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Dynamics of Assimilation*

We consider a model where each individual (or ethnic minority) is embedded in a network 

of relationships and decides whether or not she wants to be assimilated to the majority 

norm. Each individual wants her behavior to agree with her personal ideal action or norm 

but also wants her behavior to be as close as possible to the average assimilation behavior 

of her peers. We show that there is always convergence to a steady-state and characterize 

it. We also show that different assimilation norms may emerge in steady state depending 

on the structure of the network. We then consider the role of cultural and government 

leaders in the assimilation process of ethnic minorities and an optimal tax/subsidy policy 

which aim is to reach a certain level of assimilation in the population.

JEL Classification: D83, D85, J15, Z13

Keywords: assimilation, networks, social norms, peer pressure, 
cultural leader

Corresponding author:
Yves Zenou
Department of Economics
Monash University
Caulfield East VIC 3145
Australia

E-mail: yves.zenou@monash.edu

* We thank Carlos Bethencourt Marrero, Benjamin Golub and Theodoros Rapanos for helpful comments.



1 Introduction

In his book, Assimilation, American Style, Salins (1997) argues that an implicit contract

has historically defined assimilation in America. As he puts it: “Immigrants would be

welcome as full members in the American family if they agreed to abide by three simple

precepts: First, they had to accept English as the national language. Second, they were

expected to live by what is commonly referred to as the Protestant work ethic (to be self-

reliant, hardworking, and morally upright). Third, they were expected to take pride in their

American identity and believe in America’s liberal democratic and egalitarian principles.”

Though hardly exhaustive, these three criteria certainly get at what most Americans consider

essential to successful assimilation.

The same issues have been discussed and debated in Europe, especially over recent

decades. According to the 2016 Eurostat statistics, 20.7 million people with non-EU citizen-

ship are residing in the European Union. Additionally, 16 million EU citizens live outside

their country of origin in a different Member State. Migration movements are on the rise

both within and from outside the European Union.

The key to ensuring the best possible outcomes for both the migrants and the host coun-

tries (both in the European Union and the United States) is their successful integration and

assimilation into host countries.1 However, assimilation is often fraught with tension, com-

petition, and conflict. There is strong evidence showing that family, peers and communities

shape the individual assimilation norms and, therefore, affect assimilation decisions. In par-

ticular, there may be a conflict between an individual’s assimilation choice and that of her

peers and between an individual’s assimilation choice and that of her family and community.

For example, an ethnic minority may be torn between speaking one language at home and

another at work.

In this paper, we study how these conflicting choices affect the long-run assimilation

behaviors of ethnic minorities and how policies and economic incentives can affect these

assimilation decisions.

We consider a model where each individual (or ethnic minority) is embedded in a directed

1Different countries have different views on the integration of immigrants. Certain countries, such as
France, consider it to be a successful integration policy when immigrants leave their cultural background
and are “assimilated” into the new culture. Other countries, such that the United Kingdom, consider that
a successful integration policy is that immigrants can keep their original culture while also accepting the
new culture (or at least not rejecting it). In this paper, we will focus on the role of “assimilation” in the
“integration” of ethnic minorities. However, assimilation can be defined as in Salins (1997) or in a broader
way such as, for example, by the economic success of the individuals. For example, some groups such as
the Chinese in the United State or in Europe, because of their economic success, can be considered as
“assimilated” even if they do not interact too much with people from the majority culture.
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network of relationships and where peers are defined as outdegrees. Each agent decides how

much she wants to assimilate to the majority norm. At time t, this decision, denoted by

action xti for individual i, is continuous and is between 0 (no assimilation at all) and 1

(total assimilation). Each individual i wants to minimize the distance between xti and the

average choice of individual i’s direct peers (i.e. i’s social norm) but also between xti and i’s

assimilation norm at time t, denoted by sti. At time t + 1, the latter is determined for each

individual i by a convex combination of xti and sti. In this framework, we study the dynamics

of both assimilation choice xti and norm sti and their steady-state values. Basically, this is a

coordination game with myopic best-reply dynamics where, in each period, the agents select

best responses to last-period actions.

First, we provide a micro foundation of the DeGroot model (see DeGroot (1974)) by

embedding agents with a utility function that captures both their desire to conform to the

average action of their peers and to be consistent with their own social norm. We show

that, in order to study the dynamics of the individual norms, it suffices to look at the

(row-normalized) adjacency matrix of the network even though the process of assimilation

is described by a more general matrix. We also show that convergence always occurs, inde-

pendently of the network structure. We characterize the steady-state individual norms and

show that they depend on the initial norms (at time t = 0) and on the individual position in

the network. In particular, we demonstrate that, if an individual belongs to a closed com-

munication class, then her steady-state assimilation norm will be a weighted combination of

the initial norms of all agents belonging to the same communication class, where the weights

are determined by the eigenvector centrality of each agent. If an agent does not belong to

any closed communication class, her steady-state assimilation norm will be determined by a

weighted combination of the steady-state norms of the agents in the closed communication

classes for which she has links or paths to.

In this framework, we can explain why individuals from the same ethnic group can

choose to adopt oppositional identities, i.e. some assimilate to the majority culture while

others reject it.2 Indeed, some people may reject the majority norm because they live in

closed communities that do not favor assimilation and because some of their members (for

example, cultural leaders) have a strong influence on the group. In the terminology of

our model, these are individuals who have a key position in the network, i.e. who have a

high eigenvector centrality. On the contrary, other individuals from the same ethnic group

2 Studies in the United States have found that African American students in poor areas may be ambivalent
about learning standard English and performing well at school because this may be regarded as “acting white”
and adopting mainstream identities (Fordham and Ogbu (1986); Wilson (1987); Delpit (1995); Ogbu (1997);
Ainsworth-Darnell and Downey (1998); Fryer and Torelli (2010); Patacchini and Zenou (2016)).
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or religion may want to be assimilated because their communities are not isolated or, if

they are isolated, their social norms are in favor of assimilation. Our model shows that

these two types of behaviors can arise endogeneously in the steady-equilibrium, even for ex

ante identical individuals, i.e. individuals with exactly the same characteristics. The key

determinant of these assimilation choices is their position in the network and the (initial)

social norms of the persons they are connected to.

Second, we show that the steady-state assimilation actions of individuals are equal to

their steady-state assimilation norms so that, in steady-state, for each agent, the distance

between her action and that of her peers is equal to zero and the distance between her action

and her own norm is also equal to zero. This implies that total welfare is maximized in the

steady-state equilibrium. This is not true at any period t outside the steady state where

individuals choose actions different from their social norms.

Third, when we introduce a cultural leader (such as, for example, an Imam for the

Muslim community) who is “stubborn” i.e. he is not influenced by any external opinion,

then the assimilation rate of all ethnic minorities in the network will converge to the cultural

leader’s beliefs. We then introduce a government leader (a secular institution such as the

government who promotes the cultural norm of the host society) who is also “stubborn”

and wants ethnic minorities to assimilate to the majority’s norm. Since there is competition

between the cultural and the government leader, we determine which person in the network

the government leader wants to connect to in order to undermine the role of the cultural

leader. We show that government leader will pick an individual who has a low degree but a

high Katz-Bonacich centrality.

Fourth, we demonstrate that the speed of convergence of the individual norms depends

not only on the second largest eigenvalue of the adjacency matrix but also on the taste for

conformity and on the weight put on the impact of past assimilation decisions on current

individual norms.

Fifth, we show that our results depend on the way peers or links in the network are

defined. If, for example, peers are defined as indegrees and not as outdegrees, then the results

change dramatically because the definition of closed communication classes are modified. The

same reasoning applies if peers are defined as mutual friends. These results are particularly

important for empirical applications.

Sixth, we generalize our utility function by introducing idiosyncratic economic incentives

for assimilation via ex ante heterogeneity, which is defined as the marginal benefits of exerting

action xti. We propose a new way of calculating the steady-state norms and actions and show

that they do not depend on initial norms but on the ex ante heterogeneity of each agent,
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the taste for conformity, and the position in the network.

Finally, we derive some policy implications of our model with this generalized utility

function. We determine the optimal of tax/subsidiy that needs to be given to each agent in

order to reach a certain degree of long-run assimilation. For example, if the objective is that

all ethnic minorities much reach an assimilation level of at least 50 percent, then we are able

to calculate the level of tax/subsidiy given to each agent, which depends on her marginal

benefits of assimilation and her position in the network.

The rest of the paper unfolds as follows. In the next section, we relate our paper to the

relevant literature. In Section 3.1, we describe the benchmark model while, in Section 3.2,

we study the dynamics of individual norms. Section 3.3 is devoted to the steady-state assim-

ilation choices and welfare while Section 3.4 considers the role of cultural versus government

leaders. Section 3.5 studies the speed of convergence of individual norms whereas, in Section

3.6, we revisit our results when peers are defined as indegrees and as mutual friends. In

Section 4, we consider a more general utility function where the ex ante heterogeneity of all

individuals is introduced. Section 4.1 determines the steady-state equilibrium while Section

4.2 studies the policy implications of this model. In Section 5, we propose other applications

of our model. Finally, Section 6 concludes. In the Appendix, we provide the proofs of the

results in the main text. We have created a not-for-publication Online Appendix. In the On-

line Appendix A, we provide some standard results in linear algebra. In the Online Appendix

B, we study the convergence results for any possible network. In the Online Appendix C,

we provide the proof of equation (14). Online Appendix D gives a detailed analysis of the

speed of convergence in the benchmark model while Online Appendix E explores the impli-

cations in terms of assimilation of defining peers in different ways. Finally, Online Appendix

F provides the proofs of all results stated in the Online Appendix.

2 Related literature

We now relate our paper to two main literatures where network effects matter.3

2.1 Diffusion and learning in networks

There is an important literature on diffusion and learning in networks.4 Our paper is more

related to the repeated linear updating (DeGroot) models and, in particular, to the papers

3For overviews on the economics of networks, see Jackson (2008), Benhabib et al. (2011), Ioannides
(2012), Jackson (2014), Jackson and Zenou (2015), Bramoullé et al. (2016) and Jackson et al. (2017).

4For a recent overview of this literature, see Golub and Sadler (2016).
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by DeGroot (1974), DeMarzo et al. (2003), Golub and Jackson (2010, 2012). These papers

propose a tractable updating model and provide conditions on the network topology under

which there is convergence of opinions and characterize the steady-state solutions. There

have been different extensions of the standard DeGroot model (see the overview by Golub

and Sadler (2016)) and some microeconomic foundations using myopic best-reply dynamics.

With respect to this literature, we have the following contributions: (i) We microfound

the DeGroot model and show the long run equivalence between the adjacency matrix of the

network and the real matrix driving the dynamics. Our microfoundation generalizes that

of Golub and Jackson (2012), who considers a model where agents minimize the distance

between own action and that of their peers.5 (ii) We study the welfare properties of the

steady-state equilibrium and study a model where a cultutal and a government leader with

conflicting objectives compete in order determine the steady-state level of assimilation of

each individual in the network. (iii) We calculate the speed of convergence of norms and

actions and show that the process can be slower or faster than that of the standard DeGroot

model (Golub and Jackson (2012)) depending of some key parameters of the model. (iv)

We show that depending on the definition of peers, the convergence of norms and actions

can dramatically differ. (v) We introduce a more general utility function where ex ante

heterogeneity (the marginal benefit of each action is specific to each individual) is explicitly

modeled and propose a new methodology to determine the convergence of norms and actions

of all individuals in any given network. We also study the policy implications of this model.

2.2 Assimilation of ethnic minorities: the role of networks and

cultural leaders

Assimilation of minorities in a given country is an important research topic in social sciences,

in general, and in economics, in particular (see e.g. Brubaker (2001), Schalk-Soekar et al.

(2004), Kahanec and Zimmermann (2011), Algan et al. (2012)). The standard explanations

of whether or not immigrants assimilate to the majority culture are parents’ preferences for

cultural traits (Bisin and Verdier (2000)), ethnic and cultural distance to the host country

(Alba and Nee (1997), Bisin et al. (2008)), previous educational background (Borjas (1985)),

country of origin (Beenstock et al. (2010), Borjas (1987), Chiswick and Miller (2011)), and

discrimination against immigrants (Alba and Nee (1997)).

However, despite strong empirical evidence, very few papers have studied the explicit

5Friedkin and Johnsen (1999) propose a learning model that bears some similarities with our model but
is more specific and is a particular case of our model.
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impact of social networks and social norms on the assimilation outcomes of ethnic minorities

and the role of cultural leaders.

2.2.1 The role of social networks in the assimilation of ethnic minorities

From an empirical viewpoint, there is a literature that looks at the impact of social networks

on the assimilation choices of immigrants and ethnic minorities. To capture network effects,

most economic studies have adopted ethnic concentration/enclave as the proxy for networks

of immigrants in the host country (e.g. Damm (2009); Edin et al. (2003)). Other studies

have used language group or language proficiency (Bertrand et al. (2000); Chiswick and

Miller (2002)). The effects on assimilation are mixed. For example, Bertrand et al. (2000)

and Chiswick and Miller (2002) showed that linguistic concentration negatively influenced

immigrants’ labor market performance in the US. In contrast, Edin et al. (2003) find that by

correcting for the endogeneity of ethnic concentration, immigrants’ earnings in Sweden were

positively correlated with the size of ethnic concentration. Similar results were obtained by

Damm (2009) for Denmark and Maani et al. (2015) for Australia.

Other papers have measured the network more directly. Gang and Zimmermann (2000)

show that ethnic network size has a positive effect on educational attainment, and a clear

pattern is exhibited between countries-of-origin and education even in the second generation.

Using the 2000 U.S. Census, Furtado and Theodoropoulos (2010) study whether having

access to native networks, as measured by marriage to a native, increases the probability of

immigrant employment. They show that, indeed, marriage to a native increases immigrant

employment rates. Mouw et al. (2014) use a unique binational data on the social network

connecting an immigrant sending community in Guanajuato, Mexico, to two destination

areas in the United States. They test for the effect of respondents’ positions in cross-border

networks on their migration intentions and attitudes towards the United States using data

on the opinions of their peers, their participation in cross-border and local communication

networks. They find evidence of network clustering consistent with peer effects.

From a theoretical viewpoint, there are few papers that analyze the role of social networks

in the assimilation behaviors of ethnic minorities. As in the DeGroot model, Brueckner and

Smirnov (2007) analyze the evolution of population attributes in a simple model, where

an agent’s attributes are equal to the average attributes value among her acquaintances.

They provide some sufficient conditions on the network structure that ensure convergence

to a “melting-pot” equilibrium where attributes are uniform across agents. Brueckner and

Smirnov (2008) extend this model by allowing for a more general form of the rule governing

the evolution of population attributes. Basically, their model is an extension of the DeGroot
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model where time-varying updating matrices are considered. For a similar analysis, see, in

particular, Tahbaz-Salehi and Jadbabaie (2008) and Section 19.3.4 in Golub and Sadler

(2016).

Buechel et al. (2015) consider a dynamic model where boundedly rational agents update

opinions by averaging over their neighbors’ expressed opinions, but may misrepresent their

own opinion by conforming or counter-conforming with their neighbors. This is due to the

fact that an agent cannot observe the true opinions of the others but only their stated opin-

ions. They show that an agent’s social influence on the long-run group opinion is increasing

in network centrality and decreasing in conformity

Verdier and Zenou (2017) propose a two-stage model where the social network play an

explicit role in the assimilation process. In their model, there are strategic complementarities

so that more central individuals are more likely to assimilate because they obtain more utility

than less central individuals.

There is also a related literature of cultural transmission where both parents and peers

affect the assimilation process (see the seminal papers by Bisin and Verdier (2000, 2001)).

However, very few papers have introduced an explicit network in this literature. Exceptions

include Buechel et al. (2014), Panebianco (2014) and Panebianco and Verdier (2017).

