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The debate about the impact of routine-biased technical change on wages revolves around 

the question whether occupational or overall wage distributions polarized. This paper 

instead argues that routine task prices should decline compared to abstract and manual 

task prices. I propose a new method, which exploits the sorting of workers into tasks and 

their associated wage growth in the Roy model, to estimate the changes in task prices 

under relatively weak assumptions. Empirical results for male workers in two U.S. datasets 

indicate that task prices polarized during the 1990s and 2000s. The estimates match 

the upper part of the wage distribution, and they are consistent with differences across 

countries and time periods in the lower part.
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1 Introduction

A large literature has examined the effect of routine-biased technical change (“RBTC”)

on the labor market. In particular, several papers have shown that during the 1990s and

2000s employment in most developed countries polarized away from middle-skill occu-

pations that are intensive in routine tasks and into high-skill and low-skill occupations

that are intensive in abstract and manual tasks (“job polarization”, e.g., Autor, Levy, and

Murnane, 2003; Goos and Manning, 2007; Acemoglu and Autor, 2011; Goos, Manning,

and Salomons, 2014). Moreover, in the United States, wages at the top and the bottom

quantiles of the (occupational) wage distribution increased while wages at the middle

of the (occupational) wage distribution stagnated (“wage polarization”, e.g., Autor, Katz,

and Kearney, 2008; Acemoglu and Autor, 2011; Autor and Dorn, 2013).

However, recent evidence suggests that the polarization of wages may not be perva-

sive, casting some doubts on RBTC and its importance for wage inequality. First, wage

polarization in the United States only clearly occurred during the 1990s. In the 1980s

wage inequality rose across the board and in the 2000s only wages at the top of the dis-

tribution increased while the lower half largely stagnated (Acemoglu and Autor, 2011;

Autor, 2015). Moreover, average wages in some of the contracting routine occupations

increased and they declined in some of the expanding manual occupations (e.g., Mishel,

Shierholz, and Schmitt, 2013). Finally, despite pervasive and substantial job polarization

in Europe and Canada, there exists little evidence that the wage distribution has been

polarizing in these countries (Dustmann, Ludsteck, and Schönberg, 2009; Naticchioni,

Ragusa, and Massari, 2014; Green and Sand, 2015).

This paper shows how these seemingly contradicting facts may be reconciled. Like

the preceding literature, I use a Roy (1951) model to specify labor supply in the context

of RBTC. I demonstrate using simulations that different restrictions on the dependence

structure of workers’ skills lead to occupational and overall wage distributions which are

consistent with any of the previous findings. Instead, RBTC’s main prediction is about the

prices that are paid for skills in tasks:1 the routine task price will decline compared to the

abstract and the manual task price (“task price polarization”). From this, an additional

robust prediction emerges on the worker level: under any arbitrary assumption about the

dependence structure of skills, workers’ wage growth will be higher when they start out

1In the RBTC-Roy model a worker’s wage in a given task is the product of his task-specific productivity
(“skill” in that task) times the prevailing equilibrium market price per unit of that task input (the “task
price”).
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in the rising non-routine tasks than when they start in the declining routine task.

I use this prediction at the worker level to derive a new method for estimating changes

in task prices in the Roy model. As in previous literature (e.g., Heckman and Sedlacek,

1985; Autor, Katz, and Kearney, 2006; Acemoglu and Autor, 2011; Firpo, Fortin, and

Lemieux, 2013), the approach assumes that RBTC affects task prices but not skills in

tasks. I show that, when task prices change in the Roy model, workers’ log wage growth

only depends on their task choices and these changing task prices, not their skills directly.

I then exploit a repeated cross-section setting where the population distribution of skills,

conditional on some fundamental and time-invariant talent vector xi, is arguably constant

over time (“comparability” assumption). This allows me to measure workers’ expected

wage growth in relation to their task choice propensities conditional on xi, and therefore

to estimate the changing task prices.

This new “Propensity Method” of estimating task prices carries the advantages that

it makes minimal assumptions about the cross-sectional distribution of workers’ skills

and that it can be implemented in a simple linear wage regression (“Propensity Regres-

sion”) for three or more tasks. Monte Carlo simulations show that the method recovers

the actual changes in task prices successfully under different assumptions about the de-

pendence structure of workers’ skills and that it can account for some additional con-

founding factors that may affect workers’ wages, such as changing returns to college and

the minimum wage.2 Section 3.4 provides a detailed comparison to recent alternative ap-

proaches for estimating task prices (Yamaguchi, 2012; Firpo, Fortin, and Lemieux, 2013;

Gottschalk, Green, and Sand, 2015; Cortes, 2016; Yamaguchi, 2016).

To implement the Propensity Method, I construct two cross-sections of 27 year old

male workers between 1984–1992 and 2007–2009 from the cohorts of the National Lon-

gitudinal Survey of Youth (NLSY79 and NLSY97). The NLSY uniquely contains early-

determined, multidimensional, and time-invariant measures of worker talents, such as

mathematical, verbal, and mechanical test scores and risky behaviors. These talents pre-

dict workers’ task choices (“first-stage”) and they arguably fulfil the comparability as-

sumption. Further, since the Propensity Method is derived from a discrete Roy model, I

merge detailed occupations into three broad groups that are intensive in their non-routine

abstract, their routine, and their non-routine manual components according to the Dictio-

nary of Occupational Titles (DOT) and the Occupational Information Network (O*NET).

2Identification requires an approximation of the adjustment path of workers’ sorting between the initial
sorting under the old task prices and the final sorting under the new task prices. As the adjustment path is
bounded between the initial and final sorting, this approximation is of second order in practice.
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These broad occupation groups constitute the “tasks” for which prices are estimated.

The Propensity Method for estimating task prices provides three empirical advances

in the debate about the relationship between RBTC and wages. First, the main implica-

tion of RBTC, that task prices are polarizing, is now testable. The results from the NLSY

indicate that RBTC had a strong impact on task prices during the joint period of the

1990s and 2000s. In particular, the relative price that is paid per unit of skill in the ab-

stract (manual) task rose by 25 (33) log points between 1984–1992 and 2007–2009, while

the absolute price paid for routine tasks declined. This suggests task price polarization

during that period. Moreover, the prediction at the worker level that wages for starters

in non-routine tasks should grow compared to starters in routine tasks is also testable. I

find that in the NLSY, workers who according to their observable talents are more likely

to work in rising non-routine tasks have higher wage growth than workers who are likely

to work in declining routine tasks. This is consistent with existing worker level evidence

from Cortes (2016) and Acemoglu and Autor (2011), but at the same time strengthen-

ing these results because in the NLSY workers with the same talent vector are arguably

comparable over time.

The third distinct advance conferred by the Propensity Method is that one can use

the estimated task prices to return to the aggregate level from which the debate about

RBTC and wages started. In the NLSY, assigning every worker the price change of their

tasks done in the initial period yields an increase of inequality in the upper half of the

wage distribution that resembles its actual change during the 1990s and 2000s. Predicted

inequality in the lower half of the wage distribution is flat, however, while actual in-

equality narrowed substantially (wage polarization). Adjusting for the increase in the

real value of the minimum wage provides a better (but not perfect) fit for this part, too.

This finding is consistent with the results from the simulations and with evidence from

other countries. Both show that employment is polarizing and that inequality in the up-

per half of the wage distribution is increasing, but also that changes of inequality in the

lower half of the distribution is indeterminate. Despite the substantial impact of RBTC,

policy variables like the changing minimum wage may therefore have played a role for

the differential changes across countries in the lower half of the wage distribution.

Overall, the evidence in this paper is supportive of a substantial impact of RBTC

on workers’ wages. As a robustness check, I employ decennial census and American

Community Survey (Census/ACS) data from Acemoglu and Autor (2011), which is an

attractive complement to the NLSY because it is large and thus provides greater statis-
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tical power. It also allows estimation in additional time periods and sub-periods. Using

education-age-region cells in the Census/ACS as elements of the xi vector and applying

the Propensity Method yields qualitatively similar estimates to the NLSY for the chang-

ing task prices and a relatively good fit between the predicted and the actual change in

the wage distribution.

The main estimates in both datasets are unaffected when changing returns to college

are included, which supports RBTC over skill-biased technological change (SBTC) as

alternative hypothesis, and when the rising real value of the minimum wage is accounted

for. Shifting supplies of skills are also excluded as an alternative explanation because they

imply the inverse relationship between changing employment and task prices than in the

data. Section 4.1 discusses the implications of RBTC versus competing or complementary

hypotheses including international trade and offshoring, and SBTC combined with rising

demand for services.

The new Propensity Method is the other main contribution of this paper, which may

be applicable beyond RBTC. In fact, RBTC is one specific hypothesis in the more general

“task model” of the labor market. This model is conceptually attractive because employ-

ers reward workers’ actual skills in carrying out tasks instead of observable characteristics

such as education. However, skills in tasks are typically unobserved and the selection of

skills will change with the task prices. Therefore, it has been difficult and often absent

from prior studies to estimate the task prices.

Section 3.4 compares the Propensity Method in detail to the extant alternative ap-

proaches for estimating task prices, arguing that its advantage is to exploit a tight eco-

nomic mechanism underlying the Roy model without invoking strong assumptions about

unobservables. That is, those workers who choose non-routine tasks experience (rela-

tive) wage growth when (relative) non-routine task prices increase. Therefore, employ-

ing information about wage growth and choices, one can back out the changes in task

prices. The (endogenous) re-sorting of workers across tasks is accounted for by using

task choices before and after the task price change. The method is also easy to imple-

ment for multiple tasks and transparent about which empirical moments are used for

identification. Finally, the paper shows theoretically and using simulations which predic-

tions about wages can and cannot be derived from an unrestricted Roy model when task

prices change.

The next section shows that RBTC is in fact ambiguous about occupational or overall

wage distributions, but that it has clear implications for task prices and worker-level
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wages. Section 3 uses this finding to derive and validate the new Propensity Method for

estimating task prices. Then the occupational grouping into tasks and the main NLSY

estimation sample are introduced. Section 5 presents the results in this sample. Finally,

robustness of the results in the alternative Census/ACS dataset is summarized and the

last section concludes. Further in-depth discussion of related literature can be found in

Sections 2.2 (previous studies considering RBTC and wages), 3.4 (alternative methods

for estimating task prices), and 4.1 (occupational grouping and competing hypotheses to

RBTC).

2 The Roy Model under RBTC

This section studies what RBTC implies on the aggregate level using a Roy model of labor

supply. I show that supposed predictions of RBTC are not robust to different assumptions

of how workers’ skills are distributed across tasks. Instead, RBTC has unambiguous im-

plications for individual workers’ wage growth over time. A new equation linking wage

growth to task choices is derived from the unrestricted Roy model.

2.1 Setup

The models in the RBTC literature have in common that labor supply is specified in

a Roy framework. Therefore, suppose there are three tasks, abstract A, routine R, and

manual M. Each worker i possesses log skills si = {sAi, sRi, sMi} and faces log task prices

πt = {πAt, πRt, πMt}. Since the whole Section 2 is a comparative statics analysis, the

subscript tε[0, 1] should be thought of as simply indexing different task price vectors πt

for now, not time more broadly. Potential wages are

wKit = πKt + sKi with Kε{A, R, M} (1)

and observed wages are

wit =


πAt + sAi if IA(si, πt) = 1

πRt + sRi if IR(si, πt) = 1

πMt + sMi if IM(si, πt) = 1

(2)
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with choice indicators

IA(si, πt) = 1[πAt + sAi > πRt + sRi, πAt + sAi > πMt + sMi]

IR(si, πt) = 1[πAt + sAi ≤ πRt + sRi, πRt + sRi ≥ πMt + sMi]

IM(si, πt) = 1[πMt + sMi > πRt + sRi, πAt + sAi ≤ πMt + sMi].

(3)

The RBTC literature has proposed several general equilibrium models in which com-

puter capital is a (relative) substitute for routine tasks in the production function (e.g.,

Autor, Katz, and Kearney, 2006; Autor and Dorn, 2013), in which it is raising effective

routine task inputs (Cortes, 2016), or in which it replaces an increasing continuum of rou-

tine tasks (Acemoglu and Autor, 2011). Together with the labor supply setup (1)–(3), and

some additional restrictions in each of the papers, all of these models have in common

that a rising availability of computer capital (RBTC) leads to an increase in abstract and

manual non-routine compared to routine task prices (“task price polarization”):

4(πA − πR) > 0 and 4(πM − πR) > 0, (4)

with 4πK ≡ πK1 − πK0. I take this as given in the current section, showing which em-

pirical predictions on the aggregate and the worker level do and do not result from it. In

fact, RBTC and task price polarization are equivalent in the model of Equations (1)–(4),

as the πKt are the only channel via which RBTC influences the labor supply side. In the

empirical analysis, Equation (4) will be taken as the core prediction from the RBTC model

to be tested in the data.3

Equation (4) implies that RBTC affects wages only via market prices for tasks, not via

changing skills. This assumption has been made throughout the RBTC literature (e.g.,

Autor, Katz, and Kearney, 2006; Acemoglu and Autor, 2011; Firpo, Fortin, and Lemieux,

2013; Autor and Dorn, 2013; Cortes, 2016) as well as in earlier work by Heckman and

Sedlacek (1985). Although restrictive, it is conceptually attractive because it imposes the

fundamental idea of the task model that worker characteristics are not priced directly but

via the tasks that they help providing to the market. It is also critical because it generates

the empirical restrictions that are necessary for estimating the task prices below.

Finally, while it is assumed not to change because of RBTC, the joint population distri-

3Prior literature has not emphasized (4) as the core prediction from RBTC, because it lacked a convinc-
ing method of estimating task prices. Earlier versions of this paper explicitly derived (4) from the Autor,
Katz, and Kearney (2006) model with a general distribution of workers’ skills. Notice also that “general
equilibrium” labor supply responses, e.g., to the low-skill manual task, may attenuate the relative price
4(πM − πR) but not overturn it. Otherwise the supply response would not have occurred in the first place.
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bution FsA,sR,sM of workers’ skills is otherwise left completely unrestricted. The exception

are the simulations, which adopt different specifications of FsA,sR,sM for illustration.

2.2 RBTC Makes No Unambiguous Predictions on the Aggregate Level

It is well established that in the two-sector Roy model rising task prices in one sector need

not lead to increasing wages in that sector and that self-selection may have ambiguous

effects on overall wage inequality (e.g., Heckman and Honoré, 1990). By extension, these

(negative) results should carry over to the three sector case. The contribution of this

section is to illustrate that, even under normality, RBTC (or task prices polarization) does

not imply that average wages in tasks or the overall wage distribution will polarize.

Therefore, several empirical findings in the literature that seemingly contradict RBTC are

in fact potentially consistent with it.

The results in the following are illustrated with simulated data using a multivari-

ate normal distribution of log skills in tasks. Normality implies that the variances and

correlations of skill are the main parameters determining sectoral and aggregate out-

comes. Under a different distribution, other parameters may matter (Heckman and Hon-

oré, 1990). Hence, this should be understood as just one specific illustration of the more

general results. Table 1 reports the parameters for the simulations. The differences be-

tween the respective left and right panels are either with respect to the variances or the

correlations of skills and highlighted in bold. Sketches of the analytical proofs for the

results are relegated to Appendix A.

Prediction 1 (Negative). Task price polarization has no clear implication on wages in tasks. In

particular, it need not lead to the polarization of average wages in tasks.

The intuition behind Prediction 1 is that a changing selection bias in tasks may invert

the direct effect of the task prices themselves. The top row of Figure 1 illustrates this result

for a case when the price of the abstract task rises more than of the manual task and the

price of the routine task falls (4(πA − πR) = .35, 4(πM − πR) = .10, 4πR = −.05).4

In Panel (a), the correlation between abstract and manual skills in the population is low

(corr(sAi, sMi) = 0) and average wages in tasks polarize. Conversely, in Panel (b) of Figure

1, the correlation between abstract and manual skills is high (corr(sAi, sMi) = .7) and,

4The weak increase of the manual task price admittedly makes it easier for a relatively moderate selection
effect to overturn it. In the theoretical models of Autor, Katz, and Kearney (2006) and Autor and Dorn (2013),
wages in the routine task may also either rise or fall, because the least able routine workers leave for the
manual task.
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Table 1: Parameter Values for the Simulations in Figure 1

Figure 1 (a,b) Figure 1 (c,d)
Left Panel Right Panel Left Panel Right Panel

4(πA − πR) 0.35 0.35 0.35 0.35
4(πM − πR) 0.10 0.10 0.30 0.30
4πR -0.05 -0.05 -0.20 -0.20

var(sAi) 3.0 3.0 3.0 3.0
var(sRi) 1.5 1.5 1.7 1.1
var(sMi) 1.3 1.3 1.0 1.0

corr(sAi, sRi) 0.3 0.3 0.5 0.5
corr(sAi, sMi) 0.0 0.7 0.5 0.5
corr(sRi, sMi) 0.0 0.0 0.5 0.5

Notes: Skills are multivariate normal with mean zero. Variances and covari-
ances are given in the table together with the task price changes. The parameter
values that differ between the respective left and right panels are emphasized
in bold. N = 10, 000 observations were drawn for each panel.

rather than polarizing, average wages in manual tasks fall even more than average wages

in routine tasks. The reason is that with a high correlation of abstract and manual skills,

low-skill routine workers move into the manual task while high-skill manual workers

move out into abstract tasks. The selection effect then dominates the price effect.

The result that RBTC need not lead to polarization of average wages in tasks is con-

sistent with several empirical findings in the literature. In particular, during 1999–2007

employment in low-skill (service/manual-task-intensive) occupations rose strongly and

at the same time wages dropped (Autor, 2015, Figures 2–4 and 6–7). Moreover, Autor

and Dorn (2013) find that whereas employment contracted in routine-task-intensive cler-

ical and sales occupations over 1980–2005, wages in these occupations increased. Mishel,

Shierholz, and Schmitt (2013, p.5) also conclude from their analysis that there is “little or

no connection between decadal changes in occupational employment shares and occupa-

tional wage growth” in the U.S. over the last decades. Finally, in an international context,

employment in low-skill occupations increased in the UK and Canada, while at the same

time wages in these occupations dropped compared to routine occupations (Goos and

Manning, 2007; Green and Sand, 2015).5

Prediction 2 (Negative). Task price polarization does not imply (overall) wage polarization.

