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ABSTRACT

IZA DP No. 11670 JULY 2018

Drivers of Student Performance: 
Evidence from Higher Secondary Public 
Schools in Delhi1

We examine the role of teachers and students in the formation of test scores at the higher 

secondary level (grade 12) in public schools in Delhi, India. Using the value added approach, 

we find substantial variation in teacher and student quality within schools: over the period 

spanning grades 11 and 12, being taught by a one standard deviation better than average 

teacher raises test scores by 0.373 standard deviation; and being a one standard deviation 

better than average student raises it by 0.799 standard deviation. Being permanent 

(tenured) positively predicts teacher effectiveness, while educational qualifications, training, 

experience and personality traits have no predictive power. Relative to families where only 

fathers earn, those where both parents earn negatively predict student effectiveness, while 

religion, caste and parents’ education have no predictive power.
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1 Introduction 

Cognitive skills, typically captured using test scores, are an important component of human 

capital that lead to higher individual earnings (Hanushek, Schwerdt, Wiederhold and 

Woessmann 2015), and boost a country’s economic growth (Hanushek and Woessmann 2012). 

Understanding how they are formed is particularly crucial for developing countries that seek 

higher economic growth. In this paper, we examine this issue for India. This is of relevance to 

India because Indian students perform poorly in international tests and also exhibit greater test 

score variance.2 The Annual Status of Education Reports (ASER) provide a more recent picture 

of poor learning outcomes among children in rural India: in 2016, only 43 percent of eight 

graders could correctly carry out a 3-digit by 1-digit division problem (ASER 2017). Given that 

gaps in test scores explain corresponding gaps in college attainment rates and earnings (Chay, 

Guryan and Mazumder 2014; Johnson and Neal 1998), it is conceivable that differences in skill 

acquisition are in part responsible for India’s economic disparities which have been rising since 

the early nineties (Basole and Basu 2015; Subramanian and Jayaraj 2015). Against this 

background, we examine the role of teachers and students in the formation of test scores at the 

higher secondary level (grade 12) in public (government) schools in Delhi, India. We measure 

teacher and student effectiveness using the value added approach (Todd and Wolpin 2003). 

Accordingly, a higher quality teacher/student is characterized by greater ability to raise test 

                                                           
2 Based on 2005 data for ninth graders from two Indian states, Das and Zajonc (2010) find that the median 

child failed to meet a low international benchmark in a standardized mathematics test, and the variance of 

test scores was amongst the highest in the world.   



scores after accounting for past and present inputs, including students’ prior teachers and prior 

performance.3  

A rich body of research has confirmed that variation in teacher assignment explains a large part 

of the variation in students’ test scores (see Hanushek and Rivkin 2012 and Ladd 2008 for 

reviews of this literature). Most of this work is from high income countries, predominantly the 

United States.4 Of late, new research is emerging from middle income countries: Araujo, 

Carneiro, Cruz-Aguayo and Schady 2016 from Ecuador, Azam and Kingdon 2015 from India, 

Bau and Das 2017 and Talanché 2017 from Pakistan, and Metzler and Woessmann 2012 from 

Peru. We add to this growing literature by being the first to examine the role of teachers in public 

schools in India. Our paper complements that by Azam and Kingdon (2015) who also examined 

teacher quality at the higher secondary level, but did so for a private consortium of schools in the 

Indian state of Uttar Pradesh. There are many reasons why private and public schools might 

function differently and should therefore be studied separately.5 First, on average, public schools 

are less productive compared to private schools: their test scores are either the same (Chudgar or 

Quin 2012) or worse (Azam, Kingdon and Wu 2016; Muralidharan and Sundararaman 2015; 

Singh 2015), while their per-student expenditure is larger, mainly on account of higher teacher 

                                                           
3 We define teacher quality solely in terms of the teacher’s ability to raise test scores and do not account 

for other important contributions that a teacher may make such as instilling curiosity or imparting good 

civic sense. In the absence of an alternative comprehensive measure, the ability to raise test scores 

provides a reasonable proxy for teacher quality and enables us to undertake quantitative analyses.   
4 Aaronson, Barrow and Sander 2007; Chetty, Friedman and Rockoff 2014; Clotfelter, Ladd and Vigdor 

2010; Hanushek, Kain, O’Brien and Rivkin 2005; Rivkin, Hanushek and Kain 2005; and Rockoff 2004 

are select studies from the United States; Slater, Davies and Burgess 2012 from the United Kingdom; and 

Leigh 2010 from Australia. 
5 Even though the share of private schools in enrolment is increasing in India, public schools still account 

for the larger share. At the all-India level, in 2014, 56 percent of students at the secondary and higher 

secondary levels (grades 10 through 12) studied in public schools. The corresponding figure for Delhi is 

higher at 71 percent (National Sample Survey 2016). 



salaries (Pritchett and Aiyar 2015).6 Second, teachers in public schools have different 

characteristics compared to their private counterparts: they are less likely to have a college 

degree, more likely to have a formal teacher training certificate, more likely to be absent, and 

less likely to be teaching when present (Desai, Dubey, Vanneman and Banerji 2008; 

Muralidharan and Kremer 2009). Finally, being subsidized by the state, public schools largely 

cater to students from lower income backgrounds which may lead to different peer effects and 

teacher-student dynamics within these schools. The only other paper to have looked at teacher 

quality in public schools at the higher secondary level is Slater et al. 2012 who study schools in 

England. In the concluding section we compare our findings with both Azam and Kingdon 2015 

and Slater et al. 2012. 