Our model is quite different to these papers because we show that social norms, individual

norms, and the position in the network are key determinants of the assimilation process of

ethnic minorities. In particular, we show that individuals with strong assimilation norms at

home may end up being not assimilated because of their “isolated” position in the network

while other minorities, belonging to closed-knit networks with social norms favorable to

assimilation, may end up being assimilated even though their initial assimilation norms were

not in favor of assimilation. More generally, our model highlights the role of communities, ex

ante heterogeneity and parental influence in the long-run assimilation of ethnic minorities.

2.2.2 The role of cultural leaders in the assimilation of ethnic minorities

There is a small but growing literature on the role of cultural leaders in the assimilation

process of immigrants.6

Hauk and Mueller (2015) consider a model of cultural conflict where cultural leaders

supply and interpret culture. The authors explain the “clash of civilizations” or “clash

of cultures” between different religions and highlight the role of cultural leaders who can

amplify disagreement about cultural values.

6For an overview, see Prummer (2018).
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Carvalho and Koyama (2016) analyze religious goods by focusing on the trade off between

time and money contribution to a religious good. The cultural leader (religious authority)

imposes a linear tax on income-generating activity outside the community. They show that,

if economic development is sufficiently low, the cultural leader chooses a strategy of cultural

resistance in every period.

Prummer and Siedlarek (2017) develop an interesting model explaining the persistent

differences in the cultural traits of immigrant groups with the presence of community leaders.

In their model, an individual’s identity is the weighted average of the host society’s culture,

her own past identity as well as the identity of the rest of the community, which is her

network. The leaders influence the cultural traits of their community, which have an impact

on the group’s earnings. They determine whether a community will be more assimilated

and wealthier or less assimilated and poorer. They find that cultural transmission dynamics

with two opinion influencers (the host society and the group leader in their setting) result

in intermediate long-run integration outcomes for the population under study.

Verdier and Zenou (2015, 2018) also study the role of cultural leaders in the assimila-

tion process of immigrants and focus on the interaction between two leaders with opposite

objectives. They show that the presence of leaders can prevent the full integration of ethnic

minorities.

Compared to this literature, we model the cultural leader in a different way: he is someone

who is stubborn and does not update his beliefs. Because our model is different, in the

benchmark model, this leads to the fact that all individuals follow the beliefs of this cultural

leader. Moreover, we study the competition between a cultural and a government leader

and show to whom in a network a government leader wants to be connected to. In the more

elaborated version of model where idiosyncratic heterogeneities are introduced, we show

that the cultural leader has less influence over the assimilation process of the agents in the

network. We also study a policy where the government leader has to decide to whom he

want to connect to and what level of subsidy one must give to agents in order for them to

assimilate. We believe that we are the first to study these types of policies where networks

and cultural leaders play an important role in the assimilation process of immigrants.
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3 The Assimilation Choice and the Dynamics of Norms

3.1 The Assimilation Choice

Consider a set N of agents with cardinality n. Agents may represent individuals belonging to

some ethnic minorities, migrants or, in a simplified setting, each i ∈ N is the representative

agent of a given community. At time t ∈ N, each individual i ∈ N chooses, simultaneously

with all other individuals, an action xti ∈ [0, 1]. Indeed, each agent i has to decide whether

or not she wants to be assimilated to the majority culture of the host country. In particular,

xti ∈ [0, 1] is the assimilation effort of individual i at time t. If xti = 0, then individual

i chooses not to be assimilated at all (i.e. chooses to be oppositional) while, if xti = 1,

she chooses to be totally assimilated to the majority culture. Clearly, the higher is xti, the

higher is the assimilation choice. As stated in the Introduction (see, in particular, footnote

2), there is an important literature that studies the concept of oppositional cultures among

ethnic minorities. In this literature, ethnic groups may “choose” to adopt what are termed

“oppositional” identities, that is, some actively reject the dominant ethnic (e.g., white)

behavioral norms (they are oppositional, which means xti = 0) while others assimilate to it

(i.e. xti = 1).

Each agent i at time 0 is born with an ideal action, or norm, s0i ∈ [0, 1],7 which captures

both her own type and the influence of her family in terms of cultural and ethnic values

(original language, customs, etc.). This norm then evolves over time through a process that

we describe below. Each i ∈ N is then exposed to a group of peers who make different

assimilation decisions. More precisely, when each individual i makes a decision about xti, her

behavior is driven by two competing motives. First, she wants her behavior to agree with her

personal ideal action sti at time t, which means that there is a consistency between her own

norm sti and her behavior xti. Second, she also wants her behavior to be as close as possible

to the average assimilation behavior of her peers, which implies that she is conformist.

Each individual is embedded in a social network ḡ, which is characterized by an adjacency

matrix Ḡ ∈ RN×N . Consider G to be the row-normalization of Ḡ, where g denotes the

corresponding network, so that the sum of each row in G is equal to 1 and gij > 0 if and

only if i assigns a positive weight to j. In other words, we consider a directed network where

links are outdegrees. There are no self-loops so that gii = 0. Because the network is directed,

we do not impose any symmetry on the links in the network so that we allow for gij 6= gji.

This simply means that any two agents can give different weights to each other. This may

7 Our framework can be extended without any change to sti ∈ X ⊆ R with X being a connected interval,
and xti ∈ X. Notice that actual actions and ideal actions have the same support.
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simply derive from the fact that the two agents have different degrees in ḡ.8 Moreover, we

allow for gij > 0 and gji = 0. For the rest of the paper, we assume G to be diagonalizable.

We call Ni the neighborhood of i, that is Ni := {j ∈ N | gij > 0}. The average action taken

by i’s neighbors or peers at time t is thus given by
∑

j∈Ni gijx
t
j.

The timing of the model is as follows:

1. At the beginning of each period t, each i ∈ N is endowed with some ideal norm sti.

2. Agents choose their assimilation efforts (xti)i∈N .

3. At the end of period t, each individual i updates her ideal action.

4. The process starts again.

We model the two forces described above by assuming that each i at time t chooses xti
that maximizes the following utility function:9

uti
(
xti, s

t
i,G

)
= −ω

(
xti −

∑
j∈Ni

gijx
t
j

)2

︸ ︷︷ ︸
Conformism

−
(
xti − sti

)2︸ ︷︷ ︸
Consistency

(1)

The first term on the right-hand side of (1) represents the social interaction part. It is such

that each individual i wants to minimize the distance between her assimilation effort xti and

the average assimilation effort of her peers
∑

j∈Ni gijx
t
j. Indeed, the individual loses utility

−ω
(
xti −

∑
j∈Ni gijx

t
j

)2
from failing to conform to the average effort of her peers, where

ω is her taste for conformity. This is the standard way economists have been modeling

conformity behaviors in social networks (Patacchini and Zenou (2012); Liu et al. (2014);

Boucher and Fortin (2016); Boucher (2016)). The second term represents the willingness to

be consistent with own ideal action. In other words, each agent cares about identity-driven

ideal.10 Specifically, each agent i derives a personal utility, which is a decreasing function of

the distance between her chosen action xti and her ideal action sti. Observe that each agent

8We introduce here the (original) network ḡ and its adjacency matrix Ḡ because they will be crucial in
Section 3.6 below.

9In Section 4 below, we extend this utility function to introduce ex ante heterogeneity of each agent i.
10That individuals derive utility from following their personal ideals has been recognized in other analyzes

of social interactions. See, for example, Akerlof (1997) and Kuran and Sandholm (2008). Even if these
papers bear some similarities with our model, the main difference is that the social network is not explicitly
modeled.
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i puts a weight ω on her social payoff while the weight she places on her personal payoff is

normalized to unity.

More generally, this utility function captures the fact that, for example, a child of an

immigrant makes choices responsive to those of the host society and of peers but her behaviors

may conflict with those of her differently socialized parents. In other words, there will be a

tension between personal preferences and coordination with peers. For example, an ethnic

minority may be torn between speaking one language at home and another at work. Solving

for the first-order condition, we easily obtain:

xti =

(
1

1 + ω

)
sti +

(
ω

1 + ω

)∑
j∈Ni

gijx
t
j (2)

In matrix form, we have:

xt =

(
1

1 + ω

)
st +

(
ω

1 + ω

)
Gxt

Setting θ := ω/ (1 + ω) and solving this equation, we obtain:

xt=

(
1

1 + ω

)
[I− θG]−1 st =: bst(g, θ) (3)

where bst(g, θ) is the weighted Katz-Bonacich centrality (Bonacich (1987); Katz (1953);

Ballester et al. (2006)). Since the largest eigenvalue of G is 1, then [I− θG] is invertible

and with non negative entries if and only if θ ≡ ω/ (1 + ω) < 1, which is always true. There

is thus a unique and interior solution to (3).

Equation (3) shows that xti, the assimilation effort of each ethnic minority i at time t

depends on ω, the taste for conformity, her ideal action or norm at time t, sti, and her position

in the network, as captured by her Katz-Bonacich centrality.

3.2 The dynamics of individual norms

We now study the dynamics of social norms and examine how it is affected by individuals’

assimilation choices and the structure of the network. We make two important assumptions

here. First, the network is fixed and does not change over time. What changes over time is

xti, the assimilation effort of each individual i, and her social norm sti. Second, all individuals

are myopic so that they decide upon xti by only considering the instantaneous utility at time

t as described in (1). This is because, as in the DeGroot literature cited in Section 2.1, we
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want to have a tractable model. Interestingly, there are some empirical papers (field and lab

experiments) that have tested whether agents behave as in our model (DeGroot model) or in

a more Bayesian way. Corazzini et al. (2012), Mueller-Frank and Neri (2013), Chandrasekhar

et al. (2015), show that individuals tend to behave as in DeGroot model so that agents tend

to be myopic and have limited cognition.

At time t, once individual i has chosen assimilation effort xti, she can reconsider her own

ideal action sti and update it depending on the previous action profile. We have the following

dynamic equation:

st+1 = γ xt︸︷︷︸
Consistency

+ (1− γ) st︸︷︷︸
Anchoring

(4)

where γ ∈ [0, 1]. The parameter γ measures the level of consistency of all agents. This

source for preference change has a robust psychological foundation and has been widely

used in economics (see for instance, Akerlof and Dickens (1982); Kuran and Sandholm

(2008)). The dynamic equation (4) states that the evolution of social norms is a linear

convex combination of the past assimilation choice and the past social norm. Indeed, the

first term represents how much each individual is consistent with her own assimilation choice

while the second term indicates how much she is anchored to her past norm.11

Define M (θ,G) := [I− θG]−1. Then, by substituting (3) into (4), we obtain:

st+1 =

[
γ

(1 + ω)
M (θ,G) + (1− γ)I

]
st (5)

Define

T :=
γ

(1 + ω)
M (θ,G) + (1− γ)I (6)

Then, the dynamic equation (5) is a time-homogenous Markov process where

st+1 = T st (7)

This transition mechanism takes into account each agent’s ideal action and own equilibrium

actions. The latter, as shown by (3), are depending on the network structure and on the

position of each agent in the network (captured by their Katz-Bonacich centrality). The

limiting beliefs can be calculated as a function of the initial beliefs and weights. They are

11Observe that this is related to the literature on self-signaling (Bem (1972), Benabou and Tirole (2004,
2006)), which assumes that agents, by observing their own behavior, progressively discover their own true
norms and update them in the direction of past behavior, so that norms and behavior progressively converge
because of the behavior-to-norm force.
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given by:

s∞ = lim
t→∞

Tt s0 (8)

where Tt is the matrix of cumulative influences in period t.

Definition 1 A matrix T is convergent if limt→∞Tt s exists for all vectors s ∈ [0, 1]n.

This definition of convergence requires that own norms converge for all initial vectors.

Indeed, if convergence fails for some initial vector, then there will be oscillations or cycles

in the updating of own norms and convergence will fail. It should be clear that convergence

depends on the characteristics of matrix T, which is a non-trivial transformation of the net-

work adjacency matrix G. T contains information on the equilibrium actions, the updating

of the norms and the preference parameters of all the agents interacting in the network.

We now provide conditions for the convergence of T that only depend on the topological

characteristics of G, independently of the preference parameters. This is important since G

is a network that can be observed while T is not. First, notice that 1
(1+ω)

M (θ,G) is row-

normalized.12 It follows that also T is row normalized, being a convex linear combination of

two row-normalized matrices. For any ε ∈ (0, 1), define

Gε := εI + (1− ε)G. (9)

Gε is the matrix of social interactions in which we consider weights as if all agents actually

put some (homogenous) weight on themselves. Then we can provide the following steady

state characterization.13

Proposition 1

(i) Assume that G is an aperiodic matrix. Then,

s∞ = lim
t→∞

Tt s(0) = lim
t→∞

Gt s(0) (10)

(ii) Assume that G is a periodic matrix. Then,

s∞ = lim
t→∞

Tt s(0) = lim
t→∞

Gt
ε s

(0) (11)

12Notice that, since G is row-normalized, then
∑∞
t=0 θ

tGt · 1 is a vector with all entries equal to 1
1−θ .

Since θ = ω
1+ω , then 1

1−θ = 1 + ω. Then the sum of the entries of each row of the matrix M (θ,G) is 1 +w.

It is then immediate to see that 1
(1+ω)M (θ,G) is row-normalized.

13In the Online Appendix A, we provide some standard linear algebra results about irreducibility and
aperiodicity of matrices.
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This is an important result, which shows that in order to analyze the steady-state vector

of own norms defined by the matrix T, it is enough to look at the adjacency matrix G of

the network. Moreover, convergence is ensured independently of whether G is periodic or

not,14 and independently of preference parameters ω and γ. This result is driven by the fact

that the anchoring element of the norms dynamics makes each norm depends on its past

value, thus breaking any possible cycle. This enables us to consider any network without

restrictions so that our model always ensures convergence of social norms. We also provide an

easy way to determine the steady state of the dynamics even when G shows cycles. Indeed,

Proposition 1(ii) characterizes the steady state by considering a small perturbation of the

original network.

Observe that, at any finite time t, Tt 6= Gt and they only converge when t→∞. The result

about the common asymptotic properties of matrices T and G given in Proposition 1 is based

on the fact that these two matrices commute, i.e. TG = GT (see the proof of Proposition

1 in the Appendix). Indeed, when T and G commute (which is based on the fact that G

and M commute and are diagonalizable), then they have the same eigenvector e associated

with the maximum eigenvalue, which is 1 here.15 This implies that: eT T = eT G = 1 eT,

which proves the convergence result. In Section 4, we show that these convergence results

are also true for a generalized version of the utility (1) where ex ante heterogeneity in terms

of observable characteristics or economic incentives to assimilation is added to the utility

function.

3.2.1 Example

Let us provide a simple example that shows how the asymptotic properties of T and G are

the same but, at the same time, how the two matrices differ during the convergence process.

Consider the (directed) network in Figure 1.

14With some abuse of notation, we say that G is aperiodic if the submatrix associated to each closed
communication class is aperiodic. Closed communication classes are defined in the Online Appendix B.

15Since both T and G are row-normalized they both have the same largest eigenvalue equal to 1.
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2

3

4

Figure 1: Network with 4 agents

It is easily verified that the (row-normalized) adjacency matrix (of outdegrees) is an

irreducible and aperiodic matrix. For simplicity, set ω = γ = 0.5. Then the following holds:

lim
t→∞

Tt = lim
t→∞

Gt =


0.231 0.231 0.308 0.231

0.231 0.231 0.308 0.231

0.231 0.231 0.308 0.231

0.231 0.231 0.308 0.231


While the two matrices converge to the same limit, they drastically differ at any finite

time period. To show this, let us focus on g
[t]
12 and t

[t]
12 and consider Figure 2.

Figure 2: Convergence of g
[t]
12 and t

[t]
12

On can see that the convergence process is non monotonic for g
[t]
12 while, it is monotonic

for t
[t]
12. However, they converge to the same limit in the long run.
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3.2.2 The Characterization of Long Run Norms

Along the paper we will illustrate our results with reference to three different networks

displayed in Figure 3, which we label network 1 (left panel), network 2 (right panel) and

network 3 (bottom panel).