The idea behind Prediction 2 is that even if manual task workers are on average

5Adermon and Gustavsson (2015) find that RBTC cannot explain changing wages between occupations,
but that it does have explanatory power for wages within occupations in Sweden.
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Figure 1: Small differences in skill distributions can lead to qualitatively different out-
comes, even under the same task price changes and a multivariate normal distribution of
skills.

(a) Wage polarization in tasks

−
.0

2
0

.0
2

.0
4

.0
6

.0
8

.1
.1

2
C

ha
ng

e 
in

 a
ve

ra
ge

 lo
g 

w
ag

es

Manual Routine Abstract

(b) No wage polarization in tasks

−
.0

2
0

.0
2

.0
4

.0
6

.0
8

.1
.1

2
C

ha
ng

e 
in

 a
ve

ra
ge

 lo
g 

w
ag

es

Manual Routine Abstract

(c) Overall wage polarization
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(d) No overall wage polarization
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located at lower quantiles of the wage distribution than routine workers, it does not

mean that these lower quantiles will rise more than the routine workers’ quantiles. First,

this is because, in the actual data, routine workers are also strongly represented in the

lower end of the wage distribution (see figure 6 below). Second, with RBTC some of the

manual task workers will move up in the wage distribution and overtake some of the

routine task workers. Thus, not only manual task workers’ initial quantiles will rise, but

also the quantiles where they end up in (and vice versa for the routine task workers).6

Empirically, this “overtaking effect” is to a greater or lesser degree always part of a change

in the overall wage distribution. However, it is often assumed away in theoretical models

by making workers’ skill ranking one-dimensional. Such a restriction implies that wage

6Rising abstract task prices have a compounding effect for inequality at the top of the wage distribution.
They raise abstract workers’ already high initial quantiles as well as the even higher quantiles that these
workers end up in.
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polarization immediately follows from task price polarization.7

Generally this is not the case, which is illustrated in the second row of Figure 1.

The relative increase in the manual task price is now assumed to be substantially higher

(4(πM − πR) = .30) than above (4(πM − πR) = .10), since otherwise it would be hard

to generate any wage polarization at all due to overtaking. In Panel (c) the variance of the

routine skill in the population is high (var(sRi) = 1.7), which leads to a relatively large

difference in initial wages between routine and manual workers and thus little overtaking

when task prices change. Wages at the lowest quantiles of the wage distribution therefore

increase compared to the quantiles located toward the middle. In Panel (d), because of

lower routine-skill variance (var(sRi) = 1.1), initial wage differences between routine and

manual workers are not as large. This leads to substantial overtaking when task prices

change and an increase in wage inequality across-the-board instead of wage polarization.

Hence, even when the task price changes are the same, one may obtain overall wage

polarization or not with just a small modification of the skill distribution.

The result that RBTC may or may not lead to wage polarization is consistent with

several empirical findings in the literature. Both employment and the wage distribution

polarized in the United States over the 1990s and early 2000s. However, only employment

in manual tasks expanded in the subperiod of the early 2000s, while relative wages only

increased at the top of the wage distribution compared to the middle during that period

(e.g., Acemoglu and Autor, 2011, Figures 7–10; Autor 2015). In addition, as mentioned

above, a couple of recent papers find that job polarization already started in the 1980s

in the United States (Mishel, Shierholz, and Schmitt, 2013; Bárány and Siegel, 2017),

although we know that wage inequality rose firmly across-the-board during this period

(as in Panel (d) of Figure 1). Finally, and probably most importantly, there is strong

evidence for job polarization in other advanced countries, while there exists hardly any

evidence for overall wage polarization in those countries.8

7For example, Acemoglu and Autor (2011) assume a fixed ranking of skill between individuals whereby
high-skill workers have an absolute advantage in all task over middle-skill workers who in turn have an
absolute advantage in all task over low-skill workers. Cortes (2016) makes a related assumption with a con-
tinuous distribution of skill. Focusing on the lower half of the wage distribution, Autor, Katz, and Kearney
(2006) and Autor and Dorn (2013) assume that high-school (or low-skill) workers all have homogenous skills
in the manual task and thus are ranked one-dimensionally by their heterogenous skills in the routine task. In
none of these papers, by assumption, can a worker who initially earned less than another worker overtake
that latter worker in the wage distribution when the relative price of the task that he has a comparative
advantage in rises.

8For example, Dustmann, Ludsteck, and Schönberg (2009), Green and Sand (2015), Goos, Manning, and
Salomons (2009), and Naticchioni, Ragusa, and Massari (2014) document job polarization for Germany,
Canada, and across European countries, while Dustmann, Ludsteck, and Schönberg (2009), Card, Heining,
and Kline (2013), Green and Sand (2015), and Naticchioni, Ragusa, and Massari (2014) find an increase in
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Earlier versions of this paper showed that even job polarization does not need to

occur under RBTC. In fact, employment in only either abstract or manual tasks has to rise

relative to routine tasks. The assumptions on the skill distribution to achieve this (some

strong negative correlations between skills) are unrealistic, however, and job polarization

is indeed a robust empirical fact across countries and time periods. Therefore, this more

theoretical possibility is omitted from the current draft. Conversely, as seen in Figure 1, it

is relatively straightforward to generate a host of changes in average wages across tasks

and the overall wage distribution. Many different parameter combinations are possible

with three tasks, normality, and fixed task prices already, while it is ex ante not at all

clear how skills in the population are distributed and that equilibrium task prices will be

the same under different distributions.

Finally, it is also important to note that the argument made in Prediction 1 and 2 and

in the respective simulation illustrations does not imply that differences in the effect of

RBTC on the labor market need to be explained by differences in workers’ skill endow-

ments across countries and points in time. Task prices are an equilibrium outcome that

depends on the interaction between production technologies, the extent and advance-

ment of RBTC, and the skill distributions. All of these may differ across locations and

will differ across time, and as one can verify in the simulated data, even small variations

in these variables may lead to large differences in employment, wages, and the task prices

themselves. What is to be learned from Predictions 1 and 2 is therefore that RBTC and

task price polarization are in principle consistent with a host of aggregate outcomes in

labor markets over the last decades, while task price polarization itself is an implication

that appears in all models of RBTC that have been proposed to date. The next section

derives further robust implications at the individual level which follow from this.

2.3 RBTC Does Make Unambiguous Predictions at the Individual Level

This section shows that the model of Equations (1)-(4) unambiguously predicts higher

wage growth of workers who choose abstract and manual tasks compared to workers

who choose routine tasks. This result will be the foundation of a new method for esti-

mating task prices in the next section.

Consider Equation (2) and a marginal (log) wage change of a worker i who starts out

wage inequality across-the-board for those same countries and time periods.
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in the A, R, or M task at t = 0 when task prices change:

dwi0 =


dπA0 if IA(si, π0) = 1

dπR0 if IR(si, π0) = 1

dπM0 if IM(si, π0) = 1.

(5)

Here d denotes a marginal change of the respective variable over time. Due to the opti-

mality of workers’ initial IK(si, π0), a marginal change in prices will only have a direct

effect because workers’ marginal wage changes are not affected by a potential reaction in

their task choices. This is the envelope theorem, which implies that the effect on wages of

a marginal change in πKts is only the direct price effect (those workers who switch tasks

on the margin do not experience a wage gain from it). In fact, at every πt

dwit = dπRt + IA(si, πt)d(πAt − πRt) + IM(si, πt)d(πMt − πRt). (6)

Integrating this equation from task prices π0 to task prices π1 obtains the following

relationship between workers’ wage growth and their (changing) task choices:

4wi = 4πR +
∫ πA1−πR1

πA0−πR0

IA(si, πt)d(πAt − πRt) +
∫ πM1−πR1

πM0−πR0

IM(si, πt)d(πMt − πRt) (7)

Notice that the envelope theorem and the marginal result (6) are a tool to derive Equation

(7), not an assumption. An alternative and instructive way of deriving (7) without invok-

ing the envelope theorem for the simpler case of two tasks can be found in Appendix B.1.

The detailed steps of the integration from (6) to (7) are in Appendix B.2. Both appendices

show that Equation (7) holds for discrete changes in task prices of any size.

In Equation (7), the wage growth for worker i solely depends on his initial task choice

and the change in his task choice on the adjustment path from the initial to the final

prices. That is, relative skills in tasks determine the difference in workers’ log wages at π0

and π1. Skill levels by themselves do not matter as IK(si, πt)s are really only a function of

relative skills (e.g. sMi− sRi and sAi− sRi, see Equation 3). Equation (7) therefore captures

a key intuition from the Roy model: when task prices polarize, individuals who work in

abstract and manual tasks gain relative to individuals who work in routine tasks. This

is because the former can reap the benefits from higher comparative advantage in the

rising tasks according to their skills. It is also intuitive that workers who start in abstract

and manual from the beginning have the strongest comparative advantage in those tasks,
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but that switchers into abstract and manual have stronger comparative advantage than

stayers in the routine task.

Prediction 3. Task price polarization decreases the wages of workers who start out in the routine

task compared to abstract or manual starters or both.

For simplicity, assume that the changes in relative task prices are the same, that is,

4(πA − πR) = 4(πM − πR) > 0. In this case, according to Equation (7), stayers in

abstract or manual tasks experience wage growth of 4πA = 4πM, as IA(si, πt) = 1 or

IM(si, πt) = 1, respectively, for all tε[0, 1]. Wages of stayers in routine grow by only 4πR,

while wages of switchers from routine to abstract or manual grow within the interval

(4πR,4πA = 4πM), depending on how early they find it optimal to switch. In either

case, however, starters in routine tasks experience lower wage growth than starters in

abstract or manual tasks. Appendix A proves Prediction 3 and shows that when relative

task prices are not the same, say 4πA > 4πM, there may be (some) starters in routine

tasks with higher wage growth than (some) starters in manual tasks if the former find it

optimal to switch over quickly into abstract tasks (and vice versa when 4πA < 4πM).

Prediction 3 will be tested in the NLSY data below. The test is analogous to Acemoglu

and Autor (2011)’s regression of different demographic groups’ wage growth onto their

initial probabilities to work in the three tasks, but the NLSY is a conceptually attractive

complement to the data used in that paper. Prediction 3 therefore provides a theoretical

foundation to Acemoglu and Autor (2011)’s intuitive regression specification and demon-

strates that it does not depend on a specific assumption about the underlying population

distribution of workers’ skills (with the caveat that strictly-speaking only the relative

wages of those with higher initial probabilities to work in either abstract or manual have

to rise).

Prediction 3 also shows that the empirical tests in Cortes (2016) persist under a general

distribution of workers’ skills. As mentioned above, a corollary of Prediction 3 is that

switchers into abstract or manual tasks experience higher wage growth than stayers in

the routine tasks. Using panel data at the individual level, Cortes finds that the wage

growth of stayers in the abstract and manual tasks is higher than the wage growth of

stayers in routine tasks, but he also finds some evidence that wage growth of switchers

out of routine tasks is higher than of stayers in routine tasks. Prediction 3 implies that

these are robust empirical results in favor of RBTC at the individual level under any

arbitrary distribution of workers’ skills in tasks.9

9The prediction in Cortes (2016)’s model that the most and least skilled workers are leaving routine for
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Finally, as far as I am aware, the relationship under changing task prices between

workers’ wage growth and their task affiliations for an unrestricted skill distribution

(Equation 7) has not previously been derived in the Roy model.

3 The Propensity Method for Estimating Task Prices

This section derives the new Propensity Method for estimating task prices and discusses

the assumptions about the data that need to hold to implement it. It conducts Monte

Carlo simulations to verify that the method works and shows how some confounding

factors other than RBTC that may affect wages can be accounted for. Finally, the method

is compared to alternative approaches for estimating task prices used in the literature.

3.1 Derivation of the Propensity Regression

Result (7) is most helpful because it provides an approach of estimating price changes

from data on workers’ task choices and wages. One could go about this in panel data,

exploiting the differential wage growth by task for a constant set of workers over time.

However, among other challenges,10 such an approach would critically rely on disen-

tangling task prices from differential (and partly idiosyncratic) skill accumulation across

tasks that occurs even in the absence of any other changes. This is difficult to do con-

vincingly (also see the discussion in Section 3.4). The approach taken in this paper is

instead to note that in some datasets one may observe characteristics (“talents”) which

make workers more or less likely to choose different tasks. In the sense of the model,

workers’ skills depend on these talents in different ways.

An intuitive example to think about this is Heckman and Sedlacek (1985)’s linear

factor formulation of log wages:

wKit = πKt + sKi = πKt + β′Kxi + uKi, (8)

where xi = [x1i, ..., xji, ..., xJi]
′ are the observed talents, βK the corresponding linear projec-

tion coefficients, and uKi = δ′Kzi a regression error which again depends on unobservable

the abstract and manual tasks, respectively, does not survive the general skill distribution. This is because
the Roy model implies that marginal workers (switchers) are those with the lowest comparative advantage
in their tasks (see also Equation 3), but in general it does not imply that comparative and absolute advantage
align (in Cortes model they align perfectly).

10For example, the Roy model assumes perfect mobility between tasks. This is more likely fulfilled in
repeated cross-sections for different cohorts of workers than in individual longitudinal data.
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talents zi and linear projection coefficients δK. This specific example is similar to Firpo,

Fortin, and Lemieux (2013), who postulate that skills in tasks are a linear combination

of characteristics, some observed, others not. Again, as in Heckman and Sedlacek (1985),

Firpo, Fortin, and Lemieux (2013), and throughout the RBTC literature, the βK and δK

vectors are assumed task-specific but time-invariant, while the task prices are changing

with RBTC over time. Although all the results in this paper hold for a general time-

invariant dependency of sKi on observables xi and unobservables zi, specification (8) is

adopted for better illustration from now on.

I now rewrite Result (7) in a way that is amenable to empirical analysis:

wi11 − wi00 = 4πR +
∫ πA1−πR1

πA0−πR0

IA(sit , πt)d(πAt − πRt)+ (7’)

+
∫ πM1−πR1

πM0−πR0

IM(sit , πt)d(πMt − πRt),

where the time sub-index it indicates at which point in time individual i is observed,

since Result (7) not only holds for one specific worker i over time but for all workers who

possess the same skill vector si. Therefore, in Equation (7’) two indexes it and iτ do not

necessarily indicate the same worker but more generally two workers (e.g., it from an

older cohort if t > τ) with exactly the same skills sit = siτ
= si. Take expectations on both

sides of (7) conditional on xit to get

E(wi11|xi1)− E(wi00|xi0) = 4πR +
∫ πA1−πR1

πA0−πR0

pA(xit , πt)d(πAt − πRt)+ (9)

+
∫ πM1−πR1

πM0−πR0

pM(xit , πt)d(πMt − πRt),

where

pA(xi, πt) ≡ E[IA(si, πt)|xi] = Pr[− (uAi − uRi) < πAt − πRt + (β′A − β′R)xi, (10)

− (uAi − uMi) < πAt − πMt + (β′A − β′M)xi],

is the propensity of an individual with observables xi to work in the abstract task given

the prevailing task price vector πt (equivalently for pM(xi, πt)). For Equation (9) to be

true, the comparability assumption that the distribution of skills si1 and si0 , conditional

on xi1 and xi0 , are the same has to hold. This is discussed in detail in the next subsection.

From Equation (9) I want to estimate the distances 4(πA − πR), 4(πM − πR), and

4πR. E(wit|xi), pA(xi, πt), and pM(xi, πt) are known at t = 0 and t = 1 in the sense that
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one can consistently estimate them from data with sufficiently detailed information about

talents xi (now t indexes two observed points in time in the data). However, pA(xi, πt) and

pM(xi, πt) within the interval tε(0, 1) are unknown and one needs to make an assumption

on them. I linearly interpolate

pK(xi, πt) ≈ pK(xi, π0) + [pK(xi, π1)− pK(xi, π0)]
(πKt − πRt)− (πK0 − πR0)

(πK1 − πR1)− (πK0 − πR0)
(11)

with Kε{A, M}, so that Equation (9) becomes

E(wi11|xi1)− E(wi00|xi0) = 4πR +
pA(xit , π1) + pA(xit , π0)

2
4(πA − πR)+ (12)

+
pM(xit , π1) + pM(xit , π0)

2
4(πM − πR).

For more details on the steps from Equation (7) to (12) via (9) see Appendix B.

Equation (12) is a new result in the Roy model in repeated cross-sections when only

task prices are changing. The broader intuition behind the result is that for those workers

who stay in their original task, the wage change over time that they experience is equal

to the price change in this task. If workers switch, the total wage change for a given

individual is the weighted sum of the price changes in all tasks that they spend time in,

with the weights corresponding to the fraction of time spent in each task. The latter is

what the propensity averages in Equation (12) represent for a whole set of workers with

characteristics xi.11

As long as there is a sufficiently strong relationship between observables and task

choices (“first-stage”, see below), the linear approximation (11) should be of second-

order importance. This is because the initial and the final sorting provide tight economic

bounds (i.e., [pK(xi, π0), pK(xi, π1)]) for the comparative advantage in task K of workers

with observables xi. The movement of pK(xi, πt) between pK(xi, π0) and pK(xi, π1) is

only linearly interpolated within these bounds. The Monte Carlo simulations in Section

3.3 also show no approximation error in the considered settings.

The parameters in Equation (12) can be estimated in different ways. The easiest is

to note that (12) is a linear conditional expectation function and that OLS regression

11One may think that this is complicated by the fact that at the time of switching the wage changes
discretely because different tasks reward different skills differently. However, in the Roy model, at the exact
instant of switching the worker reaches an indifference point (Envelope argument in Equation 6) and the
wage in the origin and destination task are exactly the same. Hence, there is no discrete wage change due
to the individual using different skills in different tasks. This is why the specific distribution of skills is not
important here and the method is general in this respect. I would like to thank an anonymous referee for
pointing this out.
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provides the best estimator of linear conditional expectation functions (e.g., Angrist and

Pischke, 2008). Pooling the data over two periods, and using time interactions for the

regressors of interest, allows estimating the changes in conditional expectations over

time. This is what one is after in Equation (12). So the equation to be estimated by OLS

in becomes:

witt = α0 + α1 pA(xit) + α2 pM(xit) + α3 × 1[t = 1]+ (13)

+ α4 pA(xit)× 1[t = 1] + α5 pM(xit)×1[t = 1] + ε itt

with pK(xit) ≡
pK(xit ,π1)+pK(xit ,π0)

2 . This “Propensity Regression” gives an estimate of the

conditional expectations function of interest ̂E[wi1 − wi0| p̄A(xi), p̄M(xi)] = α̂3 + α̂4 p̄A(xi)+

α̂5 p̄M(xi), since according to (12), E(wi1|xi) − E(wi0|xi) = E[wi1 − wi0| p̄A(xi), p̄M(xi)].