The broad consensus in the education literature on the correlates of teacher effectiveness is that 

most observable teacher characteristics such as gender, experience, educational qualifications 

and training are not strongly associated with value added measures of teacher quality (Hanushek 

and Rivkin 2010).7 In addition to examining whether these standard observable characteristics 

matter in our context, we also examine specific personality traits of teachers. We measure 

personality traits using The Big Five test, the most widely accepted taxonomy of traits in 

psychology (John, Naumann and Soto 2008). Its personality dimensions are: extraversion, 

agreeableness, conscientiousness, neuroticism and openness, each of which summarizes a large 

number of more specific personality traits.8 Recently, economists have also begun to 

                                                           
6 The studies cited here are based on analyses at the primary (grades 1 to 5) or secondary (grade 10) 

levels, and not at the higher secondary level. We could not find any study comparing public with private 

schools at the higher secondary level. 
7 A notable exception to this conclusion is Clotfelter et al. 2010. Additionally, some studies (Hanushek et 

al. 2005; Leigh 2010) have found that early experience adds to teacher effectiveness.     
8 Select trait adjectives associated with each dimension are: talkative and assertive with extraversion; 

sympathetic and kind with agreeableness; organized and thorough with conscientiousness; tense and 



conceptualize (Almlund, Duckworth, Heckman and Kautz 2011; Borghans, Duckworth, 

Heckman and ter Weel 2008) and test (Lindqvist and Vestman 2011; Mueller and Plug 2006) the 

importance of personality traits for labor market outcomes. Lindqvist and Vestman show that, 

compared to cognitive ability, personality traits are stronger predictors of labor force 

participation and earnings at the low end of the earnings distribution. Motivated by this evidence, 

and an intuitive expectation that personality traits of teachers should influence the relationship 

between them and their students and thereby affect test scores, we examine whether the Big Five 

can predict teacher effectiveness. 

There is a substantial body of work that has looked at the importance of family background on 

human capital (Björklund and Salvanes 2011 provide a review).9 The link between the two is 

indicative of equality of opportunity wherein a stronger association signifies greater inequality as 

it captures the salience of factors that are outside the control of an individual. This literature has 

focused on several specific characteristics including household income (Chevalier, Harmon, 

Sullivan and Walker 2013; Thompson 2014), parental education (Lundborg, Nilsson and Rooth 

2014), parental time investments (Boca, Monfardini and Nicoletti 2017; Cunha and Heckman 

2008) and family size and birth order (Haan, Plug and Rosero 2014, Sen and Clemente 2010). 

The value added specification that we estimate includes both teacher and student fixed effects. 

The latter captures all student factors (that are not subject specific), including individual 

ambition level and family background. We examine whether some of the aforementioned 

                                                           
anxious with neuroticism; wide interests and imaginative with openness. See John et al. 2008 for an 

extensive list of trait adjectives.  
9 They focus on completed years of schooling as the outcome of interest and conclude that more than 50 

percent of the variation in it can be attributed to factors shared by siblings. 



background characteristics studied in the literature can predict student effectiveness in the 

context we study.  

Finally, we also document the correlation between subjective principal ratings of individual 

teachers and objective value added measures of teacher quality embodied in our estimated 

teacher effects. The literature on such comparisons is limited, and as far as we know spans only 

the United States (Harris and Sass 2014; Jacob and Lefgren 2008; Rockoff and Speroni 2011). 

We add to this nascent literature by providing the first such comparison from a developing 

country context.  Principals have the opportunity to observe teachers closely and to evaluate 

them on a broader spectrum of outcomes beyond test scores, some of which may be hard to 

measure but are valued by parents and the society at large. Thus, there is merit in including 

principal evaluations as one of the factors that determines teacher compensation. It would then 

be useful to know how they compare with value added measures, which may be used as another 

determinant of teacher pay. 

Before we present the analysis we briefly review our main findings. Using data collected from 22 

schools for the academic year 2015-16, we find substantial variation in teacher quality within 

schools: over the two year period spanning grades 11 and 12, being taught by a one standard 

deviation better than average teacher raises a student’s test scores by 0.373 standard deviation 

(averaged across all subjects). This would move a student at the middle of the test score 

distribution to the 65th percentile. In terms of identifying an effective teacher, we find that 

consistent with most studies, educational qualifications, teacher training, and seniority do not 

characterize a better teacher; being permanent (tenured or confirmed in the government job) 

positively predicts teacher effectiveness; and contrary to our expectations none of the Big Five 

personality traits correlate with teacher effectiveness. Turning to student factors, we find that the 



within school variation in student quality is at least twice that in teacher quality. In terms of 

correlates of student effectiveness, religion, caste and parents’ education have no predictive 

power; interestingly, relative to families where only the fathers earn, those where both parents 

earn negatively predict student performance. Finally, we find weak evidence (significant at 10 

percent) that principals’ assessment of teachers regarding how well they can increase students’ 

understanding of the subject is positively correlated with valued added measures of teacher 

quality, with this correlation increasing when the principals have known the teachers for a longer 

duration. 

2 Methodology 

Consider the following production function for test scores: 

𝐴𝑖𝑧𝑡 = Φ1(𝑇𝑖𝑧𝑡 + 𝑇𝑖𝑧𝑡−1 + ⋯ + 𝑇𝑖𝑧0) + Φ2(𝑿𝑖𝑧𝑡 + 𝑿𝑖𝑧𝑡−1 + ⋯ + 𝑿𝑖𝑧𝑜)

+ Φ3(𝜃𝑖𝑡 + 𝜃𝑖𝑡−1 + ⋯ + 𝜃𝑖0) + 𝜀𝑖𝑧𝑡                                                                           (1) 

where 𝐴𝑖𝑧𝑡 is the test score of student 𝑖, in subject 𝑧, in year 𝑡. Educational inputs in year 𝑡 are: 

𝑇𝑖𝑧𝑡, the quality of the student’s subject specific teacher; 𝑿𝑖𝑧𝑡, a vector of subject specific student 

inputs such as time spent studying at home; and 𝜃𝑖𝑡 , the student’s subject invariant ability such as 

general motivational level. Lagged values refer to corresponding inputs in previous years. 𝜀𝑖𝑧𝑡 is 

the residual error.  