Figure 3: Three different networks

In all these networks, there are three groups of agents. These networks differ in their

inter-group links. It is easily verified that G2 (the adjacency matrix of network 2) can be

derived from G1 (network 1) by removing the link g15 in G1, while G3 (network 3) can

derived from G2 by removing the link g59 and adding the link g86. Interestingly, network 1

is strongly connected (i.e. all individuals belong to the same communication class), network

2 has one closed communication class where some individuals belong to it and some do not

and network 3 has two closed communication classes where some individuals belong to one
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of them and some do not belong to any communication class (see the Online Appendix B.1

for basic definitions of communication classes).

To provide a precise characterization of steady state norms for the dynamics described in

our model, in the Online Appendix B.1, we provide some important definitions on who the

“influenced agents” are in a network, the concepts of communication classes and closed com-

munication classes. In Appendices B.2, B.3, and B.4 we provide all the theoretical results

on convergence for strongly connected networks, networks with one closed communication

class, and any network. We report these results in the Online Appendix since they strongly

rely on already existing literature. Notice, however, that with respect to the existing liter-

ature we obtain results both when the adjacency matrix G is aperiodic and periodic. Our

results provide a precise characterization of the long run norms given any network without

restriction of any sort.

In a nutshell, our results in the Online Appendix show that, for any network G, if G

is strongly connected, then long-run norms converge to a common value. If there is just

one closed communication class, the steady-state social norms of all agents is equal to the

convergence value of the social norm of this closed communication class. If there are multiple

closed communication classes, agents who do not belong to any of these communication

classes will have norms converging to a convex combination of the social norms of these closed

communication classes. We provide in the Online Appendix B.2 a precise characterization

for these convergence values.

In this paper, we focus on the role of the network. Without the network, similar agents

randomly interacting with other agents would end up with similar long-run norms and ac-

tions. The presence of a network, instead, makes similar agents ending up with long-run

norms and actions that may be very different depending on their position in the network.

3.3 Steady-state assimilation choices and welfare

Given our previous results on norm convergence, we are now able to characterize the steady-

state assimilation effort choices of all individuals belonging to a given network G. Recall

first that

xt =

(
1

1 + ω

)
[I− θG]−1 st =

(
1

1 + ω

)
[I− θG]−1 Tts(0) (12)

It should be clear that the total welfare is maximized when the utility of each agent is equal

to zero because, in that case, there are no losses. This is when the social norm and thus the

assimilation effort of each individual is the same as those of her neighbors in the network.
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Proposition 2 In steady state, the equilibrium assimilation efforts are given by:

x∞ =

(
1

1 + ω

)
[I− θG]−1 lim

t→∞
Gts0 = Gx∞ (13)

and x∞ = s∞. Moreover, for any network G, the total welfare is always maximized. If G is

periodic, the same result holds by replacing G with Gε.

This proposition gives the equilibrium assimilation efforts in steady state. Consider first

equation (13). The first two terms relate steady-state equilibrium actions to steady-state

norms. This is derived from the limit (when t goes to infinity) of (12). This is, however,

hardly informative about how steady-state actions relate to the network. The last term of

(13) provides this characterization. Indeed, the steady-state vector is such that each agent

chooses an action, which is the average of her own neighbors’ actions.

Since actions are such that each individual conforms to the average assimilation effort

of her peers, in steady state all individuals obtain a utility of zero, which clearly maximizes

total welfare. The level for which the social norms converge does not have any impact on

the welfare. This is because our utility only depends on conformity and on the adherence to

own norm, while exerting a specific action does not have any other consequence.

Observe that the results stated in Proposition 2 just refer to steady-state actions. Let

us calculate the assimiliation effort of each individual i at any moment in time t. It can be

shown that:16

xti − sti =
∑
j 6=i

mij(s
t
j − sti) (14)

where M = [I− θG]−1 and mij is its (i, j) entry. This means that, at time t, the difference

between the assimilation effort of agent i and her assimilation norm, which can be seen

as a measure of cognitive dissonance, is equal to the difference between the norm of her

path-connected peers and her own norm. This implies that the agents who exert an effort

different from their social norms are more likely to be the ones who are more connected in

the network to agents who have different norms than theirs. Thus, Proposition 2 shows that,

for any network G, only in steady-state the assimilation efforts are efficient and equal to the

assimilation actions since, in general, along the dynamic convergence process, welfare is not

maximal.

Assume now that the planner is able to shape norms costlessly. Which vector of norms

should she choose in order to maximize total welfare at any moment in time? The following

proposition gives a clear answer to this question:

16See Online Appendix C for the derivation of (14).
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Proposition 3 Denote A ≡ 1
1+ω

G[I−θG]−1. At any time t, by setting a norm s∗t = e(A)

to each individual, the planner maximizes total welfare and the equilibrium utility is equal to

zero.

This is an interesting result, which shows that, if we add a first stage where the planner

decides the level of the norm for each agent at each period t, then each agent will choose an

action xt that maximizes total welfare. This means that the dynamics of st is not anymore

governed by equation (4) but by the value s∗t determined by the planner at each period of

time t.

Example 1 To illustrate these results, consider network 3 in Figure 3. Appendix B.4.1

shows that, when the initial norms are given by

[s(0)]T =
[

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
]

(15)

then the steady-state norms are equal to

[s(∞)]T =
[

0.225 0.225 0.225 0.5 0.5 0.5 0.328 0.397 0.363
]

(16)

In this example, agents 1, 2 and 3 belong to the first closed communication class C1, agents

7, 8 and 9 to the second closed communication class C2 while agents 4, 5, and 6 do not

belong to any closed communication class. The steady-state assimilation norms and actions

are determined by the position of each agent in the network and whether they belong or not

to a closed communication class. Let us now study the whole dynamics of the assimilation

efforts of individuals 2 (who belongs to C1), 4 (who belongs to C2), and 9 (who does not

belong to any closed communication class). Figure 4 reports their dynamics, which can be

different to that of the assimilation social norms since xt = st in only true in steady state,

i.e. when t tends to ∞.
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Figure 4: Convergence of actions with two communication classes

We can see, however, that the dynamics of the assimilation efforts follow closely the

dynamics of the social norms (see Figure B.3 in Appendix B.4). What is interesting here is

that the assimilation efforts of individuals 2, 4 and 9, who belong to different groups, have

different dynamics and end up with different values in steady state. Indeed, individual 2, who

belongs to the first closed communication class C1, will converge to the average assimilation

effort of C1. Similarly, individual 4, who belongs to the second closed communication class

C2, will converge to the average assimilation effort of C2. Finally, for individual 9, who does

not belong to any closed communication class, her assimilation effort will converge to some

convex combination of that of the two communcation classes C1 and C2. More interestingly,

individual 9, who starts with a very high social norm (0.9), ends up having a steady-state

assimilation effort that is below that of individual 4, who starts with a much lower social

norm. This is an important result in terms of assimilation choices. Individual 9, who is

peripheral in the network and who inherited a high assimilation norm from her parents (who

were assimilated themselves), end up choosing to be less assimilated (x∞9 = 0.363) because

of her position in the network and the influence of her peers with whom she wants to be as

close as possible in terms of assimilation choices.

3.4 Policy implications

In this section, we study how the role of community cultural leaders influence the assimilation

choices of ethnic minorities and how a policymaker can undermine the (negative) influence

in terms of assimilation of the community leader by targeting specific agents in the network.
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3.4.1 Cultural leaders

Let us now study the role of cultural leaders in the assimilation process of ethnic minorities.

Consider a “stubborn” cultural leader CL (such as an Imam for the Muslim community),

which is not influenced by external opinion and therefore does not update his beliefs. The

social norm (and action) in terms of assimilation of the cultural leader is exogenous and

equal to sCL = xCL < 1. This does not change over time so that s0CL = stCL = s∞CL, ∀t. If,

for example, his initial norm is s0CL = 0.1 (not favorable to assimilation), then he will not

change his opinion in the long run. To model this, we assume that the cultural leader is only

linked to himself and nobody else. At the same time, some or potentially all agents in the

network are linked to him.

If the original network G is strongly connected, the presence of a cultural leader creates

a new network with just one closed communication class, which will only consist of the

“stubborn” cultural leader CL. It is then straightforward to see that all agents in the

network will converge to the social norm s0CL of the cultural leader.

Assume now that there are several closed communication classes in the original network

G. These different communication classes may represent different communities. If the cul-

tural leader is linked to at least one agent in each of these closed communication classes,

then, as before, all social norms will converge to that of the cultural leader. If this is not the

case, then the social norm of each agent in the closed communication class in which no one

is linked to the cultural leader will just converge to a weighted average of the initial norms

of the agents in this closed communication class. For all the other closed communication

classes where at least an agent is linked to the cultural leader, they will adopt the cultural

leader’s norm. If we now consider all agents who do not belong to any closed communication

class, then, even if these agents are not connected to the cultural leader, their steady-state

norms will be a convex combination between the (stubborn) cultural leader’s norm and the

norm of agents in the other closed communication classes.

3.4.2 Cultural leaders versus government leaders

Let us now consider a policy where a planner (or a government) wants to thwart the influence

of a cultural leader on the assimilation process of ethnic minorities. To achieve this, the

planner wants to introduce a “stubborn” government leader that promotes the cultural norm

of the host society (think of a secular institution in the religious example) in the network. As

for the cultural leader, the government leader does not have any link with any other agent

in the network but himself while other agents may be connected to him.
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The government must decide to which person in the network this government leader

should be linked to (link directed from the targeted agent to the leader) in order to maximize

aggregate assimilation in the network. Observe that the best policy will be to link the

government leader to the cultural leader but clearly this may not be a feasible policy since

these two leaders are competing with each other because they have conflicting objectives.

Observe also that if the planner had no budget constraint, then, apart from the cultural

leader, she will connect the government leader to all agents in the network. We here assume

that there is some budget constraint and that the planner needs to target only one agent in

the network. To whom the government leader should be connected in order to maximize the

assimilation process of the ethnic minorities?

The timing is as follows. In the first stage, the cultural leader, whose exogenous norm is

s0CL = stCL = s∞CL, ∀t, is already located in the network with links arbritrarily chosen. In the

second stage, the government leader whose exogenous norm is s0GL = stGL = s∞GL, ∀t, has to

decide to which agent (apart from the cultural leader) in the network he wants to connect

to. We assume that sCL < sGL.

Denote by i = GL the government leader, by j = CL the cultural leader and by k the

agent to whom the planner wants the government leader to be connected to. Denote by GCL

the network G augmented by the presence of the cultural leader. Also, denote by GCL + ik

the network GCL where the link ik between the government leader i and agent k has been

added, and by dk the (out)degree of agent k in the network GCL + ik. Denote by QCL + ik

the matrix of weights of GCL+ ik when just the rows and columns of original agents (neither

government nor cultural leader) are considered, and by mij(QCL + ik) the (i, j) cell of the

matrix: M(QCL + ik) =
∑∞

p=0(QCL + ik)p = [I− (QCL + ik)]−1. Observe that M(QCL + ik)

corresponds to the Katz-Bonacich centrality (Katz (1953), Bonacich (1987)) of the network

QCL + ik.

Proposition 4 When the network GCL is such that the “stubborn” cultural leader j = CL

is the unique closed communication class, in order to maximize aggregate assimilation in

the network, the planner wants her own “stubborn” government leader i = GL to target the

agent k that maximizes:
1

dk

n∑
l=1

mlk (QCL + ik) (17)

This proposition characterizes the optimal targeting choice of the government leader that

undermines the influence of the cultural leader in the assimilation process of all agents in

the network since, without intervention, all agents will converge to the social norm of the

cultural leader.
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This proposition shows that the policymaker would like to link his own leader to the

agent k with the lowest degree but with the highest Katz-Bonacich in-centrality. The reason

is that the agent with the highest Katz-Bonacich in-centrality is the one who has the largest

cascade impact on the overall network. Indeed, this in-centrality counts how many walks an

agent has starting from herself and spreading to every other agent in the network. However,

since the link ik is just among the several links k has, the policymaker wants to avoid that

the weight of the link created is low. This can be done by choosing the agent with a low

degree. In other words, the policymaker would like to link the government leader to an agent

whose norms are directly or indirectly imitated by many others, but who himself imitates

very few agents. Let us illustrate this result with an example.

Example 2 Consider the network in Figure 1. Assume that, together with the four existing

agents, there is also a cultural leader who has a social norm equal to: s0CL = stCL = s∞CL = 0,

∀t, i.e. zero assimilation. We assume that all four agents in the network are connected to

the cultural leader but the latter is only connected to himself. Then, without a government

leader, all four agents in the network will end up with zero assimilation since the cultural

leader is the only closed communication class (the original network is strongly connected

network). We now need to decide to whom the government leader should be linked to when

his objective is to maximize aggregate assimilation in the network. Assume that the social

norm of the government leader is equal to: s0GL = stGL = s∞GL = 1, ∀t, i.e. total assimilation.

The adjacency matrices of the original network G (Figure 1) and of the network with the

cultural leader only GCL are given by:

G =


0 1

3
1
3

1
3

1 0 0 0

0 1
2

0 1
2

0 0 1 0

 ; GCL =


0 1

4
1
4

1
4

1
4

1
2

0 0 0 1
2

0 1
3

0 1
3

1
3

0 0 1
2

0 1
2

0 0 0 0 1


Observe that the last row and last column of GCL corresponds to the cultural leader. We see

that each of the four agents in the network is linked to him but he is only linked to himself

(GCL has a unique closed communication class).

We now need to calculate the index given in equation (17) in Proposition 4 for each of

the four followng cases: the government leader is connected to agent 1, to agent 2, to agent 3

and to agent 4. For the sake of the exposition, let us show how we calculate this index when
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the government leader is connected to agent 1 since the calculations are similar for the three

other cases.

When the government leader i = GL is connected to agent 1, the matrix of the network is

now given by (where the last row and last column of this matrix corresponds to the government

leader):

GCL + i1 =



0 1
5

1
5

1
5

1
5

1
5

1
2

0 0 0 1
2

0

0 1
3

0 1
3

1
3

0

0 0 1
2

0 1
2

0

0 0 0 0 1 0

0 0 0 0 0 1


In this matrix, we consider the top-left block that is given by the interactions just among the

original agents in the new network. As stated above, we call this matrix QCL+ i1. It is equal

to:

QCL + i1 =


0 1

5
1
5

1
5

1
2

0 0 0

0 1
3

0 1
3

0 0 1
2

0


We then obtain:

M(QCL + i1) =
∞∑
p=0

(QCL + i1)p = [I− (QCL + i1)]−1 =


25
21

8
21

3
7

8
21

25
42

25
21

3
14

4
21

5
21

10
21

9
7

10
21

5
42

5
21

9
14

26
21


We can now sum over the first column entries and divide by the degree of agent 1. We obtain:
1
5

(
25
21

+ 25
42

+ 5
21

+ 5
42

)
= 3

7
= 0.4285. This is exactly the value of the index given in equation

(17) in Proposition 4 when k = 1, i.e. 0.4285 = 1
d1

∑4
l=1ml1 (QCL + i1), where i = GL.

We can perform exactly the same exercise when the government leader is connected

to agent 2, 3 and 4. If we also add the value of the index obtained when the govern-

ment leader is connected to agent 1 (i.e. 0.4285), then we obtain the following vector:

(0.4285, 0.7692, 0.6521, 0.7692). We see that this index is the highest for agent 2 or 4 because

they have the lowest outdegree but the highest Katz-Bonacich centrality in the augmented net-
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work where their link to the government leader is added. As a result, the government leader

should be connected to agent 2 or 4 in the network because this maximizes total assimilation.

Let us show that this is true in this example when we calculate the values of the sum of the

long-run assimilation norms.