Therefore, 4̂πR = α̂3, ̂4(πA − πR) = α̂4, ̂4(πM − πR) = α̂5. The Monte Carlo simula-

tions in Section 3.3 confirm that this estimation approach works. It is convenient because

one can use individual-level wages directly in the estimation, although one is interested

in the change of a conditional expectation. This also facilitates the empirical test of Pre-

diction 3, again using linear regression in Section 5.1 to estimate the wage growth of

workers with different propensities to start in the abstract and manual tasks.

Notice that the OLS regression (13) has no structural interpretation in the model. It

is only a conduit for estimating the sought-after conditional expectation function. Be-

cause it is not true from Equation (12) that E(wit|xi) = E[wit| p̄A(xi), p̄M(xi)] in levels,

the parameters α0, α1, α2, and ε it have in fact no interpretation in terms of the RBTC-Roy

model. If one insists on some interpretation of α1, α2, and the regression error ε it, one

could interpret them as partly reflecting worker’s skill levels, as they are correlated with

wage levels (again, note, the model makes no predictions about these wage levels).

One alternative approach to identifying the task prices is based on minimum dis-

tance estimation of Equation (12). Briefly, the idea is that Equation (12) holds for ev-

ery element of the xi vector, thereby delivering J different moment conditions when

xi = [x1i, ..., xji, ..., xJi]
′. Estimation then relates the moment conditions to each other in

a quadratic form. The procedure is explained in detail in (Boehm, 2013), and its esti-

mates are reported as an alternative in Table 5 below. While less straightforward than

regression (13), one attractive feature of the minimum distance is that it also provides an

over-identification test (“J-test”) of the model, because Equation (8) will naturally not be

exactly correct for every element xji in the data.
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3.2 Identification Assumptions

Result (12) and the Propensity Regression (13) map the changing wage returns to xi over

time to the task choices that xi is associated with. This approach takes the task model seri-

ously because it is not worker characteristics that are priced in the labor market directly,

but the tasks that these characteristics help carry out. I now discuss the assumptions

about xi that have to hold in order to correctly identify the task prices.

Empirically, the estimation approach for task prices proposed in Equation (13) re-

quires data on worker talents xi that fulfill the following two assumptions (remember

sub-index it indicates an individual i observed in the data in t):

Assumption 1 (First-stage). The vector xit predicts workers’ task choices pK(xit , πt) in both

periods of time tε{0, 1}.

Assumption 2 (Comparability). Individuals with the same xi vector are comparable over time.

That is, for all xi0=xi1 , the population distributions of unobservable skills uKi0 = δ′Kzi0 and uKi1 =

δ′Kzi1 , Kε{A, R, M}, are the same.

The purpose of the first-stage is to provide good predictors of task choice probabilities

conditional on xi and πt. As their predicted values are usually similar, it is conceptually

not important whether these probabilities are constructed using multinomial choice mod-

els, linear probabilities, or non-parametrically with cell means for each xi realization.12

Economically, Assumption 1 however requires that for three tasks there exist at least

two elements of the xi vector that generate qualitatively independent task predictions.

For example, in the NLSY data below, conditional on the other talents, the math talent

predicts the abstract task (the element corresponding to math in βA is high; compare

Equation (10)) and the mechanical talent predicts the routine task (the element corre-

sponding to mechanical in βR is high). The manual (third) task can then be predicted by

low math and low mechanical talent (in the data, in addition, high verbal talent together

with low math talent predict the manual task).

The comparability Assumption 2 implies that the unobservable skill selection into

observable groups xi does not change over time. Thus, individuals with the same xi

vector are “in distribution” equally skilled in both periods (FsA,sR,sM |xi
does not carry a

12In the NLSY data below, with several continuous worker traits, a multinomial logit model of occu-
pational choice is fitted, while in the Census/ACS data, taken from Acemoglu and Autor (2011), the actual
choice frequencies for discrete demographic xi cells are used. Alternatively, a linear probability model would
require two different choice regressions when there are three tasks and the predicted probabilities would
not be bounded by 0 and 1.
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time index). Assumption 2 also implies that pK(xi, πt) functions are time-invariant with

respect to their xi argument holding constant πt. If one observes an individual with xi1 in

t = 1, his counterfactual employment in tasks in t = 0 would have been the employment

of an individual with the same xi0 in t = 0.

The NLSY dataset is attractive in terms of comparability because it provides pre-

labor market talents xi that are difficult to influence for an individual and which have

hardly changed (in levels and correlations) over time (Altonji, Bharadwaj, and Lange,

2012; Speer, 2017). If the population distribution of unobservable talent is constant across

cohorts, and there are no groups in terms of unobservables who behave sub-optimally

and acquire less of a characteristic that becomes more desirable over time (i.e., decrease

their math or verbal test scores), comparability should hold in that data.

The Monte Carlo simulations in the next section examine to what extent the Propen-

sity Method can allow for confounding factors that affect wages. Broadly, some types of

changing skill accumulation or changing returns to skills can be accounted for separately,

but not when they occur together. Although this a potentially important limitation of the

Propensity Method (it could be interpreted as a violation of the comparability assump-

tion), one advantage of using the young workers in the NLSY data is that at least the

change in accumulated skill via task-specific experience is unlikely to be very strong at

age 27.13

In the alternative dataset summarized at the end of the paper, the Census/ACS,

education-age-region demographic cells are used as components of the xi vector. While

more debatable, I argue that also in this case the correct task prices may potentially be

identified. This is because previous literature (e.g., Autor, 2015) has shown that males’

educational attainment was remarkably slow to respond to differential wage premia,

which is reflected in descriptive statistics below. Employment trends across regions were

also modest, and aging in the population was mostly driven by birth rates decades earlier

and thus unlikely to be affected by RBTC.

To save on notation, I suppress the t sub-index in it from now on, as in the actual data

workers are always observed at the time when also the prices that they face are measured

(i.e., the t index on πt or wit should suffice for clarity).

13Another advantage of using young workers, according to Gottschalk, Green, and Sand (2015), is that their
wages better capture contemporaneous task price movements compared to older workers, whose wages are
more sticky (e.g., because of implicit contracting).
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3.3 Monte Carlo Simulations

This section conducts Monte Carlo simulations in order to assess the ability of the

Propensity Method to recover the correct task prices. It also summarizes the results from

introducing rising returns to college, increasing college attainment, and a changing mini-

mum wage as potential confounders (details in Appendix C). An-easy-to-use Stata dofile

is posted on my website for interested readers to replicate the results and to try out

alternative parametrizations (e.g., for the unobserved skills).14

I simulate data that resembles what is observed in the actual NLSY below. Workers

possess a vector of observed talents xi, including math, verbal, and mechanical talent,

which are jointly normally distributed and positively correlated among each other. A

linear combination of these talents map into the (log) observable skill component in ab-

stract, routine, and manual tasks. In particular, math and verbal load highly on abstract,

mechanical loads highly on routine, and verbal loads relatively highly on manual. The

unobservable skills in Roy-type models are often taken as normally or extreme value

distributed (e.g., Heckman and Sedlacek, 1985; Hsieh, Hurst, Jones, and Klenow, 2013).

Therefore, I let (log) unobservable skill components be either distributed multivariate

normal, again with a positive correlation among each other, or type 1 (Gumbel) extreme

value. The latter is a special case of the type 2 (Frechet) extreme value distribution for

which relative task prices can be estimated using multinomial logit regressions.15

The model has a period t = 0 (corresponding to the NLSY79) and a period t = 1

(NLSY97). Abstract and manual task prices are set to rise between these two periods by 40

and 50 log points, respectively, and routine task prices decline by 15 log points. Workers’

potential wages in each task and period are the sum of the log task prices, observable

skill components, and unobservable skill components as in Equation (8). Workers choose

the task that offers the highest potential wage in each period. I simulate the model using

a small sample with 4,000 individuals (2,000 in each period), to mimic the NLSY, and a

14Go to “Code for Monte Carlo Simulations” on https://sites.google.com/site/michaelboehm1/
research.

15To be precise, the assumptions about skills are:

sA = 6xmath + 2xverb + 0xmech + uA
sR = 0xmath + 0xverb + 4xmech + uR
sM = 0xmath + 1xverb + 0xmech + uM

with

 xmath
xverb
xmech

 ∼ N

 0
0
0

,
1 .7 .5
.7 1 .6
.5 .6 1



and

 uA
uR
uM

 ∼ N

 0
0
0

,
1 .5 .5
.5 1 .5
.5 .5 1

 or type 1 extreme value.

Period 0 task prices are πA0 = 1, πR0 = 3, πM0 = .5 in order to match the high and low initial employment
share of the routine and manual tasks, respectively.
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larger sample with 40,000 individuals (20,000 in each period), to have enough statistical

power in order to identify (the likely size of) any potential bias.

There are 100 iterations. In each iteration I estimate the first-stage in each period

separately using a multinomial logit regression of task choice indicators on the math,

verbal, and mechanical talents xi. I then construct the average task choice propensities

pK(xi) ≡ pK(xi ,π1)+pK(xi ,π0)
2 with Kε{A, M} from the predicted values of the multinomial

regressions. Finally, I regress workers’ observed wages onto these propensities interacted

with time (i.e., Propensity Regression 13).

Table 2: Monte Carlo Simulations for the Basic Model

Propensities Method Multinomial Logit
4πR 4(πA−πR) 4(πM −πR) 4(πA−πR) 4(πM −πR)

TRUE -15.0 40.0 50.0 40.0 50.0

Extr. value; 4,000 individ. -15.73 40.45 51.07 41.21 48.55
St. Error of Mean (1.37) (2.88) (2.40) (1.28) (1.32)

Avg Std Error (1.73) (27.09) (37.65)

Extr. value; 40,000 ind. -14.53 39.09 49.62 39.46 49.84
St. Error of Mean (0.47) (1.03) (0.96) (.42) (.40)

Avg Std Error (5.49) (8.57) (11.89)

Multiv. norm; 4,000 ind. -14.91 37.13 51.25 72.39 93.99
St. Error of Mean (1.51) (2.97) (2.46) (1.98) (1.85)

Avg Std Error (16.78) (26.02) (34.91)

Multiv. norm; 40,000 ind. -14.71 40.67 49.83 74.70 91.86
St. Error of Mean (.50) (1.06) (.72) (.65) (.60)

Avg Std Error (5.30) (8.23) (10.99)

Notes: The table reports the mean estimated task prices from the Propensity Regression (samples with 4,000
and 40,000 individuals) under extreme value type 1 and normally distributed unobservables. The standard
error of the mean estimate over 100 iterations (in parentheses) and the average estimated standard error (in
parentheses and italics) are also shown. For parametrization details, refer to the text and footnotes.

Table 2 reports the results from this exercise. Under both the extreme value (up-

per part) and the multivariate normal distribution (lower part) of unobserved skills, the

Propensity Method recovers the true task prices very well. The multinomial logit re-

gression gets even marginally closer to the actual task prices if the true unobservable

skills are distributed extreme value type 1. But it is off by orders of magnitude if true

task prices are distributed multivariate normal. In previous versions of this paper I also

showed the converse finding, that is, that assuming multivariate normal unobservables

yields incorrect task prices when true unobservables are extreme value distributed. In
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the Propensity Method, the standard error of the mean in the simulations (directly below

the point estimate) does not let one reject the null hypothesis that the estimator recovers

the true prices exactly, even in the large sample. This statistically supports the economic

argument from Section 3.1 that the linear interpolation of the adjustment path, which

yields Equation (12), is not a problem.16

I have checked the robustness of these results using different loadings of the talent

vector into observable skill components, different joint distributions of unobserved skills

(e.g., type 2 extreme value and uniform), different levels and changes of task prices, and

using multinomial probits and linear probability specifications in the first stage of the

Propensity Regression. The simulated model also yields reasonable aggregate outcomes,

such as polarizing employment, and, under these specific parameters and evolution of

task prices, a polarization of the overall wage distribution.

The second part of the Monte Carlo simulations examines to what extent the Propen-

sity Method is compromised when potentially confounding forces impact the wage dis-

tribution (detailed analysis in Appendix C). First, a rising return to college is examined.

Appendix C shows that an augmented Propensity Regression (13) can account for this:

wit = α0 + α1 pA(xi) + α2 pM(xi) + α3 × 1[t = 1] + α4 pA(xi)× 1[t = 1]+ (13’)

+ α5 pM(xi)×1[t = 1] + α6ci + α7ci×1[t = 1] + ε it,

where α7 allows for the changing returns to college ci. The specification can also account

for task-specific returns to college. Second, increasing college attainment with no direct

return to it (i.e., the strict task model where skills are only priced via tasks) is also

not problematic. But if rising returns to college and increasing attainment occur together,

there is no straightforward specification that always delivers the correct task prices. What

seems important is to run both specifications, including and not including college, in

regressions (13) and (13’) to see whether differences arise. Finally, Appendix C also shows

that the Propensity Method can be applied to modified data in order to account for

16The standard deviations of the price estimates for the small sample with 4,000 individuals are quite
large (with 100 iterations,

√
100 times the standard error of the mean), and they are larger than for the

multinomial logit. However, for 40,000 individuals the estimation becomes reasonably precise already, and
the average standard error (reported one line below in italics) is at the same order of magnitude. In fact,
in an earlier version of the paper with 2,000 simulation iterations, both are very similar. This suggests that
inference even in the small sample of the NLSY is not compromised.

The average standard errors here are directly from the second-stage regression (13) without bootstrapping
the first and second stage together. In the actual NLSY data, I also find that these “naive” standard errors
are generally very similar to the bootstrapped standard errors, so that the bootstrapping correction does not
make a big difference in practice.
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changes in the minimum wage affecting the wage distribution.

To conclude from these Monte Carlo simulations, the basic version of the model with-

out confounders recovers the changing task prices correctly under multiple tasks and for

different joint distributions of workers’ skills. Reassuringly, the linear interpolation ap-

proximation (11) is quantitatively unimportant and the OLS Propensity Regression (13)

achieves identification. Moreover, while this paper analyses a task model and task prices,

the potential confounders of rising returns to college, increasing college attainment, and

changes in the minimum wage can also partly be accounted for.

3.4 Comparison to Alternative Estimation Methods in the Literature

This section compares the new Propensity Method for estimating task prices to exist-

ing alternative approaches. I argue that it differs from most reduced-form as well as

structural methods in that it exploits a fundamental relationship between workers’ wage

growth and their task choices that underlies the economics of the Roy model. The Propen-

sity Regression is also relatively easy to implement and transparent in terms of which

empirical moments it exploits.

The methods of estimating task prices can broadly be categorized into reduced-form

and structural approaches. The former’s strategy is to control as well as possible for ob-

servable or time-invariant characteristics and then to invoke the assumption that residual

or time-varying characteristics are not related to workers’ task choices. Cortes (2016), for

example, uses panel data in order to control for workers’ task-specific fixed effects and

observables characteristics (especially experience) in a wage regression. He then assumes

that conditional task switching is unrelated to changes in potential wages across tasks

and identifies the change in prices via time-varying task intercepts. Therefore, his “exo-

geneity” assumption implies that there is no idiosyncratic skill accumulation or learning

about abilities that affects potential wages and makes individuals switch tasks.

Firpo, Fortin, and Lemieux (2013) use a recentered influence function regression to

decompose changing inequality into a wage structure (skill and task prices) effect and

an effect based on the changing supply of skills and tasks. They invoke an “ignorability”

assumption, which states that conditional on the observable measures (especially edu-

cation and experience), the distribution of unobservable skills remains constant within

tasks. This assumption is the same as when interpreting the returns coefficients from a

standard Oaxaca-Blinder decomposition as task prices, and Firpo, Fortin, and Lemieux

(2013) argue that therefore their estimates are likely to be a lower bound of the true
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changes in task prices.17

Depending on the setting, such reduced-form approaches may be more or less suc-

cessful at getting close to the actual task prices. But they are conceptually not fully sat-

isfactory, because their estimation (though not the theory in the papers) assumes that

there are no economic motives for switching into rising tasks conditional on the con-

trol variables. This raises the question why net switching into rising tasks is observed in

the data, also conditional on controls, if not for economic reasons. The new Propensity

Method presented in this paper is instead based on an economic model of worker skill

selection, observable and unobservable, into tasks and the wage growth associated with

it. Implementing this is demanding on the data because it requires that the distribution

of unobservables conditional on observable worker characteristics does not change over

time (comparability assumption 2), but it does not impose the strong requirement that

the distribution of unobservables is the same conditional on task choice.

The strategy of structural methods for estimating task prices is to model the popula-

tion distribution of unobservable skills explicitly instead of assuming it away. Examples

for this are Heckman and Sedlacek (1985) and the literature that built on it. These papers

impose a specific distribution of workers’ unobserved skills (often joint normality) and

then set up a likelihood function to estimate the task prices of interest, but also all the

other variables of the model including the distribution parameters. As illustrated in the

Monte Carlo simulations, the validity of the estimates from such methods depends on the

correctness of these distributional assumptions. In contrast, the Propensity Method pro-

posed in this paper is derived under any arbitrary distribution of workers’ skills, while

it does require comparability.18

There also exist intermediate (“semi-structural”) approaches for estimating task prices,

which are closer in spirit to the new method described in this paper. First, instead of rely-

ing on the normality assumption about unobservables, one could propose an estimation

approach based on instrumental variables or an identification-at-infinity argument in the

Heckman selection equation (e.g., Dahl, 2002; Mulligan and Rubinstein, 2008, respec-

tively). That this has not been tried in the current context reflects that it is difficult to find

instruments which credibly affect task choices but not potential wages or to construct a

17Qualitatively consistent with this paper, Cortes finds that abstract task prices rose by about 30 percent
and manual task prices rose by 15 percent compared to routine task prices. Firpo, Fortin, and Lemieux find
that technology (i.e., RBTC) played a central role during the 1980s and 1990s, while offshorability became
an important factor from the 1990s onwards.

18It also contains the linear interpolation (11), but there are strong economic reasons for this approximation
to be of second order importance compared to the economic content of workers’ task choices, which is
confirmed in the Monte Carlo simulations.
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plausible identification-at-infinity argument. The comparability assumption in this paper

is arguably easier to fulfill. One limitation compared to the structural models is that the

Propensity Method can only estimate the changing intercepts (tasks prices), while the βK

coefficients of how worker abilities map into tasks are assumed time-invariant.

