largest positive effect on the performance of the estimators when 

there are strong support problems. They improve the normalized standard deviation of all esti-

mators, particularly in the smaller samples. These improvements are largest for matching 

estimators. For the award of VTEC they can exceed 20 standard deviations. D and E also reduce 

the normalized RMSE and normalized absolute bias, particularly when the treatment is award 

of VTEC. In some specifications, the normalised RMSE can be improved by up to 20 and the 

absolute bias by up to 5 standard deviations. In rare cases when the treatment is award of 

VMSW, E increases the normalized absolute bias of the parametric and IPW estimators,6 while 

D does not affect them. However, E leads to larger improvements in the normalized standard 

                                                 
6  This appears only very rarely when the threshold 𝑝𝑝� is specified at the highest propensity score value of the non-treated 

subpopulation. 
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deviations than does D in these specifications. Both procedures work better when combined 

with W. 

Table 5: Effect of support-adjustment procedures on normalized RMSE in DGPs with support 

restrictions for the treatment ‘award of VMSW’ 

Sample size 500 2,000 8,000 
Support  Param. IPW Match. Param. IPW Match. Param. IPW Match. 
procedures (1) (2) (3) (4) (5) (6) (7) (8) (9) 

No adjustment (A: reference) 
WA  .019 -.096*** .070 .017 -.081*** .155 0 -.009 4.590 

Drop treated based on fixed value of propensity score 
B2  -.110*** -.109*** -1.624*** .112*** .020 -3.709*** .563*** .394*** -7.292*** 

Drop treated based on density of propensity score 
C2  -.091*** .001 .002 .003 .001 .005 0 0 0 
WC2  -.077*** -.102*** .049 .021 -.080*** .160 0 -.009 4.590 
C3 -.106*** -.024*** -.403 -.006 -.013 -.016 -.021 -.026 6.114 

Drop treated based on lack of non-treated neighbours in terms of radius of propensity score 
 D1  -.124*** .009 -1.641*** -.023 -.014 -3.768*** .015 -.051* -7.524*** 
 WD1  -.124*** -.095*** -1.648*** -.050*** -.110*** -3.903*** .015 -.061** -7.675*** 
 D2  -.012 -.003 -1.493*** 0 -.001 -3.516*** .002 -.009 -7.112*** 
 WD2  -.016 -.103*** -1.501*** .018 -.082*** -3.611*** .003 -.018 -7.184*** 

Drop treated based on upper limits of distribution of propensity score among non-treated 
 E1  -.109*** .001 -1.625*** -.067*** -.017 -3.875*** .009 -.071** -7.764*** 
 WE1  -.121*** -.100*** -1.641*** -.075*** -.114*** -3.919*** .009 -.084*** -7.901*** 
 E2  -.116*** -.113*** -1.635*** -.040 -.102*** -3.910*** .177*** -.020 -7.910*** 
 WE2  -.114*** -.127*** -1.636*** -.0421 -.115*** -3.913*** .177*** -.021 -7.910*** 
 E3  -.064*** -.119*** -1.593*** .043 -.052 -3.840*** .376*** .201*** -7.730*** 
 WE3  -.060** -.115*** -1.591*** .047 -.050 -3.838*** .376*** .201*** -7.729*** 

Procedures that extrapolate into lack of support region 
 F2  .266*** .267*** -1.281*** .180*** .270*** -3.539*** .221*** .202*** -7.664*** 
 WF2  .248*** .277*** -1.273*** .190*** .266*** -3.543*** .222*** .203*** -7.671*** 
 G2  .149*** .142*** -1.404*** .106*** .063** -3.732*** .110*** .039 -7.856*** 
 WG2  .199*** .177*** -1.388*** .121*** .069** -3.723*** .110*** .038 -7.851*** 
 H2  .131*** .188*** -1.387*** .083*** .079*** -3.646*** .118*** .051 -7.681*** 
 WH2  .150*** .187*** -1.385*** .094*** .075*** -3.649*** .119*** .052* -7.697*** 
 I2  .041*** .042*** -1.571*** .033* -.008 -3.844*** .051 -.015 -7.956*** 
 WI2  .059*** .047*** -1.568*** .043** -.008 -3.842*** .051 -.015 -7.953*** 
# of obs. 792 792 1,584 2,376 2,376 4,752 2,376 2,376 4,752 

Note:  The results are obtained from OLS regressions. The dependent variable is the normalized RMSE. The covariates 
contain a full set of dummies for the different procedures handling support problems. The reference category is to 
drop no observations (Procedure A). Further covariates are the tuning parameters of the different DGPs fully 
interacted (see description in Online Appendix B). Only selected coefficients for the different procedures are reported 
in this table. A complete set of results, including standard errors and R2s, are found in Online Appendix F. ***, **, and 
* indicate significance at the 1-, 5-, and 10-percent levels, respectively (based on robust standard errors). 
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Table 6: Effect of support-adjustment procedures on normalized RMSE in DGPs with support 

restrictions for the treatment ‘award of VTEC’ 

Sample Size 500 2,000 8,000 
Support Param. IPW Match. Param. IPW Match. Param. IPW Match. 
procedures (10) (11) (12) (13) (14) (15) (16) (17) (18) 

No adjustment (A: reference) 
WA  .257*** -.654*** 3.642** .130 -.393* .797 .0291 -.173 7.955 
J1 .014 -.112 .494 -.041 -.092 2.268 .006 .004 -1.211 