2.1 Estimating Teacher and Student Effects: Two-level Fixed Effects  



Under standard assumptions in this literature (Todd and Wolpin 2003),10  equation (1) can be 

written as:  

𝐴𝑖𝑧𝑡 = 𝛽𝑇𝑖𝑧𝑡 + 𝛼𝛽𝑇𝑖𝑧𝑡−1 + ⋯ + 𝛼𝑡𝛽𝑇𝑖𝑧0 + 𝜸𝑿𝑖𝑧𝑡 + 𝛼𝜸𝑿𝑖𝑧𝑡−1 + ⋯ + 𝛼𝑡𝜸𝑿𝑖𝑧𝑜 

+𝛿𝜃𝑖𝑡 + 𝛼𝛿𝜃𝑖𝑡−1 + ⋯ + 𝛼𝑡𝛿𝜃𝑖0 + 𝜀𝑖𝑧𝑡                                                                          (2) 

Combining terms we get, 

𝐴𝑖𝑧𝑡 = 𝛼𝐴𝑖𝑧𝑡−1 + 𝛽𝑇𝑖𝑧𝑡 + 𝜸𝑿𝑖𝑧𝑡 + 𝛿𝜃𝑖𝑡 + 𝑢𝑖𝑧𝑡                                                          (3) 

where 𝑢𝑖𝑧𝑡 = 𝜀𝑖𝑧𝑡 −  𝛼𝜀𝑖𝑧𝑡−1.11 Value addition due to current (subject specific) teacher quality, 

𝛽𝑇𝑖𝑧𝑡, and current student ability, 𝛿𝜃𝑖𝑡, are estimated using subject specific teacher fixed effects, 

and student fixed effects, respectively.  

Introducing subscripts for teacher 𝑗 and school 𝑠, superscripts for grades 10 and 12, and 

suppressing the time subscript (we study a single cohort of students),12 the two-level fixed effects 

specification that we estimate is as follows: 

𝐴𝑖𝑧𝑗𝑠
12 = 𝛼𝐴𝑖𝑧

10 + {𝜏𝑧𝑗𝑠} + 𝜸𝑿𝑖𝑧 + {𝜔𝑖} + 𝑢𝑖𝑧𝑗𝑠                                                             (4) 

                                                           
10 We make the following assumptions: there is a linear relationship between each input 

(𝑇, 𝑿 and 𝜃) and the test score; the marginal impact of each input (𝛽, 𝜸, and 𝛿) is age-invariant; 

and the impacts of all past inputs decay at a constant annual rate, 1 − 𝛼. 
11 For Ordinary Least Squares (OLS), to give consistent estimates of model parameters we either 

require 𝜀 to be serially correlated with the degree of serial correlation equal to 𝛼 (so that 𝑢 is 

independent identically distributed), or we need instruments for lagged test score, 𝐴𝑖𝑧𝑡−1, such as 

past inputs or past test scores, (Todd and Wolpin 2003). In the absence of valid instruments we 

assume the former. This assumption has been implicitly followed by others including Azam and 

Kingdon (2015) and Slater et al. (2012).  
12 Lack of multi-year data would be a limitation if we wanted to arrive at a ranking of individual 

teachers that was persistent over time (McCaffrey, Sass, Lockwood and Mihaly 2009). However, 

assuming stationarity of the distribution of teacher effects, data for a single year is sufficient to 

characterize the overall distribution in any given year. 



where {𝜏𝑧𝑗𝑠} and {𝜔𝑖} are teacher13 and student fixed effects, respectively. We measure 𝐴𝑖𝑧𝑗𝑠
12  in 

terms of subject specific z-scores which accounts for some of the subject specific idiosyncrasies 

in the achievement distribution. However, previous research (Hanushek and Rivkin 2012), has 

shown that teacher effects differ by subject in spite of using z-scores.14 We therefore regress the 

teacher effects on subject dummies and calculate the standard deviation of the resulting residuals 

as our measure of the variation in teacher quality. This estimator captures the importance of 

teacher assignment on test score performance. Similarly, the standard deviation of student effects 

measures the variation in student quality.15   

Since teachers and students do not shift schools within the school year, it is not possible to 

separate their effects from school effects. We therefore report within school variation in 

estimated teacher and student effects.16 As pointed out by Slater et al. (2012), the within school 

estimator is a lower bound for the actual degree of variation in quality across all public schools, 

if, as is likely, teachers and students cluster in schools on the basis of their quality. 

The inclusion of contemporaneous student fixed effects implies that teacher effects are derived 

from within student across subject variation in test scores at a point in time. To a large extent this 

                                                           
13 Whenever an individual teacher teaches multiple subjects, a distinct fixed effect is assigned for 

each subject. Thus, although we refer to our estimated effects as teacher effects, they are more 

precisely subject-teacher effects. 
14 Hanushek and Rivkin (2012) collate evidence from multiple studies for the United States and 

document an average standard deviation of teacher effects of 0.13 for reading, and 0.17 for math. 
15 The precision of estimated teacher and student effects depends on the number of students 

taught and the number of subjects taken, respectively. To account for this we calculate weighted 

standard deviations, using students taught and subjects taken as weights. Further, to account for 

sampling variation in estimated teacher and student effects, we use bootstrap (150 replications) 

to estimate the standard errors of the standard deviation of (residual) teacher and student effects. 
16 We implement equation (4) in STATA using `felsdvregdm’. Unlike previous commands that 

deal with over parameterization by dropping an arbitrary hold out unit, felsdvregdm imposes a 

sum to zero constraint within each reference collection, school in our case. School means are not 

separately identified in the presence of student fixed effects (Mihaly, McCaffrey and Lockwood 

2010) 



addresses non-random matching of students and teachers. To fully address it, we require that, 

having conditioned for lagged subject specific scores, students should not be matched with 

teachers according to other subject specific abilities.17  

In our empirical specification, the vector 𝑿 in equation (4) includes the following subject specific 

inputs applied by the student: whether or not tuitions were taken, study time outside school, and 

interest (captured using self-reported ranking of subjects according to the student’s liking). It 

may be argued that some of these inputs are responses to perceived or actual teacher quality. If 

this is the case and our interest is in the overall (policy) effect of a change in teacher quality, then 

these student inputs should not be included as controls. Alternatively, if interest lies in 

production function parameters, or if one believes that these inputs are driven by unobserved 

student subject specific heterogeneity such as parental motivation to excel in particular subjects, 

then they should be included as controls. We therefore present two separate specifications, with 

and without 𝑿, which bound our estimator of teacher influence. It is not possible to predict which 

specification would lead to a larger standard deviation of teacher effects. If the inputs in 𝑿 are 

substitutes for (complements to) teacher quality, then controlling for them would give larger 

(smaller) estimates. 