Yamaguchi (2016) presents another approach that could be considered semi-structural.

In his model occupations are characterized, and skills are priced, exclusively by their

complexity in a multidimensional vector of K observable tasks (in practice K = 2, with

cognitive and motor tasks). The strength of this approach is to reduce many discrete occu-

pations into a finite-dimensional and economically interpretable task-space. Yamaguchi

(2016) estimates the model using correlated random effects, which express workers’ un-

observed time-invariant skills as a function of all observed characteristics and their labor

market history. This yields changes in task-specific intercepts, which may be interpreted

as task prices, and in slopes, which may be interpreted relationships between skills and

tasks. The identification relies on the assumption that unobserved skills can be expressed

as a function of all observables plus an “exogeneity” assumption, as in Cortes (2016), that

idiosyncratic skill shocks or learning about skills are unrelated to task choices.19

Finally, Gottschalk, Green, and Sand (2015) use a bounding exercise to purge chang-

ing selection from wages in task in order to identify the task prices. They get a first

set of bounds for each task by noting that, in a hierarchical skill model, there will be

only worker flows between two neighboring occupations in terms of skills (i.e., between

abstract and routine or routine and manual, but not between abstract and manual). Sta-

tistically, the probability that movers’ wages are above or below the occupation median

is between zero and one. So a wide set of bounds tracks changes in the median wage

under these two extremes. The authors tighten these bounds by appealing to the eco-

nomic argument about stochastic dominance of skills between movers and stayers in

tasks. They then relax the distribution of skills to alternative ability models and repeat

the two steps. Gottschalk, Green, and Sand (2015)’s approach allows them to separately

identify skill selection and changes in occupation-specific skill functions by appealing

to higher moments of wages (i.e., additional percentiles on top of the median). But the

correct identification of bounds ultimately relies on the imposed restrictions for workers’

19Yamaguchi finds that the returns to motor tasks have declined, hurting male compared to female work-
ers, while returns to cognitive tasks have been unchanged.

In an earlier paper, Yamaguchi (2012) estimates a similar model with the Kalman filter, relying in the
estimation on the assumption that occupations are indeed fully described by the two observable task dimen-
sions (cognitive and motor), and on the functional form of the normal distribution for skills, skill shocks,
preferences, and measurement error in order to compute the likelihood function.
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skill distributions (the most general one in the paper is a combination model of hierar-

chical together with independent worker-specific skills across occupations).20

Aside from the specific assumptions about the skill distributions, the bounding ap-

proaches and the structural estimations become tedious or computationally demanding

with three or more tasks. Therefore, another attractive feature of the method proposed

in this paper is that it is easily applied to three or more tasks. One just needs to include

the respective task propensities into Regression (13). The method is also transparent in

terms of which moments in the data it uses for identification (see Equation 12).

4 Data

4.1 Occupational Grouping and Alternative Hypotheses

The new Propensity Method for estimating task prices requires discrete occupation groups.

This has the advantage of being applicable to a broad set of problems (it is the classic

Roy model), but also the cost that task input of every worker is not finely measured. Al-

ternative hypotheses to RBTC, including trade/offshoring and SBTC coupled with rising

demand for services, are also discussed in this section.

Acemoglu and Autor (2011) propose an occupational grouping based on two-digits

of the 1990 Census Bureau occupational classification, which is consistent over several

decades. Four groups are generated: (1) managerial, professional and technical occupa-

tions; (2) sales, clerical and administrative support occupations; (3) production, craft,

repair, and operative occupations; (4) service occupations. Acemoglu and Autor then

show that group (1) is intensive in non-routine cognitive, analytic, and interpersonal

tasks according to the Dictionary of Occupational Titles (DOT) and the Occupational

Information Network (O*NET), the two most-used sources for measuring occupational

tasks. Groups (2) and (3) are intensive in routine cognitive and routine manual tasks,

respectively. Group (4) is intensive in the non-routine manual task. In their empirical

application, which is based on Prediction 3 above, Acemoglu and Autor further merge

categories (2) and (3) into one, so that they end up with one abstract group (1), one

routine group (2+3), and one manual/services group (4).

Acemoglu and Autor (2011)’s grouping into broad occupations carries limitations.

First, the fine variation in tasks across more detailed occupations is aggregated away,

20Gottschalk, Green, and Sand find that task prices are polarizing until the year 2000, and that all task
prices are falling thereafter.
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and when one moves from four to three groups even the cognitive and manual routine

groups are merged into one. Second, other studies have noted deviations within and

changes from the routine task framework in these groups. Autor and Dorn (2013), for

example, have found that transport, construction, mechanical, and mining are intensive

in manual routine as well as non-routine tasks. They also argue that clerical and sales

occupations are very diverse in their tasks and that clerical occupations’ task content

may have upgraded over time. Other studies construct their own task measures and

groupings, for example based on a principal component analysis of the broader DOT or

O*NET information (e.g., Firpo, Fortin, and Lemieux, 2013; Yamaguchi, 2012).

Recognizing that every occupational grouping involves some degree of subjectivity, I

adopt the Acemoglu and Autor (2011) classification because it captures well the different

intensities in abstract, routine, and manual tasks and because it has been used in many of

the subsequent papers analyzing RBTC in the U.S. (e.g., Mishel, Shierholz, and Schmitt,

2013; Autor, 2015; Gottschalk, Green, and Sand, 2015; Cortes, 2016; Bárány and Siegel,

2017).21 This enables a consistent comparison of the paper’s findings with prior literature.

It should be clear, however, that strictly speaking the task prices that are estimated are

prices paid for an efficiency unit of labor in the three broad occupation groups, which

in actuality constitute a bundle of all tasks at differing intensities. Another potential

limitation, which is shared with virtually all papers in this literature, is that the task

content even of detailed occupations may have changed over time.

The grouping of occupations is related to some alternative or complementary factors

that may have affected task prices. First, there is a long-standing debate about the impact

of international trade and offshoring on the wage and employment structure. Several

authors have proposed measures of task content that may capture offshorability of oc-

cupations, either largely focusing on the importance of face-to-face contact and the need

for on-site work in O*NET data (e.g., Firpo, Fortin, and Lemieux, 2013) or from directly

surveying workers and occupational experts (Blinder and Krueger, 2013). These offshora-

bility measures are mildly positively correlated with routineness and non-routineness in-

21As in Acemoglu and Autor (2011), occupations are first converted from their respective scheme into
a time-consistent classification. They are then assembled into ten occupation groups, which are further
aggregated into an abstract category (professional, managerial, and technician occupations); a routine cate-
gory (sales, office/admin, production, and operator/labor occupations); and a manual category (protective,
food/cleaning, and personal care occupations). (Non-Routine) Manual: housekeeping, cleaning, protective
service, food prep and service, building, grounds cleaning, maintenance, personal appearance, recreation
and hospitality, child care workers, personal care, service, healthcare support. (Cognitive and Manual) Routine:
construction trades, extractive, machine operators, assemblers, inspectors, mechanics and repairers, precision
production, transportation and material moving occupations, sales, administrative support. (Non-Routine)
Abstract: managers, management related, professional specialty, technicians and related support.
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dices (Firpo, Fortin, and Lemieux, 2013; Autor and Dorn, 2013). In the case of the broad

Acemoglu and Autor (2011) occupations, the authors report that abstract and routine

cognitive (1 and 2 above) are relatively offshorable, while routine and non-routine man-

ual (3 and 4 above) are not. Autor and Dorn (2013) and Goos, Manning, and Salomons

(2014) find that offshorability plays a minor role in explaining job polarization compared

to routineness, while Firpo, Fortin, and Lemieux (2013) find that it is important for the

wage structure from the 1990s onward.

Another hypothesis that has received attention is a combination of skill-biased techno-

logical change (SBTC) and rising demand for services. SBTC cannot explain the polariza-

tion of the employment or wage distribution by itself, since it predicts an increase in the

relative demand for skill across-the-board (Acemoglu and Autor, 2011). But if SBTC raises

incomes overall or at the top of the distribution, and consumption preferences are non-

homothetic (e.g., high-income individuals substitute market for home-based production),

this may raise demand for low-skill services occupations that are intensive non-routine

manual tasks. Manning (2004) and Mazzolari and Ragusa (2013) present evidence that

is consistent with this channel.22 However, SBTC that works independent from RBTC

would also imply a rising college premium (Acemoglu and Autor, 2011), and Section 5.1

in this paper finds very limited evidence for this conditional on task propensities.

In conclusion, the overall body of evidence suggests RBTC to be the most impor-

tant driver of polarization, at least in the employment structure. While it seems hard

to fully separate out the alternative explanations, the estimates in the following provide

prices for occupation groups that employ every task to some extent but are intensive in

abstract, routine, and manual, respectively. The previous section has also shown how cer-

tain confounding factors such as a rising college premium or changing minimum wage

can be directly controlled for in the Propensity Regression. These alternatives, and also

the hypothesis that skill supplies have driven the changes, do not receive strong empir-

ical support below.23 In what follows, I refer to the three occupation groups by abstract,

routine, and manual tasks.
22Bárány and Siegel (2017) propose a related explanation in which structural transformation across sectors

drives the rising demand for services occupations. Acemoglu and Autor (2011) and Goos, Manning, and
Salomons (2014) show that jobs also strongly polarized within industry sectors.

23Firpo, Fortin, and Lemieux (2013) analyze changing union membership as another institutional factor
and find it to be important during the 1980s and 1990s.
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4.2 The NLSY Sample of 27 Year Old Males

This section explains why the analysis focuses on males, introduces the NLSY sample,

and computes the main facts concerning the distributions of jobs and wages therein.

First of all, notice that the identification assumptions will be more plausibly fulfilled

for male workers than for females. Female educational attainment as well as their par-

ticipation in the labor market have much increased over the last decades. In fact, even

for the different test scores, female performance improved noticeably between the two

cohorts of the NLSY while male performance remained constant. Therefore, the compa-

rability assumption is more likely to be violated with the available characteristics xi for

females than for males. Moreover, female wages rose substantially across-the-board com-

pared to males and some argue that discrimination against them in different high-skill

occupations has declined quite drastically (e.g., Hsieh, Hurst, Jones, and Klenow, 2013).

Therefore, it is likely that a large part of the returns to characteristics xi is driven by

other factors than RBTC and task prices. Finally, the “mechanical” talent affects female

task choices in the NLSY97, but not in the NLSY79. This is a problem for the first-stage re-

gression (Assumption 1) and it suggests a violation of comparability (Assumption 2). For

these reasons, the analysis in the main text is restricted to males. Appendix F summarizes

estimates for females.

The main sample that I use is from the two cohorts of the National Longitudinal Sur-

vey of Youth (NLSY) and, for comparison, from the Current Population Survey Outgoing

Rotation Groups (CPS) over the same period. I focus on 27 year old males in 1984–1992

and 2007–2009 in the NLSY 1979 and 1997, respectively. The details of the sample con-

struction can be found in section D of the Appendix.24

Figure 2 presents the labor market facts of 27 year olds between 1984–1992 and 2007–

2009 for the NLSY and the CPS. Employment polarized substantially during this period

(Panel (a)). However, Panel (b) shows that average wages in the manual task hardly

increased in the CPS and fell in the NLSY such that wages in tasks did not polarize. As

24The sample selection and attrition weighting for the NLSY data is done closely in line with a recent
paper by Altonji, Bharadwaj, and Lange (2012). Since attrition in the NLSY97 is higher and test taking is
lower than in the NLSY79, Altonji, Bharadwaj, and Lange (2012) examine it in detail. They conclude that
after appropriate sample weighting any potential biases are not forbidding. I do not use the 2010 and 2011
samples of the NLSY97 because wages are substantially lower and less abstract (more manual) tasks are
chosen compared to the CPS. Also, the AFQT scores of those members of the 1983–84 birth cohorts who
work as 27 year olds in 2010–11 are substantially lower than the AFQT scores of the working 1980–82 birth
cohorts. I construct labor supply by hours worked and real hourly wages as in Lemieux (2006). Table 7 in
the Appendix accounts for how I end up with a sample of 3,054 and 1,207 individuals in the NLSY79 and
the NLSY97, respectively.
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Figure 2: The distributions of employment and wages for males age 27 in the NLSY and
the CPS (1984/92 to 2007/09)
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argued in relation to simulation Figure 1, this could be due to changing selection bias

into the manual task even under RBTC and task price polarization. Finally, the overall

wage distribution polarized substantially, both in the NLSY and in the CPS (Panel (c)).

4.3 Comparability and First-Stage in the NLSY

The attractiveness of the NLSY data for applying the Propensity Method is that it pro-

vides measures of workers’ early skill determinants (“talents”) that are not available in

other datasets. These talents are determined pre-entry into the labor market and rela-

tively hard to change for an individual since they are constructed from different compo-

nents of an aptitude test. As elements of the xi vector, the NLSY talents therefore come

as close as possible to fulfilling the comparability Assumption 2.

I construct measures of mathematical, verbal, and mechanical talent by using test
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scores on mathematics knowledge, the average of paragraph comprehension and word

knowledge, and the average of mechanical comprehension and auto- and shop infor-

mation, respectively, from the components of the Armed Services Vocational Aptitude

Battery of tests (ASVAB). A similar definition of talents has been adopted by a couple of

subsequent papers on the education and labor market effects of different worker abilities

in the NLSY (e.g., Prada and Urzúa, 2017; Speer, 2017).25

Table 11 in the Appendix presents labor force averages of talents as well as some

demographic variables and contemporary skill measures that are available in more stan-

dard datasets. Following Altonji, Bharadwaj, and Lange (2012), the AFQT scores are ad-

justed for differences in test taking age and the switch from paper-based to computer-

administrated tests between the NLSY79 and the NLSY97. In Table 11 the mean of this

comparable-over-time proxy for general intelligence hardly changes between the two co-

horts (standard deviation is 31.7 in the NLSY79 and 32.2 in the NLSY97).26 In addition,

Table 3 reports that the cross-correlation of the composite test scores and AFQT remained

virtually the same. Taken together, the two tables show that the joint distribution of tal-

ents remained stable over time, which lends support to the comparability assumption 2

for them as components of the xi vector.27

Figure 3 depicts average mathematical, verbal, and mechanical talent in the three

tasks in both cohorts. The levels of the three talents are substantially higher in the ab-

stract task than in the routine task which, in turn, is higher than the manual task. Thus,

there is a clear ordering of absolute advantage in tasks independent of the talent con-

sidered. However, in the absence of restrictions to enter tasks, workers’ choice should be
25All the measures used here are taken from the ASVAB, which consists of ten components: arithmetic

reasoning, word knowledge, paragraph comprehension, mathematics knowledge, general science, numerical
operations, coding speed, auto and shop information, mechanical comprehension, and electronics informa-
tion. The breakup into mathematical, verbal, and mechanical talent is similar to what a factor analysis of the
test scores suggests. AFQT is essentially the average of arithmetic reasoning, word knowledge, paragraph
comprehension, and mathematics knowledge.

26One early determined characteristic that is not constant is the share of Hispanics, which rose by 8
percentage points. I therefore control for race in all analyses. Also, when excluding Hispanics from the
dataset, the cross-correlation between talents remains virtually the same in both cohorts while the level of
AFQT rises from 168.5 to 169.7 over time. This is still very small given AFQT’s standard deviation.

27In the later cohort of the NLSY, for which the tests are taken at age 12–16 in 1997, one concern may be
that individuals endogenously invest into their talents as a response to RBTC. What would be required for a
violation of the comparability assumption here is not that more able students generally achieve higher test
scores, but that students increase their math and verbal scores, which predict abstract and manual tasks, in
response to RBTC already before age 12–16. In this case, also some students need to behave sub-optimally
and decrease their test scores, as the level of AFQT and the cross-correlations of talent measures is stable
between the NLSY cohorts. While one may debate this possibility, it is also not clear whether high school
students and their parents were even aware of the shifts in task demands that were going on by 1997 as,
for example, the first academic papers about this phenomenon by Autor, Levy, and Murnane and Goos and
Manning were only published in 2003 and 2007, respectively.
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Table 3: Pairwise Correlations between Talents, NLSY 1979 and 1997

NLSY79 NLSY97
AFQT Math Verbal AFQT Math Verbal

AFQT (NCE) 1 1
Math Score (NCE) 0.82 1 0.83 1
Verbal Score (NCE) 0.93 0.71 1 0.92 0.75 1
Mechanical Score (NCE) 0.63 0.53 0.61 0.63 0.54 0.63

Nbr Observations 2,936 1,207

Notes: The table shows the pairwise correlations between composite test scores af-
ter standardizing to normal curve equivalents with mean 50 and standard deviation
21.06.

Figure 3: Average talents in tasks, NLSY 1979 and 1997
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governed by their comparative advantage and thus depend on their relative skills. This

principle seems to be borne out in Figure 3. Average mathematical talent in the abstract

task is higher than average verbal or mechanical talent, while average mechanical talent

is considerably higher in the routine task than mathematical or verbal talent. Verbal talent

is higher than mathematical and mechanical talent in the manual task.

Table 12 in the Appendix quantifies the sorting of talents into tasks. First, Columns (1)

and (3) run multinomial logit regressions of task choice onto the linear talent measures,

extracting the marginal effect of an additional unit of each talent on choosing the abstract

and manual task relative to the omitted routine task. In Column (1), conditional on the

other talents, a one unit higher math score is associated with an about 4.7 percentage

point higher probability to enter the abstract versus the routine or the manual task. A

one unit higher mechanical score is associated with a 1.4 and 2.3 percentage point lower

probability to enter the abstract and the manual task as opposed to the routine task,
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respectively. In contrast, a one unit higher verbal score decreases the probability to enter

the routine as opposed to the abstract or the manual task by about two percentage points.

These results support Assumption 1 on the first-stage and they are similar in the NLSY97

in Column (3) of the table.

The first-stage estimates for the Propensity Method are from a more flexible version of

this regression. First, I include terciles in math, verbal, and mechanical talent in order to

allow for the fact that absolute advantage is partially aligned with relative advantage in

the NLSY data (i.e., all three measures are high in abstract tasks in Figure 3). Normalized

measures of illicit activities under age 18 and engagement in precocious sex are also

added to capture differences in task choice according to non-cognitive traits (the popular

locus of control and self-esteem are not available in the NLSY97). The estimates reported

in Columns (2) and (4) of Table 12 show that the relationship for math, verbal, and

mechanical talent is similar to above, with the limitation that not all tercile coefficients

are significant at the five percent level. In addition, engagement in illicit activities during

youth predicts not working in the abstract task conditional on the other talents.