Let us now determine the long-run assimilation norms of the four agents in the network

using the same method as in Section B.4 in the Online Appendix B. Recall that sCL = 0 and

sGL = 1. Since the two leaders are the only two closed communication classes, the long-run

norms of all agents just depend on the norm values of the two leaders, independently of the

original norms of the other agents. Following the results in (10) in Proposition 1, when we

link the government leader to agent 1, we obtain:

s∞(GCL+i1)
= lim

t→∞
(GCL + i1)t s(0)

which is equivalent to:

s∞(GCL+i1)
=



0 0 0 0 16
21

5
21

0 0 0 0 37
42

5
42

0 0 0 0 20
21

1
21

0 0 0 0 41
42

1
42

0 0 0 0 1 0

0 0 0 0 0 1





s
(0)
1

s
(0)
2

s
(0)
3

s
(0)
4

0

1


As stated above, the initial norms of the four agents in the network are irrelevant because

everything will depend on the norms of the stubborn agents. Solving this equation, we obtain:

s∞ (GCL + i1) =


0.24

0.12

0.05

0.02


where the aggregate assimilation level is:

∑4
i=1 s

∞
i (GCL + i1) = 0.43.

We can do the same exercise by linking the government leader to agent 2, 3, and 4. It is
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easily verifed that the vector of long-run norms in each case is given by:

s∞ (GCL + i2) =


0.15

0.38

0.15

0.08

 ; s∞ (GCL + i3) =


0.13

0.06

0.30

0.15

 ; s∞ (GCL + i4) =


0.15

0.08

0.15

0.38

 .

We easily obtain that:
∑4

i=1 s
∞
i (GCL+i2) =

∑4
i=1 s

∞
i (GCL+i4) = 0.76 and

∑4
i=1 s

∞
i (GCL+

i3) = 0.64. As a result, the planner should link the government leader to agent 2 or agent 4

since it leads to the highest aggregate assimilation level in the network. Observe that, since

we normalized the norms of the two leaders to 0 and 1, respectively, the value of the index

and the value of the sum of aggregate assimilation norms are the same. For example, when

the government leader connects to agent 2 or 4, the value of the index or the sum of aggregate

assimilation norms are both equal to 0.76.

3.4.3 Optimal network design

Let us go back to the benchmark model (without a cultural or a government leader) and let

us determine the network that maximizes aggregate assimilation. Assume that the initial

norms are given. Then, the policymaker would like to take the agent with the highest initial

social norm and make him or her the only hub of the network. In other words, the optimal

network for aggregate assimilation is a (directed) star network in which everyone is linked

to the agent with the highest initial social norm and this agent is connected to nobody. In

that case, there will be a unique close communication class, the star, and all the other agents

(including the star) will converge to the social norm of the star.

3.5 Speed of Convergence

In the previous sections, we focused on the convergence levels of assimilation norms. We now

analyze the speed of convergence of norms. For policy purpose, assimilation is important only

if it is reached reasonably quickly. If it takes many years for individuals to be assimilated,

then the model’s limit predictions are unlikely to be useful.

In Proposition 10 in the Online Appendix D, we show that, depending on the taste for

conformity ω and on the parameter γ, the convergence of social norms can be faster in our

model than under the standard updating rule (Golub and Jackson (2010)) using the matrix

G. In the Online Appendix D, we also provide some simulations illustrating this result.
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3.6 Definition of peers

So far, we have defined peers as outdegrees, i.e. there is a link (gij = 1) between two

individuals i and j if individual i nominates individual j. It did not matter if the reverse

was true. Furthermore, if individual j nominates individual i but not the reverse, then

gji = 1. In empirical research, peers can be defined in different ways: they can be defined as

outdegrees, or indegrees or both or either. For example, in empirical studies, researchers have

extensively been using the National Longitudinal Survey of Adolescent Health (AddHealth),

which has information on friendship networks. Using the AddHealth data, Calvó-Armengol

et al. (2009) define a link between two persons whenever one of them has nominated the

other. In our model, this would imply that the network will be strongly connected. Using

the same dataset, Haynie (2001) and Lin (2010) define peers as outdegrees. This is the way

we have defined peers so far. Other studies, such as Laursen (1993) and Erwin (1998) argue

that friendships are reciprocal by definition so that both persons need to nominate each

other for a link in the network to exist.

Obviously, the way links or peers are defined has an important impact on the definition

of the closed communication classes in a network and, thus, on the convergence of social

norms and actions of all individuals in a network. Thus, in the Online Appendix E, we

consider two other definitions of peers widely used in the empirical literature on peer and

network effects,17 that is peers as indegrees and peers as mutual friends, and show how these

definitions have a strong impact on the long-run choices of social norms and actions.

4 The Economic Incentives for Assimilation

4.1 Model and steady-state equilibrium

In this section, we extend our benchmark model to include the idiosyncratic incentives of

agents for assimilation. Each agent, in fact, depending on her assimilation choices, may have

different gains from assimilation in terms of job opportunities, salary, and other economically

relevant outcome. We do not model here how differential incentives are produced, but we

just assume that each agent has a particular incentive to perform a particular assimilation

choice, apart from own norms and conformism motives. This section explores how results

change when this is taken into account and how the policy maker can exploit this new aspect

of assimilation.

17See, Boucher and Fortin (2016), Chandrasekhar (2016), Advani and Malde (2018) for overviews of this
literature.
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In what follows, we propose a more general utility function which, together with the losses

associated to conformism and consistency, also allows for some idiosyncratic gains of the

action. There are indeed economic gains of assimilation and these gains are heterogeneous,

depend on individual characteristics and do not vary over time. For that, we introduce

some ex ante heterogeneity (i.e. observable characteristics such as gender, race, parental

education, etc.) in the utility function, which is now defined as:

uti = 2αix
t
i −
(
xti
)2︸ ︷︷ ︸

Idiosyncratic term

−ω(xti −
∑
j

gijx
t
j)

2

︸ ︷︷ ︸
Conformism

− (xti − sti)2︸ ︷︷ ︸
Consistency

(18)

where αi > 0 captures the ex ante heterogeneity of agent i. The higher is αi > 0, the greater

is the individual marginal utility of exerting action xi.
18 The coefficient αi is what we call

economic incentive to assimilation and can be altered by targeted policies aiming at making

assimilation more or less profitable to agents. First-order condition now yields:

xti =

(
1

2 + ω

)
αi +

(
1

2 + ω

)
sti +

(
ω

2 + ω

)∑
j

gijx
t
j (19)

The equilibrium actions are now a convex linear combination of the individual i’s marginal

incentives, αi, her own norm, sti and the average actions of her neighbors,
∑

j gijx
t
j. Denote

θ′ ≡ ω/(2 + ω). We then obtain the equilibrium actions in matrix form:

xt =

(
1

2 + ω

)
[I− θ′G]

−1
(st +α) (20)

where α is the vector of αi. While this formulation is relatively simple, we cannot go further

in the characterization of the dynamics and the equilibrium behavior in terms of the network

G because we cannot express the dynamics as a linear system xt = Axt−1 as before.

Therefore, we propose an approach that allows us to solve this problem in a simple way.

For this purpose, we define by Ĝ an augmented G matrix, where we consider a fictitious

directed network of 2n agents where, on top of network G, for each agent i, we create a

fictitious agent fi. Each agent i is linked to fi, no other agent in the network is linked to

fi, and fi has no other link than i but herself (self-loop). Call F the set of fictitious agents.

Formally ĝi,fi > 0, ĝfi,j = 0 and ĝfi,fi = 1. In particular, the first n rows of Ĝ represent the

links of fictitious agents while the last n rows represent the links of real agents. Remembering

18Note that we have 2αi instead of αi just to ease computations, and this is without loss of generality.
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that θ = ω/(1 + ω), we can define the augmented G matrix in its canonical form as follows:

Ĝ ≡

[
I O

D θG

]
(21)

where each block is of dimension n×n, where D is a diagonal matrix with entries 1/(1 +ω)

and O is a matrix of zeros. Observe that Ĝ is a stochastic matrix. We study now the optimal

action profile x̂t, in which we assume that each fictitious agent just plays own αi. Then, the

first-order condition (19) can be written as follows:

x̂t =

(
1

2 + ω

)
ŝt +

(
1 + ω

2 + ω

)
Ĝx̂t (22)

where

x̂t =

[
α

xt

]
, ŝt =

[
α

st

]
(23)

This implies that (20) can now be written as:

x̂t =

(
1

2 + ω

)[
I−

(
1 + ω

2 + ω

)
Ĝ

]−1
ŝt =

(
1

2 + ω

)[
I− θ′

θ
Ĝ

]−1
ŝt (24)

Instead of working with G, we will now work with Ĝ, being aware that the first n rows of

all matrices and vectors are about fictitious agents and, thus, without economic meaning.

In these cases, let us show that all the previous results hold. Define T̂ as the augmented T

matrix (i.e. by adding the n fictitious players). We also have:

ŝt+1 = γ x̂t︸︷︷︸
Consistency

+ (1− γ) ŝt︸︷︷︸
Anchoring

(25)

Plugging the equilibrium action in (24), and calling M( θ
′

θ
, Ĝ) :=

[
I− θ′

θ
Ĝ
]−1

, we obtain:

ŝt+1 =
[ γ

2 + ω
M(

θ′

θ
, Ĝ) + (1− γ)I

]
ŝt (26)

so that T̂ := γ
2+ω

M( θ
′

θ
, Ĝ) + (1− γ)I. It is straightforward to show that:

Corollary 1 For any G, we have:

ŝ∞ = lim
t→∞

T̂t ŝ(0) = lim
t→∞

Ĝt ŝ(0) (27)
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Observe that, in network Ĝ, each node fi forms a closed communication class and there are no

other closed communication classes. Formally, Cfi = {fi} for all i. Therefore, the dynamics

of the norm (and action) is now represented by a matrix with n closed communication

classes and n agents belonging to other communication classes. We can thus use the results

of Proposition 9 of the Online Appendix B.4 to obtain:

Proposition 5 If the utility of each agent i is given by (18), then the steady-state norms

of all n agents in the original network are given by:

s∞ =

(
1

1 + ω

)
[I− θG]−1α (28)

while the steady-state actions are equal to:

x∞ =

(
1

2 + ω

)
[I− θ′G]

−1
[
I +

1

(1 + ω)
(I− θG)−1

]
α (29)

Indeed, independently of the initial norms, in the long run, assimilation norms and choices

are totally determined by the ex ante heterogeneities of agents in terms of αi and their

position of the network. Since α can also represent a vector of heterogenous economic

incentives for the agents, this result means that economic incentives can drive social norms

very far from their initial range. Suppose, for example, that the initial norms are such that

s(0) ∈ [0, 1]n, but that α ∈ [2, 3]n, then s(∞) ∈ [2, 3]n. In this respect, initial norms become

irrelevant and updated norms and actions only follow the economic incentives. Finally, it

is worth noticing that the way in which agents interact in imitating norms determines in a

precise manner the final distribution of norms, and that the weights are proportional to the

Katz-Bonacich centrality of agents in the G network.

Example 3 To illustrate these results, consider the network with 4 agents given in Figure

1 and let us determine the augmented network. The augmented G with the four fictitious
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agents is given by:

Ĝ =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0
1

1+ω
0 0 0 0 ω

3(1+ω)
ω

3(1+ω)
ω

3(1+ω)

0 1
1+ω

0 0 ω
1+ω

0 0 0

0 0 1
1+ω

0 0 ω
2(1+ω)

0 ω
2(1+ω

0 0 0 1
1+ω

0 0 ω
1+ω

0


(30)

and the corresponding network can be displayed as follows:

F1

F2

F3

F4

1

2

3

4

Figure 5: The augmented G network

Take

α =


0.1

0.2

0.3

0.4

 , s(0) =


0.6

0.7

0.8

0.9


Consider now the case of ω = 0.5. Then
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M(
θ′

θ
, Ĝ) =



2.5 0. 0. 0. 0. 0. 0. 0.

0 2.5 0 0 0 0 0 0

0 0 2.5 0 0 0 0 0

0 0 0 2.5 0 0 0 0

1.015 0.076 0.083 0.076 1.015 0.076 0.0839 0.076

0.203 1.015 0.016 0.015 0.203 1.015 0.016 0.015

0.0202 0.103 1.022 0.103 0.020 0.103 1.022 0.103

0.004 0.0202 0.204 1.020 0.004 0.020 0.204 1.020


Setting γ = 0.5 we have that simply T̂ = 0.2M( θ

′

θ
, Ĝ) + 0.5I. We also have:

T∞ = Ĝ∞ =



1. 0. 0. 0. 0. 0. 0. 0.

0. 1. 0. 0. 0. 0. 0. 0.

0. 0. 1. 0. 0. 0. 0. 0.

0. 0. 0. 1. 0. 0. 0. 0.

0.699 0.0964 0.109 0.096 0. 0. 0. 0.

0.233 0.699 0.036 0.032 0. 0. 0. 0.

0.041 0.123 0.712 0.123 0. 0. 0. 0.

0.014 0.041 0.237 0.708 0. 0. 0. 0.


The long-run values of the assimilation norms and efforts for the “real” agents are given by:

s∞ =


0.699 0.0964 0.109 0.096

0.233 0.699 0.036 0.032

0.041 0.123 0.712 0.123

0.014 0.041 0.237 0.708




0.6

0.7

0.8

0.9

 =


0.160

0.187

0.292

0.364

 , x∞ =


0.369

0.368

0.498

0.579


We can see that, even if all four agents inherited social norms favorable to assimilation,

they end up having norms and efforts that are not in favor of assimilation. This is because

their economic incentives of assimilation (i.e. their ex ante observable characteristics) were

very different from their initial norms and less conducive to assimilation. Note that individual

1, who is the most central person in the network but has a very low incentive to assimilate,

end up having the lowest assimilation norm and effort.
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4.2 Policies

We have shown that the long-run norms and actions are now totally driven by the economic

incentives for assimilation of agents. We now analyze how a planner can provide incentives

to each individual in order to reach a certain profile of long-term norms and thus assimilation

choices.19 Define s∗, α∗, and σ∗ to be, respectively, the target vector of long-term norms, the

incentives vector in terms of the αs that enables these norms to be reached, and σ∗ := α∗−α.

Then σ∗ is the vector of additional positive (subsidies) or negative (taxes) incentives that

the planner should provide to each agent in order to reach s∗. In terms of timing, we just

add one stage at time t = 0 where the planner set the incentives σ∗ at each period of time.

Proposition 6 In order to reach the long-term norms s∗, the planner must give the follow-

ing incentives to each individual:

1. If the objective is to reach the same long-term norm for all individuals, i.e. s∗i = s∗j for

all i, j, then σ∗ = s∗ −α;

2. If the objective is to have different long-term norms for different individuals, i.e. s∗i 6=
s∗j for all i, j, then σ∗ = s∗ −α+ ω(I−G)s∗.

If the policymaker is interested in having an homogeneous society where all individuals

reach the same (assimilation) norm in the long run, then the marginal subsidy must be the

difference between the desired norm and the actual economic incentive, irrespectively of the

network. Intuitively, σ∗ make all agents ex ante equal in terms of incentives. Since long-run

norms are a convex combination of the α∗, it is straightforward to see that the norms will

converge to the same value.

If the planner would like to have an heterogenous distribution of long-term norms, then

it has to take into account the direct effect of subsidies on each individual but also on

their neighbors. In Proposition 6, we show the per-person subsidy depends on the taste for

conformity, the network structure and the ex ante heterogeneity in terms of αs.

Indeed, by definition of σ∗, we first notice that:

α∗ = (1 + ω)(I− θG)s∗ (31)

In this equation, (I − θG)s∗ tells us how much each s∗i differs form the average (the social

norm). Moreover, in the dynamics, each agent is affected by others depending on the pa-

rameter ω. Then the incentives αi should be equal to the desired norm, corrected for how

19Contrary to Section 3.4.2, we do not consider either a cultural or a government leader because stubborn
agents here have no impact on the assimilation process of agents in the network.
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much the desired norm is larger or smaller than the average desired norm, corrected for the

level of conformism.