2.2 Identifying Correlates of Teacher and Student Quality 

                                                           
17 The inclusion of contemporaneous student fixed effects allows for dynamic tracking of 

students (Rothstein 2010), wherein students are matched with teachers according to their most 

recent ability measure. For consistent estimates of teacher effects we require this ability measure 

to be subject-invariant or to be based on grade 10 subject scores. It would be problematic if 

students were matched to teachers according to unobserved expectation of subject specific 

performance, or according to revealed subject specific performance in grade 11. In our schools 

the section of a student determines teacher assignments. Most students do not change sections 

between 11 and 12. For the ones that do, it happens because sections are merged into larger ones 

due to attrition in grade 11. In our school visits we did not find any indication of selective 

matching of individual students with subject specific teachers.  



To identify the correlates that distinguish an effective teacher/student, estimates of 

teacher/student fixed effects are regressed on individual characteristics.18  

2.3 Correlating Principal Ratings with Value Added Measures of Teacher Quality  

Principals were required to rate teachers along multiple performance dimensions on an ordinal 

scale of 1 (lacking a lot) to 5 (exceptional). Given that principals may have different subjective 

scales of rating, we normalize the ratings along each performance dimension by subtracting from 

each rating the principal specific mean for that dimension and then dividing by the principal 

specific standard deviation for that dimension. Recall that the value added measures captured by 

teacher effects have also been normalized within school, making the comparison between ratings 

and teacher effects a sensible one. 

Our value added measures are based on a single cohort of students and consequently include 

year-specific idiosyncrasies in teacher performance. On the other hand, it is likely that 

principals’ ratings are based on a more stable metric of performance. As noted by Jacob and 

Lefgren (2008), the estimation error in value added measures results in underestimating the 

correlation between principal ratings and the true teacher effects. We adopt the correction 

suggested by them (explained briefly in Appendix 1) and present both the un-adjusted and 

corrected correlations between principal ratings and estimated teacher effects. 

3 Data  

Data come from 22 higher secondary schools of the Directorate of Education (DOE), Delhi 

Government, and were obtained using a combination of primary surveys and schools’ 

                                                           
18 As in the calculation of the standard deviation of teacher effects, the estimated teacher effects 

are purged of subject effects before they are regressed on individual characteristics.  



administrative records. The schools were selected using convenience sampling. In Appendix 2 

we examine whether they constitute a representative sample of the population of DOE schools 

and find no evidence to suggest otherwise.  

We study a single cohort of students (and their teachers) who appeared for the higher secondary 

examinations held in March 2016.19 A total of 2,207 students from our study schools took these 

exams.20 Of these, we are able to study 1,733 students (78.5 percent) who form our analysis 

sample. The remaining students had to be dropped for the following reasons: (a) could not obtain 

grade 10 records (14.7 percent);21 (b) two or more students from the same class had the same 

name (8.1 percent);22 (c) section information for grade 12 and/or grade 11 was missing (1.0 

percent).23 In the next paragraph we talk about the implications of dropping these students.  

Under the value added approach, each subject in grade 12 has to be matched with a counterpart 

in grade 10. We used some discretion to find the closest match, but given the wide range of 

subjects taught in grade 12 it was not possible to find a match for each one.24 Consequently, we 

restrict the analysis to 16 subjects for which a match could be found, and which were chosen by 

                                                           
19 The Central Board of Secondary Education (CBSE), conducts these examinations. They are 

ideal to study teacher and student effectiveness because they are based on material that the 

teachers are supposed to teach, students take them seriously as they determine admission into 

colleges and other professional institutions, and there is little scope for manipulation of scores 

because they are set and graded outside the schools. 
20 These students belong to either the Arts, Commerce or Science streams. 
21 Each school is well represented in the analysis sample even after excluding these students as 

we have grade 10 records for at least 70 percent of the students in each school.   
22 These students had to be dropped as they could not be matched with their corresponding grade 

12 scores. 
23 These students had to be dropped as they could not be matched with their subject teachers. 
24 We do not study students from the Vocational stream because for most vocational subjects it 

was not possible to find a matching subject in grade 10.  



at least 100 students. Table 1 lists the subjects we study along with their matches in grade 10.25 

The dependent variable for estimating teacher and student effects is a student’s subject specific 

z-score in grade 12. It is constructed using the subject mean and subject standard deviation 

calculated over those students (among all 2,207 students in our study schools) who opted for that 

subject. Table 1 presents the subject wise mean z-scores in grade 12 for our analysis sample.26 

The positive (instead of 0) mean z-scores for all subjects suggest that our analysis sample 

consists of better performing students. Using the Kolmogorov–Smirnov test, we find that for 

English, Hindi, political science (the three most popular subjects), history, home science, 

geography, agriculture and biology, we reject that the distributions are identical between students 

in the analysis sample and those who were dropped, in favor of our analysis sample having 

higher test scores. For the remaining subjects we cannot reject that the distributions are identical 

across the two groups. Since identification of teacher fixed effects relies on within student across 

subject comparison, positive or no selection for all subjects should allow us to consistently 

estimate teacher effects for the type of students (i.e. better performing ones) we study. Student 

effects are understandably estimated for these better performers. 

Recall that for estimating teacher and student fixed effects, the unit of observation is a student-

subject-(grade)-teacher match. We used class-wise teaching schedules (time-tables) to link each 

student’s subject specific z-score in grade 12 to the individual teachers who taught that subject in 

                                                           
25 76.3 percent of students in the analysis sample had taken 5 of these 16 subjects, 18.0 percent 

had taken 4, 5.3 percent had taken 6, and 0.4 percent had taken 3 subjects. 
26 It also shows the mean percent score for each matching subject in grade 10. For grade 10 we 

only had letter grades which were converted to percent scores using the mid-point of the range 

for each letter grade. 



grades 11 and 12. This resulted in 18,552 student-subject-(grade)-teacher observations,27 arising 

from 273 subject-teachers (these stem from 254 individual persons).28  

We conducted voluntary surveys of teachers, students and principals to collect information on 

their individual characteristics and to capture principals’ ratings of teachers. Students were 

surveyed within schools on the days that we visited, while teachers and principals were allowed 

to fill up their questionnaires at leisure which were later collected by our enumerators. Take up 

rates for the teacher, student and principal surveys are 68.1 (186/273), 68.7 (1,190/1,733) and 

72.7 (16/22) percent, respectively. We discuss selection issues arising from partial take up in the 

results section.  