5 Results

This Section first tests Prediction 3 in the NLSY data. Then it presents the Propensity

Method’s estimates of the changes in task prices. Finally, the effect that task prices may

have had on the overall wage distribution is assessed.

5.1 Workers’ Wage Growth in the NLSY over the 1990s and 2000s

Theoretical Prediction 3 states that relative wages of workers who start out in routine

tasks will decline when task prices polarize. Since the same individual workers are not

in the NLSY79 and NLSY97, Prediction 3 has to be evaluated using predicted probabilities

based on talents xi analogous to the Propensity Method for estimating task prices.

Focusing only on workers’ initial task choices gives a reduced-form regression equa-

tion of the form:

wit = α0 + α1 pA(xi, π0) + α2 pM(xi, π0) + α3 × 1[t = 1] + α4 pA(xi, π0)× (14)

× 1[t = 1] + α5 pM(xi, π0)×1[t = 1] + α6ci + α7ci×1[t = 1] + ε it

This regression differs from the Propensity Regression (13) for estimating task prices
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in that it uses only the period t = 0 task choice probabilities (i.e., fitted values for the

NLSY79 and counterfactual predicted probabilities for the NLSY97 data). The Monte

Carlo simulations with confounders (see Equation 13’ and Appendix C) have shown that

a variable ci and its time interaction can be included in the regression to control for

changing returns to college that may affect workers’ wages aside from RBTC. According

to Prediction 3, at least one of the parameters α4 and α5 should be positive.

Analogous to the Propensity Method, the first-stage and comparability assumptions

need to hold in order for the regression to identify these parameters correctly. The first-

stage is estimated in a multinomial logit regression and presented in Column (2) of

Table 12 (see interpretation in previous section). Multinomial probit or linear probabil-

ity models give similar results. The predicted values, that is, the regressors in Equation

(14), are remarkably stable over the two cohorts of the NLSY (reported only in earlier

versions of this paper and available upon request). This supports the comparability as-

sumption, as counterfactual labor supply into tasks according to observables remained

largely unchanged. The first-stage multinomial choice regression and the second stage

wage regression are bootstrapped in order to obtain the correct standard errors given

that pA(xi, π0) and pM(xi, π0) are estimates with sampling variation.

Table 4 displays the results from the second stage regression on task propensities (14).

Unsurprisingly, in column one a higher propensity to enter the abstract task compared to

the omitted routine task is associated with a significantly higher wage. A ten percentage

point higher probability to enter an abstract task (rather than a routine one) is associated

with a 3.1 log points higher wage. The reverse is true for the propensity to enter the

manual task. RBTC should however change the returns to propensities over time (i.e., α4

and α5), which are indicated in the table by “x NLSY97”. Indeed the coefficients change

strongly and significantly in the direction of Prediction 3. For the propensity to enter

the abstract task, the coefficient almost doubles (from .31 to .60) while the coefficient for

entering the manual task rises by more than a third (from −1.65 to −.95).28

An important competitor hypothesis to RBTC, discussed in Section 4.1, is a combina-

tion of SBTC together with rising consumption demand for services. Since SBTC implies

a rising return to college (e.g., Acemoglu and Autor, 2011), the remainder of Table 4 ex-

amines theoretical Prediction 3 when changing returns to education are allowed for. First,

column two inserts a four-year college dummy and its time interaction into the estima-

28Previous versions of this paper (e.g., Boehm, 2013) included a figure showing that for individuals with
a high propensity to enter the routine task, which is quite frequent in the data, predicted real wages even
decline during the two decades between the NLSY79 and the NLSY97.
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Table 4: Returns to NLSY79 Task Propensities over Time

(1) (2) (3) (4)
Log Wage Log Wage Log Wage Log Wage

Propensity Abstract Task 0.31 0.03 -0.06
(0.07) (0.08) (0.08)

Propensity Abstract Task x NLSY97 0.29 0.25 0.30
(0.11) (0.13) (0.13)

Propensity Manual Task -1.65 -1.80 -1.75
(0.17) (0.17) (0.17)

Propensity Manual Task x NLSY97 0.70 0.86 0.91
(0.39) (0.38) (0.38)

College 19.23 24.88
(2.92) (2.45)

College x NLSY97 4.04 8.44
(5.20) (4.14)

Observations 4154 4149 4260 4149
R2 0.09 0.11 0.07 0.12
Degree Dummies x NLSY97 No No No Yes

Notes: The table reports OLS wage regressions of 100 times the deflated log wage on
predicted propensities to the abstract and manual tasks. The propensities are estimated
from the NLSY79 only according to Column (2) in Table 12. “x NLSY97” stands for the
change in the coefficient between the NLSY79 and the NLSY97. Bootstrapped standard
errors (500 iterations) below the coefficients.

tion (α6ci + α7ci×1[t = 1] in Equation 14). On the one hand, the level of the coefficient

on the propensity to enter the abstract task drops all the way to zero, but the changes

in both coefficients are remarkably stable. On the other hand, the level of the return to

college is large and highly significant, while its change is not significantly positive once

the propensities are accounted for (note that in column three the college dummy rises

significantly).29 The result is similar in the last column, which controls for four different

degree dummies (high school dropout and graduate, some college, and at least four-year

college) and their time interactions.

These results suggests that Mincerian returns to education are important to explain

wages in the cross-section, but that they (and SBTC) seem to have less power than relative

skills in tasks to explain the change in wages that took place over the twenty years from

the NLSY79 to the NLSY97. Prediction 3 from RBTC is therefore supported by the results

in Table 4, and rising returns to college may partly be a consequence of rising returns to

abstract tasks.
29The increase in the college premium may even be overstated because of the net switching of workers

into high college return tasks over time (see Appendix C).
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Table 5: Estimated Task Price Changes in the NLSY (1984/92 to 2007/09)

4(πA−πR) 4(πM −πR) 4πR Model Test
in log points (s.e.) in log points (s.e.) in log points (s.e.) (p-value in %)

OLS on Propensities 25.1 32.9 -4.2
(12.3) (38.4) (7.7)

OLS on Propensities 19.5 46.6 -6.4
(2nd-stage college) (13.7) (37.9) (7.8)

OLS on Propensities 25.6 56.9 -5.2
(2nd-st degree dum.) (13.9) (38.7) (8.8)

Opt. Min. Distance 20.2 38.9 -3.2 12.3
(6.6) (26.4) (3.3) (13.8)

OLS on Propensities 27.3 32.0 -5.7
(Adj. for min. wage) (12.7) (40.0) (8.0)

Notes: The first row of the table presents estimated task price changes from the basic (13). The second and
third row run the augmented Propensity Regression (13’), adding college and degree dummies interacted
with time respectively. Row four reports the task price changes from a minimum distance estimation
explained in detail in Boehm (2013). This also provides a test of the restrictions on talent returns implied
by comparability and the RBTC-Roy model. The last row reports estimates when wages are first adjusted
for the change in the real value of the minimum wage as in Lee (1999). Bootstrapped standard errors (500
iterations) below the coefficients.

5.2 Task Price Estimates

This section estimates the task price changes using different specifications in the NLSY

data. Consistent with RBTC, task prices polarize over the joint 1990s and 2000s.

The first row of Table 5 reports the task price changes estimated from the basic

Propensity Regression (13). As discussed above, the first-stage is estimated in a multi-

nomial logit model with results reported in Appendix Table 12. For each individual, the

averages of the predicted values in the period they are observed (actual) and the period

when they are not observed (counterfactual) are used as the regressors. The whole pro-

cedure is again bootstrapped to obtain the correct standard errors for the second-stage

estimates. The equilibrium prices being paid for tasks have changed substantially be-

tween the two NLSYs. In particular, the relative prices for the abstract and manual task

increased by 25 and 33 log points, respectively, while the absolute price of the routine

task decreased by 4 log points.30 Task prices therefore polarized between the two co-

horts of the NLSY with the qualification that the estimate for the manual task price is

insignificant.

30Interpreting the intercept change in (13) as the absolute task price growth subsumes all time effects (e.g.,
also growth in aggregate productivity) under the task prices.
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The remainder of Table 5 examines the robustness of this result. First, the augmented

Propensity Regression (13’) is estimated, adding in rows two and three controls for col-

lege and degree dummies interacted with time as in Columns (2) and (4) of Table 4. The

task price changes remain qualitatively the same in these specifications, with the relative

price of the manual task somewhat increasing. The (unreported) rise of the college pre-

mium is insignificant as in Column (2) of Table 4 above. The task price polarization result

therefore persists when allowing for rising returns to education implied by SBTC.

In row four of Table 5 the task price changes from an optimal minimum distance

(OMD) estimation are reported. The OMD is introduced as an alternative approach to

Regression for implementing the Propensity Method in Section 3.1 and it is explained

in detail in an earlier version of this paper (Boehm, 2013). While less straightforward to

implement, an advantage of the OMD estimate is that it does not suffer from potentially

incorrect standard errors or attenuation bias due to sampling variation in the first-stage

estimates p̂K(xi, πt).31 The (asymptotic) standard errors are lower due to its optimality.

The OMD also provides an overidentifying restrictions test (“J-test”) of the moment con-

ditions implied by the empirical model, which is reported in the last column of row four.

Reassuringly, the J-test does not reject the model and the point estimates in row four of

Table 6 are similar to those in the previous rows, while the estimate for the change in the

manual task price is now close to significant at the ten percent level.

Finally, one could be concerned about another force that might have worked aside

from RBTC and confounded the task price estimates: the increase in the real value of the

minimum wage in the U.S. between the end of the 1980s and the end of the 2000s. This

may have raised wages in the lower end of the distribution as depicted in the bottom

panel of Figure 2 and, since the manual task workers are more frequently found in this

lower end, it may distort the task price estimates. The Monte Carlo simulations have

shown that this confounder can be accounted for when one is able to restore the latent

wage distribution that would have prevailed without the change in the minimum wage,

even if individual workers do not get assigned their true latent wages.

Following Lee (1999), I therefore construct adjusted wages that would have prevailed

in the absence of a change in the real minimum wage.32 The wage distribution for 27 year

31The estimates are different from the ones reported in Boehm (2013), as an intercept was included to
be consistent with the other specifications of Table 5. Attenuation bias due to sampling variation in the
regressors is also not detectable in the Monte Carlo simulations.

32In order to generate wages in the face of a minimum wage at its 1989 level, I apply the method to
compute the counterfactual from Lee (1999) together with the estimates of the effect of the minimum wage
therein. Define the deflated minimum wage m̃wt = (minwaget − w̄t

t) as the minimum wage in t adjusted
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olds in the NLSY and the CPS is now substantially flatter in the bottom than without

the adjustment (compare the solid lines in Panels c and d of Figure 4 below). Row five

of Table 5 presents the results from the task price estimation with the minimum wage

adjustment. The price estimates remain similar to the preceding rows.

Overall, the findings in this section indicate that task prices polarized between the

times when the members of the NLSY79 and the NLSY97 were 27 years old. In fact,

allowing for changing returns to college and for a changing minimum wage does not

qualitatively alter the estimates. The coexistence between polarizing task prices and po-

larizing employment also rules out the inverse hypothesis that task prices may have been

driven by changes in relative labor supplies instead of labor demand. This points to the

importance of RBTC in affecting workers’ wages over this time period.

5.3 The Task Prices’ Effect on the Overall Wage Distribution

One of the most debated questions in the literature on inequality is to what extent the

demand for skills and tasks, the supply of skills, and policy factors have been responsible

for the polarization of the U.S. wage distribution over the last couple of decades. This

last section brings the wage analysis of RBTC back to the aggregate level, finding that

the polarizing task prices can explain most of the increase of inequality in the upper half

of the wage distribution and that they may have generated a flattening of the lower half.

Minimum wages seem to have played an additional role in compressing the lower half

of the wage distribution for younger workers in the U.S..

I assess the potential effect of task prices on the overall wage distribution by assigning

every worker the price estimate for his task in the NLSY79:

ŵTP
i1 = wi0 + ∆̂πR + IAi0

̂∆(πA − πR) + IMi0
̂∆(πM − πR) (15)

The predicted wage ŵTP
i1 captures the effect of the task prices only. Within the RBTC-

Roy model, the other factors that may affect overall wage inequality are shifts in skill

by the trimmed mean wage in the population where the bottom and top 30 percent of wages are removed
(everything in logs). Then, analogous to Equation (9) in Lee, the amount

4p,t = β̂p(m̃w1989 − m̃wt) + γ̂p(m̃w2
1989 − m̃w2

t )

is added to a worker’s wage in time t, where p denotes the worker’s wage percentile, and β̂p, γ̂p the
estimated coefficients for the effect on each quantile reported in Lee’s Table 1, Panel A, Column (5). Coef-
ficients for the percentiles below the 10th and between the 10th and the 50th are linearly imputed. From
the 50th percentile upward wages remain unadjusted as in Lee’s paper. For example in the NLSY data,
m̃w1989 = log(3.35)− 2.103 where 3.35 is the nominal minimum wage in 1989 and 2.103 the trimmed mean
log wage among 27 year old males in that year.
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endowments and the wage effects of workers’ task switching in response to the task price

changes (to assess the latter effect, the population distribution of skills would have to be

known). Outside the RBTC-Roy model, factors that could have affected wages include

SBTC and policy or institutional variables such as changes in the minimum wage. The

results so far suggest that SBTC and changing skill supply are not too important in

explaining workers’ wage growth conditional on skills in tasks, and that adjustments for

the minimum wage do not affect the task price estimates. Nonetheless, it is unclear ex

ante whether the task prices by themselves account for any substantial portion of the

evolution of U.S. wage inequality.

The top row of Figure 4 plots the predicted change in the wage distribution (the

quantiles of the distribution of ŵTP
i1 minus the respective quantiles of the distribution

of wi0) together with the actual change in the wage distribution (“wi1 minus wi0”) for

27 year olds in the NLSY and CPS. The task price changes used in the predicted wage

distribution, also in the CPS, are from the first specification in Table 5 (the specifications

in rows 2–4 yield similar results). The prediction matches well the rise of the actual wage

distribution in its upper half. However, the prediction is flat in the lower half and it does

not account for the compression of inequality in that part of the actual wage distribution.

There are two reasons why the lower half of the overall wage distribution does not

polarize from the changing task prices alone. First, Appendix Figure 6 plots the share of

manual, routine, and abstract task workers into the NLSY79 wage distribution. It shows

that routine workers are initially already concentrated in the lower half of the wage distri-

bution, peaking around the 25th percentile (manual task workers are most concentrated

in the very bottom). Therefore, declining routine task prices will strongest hit workers

who already started out in the middle of the lower half of the wage distribution.

The second reason is the overtaking effect that was already discussed in relation to

theoretical Prediction 2: manual task workers, who are predominantly located at the bot-

tom of the wage distribution, move up under the new task prices. This lifts not only the

low quantiles where the manual task workers start out, but also the more lower-middling

quantiles of the wage distribution where they end up (i.e., routine task workers’ initial

position). The inverse happens for workers in routine tasks with the same effect on the

wage distribution. This effect only exists in a truly multidimensional skill model. Ap-

pendix Figure 7 illustrates it, by plotting the predicted wage distribution when workers

are fixed at their original quantiles so that overtaking is shut down. The increase is now

weaker at the top and stronger at the bottom, since overtaking compounds the increase
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Figure 4: Change in log real wages by quantile of the wage distribution, actual and
predicted due to changing task prices (bottom row adjusted for the changing minimum
wage)
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(c) NLSY, males age 27 (min.wage adjusted)
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of wages in the upper half and weakens the increase of wages in the lower half of the

distribution when task prices polarize.33

As discussed in Section 2.2, the result that polarizing task prices do not lead to a

clear polarization of the wage distribution is not necessarily evidence against RBTC. The

overtaking effect illustrated in Appendix Figure 7 makes polarizing task prices increase

inequality in the upper half of the wage distribution, while they only flatten (or even

make more unequal, depending on the parameters) the lower half. Indeed, in most de-

veloped countries other than the U.S., the lower half or the wage distribution has not

polarized and often it has become even more unequal during the last decades (see ref-

erences in Section 2.2). The polarizing task prices and the changing wages of workers

33Note that overtaking not only exists when workers keep their original tasks (as in this section), but that
it may also be substantial when one allows for the wage effects of switching tasks (as in Figure 1 Panel (d)).
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who start out in different tasks, as estimated in the previous two sections, are therefore a

better test of RBTC than their effect on the overall wage distribution.

Finally, one other factor that could have generated the distinct downward slope of

the U.S. wage distribution, especially for the relatively young workers in the NLSY, is

the increase of the minimum wage. The bottom row of Figure 4 plots the actual and

the predicted distribution when wages are adjusted for the change in the real value of

the minimum wage as in Section 5.2 and the task price estimates are taken from the

corresponding specification in Table 5. The fit in the bottom of the wage distribution

for 27 year olds is now substantially better. In the CPS, apart from a small difference in

levels, the modest polarization in the lower as well as the increase in the upper half of

the predicted and the actual wage distribution are now more or less comparable. In the

NLSY, the difference is substantially reduced.

6 Robustness: the Census/ACS as an Alternative Sample

This Section briefly summarizes the results from an alternative estimation sample based

on the decennial censuses and the American Community Survey (Census/ACS), which

are broadly consistent with the findings in Section 5. The detailed analysis is relegated

to Appendix E.

The strength of the Census/ACS is a large sample size and that the task price es-

timation can be done for different periods (decades). It also includes workers of broad

ages 16–64. However, one has to to use education-age-region demographic cells as xis for

identification instead of the early-determined and time-invariant talent measures in the

NLSY. This may be more of a concern for comparability Assumption 2.

Appendix Table 9 reports that also in the Census/ACS task prices polarized during

the joint period 1989–2007. The effects are moderately stronger than in the NLSY and

they are robust to including education, age, and region main effects as controls into the

Propensity Regression, identifying task prices only from the interaction terms, and to

adjusting for the minimum wage. The estimations by decade show that the relative price

of the abstract task increased and the relative price of the routine task decreased during

1989–1999 and 1999–2007. The price of the manual task increased during 1989–1999,

while its evolution over 1999–2007 is somewhat ambiguous. The task price estimates for

the 1980s are rather inconclusive. Therefore, the clearest evidence for a polarizing impact

of RBTC on workers’ wages is during the 1990s.
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On the aggregate level, the task prices match the changing overall wage distribution

quite closely in the Census/ACS data. Appendix Figure 5 shows that only in the very

bottom is the prediction not fully tracking the uptick of the actual wage distribution in

the joint period 1989–2007. By decade, the polarizing wage distribution during 1989–1999

and the flat lower-half with rising upper-half of 1999–2007 are captured well, while the

across-the-board increase in inequality during the 1980s is only partly accounted for.