Example 4 To get an intuition about how this policy is shaped by the network structure and

the desired distribution of long-term norms, consider the networks displayed in Figure 3 and

the following vector of ex ante heterogeneities:

(α)T =
(

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
)

(32)

Assume first that the planner wants an homogenous society with a maximal level of integra-

tion, i.e. s∗i = 1 for all i. Then, σ∗ = s∗ −α. Thus,

(σ)T =
(

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
)

(33)

In steady state, everyone will have a social norm of s∗i = 1 and will play x∗i = 1. There is

thus total assimilation. This is because, for every individual, α∗i = αi + σ∗i = 1, and actions

are a convex linear combinations of all α∗s. In that case, the overall cost of the subsidy is

given by:
∑

i σ
∗
i x
∗
i =

∑
i σi, independently of the network structure. Thus, if the desired

norm is the same for everyone, the determination of the subsidy and its cost is independent

of the network structure.

Consider, now, the case where the planner has different targets in terms of social norms.

For example, consider the case in which the policymaker does not want any agent to have a

long-term norm of assimilation below 0.5. Consider the first two networks in Figure 3 and

the ex ante heterogeneity is given by (32). If there no intervention, the long-run norms in

each network are respectively given by:20

s∞G1
=
(

0.201 0.223 0.270 0.450 0.539 0.565 0.669 0.785 0.842
)

(34)

s∞G2
=
(

0.154 0.220 0.262 0.450 0.539 0.565 0.664 0.784 0.841
)

(35)

Consider, now, the policy above where the objective is that everybody needs to have a level

of long-term assimilation of at least 0.5. This means that, in the steady state with no inter-

vention, the individuals who have an assimilation value below 0.5 need to increase it to 0.5

while those with values above or equal to 0.5 keep this same level. This implies that, for the

20Even if network 1 is strongly connected, the individuals will not have the same long-term assimilation
norm because they have different αs. The same reasoning applies for network 2, which has one closed
communication class.
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first two networks in Figure 3, the objective is:

s∗G1
=
(

0.5 0.5 0.5 0.5 0.539 0.565 0.669 0.785 0.842
)

(36)

s∗G2
=
(

0.5 0.5 0.5 0.5 0.539 0.565 0.664 0.784 0.841
)

(37)

Then, using (31), we can compute the subsidy given to each agent in order to reach these

steady-state norms:

α∗G1
=
(

0.490 0.5 0.5 0.473 0.491 0.587 0.650 0.8 0.9
)

(38)

α∗G2
=
(

0.5 0.5 0.5 0.473 0.491 0.587 0.642 0.8 0.9
)

(39)

Notice that, in the second network, the first three agents need an incentive equal to the

targeted norm. This is because they form a closed communication class, and thus if the poli-

cymaker wants them to reach at least 0.5, she has to induce this behavior through incentives.

Interestingly, agents 4 and 5 need incentives lower than 0.5 since imitation and conformism

lead them to have higher long-run norms. As a result, the final marginal subsidy or tax for

each individual should be as follows:

σ∗G1
=
(

0.390 0.3 0.2 0.073 −0.008 −0.012 −0.049 −1.110× 10−16 −1.1102× 10−16
)

σ∗G2
=
(

0.4 0.3 0.2 0.073 −0.008 −0.012 −0.057 1.110× 10−16 −1.110× 10−16
)

The policymaker gives a marginal subsidy to the first four agents and imposes a tax to all

the other agents. Note, however, that we did not impose any budget constraint so that the

cost of the policy can be positive or negative depending on the parameters. Indeed, the cost

of the policy is given by (σ∗)Tx and, in this example, is equal to 0.85 (network 1) and 0.91

(network 2).

Given that the objective is to have all agents converging to a steady-state social norm at

least equal to 0.5, the cost would only be reduced by lowering the assimilation norms and the

choices of agents above 0.5 in equilibrium. In the example, the cost would be set to 0 once we

choose an homogeneous steady-state norm vector of 0.5. In this case, everyone would choose

an action equal to 0.5. Then, the agent with the initial norm of 0.9 will pay for the subsidy

of the agent with an initial norm of 0.1. The agent with initial norm of 0.8 would pay for the

agent with an initial norm of 0.2, and so forth. In this case, the overall cost of this policy is

zero and thus this policy is self-financed.
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5 Other applications

So far, the model has been interpreted in terms of assimilation norms. It can have many

other applications. For example, another natural application of our framework is to assume

that xti = 1− yti is the effort in crime while yti is the effort exerted in labor, with these two

activities being perfectly substitutables. It is indeed well-documented that being a criminal

and a worker at the same time is quite common (see e.g. Freeman (1996)). For example,

drug dealers often hold low-skilled jobs. This implies that the higher an individual i exerts

effort in crime, the lower she spends time working. In that interpretation, all our results go

through and we can explain how social norms, network position and ex ante heterogeneity

affect crime and labor. In particular, we can show that if some individuals live in segregated

communities, isolated from the rest of the society, then they will mostly commit crimes if

their individual abilities and their individual norms (such as work ethics) are not in favor of

working in the labor market.

Another straighforward application is tax evasion. There is plenty of evidence showing

that social norms and social interactions matter in the decision of tax evading (see e.g.

Andreoni et al. (1998), Posner (2000) Fortin et al. (2007), Luttmer and Singhal (2014),

Besley et al. (2014)). Indeed, when deciding to evade, social norms play a crucial role in

guilt and shame in tax compliance behavior and, as argued by Gordon (1989) and Myles and

Naylor (1996), each individual can derive a psychic payoff from adhering to the standard

pattern of reporting behavior in her reference group (social conformity effect). As noted

by Luttmer and Singhal (2014), cultural or social norms can affect the strength of the

individual’s intrinsic motivations to pay taxes or the sensitivity to peers. If we interpret xti
as the fraction of income that is evaded at time t, then we can use our model to explain

how the tax compliance behavior is affected by social norms, intrinsic motivations and initial

“honesty” norms. Our model shows that individuals will be more likely not to evade and

to pay taxes if they have intrinsic motivation to pay taxes or feel guilt or shame for failure

to comply and if they may be influenced by peer behavior and the possibility of social

recognition or sanctions from peers. Different tax compliance behaviors may then arise in

the long-run equilibrium depending on these different aspects, especially the different social

norms that exist in each group or community or even country. For example, according to the

IMF estimates, 30 percent of taxes were evaded in Greece in 2011 while the same number

was 7 percent in the UK (IMF (2013)). According to this report, the main explanation put

forward for this gap is the difference in social norms between these two countries.21

21Acemoglu and Jackson (2017) propose an interesting but different model based on social norms and the
enforcement of laws that can explain why Greece and the UK experienced different tax evasion rates.
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6 Conclusion

We consider a model where each individual (or ethnic minority) is embedded in a network of

relationships and decides whether or not she wants to be assimilated to the majority norm.

First, each individual wants her behavior to agree with her personal ideal action or norm,

which means that there is a consistency between her own norm and her assimilation behavior.

Second, she also wants her behavior to be as close as possible to the average assimilation

behavior of her peers, which implies that she is a conformist. We show that there is always

convergence to a steady-state and characterize it. We also derive some implications in terms

of assimilation policies. More generally, our model highlights the tension that may exist

between the social norms of each family, that of the community and own marginal benefits

in the long-run assimilation decisions of ethnic minorities.

We view our model as a step forward an analysis of how pressure from peers, communities

and families affect the long-run decisions of individuals, especially for decisions on assimi-

lation, crime, tax evasion, etc. New steps in this research should incorporate an empirical

analysis of these interactions in order to disentangle the different effects at work and to

address the relevant policy implications of such an analysis.
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Appendix: Proofs of the results in the main text

Proof of Proposition 1:

First step: Let us show first that GM = MG. To do that, we first prove the following

lemma

Lemma 1 If two matrices A and B commute and B is nonsingular, i.e. AB = BA, then

AB−1= B−1A.

Proof: We have AB = BA. This implies that B−1AB = B−1BA, which is equivalent

to:

B−1AB = A

This implies that

B−1ABB−1 = AB
−1

which is equivalent to

B−1A = AB−1

This proves the lemma.

Let us now show that M−1 and G commute, i.e. M−1G = GM−1. We have M =

(I− θG)−1. Thus, M−1 = (I− θG). As a result,

M−1G = (I− θG) G =
(
G− θG2

)
= G (I− θG) = GM−1

Denote A = G and B = M−1. Since G and M−1 commute, then Lemma 1 shows that

GM = MG.

Second step: Let us show that TG = GT. We have that

T =
γ

(1 + w)
M + (1− γ)I

This implies that

TG =

[
γ

(1 + w)
M + (1− γ)I

]
G

=
γ

(1 + w)
MG + (1− γ)G
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Since MG = GM, this can be written as:

TG =
γ

(1 + w)
GM + (1− γ)G

= G

[
γ

(1 + w)
M + (1− γ)I

]
= GT

Third step: Let us show that limt→∞Tt = limt→∞Gt. Assume that G is diagonalizable

and aperiodic.22 This implies that T is diagonalizable. Indeed, if G is diagonalizable, M is

diagonalizable being a polynomial of G. Since T is a linear convex combination of I and M,

two diagonalizable matrices, it is also diagonalizable.

Then, since we have seen that G and T commute, then they have the same eigenvectors

(this is a standard result in linear algebra; see e.g. Strang (2016)). We know that G

converges because G is aperiodic. Then, G and T have the same eigenvector associated

with the maximum eigenvalue (which is 1 here), which we denote by e. Since both T and

G are row-normalized, they both have the same largest eigenvalue equal to 1. This implies

that:

eT T = eT G = 1 eT

This proves part (i) of the proposition.

Assume now that G is periodic. Observe that G and Gε commute. Indeed

GGε = G[εI + (1− ε)G] = εG + (1− ε)G2 = [εI + (1− ε)G]G = GεG

Then, by substituting Gε to G and using exactly the same proof as for the case when G was

aperiodic, we obtain the proof of part (ii) of the proposition.

Proof of Proposition 2: Consider, first, the dynamics of norms in (4). It is straight-

forward to see that, in steady state, s∞ = x∞ when st+1 = st = s∞ and xt+1 = xt = x∞.

Consider equation (3) that we report here:

xt=

(
1

1 + w

)
[I− θG]−1 st (40)

Then, in steady state,

22With some abuse of notation, we say that G is aperiodic if the submatrix associated to each closed
communication class is aperiodic.
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x∞=

(
1

1 + w

)
[I− θG]−1 x∞ (41)

We can write is as:

(1 + w)x∞ + ωGx∞ = x∞ (42)

With some algebra, it is immediate to have x∞ = Gx∞. This means that x∞ is the right

eigenvector associated to the unit eigenvalue since G is row-stochastic.

Consider now the utility function in steady state. Since x∞ = Gx∞, then (x∞i −
∑
j

gijx
∞
j )2.

Moreover, in steady state x∞i = s∞i . Then the utility is null for all agents, and the welfare

is maximal.

Proof of Proposition 3: From (2), we have:

xti =

(
1

1 + ω

)
sti +

(
ω

1 + ω

)∑
j

gijx
t
j

If we substitute this value into the utility function (1), we obtain:

uti = −ω
[( 1

1 + ω

)
sti +

(
ω

1 + ω

)∑
j

gijx
t
j −

∑
j

gijx
t
j

]2
−
[( 1

1 + ω

)
sti +

(
ω

1 + ω

)∑
j

gijx
t
j − sti

]2
= −ω

[( 1

1 + ω

)
sti −

(
1

1 + ω

)∑
j

gijx
t
j

]2 − [(− ω

1 + ω

)
sti +

(
ω

1 + ω

)∑
j

gijx
t
j

]2
=

ω

(1 + ω)2
[
sti −

∑
j

gijx
t
j

]2 − ω2

(1 + ω)2
[
sti −

∑
j

gijx
t
j

]2
= − ω

1 + ω

[
sti −

∑
j

gijx
t
j

]2
This is minimized if either ω = 0 or st = Gxt. Recall that, in equilibrium, using (3), we

have:

xt=

(
1

1 + ω

)
[I− θG]−1 st
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Therefore, to maximize welfare, we should have:

st =

(
1

1 + ω

)
G [I− θG]−1 st = Ast

This means that st = Ast, that is st is the right eigenvector associated to A, i.e. st = e(A).

Proof of Proposition 4: We assume that links in Ḡ are ḡij ∈ {0, 1} and that the

matrix G is the row normalization of Ḡ. Call i = GL the government leader and j = CL

the cultural leader. Then, from the characterization results (see Proposition 9 in the Online

Appendix B.4), we have:

q∞i = [I− (QCL + ik)]−1 qi

where the matrix (QCL + ik) is the bottom right block of the canonical form of the network

in which we consider the new link to the native. Then, since there are just two stubborn

agents being the only two closed communication classes,

q∞j = [I− (QCL + ik)]−1 qj = 1− q∞i

If we want to maximize the effect of the new link we need to look at the aggregate weight

that the stubborn government leader has on the long run distribution. In other words, we

want to maximize the sum of the entries of q∞i . Notice that since i has only one link to

agent k, then

q
′

i =

[
0, . . . , 0,

1

dk
, 0, . . . , 0

]
where dk is the degree in the network GCL + ik. Then, to maximize the aggregate effect, we

choose to link i to the k that maximizes the following

1

dk

n∑
w=1

mwk (GCL + ik)

This completes the proof.

Proof of Proposition 5: Recalling Proposition 9, we can write the Markov process

associated with G̃ by reconsidering equation (B.5) for our case. This turns out to be written
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as

ŝ∞ =


1 0 0 0 0

0 1 0 0 0

0 0 · · · 0 0

0 0 0 1 0

g∞f1
g∞f2

. . . g∞fn
O

 ŝ(0) (43)

where g∞fi
is the vector of weights assigned by each agent in N to the specific fictitious agent

fi. Let us now consider how each of these vectors looks like. Using the same results as in

Proposition 9, we have:

g∞fi = [I− θG]−1gfi (44)

where gfi is the column vector of weights that agents in N assigns to the fictitious fi. We

now recall that only agent i assigns a positive weight to fi and that this is equal to 1
1+w

.

Then, by denoting by mij the generic entry of matrix [I− θG]−1, and by m∗i, its ith column,

we obtain:

g∞fi = [I− θG]−1gfi =
1

1 + w
m∗i (45)

We then can derive the following:

[g∞1α |g
∞
2α| . . . |g

∞
nα ] =

1

1 + w
[I− θG]−1 (46)

which is row-normalized. This proves the first part of the proposition.

To find the equilibrium actions just plug s∞ into (20). This completes the proof.

Proof of Proposition 6: Consider equation (28). By simple algebra, we obtain:

α = (1 + w)[I− θG]s∞ (47)

Since θ = w/(1 + w), we have:

α = [(1 + w)I− wG]s∞ = s∞ + w(I−G)s∞ (48)

Given a target s∗, we immediately have that the optimal α∗ is α∗ = s∗+w(I−G)s∗. Then

σ∗ = s∗ −α+ w(I−G)s∗ (49)
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Notice however that, if for all i, j ∈ I, s∗i = s∗j , then (I −G)s∗ = 0 since every agent has a

target norm equal to the average of her neighbors’ targets. Then σ∗ = s∗ −α. This proves

the result.
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Online Appendix
Conformism, Social Norms and the Dynamics of Assimilation

By Gonzalo Olcina1, Fabrizio Panebianco2 and Yves Zenou3

March 29, 2018

A Some Results in Linear Algebra

We state here (without proving them) some standard results in linear algebra.

Definition 2 (Irreducible matrix) G is said to be irreducible if all agents form a unique

communication class. Otherwise G is reducible. In terms of network, G is irreducible if it

is a strongly connected network .