The teacher survey included the 44-item Big Five test (see John and Srivastava 1999 for the Big 

Five instrument and its scoring sheet). Against each item, the teacher was required to choose 

between one and five on a Likert scale indicating the extent to which he/she agreed or disagreed 

with the statement made. On the basis of these responses a score was calculated for each 

personality dimension wherein a higher score indicates greater strength of that dimension. The 

Big Five scores can only be calculated when all 44 items are answered. While 186 subject 

teachers took the teacher survey, the Big Five component was fully answered by 145 of them.29 

                                                           
27 For a given student-subject test score in grade 12, let N1 and N2 be the numbers of teachers 

that taught the subject in grades 11 and 12, respectively. This would result in a total of (N1+N2) 

observations related to that student-subject test score. During estimation, we assign a weight of 

1/(N1+N2) to each observation. In this way, each student-subject test score in grade 12 receives 

equal weight irrespective of the number of contributing teachers, and each contributing teacher is 

assumed to have made an equal contribution.  
28 For 327 of 18,552 student-subject-grade combinations (1.8 percent), we could not find 

information on the teacher. These are treated as missing in the analysis. 
29 Cronbach’s alpha is a measure of internal consistency of a test. It ranges between 0 and 1, the 

larger the value the greater is the inter-correlation among test items. As a rule of thumb, a value 

greater than 0.7 is considered as indicating an acceptable level of internal consistency (Nunnally 

and Bernstein 1994). For our 44-item Big Five, the Cronbach’s alpha for agreeableness, 



For a more meaningful interpretation of regression results, we normalize the Big Five scores for 

each dimension using the mean and standard deviation for that dimension across all 145 teachers 

who fully answered the test. 

Table 2 presents summary statistics for surveyed teachers and students. 87 percent of teachers 

are post graduates, 71 percent have received special teacher training, 84 percent are permanent 

(tenured), and the average teaching experience is about 20 years. Turning to students, only 38 

percent of their fathers and 21 percent of their mothers passed grade 12. Thus, many of them 

would become first generation graduates. In terms of parental earnings, 92 percent of their 

fathers and 19 percent of their mothers earn, while in 5 percent of the cases neither parent earns. 

82 percent of the students have a commute time to school (one-way) that is less than an hour.  

4 Results 

We first present our findings related to teachers and students, followed by a comparison between 

principals’ ratings and value added measures of teacher quality. 

4.1 Importance of Teacher Assignment 

Table 3 presents the standard deviation of estimated teacher effects from multiple specifications 

that differ in terms of subject specific student inputs. When none of the student inputs are 

included, the estimate is 0.373, and when all three inputs are included it is 0.383. These are to be 

interpreted as follows: over the two year period spanning grades 11 and 12, being taught by a one 

standard deviation better than average teacher adds 0.373 (or 0.383) standard deviation to a 

student’s test score (averaged across subjects). This would move a student at the middle of the 

                                                           

conscientiousness, extraversion, neuroticism and openness are, 0.817, 0.792, 0.659, 0.618 and 

0.832, respectively. 



test score distribution to the 65th percentile (in both cases). Thus, there exists substantial 

variation in teacher quality within schools. Another important observation is that although the 

increase in standard deviation from 0.373 to 0.383 suggests that student inputs are substitutes for 

teacher quality, the magnitude of increase is small in real terms, making no difference to the 

percentile of student performance.  

4.2 Identifying an Effective Teacher 

We use information on surveyed teachers to identify the correlates of teacher effectiveness. 

Given 68.1 percent completion rate for the teacher survey, it is important to examine whether 

surveyed teachers differ from non-surveyed ones. In Appendix 3 we examine teacher 

effectiveness by surveyed status and find no evidence that surveyed teachers are more or less 

effective compared to non-surveyed ones. While this by itself does not preclude individual 

characteristics of the two groups from being different, it makes it less likely that it is so, and 

makes the discussion below more meaningful. In Appendix 3 we also look at teacher 

effectiveness according to whether teachers fully completed the Big Five component of the 

survey. Once again, we find no evidence that teachers who fully completed the Big Five are 

different compared to those who did not.  

Table 4 presents the correlates of teacher effectiveness. We use teacher effects estimated using 

the specification without controlling for student inputs as it gives us estimates for all 273 subject 

teachers. Three different specifications are shown: (1) includes only standard observable 

characteristics typically studied in this literature, (2) includes only the normalized Big Five 

scores, and (3) includes both these. The results show that being permanent (i.e. tenured or 

confirmed in the job) positively predicts teacher effectiveness. The effect size is large and 

remains so irrespective of whether we control for personality dimensions. Contrary, to our 



expectations, the personality dimensions have very little predictive power and none of them are 

significant in predicting teacher effectiveness. Consistent with a large body of existing literature, 

gender, educational qualifications, teacher training, and seniority cannot distinguish a good from 

a bad teacher. 

4.3 Importance of Student Factors 

We calculate the standard deviation of student effects only for estimated effects from the 

specification that does not include any student inputs.30 The estimated standard deviation is 

0.799 with a (bootstrap) standard error of 0.009.31 This means that being a one standard deviation 

better than average student translates into a 0.799 standard deviation improvement in test scores 

over a period of two years. This would move a student at the middle of the test score distribution 

to the 79th percentile. The standard deviation of student effects is about twice the standard 

deviation of teacher effects. Moreover, as described in the data section, our analysis is based on 

better performing students. Consequently, had we considered all students our estimate of the 

variance in student quality would have been even higher. Thus, within schools, the variation in 

student quality is much greater than the variation in teacher quality.  

4.4 Identifying an Effective Student 

The take up rate for the student survey is 68.7 percent. It is therefore important to check whether 

surveyed students form a select sample. In Appendix 4 we examine whether surveyed students 

differ from non-surveyed ones in terms estimated student effects and do not find support for this. 

                                                           
30 For this specification, effects for all 1,733 students are estimated; whereas for specifications 

which include student inputs, effects for only surveyed students are estimated.   
31 The standard deviation is a weighted by the number of observations per student.  