Finally, Acemoglu and Autor (2011) estimate the wage growth of starters in abstract

and manual tasks versus routine tasks in the Census/ACS. Similar to Section 5.1, they

find that wages of the former types of workers rise compared to the latter over time, also

when separately controlling for changes in the return to education (i.e., SBTC). Overall,

therefore, while comparability in the Census/ACS is more debatable, these consistent

results in another dataset strengthen the conclusions drawn from analysis of the NLSY.

7 Conclusion

This paper showed that in a Roy model changing task prices have robust implications

for wage growth on the worker level, whereas changes in occupational or overall wage

distributions are difficult to interpret. Exploiting this insight, a new Propensity Method

for estimating task prices was derived.

Empirically, the paper finds that, consistent with RBTC, task prices polarized in the

U.S. during the joint 1990s and 2000s. Workers with a relative advantage in routine tasks

saw their wages decline compared to workers with a relative advantage in abstract and

manual tasks. Notably, these are “ex ante” effects that are predicted by talents measured

in high-school instead of actual experience in routine or non-routine tasks. Compared to

existing studies analyzing the effect of technology or international trade using panel data

(Cortes, 2016; Autor, Dorn, Hanson, and Song, 2014), this points to longer-run impacts

of such shocks beyond the current generation of workers. The only other studies that

have examined worker-level wages in the context of RBTC, and found broadly consistent

results, are Cortes (2016) and Acemoglu and Autor (2011).

The task prices were then used to bring RBTC’s effect on wages back to the aggre-

gate wage distribution. This is therefore the only paper in the literature that establishes

an explicit link between the actual predictions of RBTC theory and overall changes in

wage inequality. Theoretically, polarizing task prices do imply that upper-part inequality

should rise, but the effect on lower-part inequality is indeterminate. The empirical results
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suggest that the task price changes have led to a widening of inequality in the upper half

of U.S. males’ wage distribution and to a flattening of the lower half, but appear unable

to explain all of the increase that is observed in the bottom. This is consistent with em-

pirical evidence from other countries, where lower-half inequality did not narrow during

the same time period.

More generally, the new theoretical results from the Roy model and the Propensity

Method to estimate task prices are applicable beyond RBTC. For example, one may be

interested in rising international trade competition affecting different occupations and

industries (e.g., Autor, Dorn, Hanson, and Song, 2014), structural transformation across

sectors (Young, 2014), or the evolution of employment demand for specific industries

(Philippon and Reshef, 2012). Task prices are a very desirable quantity to obtain in such

contexts, since they can be employed to compute labor supply schedules, to disentangle

price and composition effects, to analyze effects on the overall wage distribution, and

because they are a major empirical implication in their own right. In light of these differ-

ent applications, an avenue of future research will be to extend the Propensity Method

for use in longitudinal data, so that individuals’ past task affiliations assume the role of

talents in the estimation.
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Appendix

A Proofs of Predictions 1-3

Sketch of Proof of Prediction 1. The change in average wages in task K can be split into a

price and a selection effect:

E(wi|IK(si, π1) = 1)−E(wi|IK(si, π0) = 1) = πK1−πK0 +E(sKi|IKi1 = 1)−E(sKi|IKi0 = 1)

While the (relative) prices πK1− πK0 may rise, the (relative) skills sKi selected into K may

fall, depending on the overall distribution of worker skills in tasks. This is the classic idea

of (changing) selection bias. In some cases overall change will be the inverse of the task

price change. Figure 1 Panel (b) gives such a case and a counterexample that there need

not be wage polarization in tasks (param. in Table 1).

Sketch of Proof of Prediction 2. Focus on the lower half of the wage distribution. Consider

manual task worker m and routine task worker r who are initially located at the 10th and

50th percentile of the wage distribution. For simplicity assume they do not switch tasks. If

they stay at their original quantiles, the relative change in the quantiles becomes ∆w10 −
∆w50 = 4πM −4πR > 0, that is, we observe wage polarization. However, suppose the

manual worker overtakes the routine worker (he benefits from the higher price change

for the manual task) and that they exchange positions in the wage distribution. In this

case the relative change in quantiles becomes ∆w10− ∆w50 = (wr1 − wm1)︸ ︷︷ ︸
-

+ (wr0 − wm0)︸ ︷︷ ︸
+

,

which is flatter and may even be negative. Figure 1 Panel (d) provides a counterexample

where the overall wage distribution does not polarize (parameters in Table 1).

Sketch of Proof of Prediction 3. Consider Equation (7) and suppose that 4πA ≥ 4πM >

4πR. Every worker who starts in the A task will stay there and gain 4πA. The stayers

in the routine task will gain the smaller 4πR. Even if they switch to the abstract or

the manual task, none of the routine workers will gain the full 4πA. These switchers

will rather gain a weighted average of 4πA (or 4πM) and 4πR (with nonzero weights

depending on how quickly they switch), which is strictly smaller than 4πA. However,

it is theoretically possible that R starters (even on average) have higher gains than either

A or M starters. For example, assume that 4πA > 4πM and that (some of) the initial

manual workers can only do the manual task, while (some of) the initial routine workers
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are (almost) indifferent between the routine and the abstract task. Then the wage gain of

the manual workers will be 4πM and of the routine workers (almost) 4πA.

B Details on the Derivation of Equations (7)–(12)

B.1 A Two Tasks Model for Illustration

First, another way of deriving Equation (7) without using the envelope theorem is illus-

trative: for simplicity consider a case with only two tasks, abstract and routine. Denote

the specific value of the relative task price that makes worker i indifferent between the

tasks as π̃i ≡ −(sAi − sRi). For brevity, the indicator for choosing the abstract task is

IAit ≡ IA(si, πt) = 1[πAt + sAi > πRt + sRi] = 1[πAt − πRt > π̃i] and the observed wage

is wit = wRit + IAit(wAit − wRit).

The change in i’s wage wi1 − wi0 when task prices change between t = 0 and t = 1 is

therefore (remember 4sAi = 4sRi = 0):

4wi = 4πR + IAi1(wAi1 − wRi1)− IAi0(wAi0 − wRi0)

= 4πR +



(πA1 − πR1)− (πA0 − πR0) = 4πA −4πR if IAi0 = 1, IAi1 = 1

πA1 + sAi − (πR1 + sRi) = πA1 − πR1 − π̃i if IAi0 = 0, IAi1 = 1

πR0 + sRi − (πA0 + sAi) = π̃i − (πA0 − πR0) if IAi0 = 1, IAi1 = 0

0 if IAi0 = 0, IAi1 = 0

(16)

= 4πR +
∫ πA1−πR1

πA0−πR0

IAitd(πAt − πRt), (17)

which is the two-task analog of (7). The step from (16) to (17) is an educated guess. Since

the wage gain in (16) depends on the relative price range for which worker i chooses the

abstract (IAit = 1) and routine (IAit = 0) tasks, respectively, this suggests an integral over

the indicator function.

Check whether (17) is correct: if the worker always chooses abstract, he gets 4πA

(first element of equation 16). If he never chooses abstract, he gets 4πR (fourth element

of Equation 16). If he switches from routine to abstract, he gets

4πR +
∫ π̃i

πA0−πR0

0d(πAt − πRt) +
∫ πA1−πR1

π̃i
1d(πAt − πRt) = 4πR + πA1 − πR1 − π̃i,

which is the second element of Equation (16). Equivalently, if he switches from abstract
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to routine, he gets the third element of Equation (16).

Hence, since within tasks the wage gain is constant, the overall gain for a specific

worker depends solely on the “distance” of the adjustment that the worker is still in the

routine (π̃i − (πA0 − πR0)) and already in the abstract (πA1 − πR1 − π̃i) task. Notice that

I never use the envelope theorem in this derivation. Also, the population distribution of

skills does not appear here, as Equation (17) describes only one single worker’s wage

change when task prices change.

Taking expectations conditional on xi in Equation (17) gives the two task version of

result (9), suppressing the it sub-index used in the maintext for brevity:

E(wi1|xi)− E(wi0|xi) = 4πR +
∫ πA1−πR1

πA0−πR0

pA(xi, πAt − πRt)d(πAt − πRt), (18)

where pA(xi, πAt − πRt) ≡ E[IAit|xi] = Pr[πAt + sAi > πRt + sRi|xi]. Remember that

sAi, sRi are a function of xi (Equation 8 is an example). Now consider the linear interpo-

lation (for brevity, π̃ARt ≡ πAt − πRt)

pA(xi, π̃ARt) ≈ pA(xi, π̃AR0) + [pA(xi, π̃AR1)− pA(xi, π̃AR0)]
π̃ARt − π̃AR0

π̃AR1 − π̃AR0
.

Plugging this interpolation into (18) and solving the integral yields the two task version

of Equation (12):

E(wi1|xi)− E(wi0|xi) = 4πR +
pA(xi, π̃AR1) + pA(xi, π̃AR0)

2
4(πA − πR)

B.2 The Three Tasks Model of the Main Text

This section now in detail derives the three task results from the main text using the

envelope theorem. In fact Equation (7) is a little more subtle for the three-task case than

the notation used in the main text reveals. For brevity, stick with the relative task price

and skill notation employed at the end of the previous section so that π̃KRt ≡ πKt − πRt

and s̃KRi ≡ sKi − sRi for Kε{A, M}. Holding constant π̃AR0 and π̃MR0 and integrating

Equation (6) from the main text with respect to πRt we get

wi|πR1,π̃AR0,π̃MR0 − wi|πR0,π̃AR0,π̃MR0 = 4πR.
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Similarly, integrating Equation (6) with respect to π̃ARt and π̃MRt but holding constant

{πR1, π̃MR0} and {πR1, π̃AR1}, respectively:

wi|πR1,π̃AR1,π̃MR0 − wi|πR1,π̃AR0,π̃MR0 =
∫ π̃AR1

π̃AR0

IA(s̃ARi, s̃MRi, π̃ARt, π̃MR0)dπ̃ARt

wi|πR1,π̃AR1,π̃MR1 − wi|πR1,π̃AR1,π̃MR0 =
∫ π̃MR1

π̃MR0

IM(s̃ARi, s̃MRi, π̃AR1, π̃MRt)dπ̃MRt,

where the notation IA(s̃ARi, s̃MRi, π̃ARt, π̃MR0) now makes explicit the dependence of

IA(si, πt) on relative skills and task prices (see also original Equation 3). Summing these

three expressions gives Equation (7) from the main text with more detailed notation:

4wi = 4πR +
∫ π̃AR1

π̃AR0

IA(s̃ARi, s̃MRi, π̃ARt, π̃MR0)dπ̃ARt +
∫ π̃MR1

π̃MR0

IM(s̃ARi, s̃MRi, π̃AR1, π̃MRt)dπ̃MRt.

Taking expectations conditional on xi gives Equation (9), again suppressing the it sub-

index from the maintext:

E(wi1|xi)− E(wi0|xi) =4πR +
∫ π̃AR1

π̃AR0

pA(xi, π̃ARt, π̃MR0)dπ̃ARt+

+
∫ π̃MR1

π̃MR0

pM(xi, π̃AR1, π̃MRt)dπ̃MRt, (19)

where

pA(xi, π̃ARt, π̃MR0) = Pr[s̃ARi > −π̃ARt, s̃ARi − s̃MRi > −(π̃ARt − π̃MR0)|xi],

and similarly for pM(xi, π̃ARt, π̃MRt). Remember that (relative) skills are a function of xi

(Equation 8 is an example).

Linearly interpolating (19) by (dependence on xi omitted for brevity)

pA(π̃ARt, π̃MR0) ≈ pA(π̃AR0, π̃MR0) + [pA(π̃AR1, π̃MR1)− pA(π̃AR0, π̃MR0)]
π̃ARt − π̃AR0

π̃AR1 − π̃AR0

pM(π̃AR1, π̃MRt) ≈ pM(π̃AR0, π̃MR0) + [pM(π̃AR1, π̃MR1)− pM(π̃AR0, π̃MR0)]
π̃MRt − π̃MR0

π̃MR1 − π̃MR0

gives Equation (12) from the main text. This contains another approximation on top

of the interpolation insofar that one might prefer using pA(xi, π̃AR1, π̃MR0) instead of

pA(xi, π̃AR1, π̃MR1) in the first approximation and pM(xi, π̃AR1, π̃MR0) instead of pM(xi, π̃AR0, π̃MR0)

in the second, which are not observable in the data. The Monte Carlo simulations in Sec-

tion 3.3 indicate that this is not a problem.
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C Monte Carlo Simulations with Potential Confounders

The second part of the Monte Carlo simulations examines to what extent the Propensity

Method is compromised when potentially confounding forces impact the wage distribu-

tion. A rigorous formal analysis of these confounders’ impact on the estimator is outside

the scope of this paper, so the Monte Carlos will be used to notify about potential threats

to identification and adjustments to the Propensity Method that may account for them.

I focus on three prominent such confounding forces here, rising returns to college, in-

creasing college attainment, and a changing minimum wage. Table 6 reports the results

of the Propensity Method with different adjustments, in order to save space only for the

large sample (to precisely assess any bias of the estimator) and multivariate normality of

the unobserved skills. The rest is the same as in Table 2.

The first two panels of Table 6 focus on changing returns to education, in particular

to college attainment. Including college as a skill modifies potential wages (1) to

wKit = πKt + sKi + λtci with Kε{A, R, M}. (1’)

ci is a college dummy for individual i and λt the time-varying return to college. Assume

first that ci may be a function of observable or unobservable talents, but that the selection

of talents into ci does not change over time (i.e., it is not a function of task prices πKt).

Then, Equation (12) becomes:

E(wi1 − wi0|xi) = 4πR + pA(xi)4(πA − πR) + pM(xi)4(πM − πR) + E(ci|xi)4λ (12’)

One way to estimate these parameters is an augmented propensities regression (13):

wit = α0 + α1 pA(xi) + α2 pM(xi) + α3 × 1[t = 1] + α4 pA(xi)× 1[t = 1]+ (13’)

+ α5 pM(xi)×1[t = 1] + α6ci + α7ci×1[t = 1] + ε it,

where the task prices are identified by α̂3 = 4̂πR, α̂4 = ̂4(πA − πR), α̂5 = ̂4(πM − πR)

again, and the change in the college premium by α̂7 = 4λ. The first panel of Table 6

reports the results of this estimation when college is assumed to be dependent on ob-

servables xi and some other random factors (e.g., credit constraints), but this relationship

is not changing between period 0 and period 1.34 The Table shows that not controlling for

34Specifically, I generate an index c∗ = f (x) + vc = 9.0xmath + 4.8xverb − 3.5xmech + vc with vc ∼
N (0, 1 ∗ s.d.[ f (x)]). The college indicator is set as c = 1[c∗ > Qc∗ (.75)], where Qc∗ (.75) is the 75th per-
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college overestimates the rising abstract task prices, because some of the rising college

premium is attributed to that task. Including college in the wage regression as in (13’)

solves this problem and also yields the correct college premium.

Table 6: Monte Carlo Simulations with College and Minimum Wage as Confounders

4πR 4(πA−πR) 4(πM −πR) 4λ
Confounder Adjustment (s.e.m.) (s.e.m.) (s.e.m.) (s.e.m.)

TRUE -15.0 40.0 50.0

Collg return rises No adjustment -12.36 (.48) 50.32 (.95) 48.39 (.72)

4λ = 20.0 2nd-stage collg -14.50 (.48) 40.60 (.97) 49.38 (.71) 21.36 (.85)

Collg return occ-spec 2nd-stage collg -14.59 (.48) 40.56 (.97) 49.40 (.72) 22.46 (.86)

& 4λ = 20.0 2nd-st collg X occ -13.47 (.48) 41.37 (.94) 49.62 (.70) 19.18 (.64)

Collg attnm rises No adjustment -14.30 (.48) 41.16 (.94) 49.30 (.72)

but λ1 = λ0 = 0 2nd-stage collg -35.26 (.50) 72.58 (.94) 51.21 (.73) -87.04 (.80)

Collg attnm rises No adjustment -2.98 (.48) 53.05 (.94) 46.52 (.72)

& 4λ = 20.0 2nd-st pred collg -1.27 (.01) 40.33 (.13) 49.35 (.95) -7.74 (.03)

Min. wage rises No adjustment -13.71 (.49) 39.23 (1.06) 75.97 (.70)

& no disempl. Latent wage distr -15.22 (.42) 39.73 (.94) 51.31 (.62)

Notes: The table reports the mean estimated task prices (100 iterations) under different confounding factors
and adjustments made to the Propensity Method in the sample with 40,000 individuals and normally dis-
tributed unobservables. The standard error of the mean estimate is shown in parentheses. For detail about
parametrization and the assumed confounders, refer to the text and footnotes.

It is realistic to assume that returns to college differ across tasks. The second panel

of Table 6 imposes that λKt = λK + λt, with λK highest in the abstract and lowest in

the routine task. This implies that workers gain from switching into tasks with higher

college returns over time.35 The second panel in Table 6 runs regression (13’) and an

augmented version, allowing for different college returns in levels αK6ci, Kε{A, R, M}. For

the purpose of identifying the task prices, regression (13’) performs well. The changing

returns to college are unsurprisingly overstated because of the gains from switching.

Regression (13’) also does not do worse considering the task prices than the version

centile of the c∗ distribution. This matches well the cross-sectional relationship between ci and xi in the
actual NLSY data. The college premium rises from λ0 = .2 to λ1 = .4.

35In particular, λA = .4, λR = 0, λM = .2, and 4λ = .2 as above. Complete flexibility of λKt is not allowed
because of the maintained assumption that the production of skills in tasks sKi is time-invariant and only
the task prices change (see Section 2.3). The gain for a (college) worker from switching is [(IAi1− IAi0)(λA −
λR) + (IMi1 − IMi0)(λM − λR)]ci.
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accounting for αK6ci. This indicates once more that correct modeling of wage levels in

(13) or (13’) is not important for estimating the changing task prices, and that including

college into the wage regression will suffice even when returns to college are task-specific.