Lemma 2 Consider G to be an irreducible matrix. Then its largest eigenvalue λ1 = 1 and

there is a positive eigenvector associated to it.

Definition 3 (Periodicity) A state in a Markov chain is periodic if the chain can return

to the state only at multiples of some integer larger than 1. Formally, the period d(x) of

state x ∈ S is:

d(x) = gcd {n ∈ N+ : P n(x, x) > 0} (A.1)

where S is the state space, P the transition probability matrix and gcd stands for greater

common divisor. State x is aperiodic if d(x) = 1 and periodic if d(x) > 1

Lemma 3 All agents belonging to the same communication class have the same period.

If a matrix is periodic then limt→∞Gt does not exist and there are precisely d complex

eigenvectors of length one.

Definition 4 (Primitive Matrix) If G is aperiodic and irreducible, it is called primitive

Definition 5 Consider the eigenvector associated to the unit eigenvalue of a stochastic ma-

trix G. We refer to it as the Perron-Froebenius eigenvector, and we call it e(G).

1Universitat de València and ERI-CES, Spain. Email: Gonzalo.Olcina@uv.es.
2Department of Decision Sciences and IGIER, Bocconi University, Italy. E-mail: fab-

rizio.panebianco@unibocconi.it.
3Monash University and CEPR. Email: yves.zenou@monash.edu.
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Consider Q defined in equation (B.2).

Lemma 4 Consider a matrix G in its canonical form. Then, limt→∞Qt = 0 entry wise.

This convergence happens geometrically fast.

B Convergence and Network Topology

B.1 Basic definitions

Let us provide some results of Markov processes that we write in terms of our model, where

we do not have transition matrices that determine the probability of switching from one

state to another, but, instead, we have the influence of the network.

We now propose some useful definitions.

Definition 6 (Influenced Agents) Agent i is influenced by agent j if there exists a se-

quence of nodes (agents) such that gikgkw · · · gzj > 0. We denote this as i → j. If j is also

influenced by i then i↔ j.

Notice that i → j does not mean that gij are linked, but that there is a path from i to

j. Considering, for example, the first network G1 in Figure 3. Then, we can see that 8→ 6

since g87g71g15g56 > 0.

Definition 7 (Communication Class) A set C ⊂ N is called a communication class if:

(a) i, j ∈ C ⇒ i↔ j; (b) i ∈ C and i↔ j ⇒ j ∈ C.

In words, a communication class is a subset of agents who are all (directly or indirectly)

influenced by each other. In the networks in Figure 3, the agents belonging to the same

communication class have the same color. This means that the first network is composed

of agents that all belong to the same communication class while, in the two other networks,

each has three different communication classes.

Definition 8 (Closed Communication Class) A set C ⊂ N is a closed communication

class if: i ∈ C and j /∈ C ⇒ i is not influenced by j.

Given that gii = 0, closed communication classes cannot be formed by singletons. Con-

sider the networks given in Figure 3. In network 2, there is one closed communication class

composed of agents 1, 2 and 3 while, in network 3, there are two closed communication classes
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composed of agents 1, 2, 3 and 4, 5, 6, respectively. In these networks, closed communica-

tion classes are represented by circles while other communication classes (so called transient

communication classes) by diamonds. Observe that the definition of closed communication

classes implies that there are no link between agents belonging to two closed communication

classes.

B.2 Convergence for strongly connected networks

B.2.1 General results

We first analyze the case of a strongly connected network G. Recall that a network is strongly

connected if all nodes belong to a unique closed communication class. This case is relatively

standard and has been analyzed, for example, by Golub and Jackson (2010, 2012). There

are, however, two main differences with the standard case. First, in the standard case, the

steady-state norms are given by the network matrix G. In our case, we have seen that the

dynamics of norms is governed by T instead of G. Second, the standard results only hold

for aperiodic G while we will prove convergence of norms also for periodic G.

Proposition 7 Assume that the network is strongly connected. If G is aperiodic, then,

lim
t→+∞

Tt s =


e(G)

...

...

e(G)

 s for every s ∈ [0, 1]n

If G is periodic, the same result holds by considering the matrix Gε instead of G.

The convergence results comes from Markov chain theory together with our finding that

the asymptotic properties of T and G are the same. While it is well known that, for a

strongly connected G, its limit is given by its Perron-Froebenius eigenvector, the way in

which the two matrices G and T relate to each other is not straightforward, and depends

on the way incentives and norms updating process interact. More precisely, the matrix

T is irreducible because the associated network G is assumed to be strongly connected.

Moreover, the matrix T is aperiodic because every agent assigns a positive weight to herself

in the norm updating process (γ > 0) and, since T is a function of the network G, which

is strongly connected, there are always self loops. This implies that tii > 0, ∀i. Since T is

an irreducible and aperiodic non-negative matrix, it is a primitive matrix. This guarantees

that the process converges to a unique steady state. Finally, since the matrix T is row
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stochastic, its largest eigenvalue is 1, and therefore, there is a unique left eigenvector e(T)

with positive components such that e(T) = e(T) T. The eigenvector property is just saying

that ei =
∑

j∈N tjiej for all i, so that the opinions of agents with greater influence have a

greater weight in the final convergence belief.

Proposition 7 also derives a similar result when the matrix G is periodic. When this is

the case, it is impossible to find limt→∞Gt. However, for the very same reasons described

above, the matrix T is primitive. Then it is enough to study the perturbed matrix Gε instead

of G to obtain the convergence result.

B.2.2 Example

Let us illustrate our convergence result for strongly connected networks stated in Proposition

7. In this proposition, we characterize the unique steady-state norm s∞i for each individual i,

which is the same for all individuals in the network, and show that it is equal to a weighted

average of the initial norms of all agents, where the weights are each agent’s eigenvector

centrality. This means that the more central an individual is in the network, the higher is

her weight in the determination of the common steady-state norm. Let us illustrate this result

for network 1 in Figure 3, which is a strongly connected network with one communication

class (i.e. there is no agent outside the communication class) and understand the implications

in terms of assimilation norms.

The adjacency matrix of network 1 in Figure 3 is given by:

G1 =



0 0 1
2

0 1
2

0 0 0 0

0 0 1 0 0 0 0 0 0
1
2

1
2

0 0 0 0 0 0 0

0 0 0 0 1
2

1
2

0 0 0

0 0 0 1
3

0 1
3

0 0 1
3

0 0 0 1
2

1
2

0 0 0 0
1
3

0 0 0 0 0 0 1
3

1
3

0 0 0 0 0 0 1
2

0 1
2

0 0 0 0 0 0 1
2

1
2

0


Assume the following (transpose) vector of initial norms:

[s(0)]T =
[

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
]

(B.1)

We expect the norms to converge to the same value, which is given by the weighted
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average of the initial norms, where the weights are given by the eigenvector centralities of

the agents. Assume that w = γ = 0.5. We easily obtain:

T∞1 =



e(G)

...

...

...

...

...

...

...

e(G)


=



0.095 0.048 0.095 0.095 0.143 0.095 0.143 0.127 0.159

0.095 0.048 0.095 0.095 0.143 0.095 0.143 0.127 0.159

0.095 0.048 0.095 0.095 0.143 0.095 0.143 0.127 0.159

0.095 0.048 0.095 0.0952 0.143 0.095 0.143 0.127 0.159

0.095 0.048 0.095 0.095 0.143 0.095 0.143 0.127 0.159

0.095 0.048 0.095 0.095 0.143 0.095 0.143 0.127 0.159

0.095 0.048 0.095 0.095 0.143 0.095 0.143 0.127 0.159

0.095 0.048 0.095 0.095 0.143 0.095 0.143 0.127 0.159

0.095 0.048 0.095 0.095 0.143 0.095 0.143 0.127 0.159


We can see that the most influencial individual is 9 because she is the more central

agent (in terms of eigenvector centrality) in the network. The limit social norm in terms

of assimilation will then be the weighted average of all initial norms, where the weights are

given by each row of this matrix. It is easily verified that it is given by: s∞i = 0.559 for

all i = 1, ..., 9. In other words, even though each ethnic minority has a very different initial

assimilation norm, they all end up with the same social norm equal to 0.559, which is slightly

favorable to assimilation.

Let us now look at the dynamics of social norms and how they converge in steady state.

For that, we examine the convergence of the assimilation norm of individuals 2, 4, and 9,

who belong to the same communication class but to different groups and have very different

initial assimilation norms. Figure B.1 illustrates this dynamics.
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Figure B.1: Norm convergence in a strongly connected network

We can see that these individuals start with very different initial norms (at time t = 0)

and then, as time passes by, they converge to the same weighted average norm s∞ = 0.559.

Individual 9 starts with a very high assimilation norm (s
(0)
9 = 0.9) while individual 2 starts

with s
(0)
2 = 0.2, a norm not in favor of assimilation (for example, because her parents want to

keep their original culture and language and feel threatened by the majority culture norm).

Still, because of peer effects, social interactions and the structure of the network, these two

agents end up with the same steady-state norm equal to 0.559, which implies a relatively

favorable level of assimilation norm.

B.3 Convergence for networks with only one closed communica-

tion class

B.3.1 General results

Denote by C the k×k (transition) matrix associated to the closed communication class with

k agents. Then, for this subset of agents only, the previous result about strongly connected

networks holds. We need to understand, however, the convergence norms of all the other

agents in the network who do not belong to the closed communication class. Since their

norms depend directly or indirectly on that of the agents in the closed communication class,

they also need to converge to the norm of the agents in the closed communication class.

Denote by ẽ(C) = [e(C)|0, · · · , 0] the 1 × n vector composed of e(C) augmented by n − k
entries equal to 0.
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Proposition 8 Assume that G only has one closed communication class of k agents. Then,

in steady state, the norm of all agents in the network will converge to the same value. If C

is aperiodic, then

s∞ =


ẽ(C)

...

...

ẽ(C)

 s(0)

If C is periodic, then the same result holds by considering the matrix Cε instead of C.

As above, this result relies on the fact that G and T have the same asymptotic properties

and that there exists only one closed communication class. Observe that, since the commu-

nication class is composed of more than one agent, then the convergence value is given by the

Perron-Froebenius eigenvector centrality in the sub-matrix representing the communication

class.

B.3.2 Example

Let us now study networks with only one closed communication class. In Proposition 8, we

characterize the unique steady-state norm s∞i of each individual i belonging to the closed

communication class and shows that it is equal to a weighted average of the initial norms

of the individuals belonging to the closed communication class, where the weights are deter-

mined by each agent’s eigenvector centrality. Importantly, all individuals who do not belong

to the closed communication class will be assigned a weight of zero when determining the

common steady-state norm. In other words, in steady-state, all individuals will adhere to

the same common assimilation norm, which is calculated by taking the weighted average of

all initial norms where the weights are equal to the eigenvector centrality of each individual

who belongs to the closed communication class and zero for all the other individuals who do

not belong to the closed communication class.

Consider network 2 in Figure 3, which has only one closed communication class composed

of agents 1, 2, 3. Thus, we expect the norm of all agents outside of the closed communication

class to converge to the common steady-state assimilation norm of agents 1, 2, 3. The

adjacency matrix of network 2 is given by:

7



G2 =



0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
1
2

1
2

0 0 0 0 0 0 0

0 0 0 0 1
2

1
2

0 0 0

0 0 0 1
3

0 1
3

0 0 1
3

0 0 0 1
2

1
2

0 0 0 0
1
3

0 0 0 0 0 0 1
3

1
3

0 0 0 0 0 0 1
2

0 1
2

0 0 0 0 0 0 1
2

1
2

0


The matrix of the closed communication class C = {1, 2, 3} is given by:

C =

 0 0 1

0 0 1
1
2

1
2

0


and is periodic (period 2). To show the convergence, we need to determine Cε (see equation

9), with, for example, ε = 0.1. Then,

Cε =


1
10

0 9
10

0 1
10

9
10

9
20

9
20

1
10


From Cε we can calculate Gε. For that, in G2, we replace C by Cε. In that case, the

convergence matrix is given by:

T∞2 =



ẽ(G)

...

...

...

...

...

...

...

ẽ(G)


=



0.25 0.25 0.5 0 0 0 0 0 0

0.25 0.25 0.5 0 0 0 0 0 0

0.25 0.25 0.5 0 0 0 0 0 0

0.25 0.25 0.5 0 0 0 0 0 0

0.25 0.25 0.5 0 0 0 0 0 0

0.25 0.25 0.5 0 0 0 0 0 0

0.25 0.25 0.5 0 0 0 0 0 0

0.25 0.25 0.5 0 0 0 0 0 0

0.25 0.25 0.5 0 0 0 0 0 0


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Individual 3, who is the most central agent in the closed communication class, has the

highest weight (i.e. 0.5). If we consider the same vector of initial norms as in (B.1), then,

the limit assimilation norm will be equal to:

s∞i = 0.25s
(0)
1 + 0.25s

(0)
2 + 0.5s

(0)
3 = 0.225, for all i=1,...,9

Clearly, all indidividuals who are not in the closed communication class (i.e. agents 4, ...,

9) have no influence on this steady-state norm but will still adopt it. Indeed, as stated

above, if there is only one closed communication class, then this class produces a system

whose dynamics is independent of the dynamics of the other individuals in the network not

belonging to this closed communication class.

Let us now examine the dynamics of social norms and how they converge in steady state.

For that, we look at the convergence of the norm of individuals 2, 4, and 9, who belong

to different groups (only 2 belongs to the closed communication class). Figure B.2 displays

these dynamics.

Figure B.2: Norm convergence with one communication class

We can see that individual 4, who is the furthest away from the closed communication

class and who starts with an initial assimilation norm of 0.4 follows first the social norm

of indidivual 9. Then, eventually, she converges to the norm of the closed communication

class. On the contrary, indidivual 9 is not influenced by individual 4 because no agent in

9’s communication class is influenced by any agent from 4’s communication class. What is

interesting here is that, in terms of assimilation norms, agents 4, ..., 9, who have inherited a
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relatively high assimilation norm (especially agents 7, 8, 9) will end up having a steady-state

norm of 0.225, which is not at all favorable to assimilation. This is due to their positions in

the network, which are peripheral, and the fact that the agents who matter (those belonging

to the closed communication class) have low initial social norms in terms of assimilation.

B.4 Convergence for any network

Let us now state our result on convergence of social norms for any possible network. Given

any network G, we can partition the set of agents such that N = C1∪C2∪· · ·∪Cm∪Q where

C1 · · ·Cm are closed communication classes while Q is formed by all the remaining agents.

Moreover we call Cp a generic communication class, np := |Cp| and nQ := |Q| = n−
∑m

p=1 np.

Consider now a network G. By columns and rows transposition, we can write the matrix

G as an upper triangular block matrix, in its Canonical Form, as follows:

G̃ =


C1 0 0 0 0

0 C2 0 0 0

0 0 · · · 0 0

0 0 0 Cm 0

QC1 QC2 QC... QCm Q

 (B.2)

where Cp is the transition matrix associated to the Cp closed communication class, while

the last rows report the matrices representing how much agents not belonging to any Cp are

influenced by those agents in a generic Cp, for i = 1, . . . ,m. Notice that the generic QCp has

dimension nQ × np, that every Cp is stochastic, and that Q is substochastic.

To illustrate this, consider network 3 in Figure 3. Its adjacency matrix is given by:

G3 =



0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
1
2

1
2

0 0 0 0 0 0 0

0 0 0 0 1
2

1
2

0 0 0

0 0 0 1
2

0 1
2

0 0 0

0 0 0 1
2

1
2

0 0 0 0
1
3

0 0 0 0 0 0 1
3

1
3

0 0 0 0 0 1
3

1
3

0 1
3

0 0 0 0 0 0 1
2

1
2

0


(B.3)

where this matrix keeps track of outdegrees only and where the sum of each row is equal to

10



one (row-normalized matrix). Consider, for example, the first row corresponding to agent

1. Since we only consider outdegrees, the link between 1 and 7 does not appear here and it

only exists in row 7.