Drop treated based on fixed value of propensity score 
B2  -.702*** -.629*** -6.017*** -.538** -.649** -22.42*** -.501** -.770*** -19.57*** 

Drop treated based on density of propensity score 
C2  -.048 -.013 -.031 .011 .001 .018 0 0 0 
WC2  .207*** -.675*** 3.663** .143 -.391* .819 .029 -.173 7.955 
C3 .014 -.112 .494 -.041 -.092 2.268 .006 .004 -1.211 

Drop treated based on lack of non-treated neighbours in terms of radius of propensity score 
 D1  -.594*** -.005 -5.327*** -.124 -.008 -22.80*** -.182 -.186 -19.93*** 
 WD1  -.733*** -.650*** -6.113*** -.396* -.495*** -23.32*** -.157 -.368** -20.23*** 
 D2  -.038 -.007 -4.112*** -.003 .030 -22.01*** -.036 -.027 -18.51*** 
 WD2  -.527*** -.708*** -5.721*** .127 -.362* -21.68*** -.007 -.200 -18.15*** 

Drop treated based on upper limits of distribution of propensity score among non-treated 
 E1  -.576*** -.018 -5.554*** -.336* -.038 -23.10*** -.334** -.279 -20.28*** 
 WE1  -.746*** -.670*** -6.117*** -.466*** -.505*** -23.45*** -.379** -.552*** -20.75*** 
 E2  -.712*** -.581*** -6.069*** -.447** -.458** -23.61*** -.507** -.626*** -21.86*** 
 WE2  -.739*** -.701*** -6.109*** -.495*** -.537*** -23.67*** -.518*** -.636*** -21.88*** 
 E3  -.683*** -.704*** -6.042*** -.445*** -.533*** -23.63*** -.531*** -.661*** -21.90*** 
 WE3  -.654*** -.689*** -6.026*** -.442*** -.534*** -23.63*** -.531*** -.661*** -21.90*** 

Procedures that extrapolate into lack of support region 
 F2  1.450*** 1.261*** -3.332*** 3.017*** 2.740*** -19.27*** 2.474*** 2.169*** -19.18*** 
 WF2  1.861*** 1.540*** -3.388*** 2.997*** 2.682*** -19.29*** 2.471*** 2.161*** -19. 17*** 
 G2  1.499*** 1.275*** -3.888*** 2.043*** 1.800*** -21.49*** 1.167*** .898*** -20.51*** 
 WG2  3.515*** 3.089*** -2.975*** 2.226*** 1.947*** -21.34*** 1.201*** .927*** -20.48*** 
 H2  1.017*** .895*** -4.431*** 1.351*** 1.141*** -20.78*** 2.034*** 1.736*** -19.69*** 
 WH2  1.005*** .803*** -4.533*** 1.334*** 1.092*** -20.79*** 2.034*** 1.732*** -19.69*** 
 I2  .144*** .072 -5.494*** .188 .018 -23.21*** .279 .015 -21.33*** 
 WI2  .446*** .338*** -5.353*** .263 .075 -23.13*** .304* .037 -21.31*** 
# of obs. 792 792 1,584 2,376 2,376 4,752 2,376 2,376 4,752 

Note:  See note below Table 5. 

All procedures aiming to estimate 𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴|𝑁𝑁 or  𝑌𝑌0|𝑁𝑁 off support (F, G, H, I) work only for match-

ing estimators, if they work at all. However, even for matching estimators they do not outper-

form procedures D and E, which are much easier to implement.  

In Online Appendix G, we provide a detailed description of further results. 
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5 Conclusions 

This paper studies the performance of different parametric and semiparametric estimators ad-

justing observable characteristics in no- or thin-support situations and the performance of reme-

dies suggested in the literature. An Empirical Monte Carlo Study is used to obtain performance 

measures using simulation designs based on particular real data. Therefore, the many different 

data generating processes investigated should be close to what is encountered in empirical 

applications in the context of program evaluation.  

Our findings suggest that almost all procedures proposed in the literature to mitigate support 

problems have the potential to improve the performance of the estimators investigated, in par-

ticular when support problems become severe. Although the largest improvements can be 

achieved for matching estimators, parametric estimators benefit as well. However, not surpris-

ingly, some procedures are more effective than others are. 

The results obtained for support problems of different severity, different estimators, specifica-

tions, and other features of the data generating process suggest that procedures based on 

trimming observations in the treated group with propensity scores larger than the maximum 

value (or the 99% quantile) of the propensity score in the non-treated group consistently 

outperform the other procedures considered. Furthermore, when these procedures are combined 

with further trimming non-treated observations that receive a ‘too-large’ weight, additional 

improvements were observed. When support problems are mild, the gains usually come from 

an improvement in the precision of the estimators. When support problems are strong, biases 

are generally reduced and precision increases. Therefore, we recommend using these methods 

in applied work independent of the type of estimator used. 

Clearly, due to the empirical design of the Monte Carlo approach used, the results of this study 

should be valid for similar programme evaluation studies based on large administrative 
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databases. Furthermore, many features of the data generating processes have also been varied. 

Thus, we are tempted to claim that our simulation designs contain many different cases relevant 

in practise and have external validity beyond such programme evaluation studies. Whether this 

claim can be confirmed in another Empirical Monte Carlo study based on a different applied 

field remains speculative and deserves further research. For a general argument on how to 

address support problems, one has to provide technical comparisons among different estimators 

in finite or large samples. So far, only Crump et al. (2009), who aimed to find the most precise 

estimator, have provided such an investigation.  
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