The bigger challenge to the Propensity Method arises in the case of changing selection

into college over time. From now assume that ci is still dependent on xi but that more

individuals go to college in period 0 than in period 1.36 The model in the third panel of

Table 6 generates the (indeed plausible) case that the direct return to college is zero (λt =

0, tε{0, 1}), and that all of the positive and rising college wage premium found in the

data comes from it being associated with abstract tasks (i.e., the strict task model where

worker characteristics are not priced directly). Intuitively, not controlling for college as

in regression (13) should identify the correct task prices, because the true model return

to college is zero. This is confirmed in the table, but when controlling for college the

coefficient on 4(πAt − πRt) is severely upward-biased.37 Therefore, the college dummy

does not belong into the regression in this setting.

Of course, not including the college college dummy is also not an option when both,

selection into college and the returns to college λt, change over time (fourth panel of

Table 6). Neither controlling for college nor not controlling for college (not reported)

work here. It turns out that empirically modeling the relationship between ci and xi and,

just as with the task propensities, using predicted college ĉi(xi) identifies the relative

task prices correctly. The reason is that the relationship between ĉi(xi) and xi does not

change over time other than a level shift in ĉi(xi) from period 0 to period 1. However,

this depends on the assumed relationship between ci and xi here. In fact, additional

unreported simulations show that if the college dummy ci depends on unobserved skills

ui instead of xi, this identification breaks down, while regressions (13) and (13’) work.

My takeaway from these different settings is that the Propensity Method is at least partly

able to account for rising returns to college and attainment. What seems important is

to run both specifications, including and not including college, in regression (13) and

36Referring back to footnote 34, now c = 1[c∗ > Qc∗ (.75)] in period 0 and c = 1[c∗ > Qc∗ (.50)] in period 1.
37To see the difference between estimation of (13) and (13’) note that α̂4 =

cov(wi1,p̃(1)A (xi))

var( p̃(1)A (xi))
− cov(wi0,p̃(0)A (xi))

var( p̃(0)A (xi))

where p̃(t)A (xi) = p(t)A (xi)[1−
cov(p(t)A (xi),c

(t)
i )

var(c(t)i )
] is the residual of regressing p(t)A (xi) onto the college dummy

and the other regressors in (13’) (omitted for brevity). If, as is the case here, E(c(0)i |x
(0)
i ) 6= E(c(1)j |x

(1)
j ) with

x(0)i = x(1)j , then the comparability assumption 2 with a college regressor p̃(0)A (xi) 6= p̃(1)A (xj) is violated, al-

though without a college regressor p(0)A (xi) = p(1)A (xj) it is not. Intuitively, comparability is violated because

talent selection into the residual task propensity p̃(t)A (xi) changes between the two periods, which induces a
selection bias into α̂4.
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(13’) to see whether differences arise. Explicit modeling of the (endogenous) selection of

observable skills into college may also be able to deal with this threat. But it is beyond

the scope of this paper, which focuses on endogenous selection and changing returns to

tasks, not college.

The last type of confounder considered is an increase in the minimum wage. This is

of empirical relevance because the real minimum wage was raised substantially in the

beginning of the 1990s. I follow Lee (1999)’s work here. In period 0 wages are censored

at the 5th percentile of the overall wage distribution and in period 1 they are censored

at the 10th percentile (Case 1, “Censoring”: no spillovers, no disemployment in Lee, 1999).

Lee estimates the latent wage distribution before censoring and adjusts workers’ wages

below the 50th percentile to match that latent distribution. The simulations do the same,

assuming that the estimation recovers the true latent distribution. Note that workers

do not get back their individual latent wages, only the overall distribution is matched.

The last panel of Table 6 reports that the estimates for the manual task price change

are severely overstated without the adjustment. However, when the minimum wage is

correctly adjusted for, all the task price estimates are reasonably close to the truth again.

More intricate effects of the minimum wage, like cases 2 “Spillovers” and 3 “Truncation”

in Lee (1999), are beyond the scope of this paper.

D Detailed NLSY Sample Construction

I use data from the National Longitudinal Survey of Youth (NLSY) cohort of 1979 and

1997. The strength of the NLSY is that it provides detailed information about individuals’

background and test scores in addition to education and labor market outcomes.

Individuals’ labor market outcomes are evaluated at age 27 with the NLSY79 birth

cohorts of 1957–64 reaching that age in 1984–92 and the NLSY97 birth cohorts of 1980–

82 reaching it in 2007–09. Table 7 summarizes how the sample restrictions, attrition,

and labor market participation reduce the sample size from 6,403 to 3,054 and from

4,599 to 1,207 males in the NLSY79 and the NLSY97, respectively. I restrict the sample to

individuals who participated in the Armed Services Vocational Aptitude Battery of tests

(ASVAB) in the first survey year. This restriction is necessary because the ASVAB provides

measures of different dimensions of talent for each individual that are comparable over

the two cohorts.

The participation in ASVAB is substantially lower in the NLSY97 than the NLSY79
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Table 7: From the Full NLSY to the Analysis Sample

NLSY79 NLSY97
(Birthyears 1956-1964) (Birthyears 1980-1984)

Reason for exclusion
Total males 6,403 4,599
Excluded oversampled white and
older arrivers in U.S. than age 16 4,585 4,599
Birthyear > 1982 4,585 2,754

Type of attrition
Ought to be present with ASVAB
at age 27 4,585 2,754
No ASVAB excluded 4,299 2,081
% 94 76
Not present at age 27 excluded 3,939 1,737
% 86 63

Conditioned on working
Excluded who report no or
farm occupation, self-employed,
and those with no wage income 3,054 1,207

Notes: The table reports how the analysis sample is constructed from the full NLSY
1979 and 1997, and where observations are lost or need to be dropped.

where almost everyone participated.38 Moreover, sample attrition at age 27 is higher in

the NLSY97 than the NLSY79 and overall only 63 percent of the NLSY79 participated

in ASVAB and are also present at age 27. This problem is known (e.g. Altonji, Bharad-

waj, and Lange, 2012; Aughinbaugh and Gardecki, 2007) and the attrition and non-test-

participation rates in the data closely line up with those reported in the study by Altonji,

Bharadwaj, and Lange (2012, henceforth ABL). The only difference is that ABL consider

outcomes at the younger age of 22 and thus have slightly lower attrition rates.

In their paper, ABL note that the higher attrition rate in the NLSY97 may be partly

due to NLSY97 respondents being first interviewed at ages 12–16 versus ages 14–21 for

the NLSY79 and thus had more time to attrit. ABL further extensively examine the po-

tential non-randomness of attrition and non-test-participation and its likely impact in

38According to the NLSY97 technical sampling report (Moore, Pedlow, Krishnamurty, and Wolter, 2000),
nonrespondents to the ASVAB include ineligibles, refusals, breakoffs, and computer crashes, as well as
individuals who are too ill or handicapped or with a language barrier. Moore, Pedlow, Krishnamurty, and
Wolter (2000) find that this is higher among metropolitan youths, non-whites, males, and 16 year olds. They
argue that there is a substantial impact of nonresponse only if the proportion of nonrespondents is high
and if the differences between respondents and nonrespondents are high. Sampling weights, as used in
this study, can account for differences in response rates between observable characteristics like the ones
mentioned above.
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biasing important labor market outcomes. Aughinbaugh and Gardecki (2007) do a simi-

lar exercise but focus on social and educational outcomes. Both studies find evidence that

attrition is not random with respect to youths’ outcomes and their backgrounds. How-

ever, Aughinbaugh and Gardecki (2007) conclude that attrition from the NLSY97 does

not appear to affect inference when estimating the three outcomes at age 20 that they

are considering and ABL decide that the differences between non-attriters and the whole

sample are not forbidding.

Moreover, ABL carefully select the samples of NLSY79 and NLSY97 to make them

comparable to one another and compute weights that adjust for attrition and non-test-

participation on observable characteristics. I closely follow their procedures for construct-

ing my own sample.39 First, immigrants who arrived in the United States after age 16 are

excluded from the NLSY79. This is done because the scope of the NLSY97 (age 12–16)

also doesn’t include older than age 16 arrivals. Second, I exclude the economically dis-

advantaged whites and military supplemental samples from the NLSY79 because they

were discontinued early on in the survey and thus don’t provide labor market outcomes

at age 27 (or for ABL’s purposes). Table 7 reports that 1,818 observations are dropped

by making these restrictions to the sample. For each individual the observation that is

closest to 27 years and 6 months of age is retained and labor market and final educational

outcomes are measured from this observation.

ABL use a probit model to adjust the NLSY79 and NLSY97 base year sample weights

to account for attrition and non-test-participation according to several observable charac-

teristics, such as parental education, parental presence at age 14, indicators by birth-year,

urban and SMSA residence status, indicator variables for race and gender, and an inter-

viewer coded variable describing the attitude of the respondent during the interview. I

also employ a probit model to adjust weights for attrition and non-test-participation and

use the same specification and variables as ABL apart from leaving out parental presence

at age 14. Alternatively, a fully stratified set of indicators for birthyear, year, sex, and

race, as employed by the Bureau of Labor Statistics for weighting, yields very similar

results.40 As ABL do in their paper, I proceed from this point with the assumption that,

after attrition weighting, the two NLSY samples are representative of the population of

young Americans that they are supposed to cover. These samples have the size of 3,939

39Thus, for more information on the sample construction and for statistics on the effects of attrition,
please refer to ABL in addition to the description provided here. I would like to thank Prashant Bharadwaj
for providing me with their data and do-files.

40I thank Steve McClaskie and Jay Zagorsky for providing me with the official attrition-adjusted sample
weighting program for the NLSY.
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and 1,737 individuals in the NLSY79 and the NLSY97, respectively.

I follow Lemieux (2006), who uses CPS Outgoing Rotation Group data, in how I

compute wages and in defining the sample of working individuals (henceforth labor

supply). Hourly wages reported for the current main job are used and normalized to

1979 real values by adjusting with the PCE deflator provided by the St.Louis Federal

Reserve Bank.41 While Lemieux (2006) removes outliers with 1979 real hourly wages

below $1 and above $100, I remove the high wages from $40 onward because the NLSY

wage data is very inaccurate for values above this threshold.

Finally, in order to condition on working individuals, all individuals who report not

to be self-employed, and who are employed in a non-farm, non-fishing and non-forestry

occupation according to the Census 1990 three-digit occupation classification are left in

the sample. This leaves me with an analysis sample of 3,054 and 1,207 males in the

NLSY79 and NLSY97, respectively (compare table (7) again). As in Lemieux (2006), all of

those individuals are weighted by the number of hours that they work per week on top

of the sample weights that are adjusted for test-participation and attrition.

E An Alternative Dataset: the Census/ACS Sample

This section repeats the estimation of changes in task prices and the assessment of their

effect on the overall wage distribution in the Census/ACS sample. In addition, Acemoglu

and Autor (2011) have used the Census/ACS to examine the wage growth of starters in

abstract and manual tasks versus routine tasks similar to Section 5.1.

E.1 Data Construction and Identification Assumptions

The Census/ACS is from Section 5 of Acemoglu and Autor (2011)’s chapter in the Hand-

book of Labor Economics. Acemoglu and Autor construct a dataset of 16 to 64 year old

workers from the decennial censuses and the American Community Survey, which they

split into demographic cells indexed by education, age, and region.42 They then examine

the wage changes of the demographic cells in relation to their initial specializations in ab-

stract, routine, and manual tasks in 1959 separately by gender and by decade. The tasks

are again the broad occupation categories described in Section 4.1 of this paper. I focus on

41Source: “Personal Consumption Expenditures: Chain-type Price Index (PCECTPI)”, accessed 2012-8-14,
http://research.stlouisfed.org/fred2/series/PCECTPI

42Data are downloaded from David Autor’s website http://economics.mit.edu/faculty/dautor/data/
acemoglu, accessed 2014-12-15. Individuals need to report having worked last year but military and agricul-
tural workers are excluded.
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Acemoglu and Autor’s data for males here, while the results for females are summarized

in Appendix F. The labor market facts in the Census/ACS data are qualitatively similar

to the ones plotted in Figure 2 for the NLSY.43

The data from Acemoglu and Autor (2011) is an attractive complement to the NLSY

sample for the task price estimation because it alleviates a couple of concerns that one

might have with the NLSY. In the NLSY sample the analysis is conducted for the peri-

ods 1984–1992 versus 2007–2009. This may confound the effect of RBTC with the busi-

ness cycle, as the years 2008 and 2009 are part of the great recession. In contrast, in the

Census/ACS data, the task price changes can be estimated for the comparable period

1989–2007 as well as the separate sub-periods 1979–1989, 1989–1999, 1999–2007. Further,

the NLSY data is based on 27 year olds, while in the Census/ACS I can examine a large

and representative sample of all workers age 16–64 and compare the results.

The first-stage variation in the Census/ACS data are average abstract and manual

task propensities for 80 demographic cells, which, due to the large sample size, can be

computed non-parametrically as simple cell averages. Table 8 reports for each sample

year the shares among male employment of the underlying interacted five education,

four region, and four age groups. The table shows that male workers’ educational attain-

ment rises, that they are aging, and that they are moving to the South and West over

time. However, the regional and especially the educational trends appear quite mod-

est after 1989, which is consistent with the findings in Autor (2015), among others, that

young males’ educational attainment has increased remarkably little since the 1980s. The

changing overall age structure is predetermined by birth rates decades earlier and hardly

a reaction to RBTC. Therefore, these moderate trends may not necessarily indicate a crit-

ical violation of the comparability Assumption 2, especially for the estimation periods

after 1989.

In addition, inspection of Equation (13) reveals that adding a constant to the regres-

sors does not change the regression coeffients α4 and α5 (α3 is affected, though). This

allows for the following ad-hoc generalization of the comparability assumption:

Assumption 3 (Comparability-in-differences). Differences between individuals i and l with

43Figure 13c in Acemoglu and Autor (2011)’s paper shows that there was job polarization among males
in the Census/ACS data during 1989–2007. I reproduce this finding in my own computations (unreported).
I further find that wages in the manual and the routine task stagnate during 1989–2007, while wages in
the abstract task rise strongly. Therefore, there is again no clear evidence of wage polarization in tasks.
Figure 9 in Acemoglu and Autor (2011) shows that hourly wages polarized in an additional sample that
they construct from the CPS ORG during 1988–2008. Acemoglu and Autor (2011)’s Figure 9b is reproduced
in Panel (a) of Figure 5 below, and it is qualitatively comparable to the bottom panel of Figure 2 for 27 year
olds in the NLSY data.
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Table 8: Male Employment in the Census/ACS with Respect to Education, Age, and
Region by Year

1979 1989 1999 2007

Nbr of observations (’000) 2,589 2,834 3,158 667

Share of Education Group (%)
High School Dropout 25 15 13 12
High School Graduate 32 33 31 30
Some College 23 29 30 31
4 year College 12 15 17 18
Graduate Degree 7 8 9 9

Share of Age Group (%)
16-24 27 22 19 20
25-39 38 42 38 35
40-54 24 26 33 33
55-64 11 10 9 12

Share of Region (%)
Northeast 22 21 19 18
Midwest 27 24 24 23
South 32 33 35 35
West 19 21 22 23

Notes: The table shows education, age, and region groups’
shares of employment in the Census/ACS sample as con-
structed by Acemoglu and Autor (2011). A full interaction of
these groups yields 80 demographic cells for the task price esti-
mation.

the same vectors xit and xlt are comparable over time. That is, for all xi0=xi1 , xl0=xl1 (i0 6= i1 6=
l0 6= l1), the population distributions of relative unobservable skills between i and l, uKi0 − uKl0 =

δ′K(zi0 − zl0) and uKi1 − uKl1 = δ′K(zi1 − zl1), Kε{A, R, M}, are the same.

In addition, the relative task choice probabilities are also approximately constant over time.44

That is, for all xi0=xi1 , xl0=xl1 , and πtε{π0, π1},

pA(xi0 , πt)− pA(xl0 , πt) ≈ pA(xi1 , πt)− pA(xl1 , πt)

pM(xi0 , πt)− pM(xl0 , πt) ≈ pM(xi1 , πt)− pM(xl1 , πt).

As in Sections 3.1–3.2, a sub-index it indicates an individual i observed in the data

in t. Under Assumption 3, the correct relative task prices 4(πA − πR) and 4(πM − πR),

but not the level 4πR, can be identified from regression (13) even if the unobservable

44They need not be exactly constant, as the probabilities (10) are nonlinear functions of their arguments.
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skill selection into observable groups xit is changing over time.

To see this better, suppose workers with changing unobservable talent zit enter dif-

ferent education groups xit over time. The relative task price estimates from such data

may still be correct as long as the shifts in unobservable talent and task propensities

are similar across xit groups. For example, this is the case if all xit groups become

equally less skilled in abstract tasks over time (e.g., because the most talented of a given

education group become the least talented of the next higher education group), and

pA(xi1 , πt) ≈ pA(xi0 , πt) + cA01 for all xi0 = xi1 and cA01 < 0 (similarly for the manual

task).

Consistent with Assumptions 2 and 3, an instrumental variables strategy carried out

below, which removes potential unobservable talent selection effects from task propen-

sities, yields similar task price estimates as the baseline OLS specification. In another

robustness check, I directly control for education, age, and region main effects to exploit

only the differential variation across demographic cells with the same levels of these

variables. Again, the estimated task prices for the joint 1990s and 2000s, which are com-

parable to the NSLY and long enough for RBTC—if important—to dominate alternative

forces, hardly change.

To conclude, while the identification assumptions are somewhat more debatable in

the Census/ACS compared to the NLSY, it should still increase confidence in the results

if both datasets arrive at similar estimates.

E.2 Task Price Estimates and Effect on the Overall Wage Distribution

This section estimates the task price changes for all males in the Census/ACS over the

joint 1990s and 2000s as well as by decade. Their effect on the overall wage distribution

is also assessed.

Panel A in Table 9 reports task price estimates under the same baseline specification

as in row one of Table 5. During the 1980s (1979–1989), the prices for the routine as well as

the manual tasks declined substantially while the price for the abstract task increased. In

contrast, during the 1990s, manual task prices increased strongly and overall task prices

polarized. The trend then reversed in the 2000s before the great recession (1999–2007),

when only the price for the abstract task rose. This is in line with the findings in the

literature that, despite strong employment gains in the manual task, the bottom of the

wage distribution did not rise during this period (Acemoglu and Autor, 2011; Mishel,

Shierholz, and Schmitt, 2013).
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Table 9: Estimated Task Price Changes in the Census/ACS (Different Periods)

4(πA−πR) 4(πM −πR) 4πR
in log points (s.e.) in log points (s.e.) in log points (s.e.)