It is easily verified that this network has two closed communication classes, C1 = {1, 2, 3}
and C2 = {4, 5, 6} and thus Q = {7, 8, 9}, which means that agents 7, 8, 9 do not belong to

any closed communication class. Then, the canonical form of G3 is given by G̃3, where

C1 =

 0 0 1

0 0 1
1
2

1
2

0

 ; C2 =

 0 1
2

1
2

1
2

0 1
2

1
2

1
2

0

 ; Q =

 0 1
3

1
3

1
3

0 1
3

1
2

1
2

0

 ; QC1 =


1
3

0 0

0 0 0

0 0 0

 ; QC2 =

 0 0 0

0 0 1
3

0 0 0

 .
(B.4)

In particular, QC1 , which keeps track of the links between individuals who do not belong

to any closed communication class, i.e. individuals 7, 8, 9, and those who belong to C1 =

{1, 2, 3}, shows that there is only one direct link between individuals 7 and 1 with weight 1/3.

Similarly, QC2 , which keeps track of the links between individuals who do not belong to any

closed communication class, i.e. individuals 7, 8, 9, and those who belong to C2 = {4, 5, 6},
shows that there is only one direct link between individuals 8 and 6 with weight 1/3.

Definition 9 Consider the left eigenvector associated to the unit eigenvalue of a stochastic

matrix G. This is the Perron-Froebenius eigenvector, and we call it e(G), which is defined

as: eT (G) = eT (G)G.

Recall that eT (G) is a row vector, and, given that G is a stochastic matrix, has positive

entries whose sum is normalized to one. We are now ready to characterize the steady-state

norms in terms of the structure of the network G. We first recall some well-known results

stating that, if the network is strongly connected, then in steady state norms converge to

the same value (see Appendix B.2). This result easily extends to the case of network with

just one closed communication class (see Appendix B.3). Consider now the case of a generic

network G.

While the convergence level of norms of agents belonging to a closed communication

class can be derived directly from previous results on strongly connected networks, the

characterization of norms of agents not belonging to any closed communication class is more

challenging. Define O as a square matrix of zeros of dimension nq. Denote by e(Cp) the

Perron-Frobenius eigenvector for the communication class Cp, and denote by ei(Cp) its ith

entry.
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Proposition 9 Consider any network G. Each agent i maximizes utility (1) and her norm

follows the updating process described in (5). Assume G to be aperiodic. Then, in steady

state,

s∞ =


C1
∞ 0 0 0 0

0 C2
∞ 0 0 0

0 0 · · · 0 0

0 0 0 Cm
∞ 0

Q∞C1
Q∞C2

Q∞C... Q∞Cm O

 s(0) (B.5)

where:

C∞p =


e(Cp)

...

...

e(Cp)


np×np

, ∀p = 1, . . . ,m. (B.6)

Q∞Cp = [q∞1p |q
∞
2p | . . . |q

∞
npp

]nq×np , ∀p = 1, . . . ,m. (B.7)

and each column is given by the vector

q∞ip = ei(Cp)[I−Q]−1 ·QCp · 1, ∀i ∈ Cp, ∀p = 1, . . . ,m (B.8)

If any Cp is periodic, then the same result holds by considering the corresponding perturbed

matrix Cpε.

This result shows that the norms of agents not belonging to any closed communication

class converge to some average of the others’ norms, which is given by (B.5). Notably this

result holds independently of G being periodic or not. Let us now show how the limit matrix

is calculated.

Consider, first, the agents belonging to any of the closed communication classes Cp,

identified by the matrix Cp of dimension np. Then, the long-run norms of agents belonging

to Cp are given by e(Cp). Thus, we can characterize the block-diagonal matrix C∞p as in

(B.6).

Next, consider the agents who do not belong to any closed communication class, charac-

terized by the matrix Q. Notice that Q characterizes the network existing only among these

agents, disregarding the links from and towards any other agent belonging to any closed

communication class. In other words, Q is the adjacency matrix of the network G restricted

to agents in Q (i.e. agents not belonging to any closed communication class). Consider now
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agents h ∈ Q, and i ∈ Cp. We would like to determine the weight that h assigns to i. In

(B.7),Q∞Cp gives the matrix of weights in steady state that all agents in Q assign to agents

in Cp. The ith column of this matrix, denoted by q∞ip and reported in (B.8), represents the

weigths that agents in Q assign to agent i ∈ Cp. Their steady-state norm value depends on

the weights directly or indirectly assigned to other agents in Q times how much each of them

is directly linked to agents in any Cp times ei(Cp), that is how much i ∈ Cp weights in the

final norms of agents in Cp.

Proposition 9 describes this result. Indeed, consider equation (B.8) and focus on how q∞ip
is constructed. The matrix [I −Q]−1, which is convergent given that Q is a substochastic

matrix, is a Neumann series representing how much any two agents in Q directly or indirectly

assign weight to each other. Now, select another agent k ∈ Q and call mhk the generic entry

of [I − Q]−1. Then, mhk gives how many direct or indirect walks h has towards k. Then,

fixing agent i ∈ Cp, we have:

ei(Cp)[I−Q]−1QCp1 = ei(Cp)
∑
k∈Q

mhk

∑
j∈Cp

gkj, ∀h ∈ Q .

The weight h ∈ Q assigns to i ∈ Cp depends on how many paths h ∈ Q has towards any

other k ∈ Q, times how much weight any k ∈ Q assigns to agents in Cp times how much

weight i ∈ Cp has in the final norm of Cp. [I − Q]−1 is usually called the Fundamental

Matrix of Absorbing Chains. By doing so, in terms of our model, we can fully characterize

the steady-state level of norms for any network.

Let us summarize how we calculate the steady-state norms in any network. Consider a

network where there are m closed communication classes, where, in each closed communi-

cation classes Cp, there are np individuals, and nQ individuals who do not belong to any

closed communication class. If the total number of individuals in the network is n, then

n =
∑p=m

p=1 np + nQ. First, we need to write the adjacency matrix G in its canonical form

G̃ as in equation (B.2). In G̃, there are three types of matrices that keep track of the

weighted links between all agents in the network. First, there are the squared matrices Cp,

for p = 1, ...,m (each has a dimension np × np) corresponding to the closed communication

classes. Second, there is the squared matrix Q (which is of dimension nQ×nQ) of all agents

who do not belong to any closed communication class. Third, there are the matrices QCp ,

for p = 1, ...,m (each has a dimension nQ × np), which keep track of the links between indi-

viduals who do not belong to any closed communication class and those who belong to the

communication class Cp.

Given the matrix G̃, Proposition 9 characterizes the social norms of all individuals in
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steady state. First, for all individuals belonging to the same closed communication class Cp,

they all converge to the same steady state norm, which is a weighted average of their initial

beliefs and where each weight is the eigenvector centrality of each individuals belonging to

Cp. Second, for all the other individuals who do not belong to any closed communication

class, their limiting norms are calculated as in (B.7) and (B.8), which mean that the norms

of these individuals converge to some average of the norms of agents belonging to the closed

communication classes. However, this convergence depends on their position in the network

and if there is a path between a given individual not belonging to any closed communication

class and someone else in a closed communication class.

B.4.1 Convergence for any network: An example

Let us provide an example to illustrate the results stated in Proposition 9.4 In this proposi-

tion, we show that different norms will emerge in steady state. Indeed, if there are m closed

communication classes and nQ individuals who do not belong to any closed communication

class, then there will be m+ nQ steady-state norms.

Consider network 3 in Figure 3. Its adjacency matrix is given by (B.3). Let us now

determine the steady state norms of all individuals in the network. As stated above, since

there are two closed communication classes and three individuals who do not belong to any

closed communication class, there will be five social norms in steady state. It is easily verified

that the communication class C1 is periodic (period 2) so that we will use C1ε with ε = 0.10.

Using (9), we have:

C1ε =

 0.1 0 0.9

0 0.1 0.9

0.45 0.45 0.1


We obtain:

4In appendices B.2 and B.3, we provide examples where we calculate the convergence of social norms for
strongly connected networks and networks with one closed communicaton class, respectively.
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T∞3 =



0.25 0.25 0.5 0 0 0 0 0 0

0.25 0.25 0.5 0 0 0 0 0 0

0.25 0.25 0.5 0 0 0 0 0 0

0. 0. 0. 0.333 0.333 0.333 0 0 0

0. 0. 0. 0.333 0.333 0.333 0 0 0

0. 0. 0. 0.333 0.333 0.333 0 0 0

0.156 0.156 0.313 0.125 0.125 0.125 0 0 0

0.0938 0.0938 0.188 0.208 0.208 0.208 0 0 0

0.125 0.125 0.25 0.167 0.167 0.167 0 0 0


(B.9)

We see that the limit norm of the closed communication class C1 = {1, 2, 3} will only

take into account the weights of individuals 1, 2, 3 while that of the closed communication

class C2 = {4, 5, 6} will only take into account the weights of individuals 4, 5, 6. We also

see that, to calculate the limit norm of each individual who do not belong to any closed

communication class, i.e. individuals 7, 8, 9, one puts a weight of zero for each of them and

puts a positive weight for each other individual belonging to either C1 or C2. Interestingly,

the weights depend on the position in the network and the distance between the individual

who does not belong to any closed communication class and those who belong to a closed

communication class. Take, for example, individual 7 (row 7 in T∞3 ). In the determination

of her limit norm, the highest weight has been put on individual 3 because there is a direct

link between individual 7 and someone from C1 (i.e. individual 1), and individual 3 has the

highest eigenvector centrality (0.5) of all individuals in C1. The lowest weight has been put

on individual 4, 5 or 6 because there is no direct link between individual 7 and anybody

from C2 and all individuals in C2 have the same eigenvector centrality equal to 0.333.

To better understand this result, let us see how the matrix T∞3 is constructed. First, we

calculate the matrix that keeps track of the walks of different lengths in the network only for

individuals who do not belong to any closed communication class (i.e. individuals 7, 8, 9):

[I−Q]−1 =


15
8

9
8

1
9
8

15
8

8
3

3
2

3
2

2


Consider, for example, the weight each agent in Q assigns to agent 1 (who belongs to C1)

in steady state. This is given by q∞i1 , for i = 7, 8, 9. In Proposition 9, we show that:

q∞i1 = e1(C1)[I−Q]−1 ·QC1 · 1. We have: e1(C1) = 0.25. Then, we easily obtain:
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q∞i1 = 0.25


15
8

9
8

1
9
8

15
8

8
3

3
2

3
2

2

 ·


1
3

0 0

0 0 0

0 0 0

 ·
 1

1

1

 =

 0.156

0.0938

0.125


This means that, when calculating the steady-state norm, the weight individual 7 assigns

to individual 1 is equal to 0.156. Let us see how it is calculated. We have:

q∞71 = 0.25︸︷︷︸
e1(C1)

(
15

8︸︷︷︸
m77

× 1

3︸︷︷︸
g71

+
9

8︸︷︷︸
m78

× 0︸︷︷︸
g81

+ 1︸︷︷︸
m79

× 0︸︷︷︸
g91

) = 0.156

Thus, the positive weight of 0.156 that individual 7 assigns to 1 is due to the fact that there

is a direct link between 7 and 1. Observe that the other individuals 8 and 9 also assign a

positive weight to individual 1, albeit smaller, because of the direct link between between 7

and 1. We can then perform the same exercise to determine how the weights are determined

between individuals 7, 8, 9 and individuals in C2. Clearly, it will be through the link between

8 and 6. So, it is clear here how the position in the network of each individual has an impact

on the weight that will be assigned in the steady-state social norm.

To see that, let us now determine how social norms converge in steady state. Assume

the following (transpose) vector of initial norms:

[s(0)]T =
[

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
]

(B.10)

It is then easily verified that the steady-state (transpose) vector of norms is given by:

[s(∞)]T =
[

0.225 0.225 0.225 0.5 0.5 0.5 0.328 0.397 0.363
]

(B.11)

Indeed, all agents belonging to the first closed communication class C1 = {1, 2, 3} converge

to the same norm equal to 0.225, all agents belonging to the second closed communication

class C2 = {4, 5, 6} converge to the same norm equal to 0.5, and, finally, all the other agents

7, 8, 9 converge to different steady-state norms given by 0.398, 0.397 and 0.363, respectively.

Even though individuals 7, 8, 9 have high initial assimilation norms, they end up converging

to a much lower level of assimilation norm than individuals belonging to C2 because their

weights are zero and their steady state norm is a convex combination of the norms of the

two closed communication classes, which have norms between 0.225 and 0.5.

Let us now study the dynamics of the assimilation norms of individuals 2, 4, and 9, who

belong to different groups. It is depicted in Figure B.3.
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Figure B.3: Norm convergence with two communication classes

The assimilation norm of individual 2, who belongs to the first communication class C1,

converges to a low-value of assimilation (0.225) because all agents in this communication

class have a low initial norm in terms of assimilation. The same intuition applies for the

second closed communication class C2 but with a higher value of the assimilation norm

because of higher initial norms. Finally, for individuals 7, 8 and 9, who do not belong to any

closed communication class, their steady-state norm is totally independent of their initial

norms, which have high values. Their steady-state norms only depend on their position in

the network, the distance between their location, and that of the two closed communication

classes. We can see from network 3 in Figure 3 that there is always a path between any agent

7, 8, 9 and the two communication classes. As a result, the limit norm will be a combination

of the steady-state norms of the two closed communication classes.

C Proof of equation (14)

Recall that

xt =
1

1 + w
[I− θG]−1st

Then

xt − st =
{ 1

1 + w
[I− θG]−1 − I

}
st

Notice that the matrix M is a stochastic matrix. Denote B =
{

1
1+w

[I− θG]−1 − I
}

. Then,

bii = mii − 1 < 0, bij = mij > 0, for all i 6= i, and
∑

j 6=i bij < 1. Moreover, bii = −
∑

j 6=i bij
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Looking at the ith row of xt − st, we get

xti − sti =
∑
j 6=i

mijs
t
j −

∑
j 6=i

mijs
t
i =

∑
j 6=i

mij(s
t
j − sti)

D Speed of convergence

It is well known that, for a Markov process with transition matrix T, the speed of convergence

is inversely related to the second largest eigenvalue of T, i.e. λ2(T). Moreover, as shown

by Golub and Jackson (2012), if agents are divided into groups, each starting with a given

norm, λ2(G) is a measure of homophily, which they called spectral homophily.5 In our case,

however, the speed of convergence is determined by λ2(T), which is different from λ2(G).

Therefore, we would like to study how these two second largest eigenvalues relate to each

other.

Proposition 10 Consider matrices G and T. Then,

λ2(T) =
γ

1 + ω[1− λ2(G)]
+ 1− γ, (D.1)

Moreover, the dynamics of norms and actions using the T matrix is faster than that of the

one using G if and only if ω > 1
λ2(G)−(1−γ) .

Depending on the taste for conformity ω and on the parameter γ, this proposition shows

that the convergence of social norms can be faster in our model than under the standard

updating rule (Golub and Jackson (2010)) using the matrix G.6 To understand this, consider

two extreme cases: γ = 0 and γ = 1.

When γ = 0, then st+1 = st (see equation (4)), agents perfectly adapt their own norms

to their past norms, and no dynamics will take place. As a result, by continuity, we can say

that for extremely low levels of γ, our dynamics is much slower than that of the standard

updating with G.

On the contrary, when γ = 1, st+1 = xt and agents do not take into account their past

norms but just try to be consistent with their past actions. This opens up the possibility

5In fact, the quantity 1− |λ2(G)| is called the absolute spectral gap and is an important measure of the
system tendency to equilibrate.