Table 5 presents the correlates of student effectiveness. We use student effects estimated using 

the specification without controlling for student inputs as it gives us effects for all 1,733 students 

in the analysis sample. Three different specifications are shown: (1) includes only socio-

demographic and parent characteristics, (2) also includes commute time to school, (3) also 

includes birth order and total number of sibling. We find that being older negatively predicts 

student effectiveness. This is not surprising as age is most likely picking up the effect of having 

failed the examination previously and repeating it again. This suggests that repeaters continue to 

lag behind in subsequent attempts. There is weak evidence that female students perform better 

than their male counterparts. The coefficient is fairly stable across specifications, though it is 

significant only at the 10 percent level in some of them. Belonging to the dominant Hindu 

religion, or belonging to the General caste category (a proxy for the historically privileged upper 

castes), are not correlated with student quality. Surprisingly, parents’ education, in terms of 

being higher secondary graduates themselves, also does not predict student effectiveness. A 

consistent finding across all three specifications is that relative to families where only the father 

earns, those where both parents earn correlate negatively with student performance. We can only 

conjecture that, conditioning on one parent working, mothers being present at home positively 

influences a child’s performance. We do not comment on the remaining variables as the results 

are not robust across specifications or the sample size drops considerably due to missing 

observations. 

4.5 Principal Ratings and Value Added Measures of Teacher Quality 



Principals were required to rate all teachers in their school who taught grades 11 and 12. 

Principals from 16 schools completed the survey.32 Of a total of 196 subject teachers in these 16 

schools, principals rated 159 of them, a completion rate of 81 percent.33 Appendix 5 examines 

whether incomplete ratings result in a select sample by testing whether teacher effects differ by 

rating status. We find no evidence that this is the case. 

Table 6 presents summary statistics for surveyed principals. All of them are post graduates, with 

a teaching experience of about 27 years on average. Table 7 provides summary statistics for 

principals’ ratings of teachers. The ratings encompass six performance dimensions, each marked 

on a scale of 1 (lacking a lot) to 5 (exceptional). As seen, the ratings are high in general, with a 

mean of 3.92, and a 10-90 percentile range from 3 to 5. In Appendix 6 we present the pairwise 

correlations between the six performance dimensions. All correlations are positive and 

significant at the 1 percent level. The lowest pairwise correlation is between increasing students' 

understanding of the subject and positive relationship with colleagues (0.44), and the highest is 

between increasing students' understanding of the subject and liked by students (0.76).  

Table 8 presents the un-adjusted and corrected correlations between estimated teacher effects and 

principal’s ratings. We focus on two performance dimensions, namely, (1) a teacher’s dedication 

and work ethic, and (2) a teacher’s ability to increase students’ understanding of the subject as 

(1) has been commonly used in this literature, and (2) comes closest to measuring the same 

                                                           
32 In two of our schools the principal’s post was vacant and the vice-principal was the acting 

head of the school. The survey was completed by the vice-principals in these schools. 
33 While principals may have consciously not rated some teachers, some ratings may be missing 

for the following reason. Some teachers may have taught the higher secondary level only in the 

academic year 2014-15, and not in 2015-16. These teachers may have been omitted as the 

principal survey was administered in February/March 2016 and principals were instructed to rate 

teachers who taught at the higher secondary level in the current academic year. 



underlying construct as our value added measures of teacher effectiveness.34 The first column 

presents the unadjusted correlations. As stated in the methodology section, these correlations are 

biased towards zero. For performance measures (1) and (2) the estimate values are 0.08 and 0.12, 

respectively, with only the latter being significant at the 10 percent level. Once we apply the 

correction for estimation error in the value added measures, the correlations increase to 0.4 and 

0.6, respectively. Once again, only the latter value is significant at the 10 percent level. Thus, we 

find weak evidence of principal ratings being positively correlated with our estimated value 

added measures of teacher effectiveness. In Table 9, we present the results by replicating the 

exercise on a restricted sample of teachers that the principals have known for at least 3 years. Ex-

ante we expect the correlations to be higher for this select sample. As seen, the correlations 

increase for four of the six performance measures.  

5. Conclusions and Policy Implications 

We conclude with a discussion of findings from our study of higher secondary public schools in 

Delhi. We find substantial variation in teacher quality within schools: over the two year period 

spanning grades 11 and 12, being taught by a one standard deviation better than average teacher 

raises a student’s test scores by 0.373 standard deviation (estimate from the specification without 

student inputs). This would move a student at the middle of the test score distribution to the 65th 

percentile. Our estimate underestimates the overall variation in teacher quality as it does not 

account for between school variations. To the best of our knowledge these are the first 

quantitative estimates from India of the importance of teacher assignment in public schools. 

Azam and Kingdon (2015) undertook a similar exercise for a consortium of private schools in 

                                                           
34 When subjective and objective measures do not capture the same underlying construct, the 

correlations are biased downwards (Jacob and Lefgren 2008). 



the adjoining Indian state of Uttar Pradesh, while Slater et al (2012) did so for public schools in 

England. Like us, both looked at the higher secondary level and found the standard deviation of 

teacher effects to be 0.366 and 0.233, respectively.35 A student at the middle of the achievement 

distribution would move to the 64th percentile (Azam and Kingdon), and the 59th percentile 

(Slater et al.), in their contexts. Thus, at the higher secondary level, teachers in Delhi’s public 

schools play a comparable role to that documented in a study of private schools in Uttar Pradesh. 

Given our rich data on students, we could account for subject specific student inputs 

(specifically, tuitions, study time and interest) in the estimation of test scores. When these inputs 

are accounted for, the standard deviation of teacher effects increases from 0.373 to 0.383, 

implying that student inputs are substitutes for teacher quality. However, the magnitude of 

increase is small in real terms, not translating to a percentile position change in student 

performance. This should allay fears that students may drastically cut back on their own private 

inputs as a reaction to institutional attempts to raise teacher quality. 