Panel A: 1979-1989 30.5 (4.6) -1.2 (17.9) -16.8 (3.2)
OLS on Demogr. Cells 1989-1999 17.6 (3.4) 54.2 (13.2) -8.5 (3.3)

(Baseline) 1999-2007 14.1 (2.8) -15.0 (10.0) -8.7 (2.2)

1989-2007 33.6 (3.2) 41.3 (11.2) -19.0 (2.4)

Panel B: 1979-1989 36.1 (4.8) 21.9 (19.2) -20.9 (3.4)
OLS on Demogr. Cells 1989-1999 16.5 (3.8) 51.6 (14.7) -7.9 (2.7)

(IV using 1959&69 Propnsts) 1999-2007 15.2 (3.1) -10.3 (11.4) -9.7 (2.5)

1989-2007 33.6 (3.4) 43.2 (12.8) -19.2 (2.7)

Panel C: 1979-1989 3.5 (19.9) 25.2 (21.4) -18.1 (5.7)
OLS on Demogr. Cells 1989-1999 23.8 (14.9) 23.8 (15.7) -3.8 (4.7)

(Educ, Age, Region Cntrls) 1999-2007 12.9 (8.2) 32.0 (10.0) -23.0 (3.3)

1989-2007 42.3 (16.0) 49.8 (19.0) -25.4 (6.2)

Panel D: 1979-1989 40.1 (4.5) 82.6 (17.5) -26.9 (3.1)
OLS on Demogr. Cells 1989-1999 16.4 (3.4) 42.0 (12.7) -7.1 (2.5)
(Adj. for min. wage) 1999-2007 14.7 (2.8) -9.9 (10.0) -9.5 (2.2)

1989-2007 33.0 (3.2) 34.3 (11.0) -18.1 (2.4)

Notes: Panel A of the table presents estimated task price changes for the baseline Propensity Regression (13)
in different time periods. Panel B instruments the task propensities with their values from before the sample
period (1959 and 1969). Panel C controls for education, age, and region main effects. Panel D reports baseline
estimates when wages are first adjusted for the change in the real value of the minimum wage as in Lee
(1999). Standard errors in parentheses next to the coefficients.

The last row of Panel A reports the results for the joint 1990s and early 2000s (1989–

2007), which is broadly comparable to the period examined in the NLSY sample without

the great recession part. During that period, task prices overall polarized substantially

and by about one third more strongly than in the NLSY sample. That the effect is stronger

for the Census/ACS seems plausible, since the on average more experienced workers in

that sample are probably less able to adjust their tasks than the young workers in the

NLSY. In addition, the effects on all task prices are now clearly statistically significant.

If the comparability-in-differences Assumption 3 were violated in Panel A of Table 9,

the changing unobservable talent selection into a given education-age-region cell would

lead to counterfactual task propensities that deviate systematically from the actual task

propensities that they are supposed to capture. The instrumental variables estimation

in Panel B extracts good variation from the task propensities, removing some potential
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bad variation that is due to changing selection of unobservable talent into education-age-

region cells. Practically, I instrument for all pK(xi, πt) using occupational propensities in

the periods before the estimation sample (1959 and 1969), which leads to regressors en-

tering Propensity Regression (13) that contain the time-invariant comparative advantage

of xi cells in the abstract and manual tasks.45 With the exception of the manual task in

the 1980s, the task prices in Table 9, Panel B are close to those in Panel A. This suggests

that differentially changing unobservables selection into education-age-region cells does

not play a large role in the estimates of Panel A, and that comparability-in-differences

may not be critically violated in the Census/ACS data.

Panel C of Table 9 reports a different robustness check for the task price estimates,

controlling for education, age, and region main effects. The identifying variation that is

left with these controls are the differential task propensities across demographic cells for

given levels of education, age, and region. Therefore, this specification removes violations

of the comparability-in-differences assumption that occur due to overall shifts in the de-

mographic composition of the population. It also removes the effects of alternative forces

to RBTC that are based on across-the-board changing demand for specific education, age,

or region groups (e.g., SBTC).

A limitation of this specification is that, with the main effects included, there is not

a lot of variation remaining for identification. This is reflected in the first three rows of

Panel C, where the relative task prices are insignificant for all but one of the decadal

changes (qualitatively, task prices still polarize during the 1990s). However, it is support-

ive of Panels A and B that the task price estimates for the long period of 1989–2007, where

the impact of RBTC should dominate alternative forces in the data, are similar and re-

main statistically significant. Consistent with these arguments, a Hausman test does not

reject the restricted estimation model (Panel A) against the unrestricted model (Panel C)

in any of the four periods (details available upon request).

45For example, in the case of the abstract task under t = 0 prices, a violation of assumption 3 implies that

pA(x(1)i′ , π0) = pA(x(0)i , π0) + cA01 + g(x(0)i , x(1)i′ ), where x(1)i′ = x(0)i and g(.) is a mean-zero non-constant
function. Further, when the abstract task price increases from t = 0 to t = 1, workers with a given xi should

become more likely to enter that task. Formally, pA(x(t)i , π1) = f (pA(x(t)i , π0)), with f ′(.) ≥ 0. Assuming
f (.) to be approximately linear obtains the actual t = 1 task propensity as a weighted sum of the actual t = 0

task propensity and a systematic error due to changing unobservable talent selection into x(t)i over time,

pA(x(1)i′ , π1) ≈ φ1 + φ2 pA(x(0)i , π0) + φ3g(x(0)i , x(1)i′ ) with φ2 ≥ 0.

The instrumental variables estimation in Panel B of Table 9 extracts good variation φ̂1 + φ̂2 pA(x(0)i , π0) from

the propensity pA(x(1)i , π1), removing some of the φ3g(x(0)i , x(1)i′ ) variation that is due to changing selection
of unobservable talent into education-age-region cells.
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The last Panel of Table 9 reports the task price estimates when wages are adjusted for

the increase in the real value of the minimum wage analogous to row five in Table 5. As

in that latter table, the adjustment for the real value of the minimum wage does not have

a large effect on the task price estimates for the 1990s and 2000s. The only difference is

the changing and high increase of the manual task price during the 1980s. This may be

related to Lee (1999)’s finding that the wage distribution (for males and females) would

have polarized during the 1980s without the decline in the real value of the minimum

wage.46

Overall, there exists quite robust evidence for task price polarization over the joint

1990s and 2000s in the Census/ACS, too. This result substantiates RBTC’s importance

during that period beyond the existing, and at first glance partly contradicting, evidence

on the occupational and overall wage distributions (see discussion in Section 2.2). It also

lends support to the estimation method for task prices, which derives its identification

from the interplay between workers’ sorting into tasks and their wage growth.

Finally, I assess the effect that changes of task prices in the Census/ACS may have

had on aggregate wage inequality. As in Equation (15), a predicted wage distribution is

generated by assigning every worker the price estimate for his initial task. In Panel (a) of

Figure 5, I use the task price estimates from the baseline specification in Table 9 to plot the

predicted wage distribution into Figure 9b of Acemoglu and Autor’s Handbook chapter

(Figure 9b uses CPS data for males of all ages and the period is 1988–2008 while the task

price estimates are from the Census/ACS for 1989–2007). The resulting predicted wage

distribution closely follows the actual at the top, in the middle, and almost to the lower

end of the distribution. Only at the very bottom is the predicted wage distribution again

lower than the actual as for the 27 year olds. Adjusting for the increase in the minimum

wage analogous to Panels (c) and (d) of Figure 4, closes part of this gap in the bottom

(Figure 5, Panel b).

In the Census/ACS, task prices’ contribution to the evolution of the wage distribution

can also be examined by decade. Using the estimates for the sub-periods in Panel A of

46More generally, the task price estimates for the 1980s are quite sensitive to the different specifications in
Panels A–D of Table 9. This could be due to a couple of forces that may have compromised comparability-in-
differences or worked aside from RBTC during that period. First, the substantial decline in the real value of
the minimum wage seems to be responsible for the difference between Panels A and D. In addition, previous
literature has found a strong influence of SBTC on wages and a rapidly rising college premium during the
1980s (e.g., Acemoglu and Autor, 2011). This may have affected the labor market separate from RBTC,
leading to the difference between Panels A and C. Educational attainment also rose rather substantially
during the 1980s (see Table 8). This may have changed the unobservable talent composition within education-
age-region cells and affected the comparison between Panels A and B.
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Figure 5: Actual and predicted change in the wage distribution due to Census/ACS task
prices (with and without adjustment for minimum wage and by decade)

(a) CPS (as in Acemoglu and Autor, 2011, Figure 9b)
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Table 9, I plot the actual and the predicted distributions for all males in 1979–1989, 1989–

1999, and 1999–2007. During the 1980s, the fit is decent (Figure 5, Panel (c)). Inequality

rises across-the-board in the predicted as well as the actual wage distribution, with the

predicted dropping less in the very bottom and rising somewhat less between the 50th

to 90th percentile. During the 1990s and the 2000s, the fit is good. In both the actual and

the predicted distribution, wages are polarizing in the 1990s and the two lines essentially

overlap everywhere except the very bottom. In 1999–2007, both, the actual and the pre-

dicted wage distribution, are largely flat up to the 60th percentile, after which they grow

continuously together. Therefore, the task prices by themselves do well in explaining the

polarization of the wage distribution by decade and overall during the 1990s and 2000s

before the great recession.

F Task Price Estimates for Females

This section reports the task price estimates for females. As in the main text, regres-

sion 13 is run on predicted task probabilities from a first-stage multinomial logit in the

NLSY sample and on actual choice frequencies for discrete demographic cells in the

Census/ACS sample.

Table 10 reports the results. In the first row of Panel A the task prices for 27 year old

females between the NLSY79 and the NLSY97 move in the opposite direction of what is

predicted by RBTC. The relative price for the abstract and manual task fall substantially,

while the price for the routine task rises. The same happens when college dummies are

controlled for in the second stage wage regression (second row of Panel A).

The reason for this unexpected result should be that the identification Assumptions

1–3 are violated or that RBTC is dominated by other forces for females. One identification

violation that was already mentioned in the main text is on the first-stage Assumption

1, as in the (unreported) multinomial logit regression the mechanical talent for females

is unrelated to task choice in the NLSY79, but it predicts that the abstract task will not

be chosen in the NLSY97. Therefore, the three talents do not strongly and consistently

predict task choices in the two NLSYs for females.47 Row three of Panel A supports this

suspicion, as the direction of the task price estimates reverses and moves in the initially

expected direction when a college dummy is included in the first-stage choice regression.

Overall, the results on the task prices in the NLSY are therefore inconclusive.

47The pseudo R-squared in the choice regressions for females is also substantially lower than for males in
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Table 10: Estimated Task Prices in the NLSY and Census/ACS Sample—Females

4(πA−πR) 4(πM −πR) 4πR
in log points (s.e.) in log points (s.e.) in log points (s.e.)

Panel A (NLSY): Baseline -52.9 (21.4) -88.7 (38.8) 48.7 (14.1)
1984/92 to 2007/09 2nd-stage college -60.6 (21.1) -53.9 (36.5) 36.9 (13.2)

1st-stage college 19.1 (15.1) 26.9 (32.8) -2.1 (10.9)

Panel B (Census/ACS): 1979-1989 12.5 (5.2) -28.6 (12.0) 2.2 (3.5)
OLS on Demogr. Cells 1989-1999 4.8 (3.5) 2.2 (8.1) 8.2 (2.6)

(Baseline) 1999-2007 1.5 (4.2) -23.4 (8.9) -0.8 (3.3)

1989-2007 6.2 (5.2) -23.4 (11.4) -7.4 (4.0)

Panel C (Census/ACS): 1979-1989 14.8 (13.4) 12.1 (15.6) -8.4 (6.0)
OLS on Demogr. Cells 1989-1999 -2.8 (12.4) -25.3 (14.0) 15.5 (5.9)

(Educ, Age, Region Cntrls) 1999-2007 -23.5 (9.7) -43.6 (9.3) 6.8 (4.6)

1989-2007 -17.3 (16.2) -63.3 (16.1) 19.6 (7.5)

Notes: Panel A of the table presents estimated task price changes for females in the NLSY sample. The
two rows correspond to the specifications reported in the first two rows in Table 5 for males. The third
row includes a college dummy into the first-stage choice regression. Panels B and C present task price
change estimates in the Census/ACS sample for females baseline and with main effects for education,
age, and region category, respectively. These correspond to Panels A and C of Table 9 for males. Standard
errors in parentheses next to the coefficients.

Panels B and C of Table 10 report the results for females in the Census/ACS sample,

which are again not clearly supportive of RBTC. First, the estimated relative price of

the abstract task rises by around 12–15 log points during the 1980s, but it stagnates

(Panel B) or even falls when controlling for main effects (Panel C) in the 1990s and 2000s.

Moreover, the relative price for the manual task falls substantially in both specifications

over the last two decades. Only in the 1980s, when controlling for main effects in Panel C,

do the estimated relative prices for the abstract and the manual task rise as is predicted

by RBTC.48

The results reported for females in Table 10 as well as for males in Table 9 are in line

with Acemoglu and Autor (2011). Using the same data as in Table 10 Panels B and C,

Acemoglu and Autor (2011) find that, while for males initial specialization in abstract

and manual tasks predicts higher wage growth over the last decades, the results for

females are rather inconclusive. As explained in Section 4.1, the author’s view is that this

is because the demand and supply of skills for females has changed quite drastically for

reasons which come on top of RBTC or which even dominate it during this period.

Table 12.
48All of the task price estimates in panels A–C are similar when adjusting for the change in real value of

the minimum wage as in the main text.
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G Additional Tables and Figures

Table 11: Male Employment in the NLSY with Respect to Average Demographics, Early,
and Contemporary Skill Determinants

NLSY79 NLSY97

Nbr of observations 3,054 1,207
Percentage of observations 71.60 28.40

Demographics
Age 27.00 27.00
White 0.80 0.72
Black 0.13 0.14
Hispanic 0.06 0.14

Early skill determinants
AFQT 167.31 167.65
Low AFQT Tercile 0.34 0.33
Middle AFQT Tercile 0.33 0.34
High AFQT Tercile 0.33 0.32

Math Score (NCE) 50.45 50.73
Verbal Score (NCE) 50.26 50.49
Mechanical Score (NCE) 50.41 50.69

Illicit Activities (NCE, Measured 1980) 49.98 50.01
Precocious Sex (NCE, Measured 1983) 49.91 50.24

Mother’s Education (Years) 11.86 13.11
Father’s Education (Years) 10.83 13.09

Contemporary skill determinants
High School Dropout (HSD) 0.12 0.07
High School Graduate (HSG) 0.43 0.58
Some College (SC) 0.20 0.06
College Graduate (CG) 0.19 0.24
Advanced Degree (AD) 0.06 0.04

North East 0.22 0.17
North Central 0.29 0.25
South 0.32 0.35
West 0.17 0.21

Notes: The table shows average demographics and skill prox-
ies in the NLSY79 and NLSY97 for all males weighted by hours
worked. NCE indicates variables in the population (including
non-workers) are standardized to “normal curve equivalents”
with mean 50 and standard deviation 21.06. This is done when
absolute values of these variables cannot be compared over the
two cohorts.
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Table 12: Sorting into Tasks in the NLSY, Multinomial Logit Regressions

(1) (2) (3) (4)
NLSY79 NLSY79 NLSY97 NLSY97

Abstract
Constant -4.024* -1.710* -3.176* -1.384*
Black 0.235 0.159 -0.152 -0.106
Hispanic 0.03 -0.031 -0.472 -0.456

Math (NCE) 0.047* 0.034*
Verbal (NCE) 0.023* 0.032*
Mechanic (NCE) -0.014* -0.019*

Middle Math Tercile 1.144* 0.441
High Math Tercile 2.315* 1.426*
Middle Verbal Tercile 0.207 0.670*
High Verbal Tercile 0.750* 1.445*
Middle Mechanic Tercile -0.269 -0.258
High Mechanic Tercile -0.552* -0.618*

Illicit Activities (NCE) -0.009* -0.003
Precocious Sex (NCE) -0.004 -0.006

Manual
Constant -1.689* -1.608* -1.339* -2.053*
Black 0.636* 0.762* 0.473* 0.658*
Hispanic 0.201 0.243 -0.216 -0.114

Math (NCE) -0.002 -0.009
Verbal (NCE) 0.018* 0.021*
Mechanic (NCE) -0.023* -0.017*

Middle Math Tercile -0.381* -0.07
High Math Tercile 0.128 -0.395
Middle Verbal Tercile 0.342 0.27
High Verbal Tercile 0.471 0.790*
Middle Mechanic Tercile -0.319 -0.281
High Mechanic Tercile -0.908* -0.608

Illicit Activities (NCE) -0.002 0.013
Precocious Sex (NCE) -0.003 -0.003

Pseudo R-Squared 0.132 0.123 0.114 0.112
N 2936 2936 1210 1210

Notes: Each column presents the results from a multinomial logit re-
gression of task choice on demographics and talent proxies. The omitted
group is the routine task. The first column uses only linear test scores in
the NLSY79. The second column, which is the specification to estimate
task propensities in the following, uses terciles of test scores and adds
measures of risky behavior. The last two columns repeat these estima-
tions for the NLSY97. Not to overload the table, significance at the five
percent level is indicated by a single *.
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Figure 6: Representation of Tasks in the Wage Distribution, 1979 Cohort

(a) NLSY, males age 27
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(b) CPS, males age 27
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Notes: The figure plots the smoothed employment share of the manual, routine, and abstract tasks within
the quantiles of the wage distribution. Smoothing is done using the predicted values from a fourth order
polynomial regression of the employment shares on the quantiles.

Figure 7: Smoothed predicted change in the wage distribution due to changing task
prices, flexible and fixed quantiles

(a) NLSY, males age 27
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(b) CPS, males age 27
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Notes: The solid line depicts the predicted change in log real wages along the quantiles of the wage distri-
bution due to estimated changes in task prices. The dashed line depicts the same predicted change when
individuals are fixed at their original quantiles in the wage distribution. The lines are smoothed because
for the predicted under fixed quantiles the individuals who correspond to these quantiles exclusively deter-
mine their change. This would make the predicted change very spiky. Smoothing is done using the predicted
values from a fourth order polynomial regression of average wage changes on the quantiles.
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