6Observe that different closed communication classes have different speeds of convergence, which means
that different groups of agents can converge to their steady-state norms at different speeds. To calculate
the speed of convergence of each closed communication class Cp, one needs to compute the second largest
eigenvalue of the submatrix of the communication class, λ2(Cp).
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of a faster process. In particular, our process is faster than under the standard updating

rule if and only if ω > 1/λ2(G). Indeed, with consistency, agents’ norms get closer to their

actions. Since the equilibrium actions of agents are proportional to their centrality, then, if

the spectral homophily is low (i.e. low λ2(G)), the simple updating on G is relatively fast.

Then, our dynamics is faster if agents choose to conform to their neighbors’ choices. This

happens if the taste for conformity ω is high.

Finally, when γ ∈ (0, 1), we have mixed effects. However, the proposition shows that, in

order to have a fast convergence, the taste for conformity ω has to be large enough compared

to spectral homophily.

To gain some additional intuition, consider the three networks in Figure 3, and the

dynamics of the social norms in each network displayed in Figures B.1, B.2, and B.3 (in

Appendix B), respectively. These figures show that network 3 experienced the fastest con-

vergence (see Figure B.3) while, individuals in network 2 (Figure B.2) experience the slowest

convergence of their social norms. Since, in these three figures, the parameters ω and γ are

hold constant, the differences in the speed of convergence are only due to the differences in

λ2(G). We have:

λ2(G3) = 0.7675 < λ2(G1) = 0.8108 < λ2(G2) = 0.8791

Indeed, the order of the inverse of the second largest eigenvalues reflects the order in the

speed of convergence.

Proposition 10 shows that, apart from the second largest eigenvalue, a change in the

conformism parameter ω and the updating parameter γ also affect the speed of convergence

for a given network structure. Let us focus on network 1. In the dynamics displayed in

Figure B.1, we use γ = 0.5 and ω = 0.5. In the dynamics displayed in Figure D.1 below,

we take instead γ = 0.5 and ω = 0.3 (left panel) and γ = 0.6 and ω = 0.5 (right panel). In

other words, in the former, we only decrease ω while, in the latter, we only increase γ.
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Figure D.1: Convergence of norms in network 1 when γ = 0.5 and ω = 0.3 (left panel) and
γ = 0.6 and ω = 0.5 (right panel)

Consider first a change in ω. By equation (??), an increase of w would decrease λ2(T)

thus making the process faster. In our simulations, we decrease ω so that the dynamics is

slower. Indeed, a lower taste for conformity ω means a lower tendency for agents to conform

to others’ social norms. This means that individuals have less incentives to follow others’

behaviors and, through updating, having norms relating to each other. This implies that

the process is going to be slower. Consider now an increase of γ. Then, during the updating

process, the agents weigh more past actions (consistency) but since actions relate to others’

actions and norms, this larger weight makes the norms more interconnected and reach a

steady state faster. This is why the convergence is quicker in the right panel of Figure D.1.

E Peer definitions

In this section, we consider two alternative definitions of peers.

E.1 Peers as indegrees

We now define a peer as someone who nominates you but not necessary the other way around.

In other words, being a peer is now a measure of popularity rather than a measure of role

model. So, if individual i nominates individual j but the reverse is not true, then gji = 1

and gij = 0. If we consider network 3 in Figure 3, for indegrees, the adjacency matrix is not
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anymore given by (B.3) but by:

G3 =



0 0 1
2

0 0 0 1
2

0 0

0 0 1 0 0 0 0 0 0
1
2

1
2

0 0 0 0 0 0 0

0 0 0 0 1
2

1
2

0 0 0

0 0 0 1
2

0 1
2

0 0 0

0 0 0 1
3

1
3

0 0 1
3

0

0 0 0 0 0 0 0 1
2

1
2

0 0 0 0 0 0 1
2

0 1
2

0 0 0 0 0 0 1
2

1
2

0


(E.1)

It is easily verified that, in network 3, there is now only one closed communication class

C1 = {7, 8, 9} since g17 > 0 and g68 > 0 while g17 = 0 and g68 = 0. This is exactly the

opposite of the case when peers were defined as outdegrees where there were two closed

communication classes, C1 = {1, 2, 3} and C2 = {4, 5, 6}, and individuals 7, 8, 9 did not

belong to any closed communication class. Now, when peers are indegrees, individuals

1, 2, 3, 4, 5, 6 do not belong to any closed communication class, so that m = 1, n1 = 3 and

nQ = 6. The canonical form of G3 is given by G̃3, where

C1 =

 0 1
2

1
2

1
2

0 1
2

1
2

1
2

0

 ; Q =



0 0 1
2

0 0 0

0 0 1 0 0 0
1
2

1
2

0 0 0 0

0 0 0 0 1
2

1
2

0 0 0 1
2

0 1
2

0 0 0 1
2

1
2

0


; QC1 =



1
2

0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0


.

Let us now determine the steady state norms of all individuals in the network. Since

there is one closed communication class and six individuals who do not belong to any closed
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communication class, there will be one social norm in steady state. We obtain:

T∞3 =



0 0 0 0 0 0 0.333 0.333 0.333

0 0 0 0 0 0 0.333 0.333 0.333

0 0 0 0 0 0 0.333 0.333 0.333

0 0 0 0 0 0 0.333 0.333 0.333

0 0 0 0 0 0 0.333 0.333 0.333

0 0 0 0 0 0 0.333 0.333 0.333

0 0 0 0 0 0 0.333 0.333 0.333

0 0 0 0 0 0 0.333 0.333 0.333

0 0 0 0 0 0 0.333 0.333 0.333


The results in terms of assimilation are exactly the opposite to the ones obtained when

peers were defined as outdegrees (see (B.9)) since, in the latter, individuals 1, 2, 3, 4, 5, 6

(resp. individuals 7, 8, 9) were the most (less) likely to be assimilated while, in the former,

they are the less (most) likely to be assimilated. Indeed, if we again assume the same vector

of initial norms given by (B.10), then, when peers are defined as indegrees, all individuals will

converge to a social norm equal to: s∞ = 0.8. This norm is quite high because all individuals

in the closed communication class have a very high initial social norm (between 0.7 and 0.9).

When peers were defined as outdegrees, we showed that the long-run assimilation norms

were given by (B.11). In particular, individuals 7, 8 and 9 had low long-run social norms

(less than 0.4) because their initial norms did not matter at all and only their position in

the network, which determined their connection to the two closed communication classes,

had an impact on the determination of their long-run norms.

E.2 Peers as mutual friends

We now define peers as mutual friends in two different ways. First, we say that there is a link

between individuals i and j i.e. gij = 1 so that i and j are peers, if either i has nominated

j or j has nominated i. This is the standard way researchers have been defining peers in

empirical works. Second, we define a link between two individuals i and j if both individual

i nominates individual j and j nominates i. This is a more restrictive way of defining peers.
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Let us start with the first definition and consider network 3 in Figure 3. We have:

G3 =



0 0 1
2

0 0 0 1
2

0 0

0 0 1 0 0 0 0 0 0
1
2

1
2

0 0 0 0 0 0 0

0 0 0 0 1
2

1
2

0 0 0

0 0 0 1
2

0 1
2

0 0 0

0 0 0 1
3

1
3

0 0 1
3

0
1
3

0 0 0 0 0 0 1
3

1
3

0 0 0 0 0 1
3

1
3

0 1
3

0 0 0 0 0 0 1
2

1
2

0


It should be clear that the network is now strongly connected and thus all individuals will

converge to the same social norm and will all exert the same assimilation effort.

Consider now the second definition of peers where both need to nominate each other to

be considered as peers. We have:

G3 =



0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
1
2

1
2

0 0 0 0 0 0 0

0 0 0 0 1
2

1
2

0 0 0

0 0 0 1
2

0 1
2

0 0 0

0 0 0 1
2

1
2

0 0 0 0

0 0 0 0 0 0 0 1
2

1
2

0 0 0 0 0 0 1
2

0 1
2

0 0 0 0 0 0 1
2

1
2

0


In this case, there are three closed communication classes, C1 = {1, 2, 3}, C2 = {4, 5, 6} and

C3 = {7, 8, 9} so that m = 3, n1 = n2 = 3 and nQ = 0. There will be three different social

norms, which will mostly depend on the initial social norms so that the social norm of C1
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will be lower than that of C2, which, in turn, will be lower than C3. We indeed obtain:

T∞3 =



0.25 0.25 0.5 0 0 0 0 0 0

0.25 0.25 0.5 0 0 0 0 0 0

0.25 0.25 0.5 0 0 0 0 0 0

0 0 0 0.333 0.333 0.333 0 0

0 0 0 0.333 0.333 0.333 0 0 0

0 0 0 0.333 0.333 0.333 0 0 0

0 0 0 0 0 0 0.333 0.333 0.333

0 0 0 0 0 0 0.333 0.333 0.333

0 0 0 0 0 0 0.333 0.333 0.333


Using the same initial norms defined by (B.10), we easily get:

[s(∞)]T =
[

0.225 0.225 0.225 0.5 0.5 0.5 0.8 0.8 0.8
]

E.3 Some more general results

Let us try to obtain some general results about the definition of peers. Consider the first

network in Figure E.1 and define peers as outdegrees. Then, it is clear that agents 4 and 5 are

the influencers of the whole dynamics, since they belong to the only closed communication

class, while agents 1, 2 and 3 are the influenced individuals since they do not belong to any

closed communication class. Then, if we change the definition of links from outdegrees to

indegrees, we have the opposite result, namely the influencers become the influenced. If we

now consider reciprocal nomination (peers as mutual friends), then the two groups consisting

of agents 1, 2, and 3, and of agents 4 and 5, are disconnected classes without interaction,

and no convergence happens.

More generally, consider the definition of peers as indegrees and outdegrees. Consider

the original adjacency matrices Ḡout and Ḡin (i.e the adjacency matrices that are not row-

normalized) and the diagonal matrices Dout and Din of indegrees and outdegrees, respec-

tively, that is the diagonal of Dout (Din) contains the number of outdegree (indegree) links

of each node while its off-diagonals have zeros. Then, by definition

Gout := D−1outḠout and Gin := D−1in Ḡin
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Figure E.1: Peers definition: Outdegree, Indegree, Reciprocal

We then have the following relationship:

Gin = D−1in
(
DoutGout

)T
(E.2)

However, without further restrictions, there is no way to relate steady-state norms and

actions in the two cases, since there is not a clear relationships between the eigenvectors of

a matrix and of the same matrix times a non-scalar diagonal matrix. As a general result we

can only state the following:

Remark 1 When peers are defined either as indegrees or outdegrees, the convergence levels

and properties are different but the speed of convergence of social norms and actions is the

same.

This result immediately follows from the fact that a matrix and its transpose share the same

eigenvalues. Intuitively, given that the second largest eigenvalue measures how the network

can be splitted into two parts, changing the direction of all the links does not affect this

property and, thus, the speed of convergence is the same. However, it clearly affects the

convergence properties.

Consider again the networks in Figure E.1 and assume that the initial norms are given

by: s01 = 0.1, s02 = 0.2, s03 = 0.3, s04 = 0.4, and s05 = 0.5. It is easily seen that, in the

first network, agents 4 and 5 form a unique closed communication class, so that, for all i,
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s∞i ∈ [0.4, 0.5]. In the second network, agents 1,2, 3 form a unique closed communication

class so that, for all i, s∞i ∈ [0.1, 0.3]. As a result, in both cases, a consensus (convergence of

social norms) will emerge but to very different levels. In the third network, there are clearly

two closed communication classes and thus the first three agents converge to the same social

norm of assimilation in [0.1, 0.3] while the last two agents will have norms converging to a

long-run norm belonging to [0.4, 0.5].

F Proofs of the results in the Online Appendix

Proof of Proposition 7: Consider the case in which G is aperiodic. Then, as shown in

Proposition 1, limt→+∞Tt = limt→+∞Gt. A strongly connected network implies G to be

irreducible. As shown, for example, in Golub and Jackson (2010), for an irreducible and

aperiodic network,

lim
t→+∞

Gt =


e(G)

...

...

e(G)


Consider now the case in which G is periodic. Proposition 1 states that limt→+∞Tt =

limt→+∞Gε
t. Then Gε is aperiodic. For the same reasoning as before we get

lim
t→+∞

Gε
t =


e(Gε)

...

...

e(Gε)


This proves the result.

Proof of Proposition 8 Consider first the agents belonging to the closed communica-

tion class. The dynamics of their norms is represented by the matrix C. Previous proposition

characterizes the convergence for the norms of these agents. Consider now also agents not

belonging to the closed communication class. The entire process is a uni-reducible Markov

process and the steady state for all agents is the steady state of agents belonging to the

closed communication class.

Proof of Proposition 9: Consider first agents belonging to closed communication class.
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Then, by previous analysis it is proved that (B.6) holds.

Consider now the weight assigned by each agent in Q to any other in Q. It is a well-known

results that the matrix of these weights is null.7 This immediately comes from the fact that,

taking the power matrix Gt, the block corresponding to Q is given by Qt. Since Q is a

substochastic matrix, then Q∞ = O.

Consider now how each g∞ip is shaped. Recall, first, that all agents belonging to a commu-

nication class Cp have norms converging to the same value. Call xkp the weight that agent

k ∈ Q assigns in steady state to the communication class Cp. Then xp is the vector of

dimension nq assigning the steady state weights of all agents in Q to the communication

class Cp. As proved in Theorem 4.4 of Senata (1981), we have:

xp = [I−Q]−1QCp1 (F.1)

Then, if we want to determine the weight that agent i ∈ Cp contributes to xp, it is enough

to multiply xp by ei(Cp). Indeed, we have:

g∞ip = ei(Cp)[I−Q]−1QCp1, ∀i ∈ Cp, ∀p = 1, . . . ,m (F.2)

This completes the proof.

Proof of Proposition 10 Consider a generic matrix A and its vector of eigvenvalues

λ(A), with λ1(A) > λ2(A) > .... Consider a polynomial function P (·). Then, it is well-

known that λ(P (A)) = P (λ(A)). Consider now T ≡ γ
(1+w)

M (θ,G) + (1 − γ)I, and recall

that

M(θ,G) =
∞∑
k=0

θkGk. (F.3)

Then,

λ(M(θ,G)) =
∞∑
k=0

θkλk(G). (F.4)

Notice that
∑∞

k=0 θ
kλk(G) preserves the order of the eigenvalues. Then

λ2(M(θ,G)) =
∞∑
k=0

θkλk2(G). (F.5)

Observe that, θλ2(G) < θλ1(G) < 1, where the last inequality holds by assumption. Then

7See, for example, Theorem 4.3 in Senata (1981).
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λ2(M(θ,G)) =
1

1− θλ2(G)
, (F.6)

and,

λ2(
γ

1 + ω
M(θ,G)) =

γ

(1 + ω)(1− θλ2(G))
. (F.7)

Since θ = ω
1+ω

, we have:

λ2(
γ

1 + ω
M(θ,G)) =

γ

[1 + ω(1− λ2(G)]
. (F.8)

Recall that we have shown that: MT = TM. This implies that γ
1+ω

M and T commute and,

thus, share the same eigenvectors. Denote by v2 the eigenvector associated to the second

largest eigenvalue of γ
1+ω

M. Then, by definition,

Mv2 = λ2(M)v2. (F.9)

With some algebra, we can show that:

γ

1 + ω
Mv2 =

γ

1 + ω
λ2(M)v2, (F.10)

and

[ γ

1 + ω
M + (1− γ)I

]
v2 =

[ γ

1 + ω
λ2(M) + (1− γ)

]
v2. (F.11)

Since T = γ
1+ω

M + (1− γ)I, we have:

λ2(T) =
γ

[1 + ω(1− λ2(G)]
+ (1− γ) (F.12)

Since the speed of convergence is inversely related to the second largest eigenvalue, the dy-

namics ruled by T is faster than the one ruled by G if and only if λ2(T) < λ2(G). With

simple algebra, we obtain the result stated in the proposition.
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