In terms of identifying an effective teacher, we find that being permanent positively predicts 

teacher effectiveness. Permanency means being confirmed in the government job, which at least 

in Delhi, is characterized by regular pay (much higher than what is paid in the private sector), 

with little possibility of being fired until retirement age. Our finding that it positively predicts a 

better teacher is consistent with Maslow’s Hierarchy of Needs (Maslow 1943). According to this 

theory, a person is able to make greater contributions to society and realize his/her full potential 

only after their lower level needs, which includes economic security, are met. At first glance, this 

may seem at variance with the recent emphasis laid on financial incentives for teachers in order 

                                                           
35 Neither study controlled for student inputs, so we contrast their values with our estimate of 

0.373. 



to improve learning outcomes (Duflo, Hanna and Ryan 2012; Muralidharan and Sundararaman 

2011). We do not see the contradiction as incentives need not become redundant in the presence 

of job security. Further, contrary to our expectations, we find that none of the Big Five 

personality traits are correlated with teacher effectiveness. Finally, post-graduation degree, 

specialized teacher training, and higher teaching experience do not characterize a better teacher, 

a finding consistent with Azam and Kingdon, and Slater et al. Unfortunately, in the present 

institutional set up, it is these observable characteristics that count in determining teacher 

promotions and compensation. To move closer to a system that incentivizes good performance, 

policy makers should seriously consider fixing part of a teacher’s salary on ex-post evaluation of 

value-added performance measures. This is already being done in several states in the United 

States and lessons can be drawn from their experience.36  

In addition to studying the variation in teacher quality, we also analyze the importance of student 

factors in the formation of test scores. Being a one standard deviation better than average student 

translates into a 0.799 standard deviation improvement in test scores over a period of two years. 

This would move a student at the middle of the test score distribution to the 79th percentile. Thus, 

the within school variance in student quality is twice that in teacher quality, and this is an 

underestimate as our analysis is based on better performing students. This is consistent with 

Slater et al. who find the ratio to be 2.7 for higher secondary public schools in England. Turning 

to identifying an effective student, we find that being older negatively predicts student 

effectiveness suggesting that repeaters continue to lag behind in subsequent attempts to clear the 

                                                           
36 It would be unwise to move to a reward structure that is solely based on value added measures 

as teachers may then only teach to the test and neglect other aspects of being a good educator. 

 



exam. Contrary to our expectations, parents’ education does not predict student effectiveness. 

Interestingly, relative to families where only the fathers earn, those where both parents earn 

negatively predict student performance. We can only conjecture that, conditioning on one parent 

working, stay at home mothers positively influence their child’s performance. It would be 

interesting to explore the robustness and mechanisms for this result in future work. 

Finally, we find weak evidence (significant at the 10 percent level) that principals’ assessment of 

teachers on how well they can increase students’ understanding of the subject is positively 

correlated with valued added measures of teacher quality. The correlation increases when the 

principals have known the teachers for at least three years. We recommend that principal 

evaluations be incorporated in the reward structure for teachers. Compared to ex-post evaluation 

of value added measures which requires investment in creating and maintaining large 

administrative datasets, this is a low cost alternative to incentivizing better teacher performance. 

Moreover, principals may be able to evaluate teachers on a broader set of outcomes than just 

their effectiveness in improving test scores.  
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Tables 

Table 1: Subject-wise Performance of Students in the Analysis Sample (1,733 Students) 

Grade 12 (Z-Scores) Grade 10 (Percent Scores) 

  Mean  Std. Dev. No. of Students Matching Subject Mean Std. Dev. 

English 0.059 0.986 1,572 English 56.0 14.2 

Hindi 0.097 0.986 1,233 Hindi 53.3 14.0 

Political Science 0.077 0.986 860 Social Science 51.9 15.2 

Economics 0.026 1.008 823 Social Science 63.4 14.7 

History 0.087 1.001 776 Social Science 51.9 15.1 

Accountancy 0.022 1.000 536 Mathematics 51.3 15.7 

Business Studies 0.015 1.005 535 Social Science 65.2 14.7 

Mathematics 0.033 0.983 452 Mathematics 65.7 16.0 

Home Science 0.069 0.989 416 Social Science 57.3 16.5 

Geography 0.069 0.987 336 Social Science 50.8 13.8 

Chemistry 0.033 0.989 203 Science 72.9 14.8 

Physics 0.036 1.007 203 Science 72.9 14.8 

Sanskrit 0.007 1.015 164 Sanskrit 44.5 10.3 

Sociology 0.087 1.000 112 Social Science 44.6 15.1 

Biology 0.077 1.015 110 Science 72.9 14.7 

Agriculture 0.153 1.012 100 Science 41.8 11.0 

 

  



Table 2: Summary Statistics for Surveyed Teachers and Students 

Teacher Characteristics Mean (Std. Dev.) No. of Teachers 

Female (in %) 51.1 186 

Married (in %) 89.2 186 

Hindu (in %) 93.0 186 

General Caste (in %) 68.3 186 

Post Graduate Teacher (in %) 86.6 183 

Trained (in %) 71.0 186 

Permanent (in %) 83.9 186 

Teaching Experience (in years) 20.1 (10.2) 184 

Big Five Raw Scores      

Agreeableness (max. possible score 45) 28.8 (3.2) 145 

Conscientiousness (max. possible score 45) 28.8 (3.7) 145 

Extraversion (max. possible score 40) 25.3 (3.7) 145 

Neuroticism (max. possible score 40) 17.1 (4.7) 145 

Openness (max. possible score 50) 36.8 (5.1) 145 

Student Characteristics Mean (Std. Dev.) No. of Students 

Age (in years) 17.8 (1.0) 1190 

Female (in %) 45.6 1190 

Hindu (in %) 83.1 1190 

General Caste (in %) 61.9 1190 

Father Passed Twelfth (in %) 37.7 1190 

Mother Passes Twelfth (in %) 21.4 1190 

Parents' Earning Status (in %)     

Only Father Earns 76.1 1190 

Only Mother Earns 3.3 1190 

Both Parents Earn 15.6 1190 

Neither Parent Earns 5.0 1190 

Commute less than 1 hour (one way, in %) 81.8 1165 

Birth Order (in %)     

One 32.3 1119 

Two 34.2 1119 

Three 20.6 1119 

Four or Higher 13.0 1119 

Number of Siblings 2.4 (1.4) 1004 

 

  



Table 3: Importance of Teacher Assignment 

Specification 
Weighted Std. 

Dev. of TFE1 
Bootstrap 
Std. Err.2  

Number of 
Subject 

Teachers 

Without student inputs 0.373 0.005 273 

Only tuitions 0.385 0.007 263 

Only study time 0.385 0.007 263 

Only interest 0.381 0.006 263 

All three student inputs 0.383 0.007 263 

Notes: TFE stands for teacher fixed effects. 

1 Weighted by the number of observations per subject teacher. 

2 Bootstrap standard errors calculated using 150 replications 

 

 

Table 4: Predicting Teacher Effectiveness 

Dependent variable is Teacher Fixed Effects (TFE) from the specification without student inputs 

  (1) (2) (3) 

  Coefficient 
Std. 

Error Coefficient 
Std. 

Error Coefficient 
Std. 

Error 

Female 0.001 0.065     0.040 0.073 

Married 0.146 0.100     0.167 0.138 

Hindu -0.190 0.110     -0.265 0.215 

General Caste 0.020 0.071     -0.019 0.083 

Post Graduate Teacher -0.160 0.098     -0.116 0.128 

Trained 0.063 0.059     0.147* 0.084 

Permanent 0.297*** 0.084     0.231** 0.099 

Teaching Experience (omitted >20 years)             

Less than equal to 2  0.288*** 0.062     0.209 0.149 

Greater than 2 but less than equal to 5 0.319* 0.175     0.294 0.181 

Greater than 5 but less than equal to 10 -0.015 0.080     0.030 0.099 

Greater than 10 but less than equal to 20 -0.008 0.102     0.003 0.113 

Personality Dimensions             

Agreeableness     0.069 0.035 0.071 0.043 

Conscientiousness     -0.080 0.072 -0.076 0.063 

Extraversion     0.043 0.037 0.063 0.039 

Neuroticism     0.044 0.047 0.042 0.047 

Openness     -0.018 0.065 -0.038 0.069 

Number of subject teachers (observations) 184   145   144   

R squared 0.079   0.044   0.149   

Mean TFE among 186 surveyed teachers is -0.046, with a standard deviation of 0.400.  

Regressions are weighted using number of observations per subject teacher.  

Standard errors clustered at the school level (22 clusters). 

* indicates significant at 10 percent, ** significant at 5 percent and *** significant at 1 percent 

 

  



Table 5: Predicting Student Effectiveness 

Dependent variable is Student Fixed Effects (SFE) from the specification without student inputs 

  (1) (2) (4) 

  Coefficient 
Std. 

Error Coefficient 
Std. 

Error Coefficient 
Std. 

Error 

Age -0.132*** 0.026 -0.127*** 0.028 -0.119*** 0.027 

Female 0.296** 0.134 0.258* 0.137 0.244* 0.135 

Hindu 0.086 0.084 0.089 0.081 0.111 0.069 

General Caste 0.046 0.049 0.041 0.045 0.074 0.048 

Father Passed Twelfth  0.053 0.078 0.070 0.078 0.115 0.081 

Mother Passes Twelfth 0.071 0.074 0.067 0.071 0.047 0.071 

Parents' Earning Status (omitted only father earns)             

Only Mother Earns 0.068 0.145 0.039 0.146 0.080 0.176 

Both Parents Earn -0.168*** 0.057 -0.199*** 0.057 -0.275*** 0.068 

Neither Parent Earns -0.110 0.090 -0.104 0.102 -0.018 0.152 

Commute time less than 1 hour     0.150 0.074 0.247*** 0.071 

Birth Order (omitted first born)            

Two         0.056 0.034 

Three         0.027 0.065 

Four or Higher         0.060 0.078 

Number of siblings         -0.016 0.014 

Stream dummies Yes   Yes   Yes   

Number of students (observations) 1190   1165   986   

R squared 0.177   0.176   0.173   

Mean SFE among 1190 surveyed students is -0.421 with a standard deviation of 0.800.  

Regressions are weighted using number of observations per student. Standard errors clustered at the school level (22 clusters). 

* indicates significant at 10 percent, ** significant at 5 percent and *** significant at 1 percent 

 

  



Table 6: Summary Statistics for Surveyed Principals 

  Mean (Std. Dev.) No. of Principals 

Age (in years) 54.2 (5.1) 15 

Female (in %) 50.0 16 

Hindu (in %) 93.8 16 

General Caste (in %) 75.0 16 

Post Graduate (in %) 100.0 16 

Duration as Principal of School (in years)1 4.7 (5.0) 16 

Teaching Experience (in years) 26.9 (5.6) 16 

1 One principal reported a tenure of 22 years, while the rest reported a tenure of less than 9. 

Omitting this outlier, the average tenure value drops to 3.6 years with a standard deviation of 2.3 

 

 

Table 7: Summary Statistics for Principals' Ratings of Teachers (raw ratings on a scale of 1 to 5) 

Performance Dimension 
Mean (Std. 

Dev.) 
10th 

Percentile 
90th 

Percentile 

Dedication and Work Ethic 3.96 (0.78) 3 5 

Increasing Students' Understanding of the Subject 3.91 (0.66) 3 5 

Liked by Students 3.87 (0.64) 3 5 

Maintaining Discipline Among Students 4.03 (0.76) 3 5 

Positive Relationship with Colleagues 3.97 (0.65) 3 5 

Organizational/Administration Skills 3.77 (0.79) 3 5 

These statistics are based on 159 subject teachers in the analysis sample. 

 

  



Table 8: Correlation between Principal Ratings and Value Added Measure of Teacher Effectiveness 

  Un-adjusted  Corrected  

  Correlation  
Std. 

Error Correlation  
Std. 

Error 

Dedication and Work Ethic 0.079 0.087 0.400 0.445 

Increasing Students' Understanding of the Subject 0.118 0.071 0.602 0.358 

Liked by Students 0.117 0.083 0.596 0.415 

Maintaining Discipline Among Students 0.097 0.084 0.496 0.434 

Positive Relationship with Colleagues 0.107 0.093 0.546 0.477 

Organizational/Administration Skills 0.167 0.072 0.852 0.368 

Correlations based on ratings of 159 subject teachers from 16 schools in the analysis sample.  

Standard errors calculated using 150 bootstrap replications 

 

 

Table 9: Correlation between Principal Ratings and Value Added Measure of Teacher Effectiveness 

For teachers known to the Principal for at least 3 years 

  Un-adjusted  Corrected  

  Correlation  
Std. 

Error Correlation  
Std. 

Error 

Dedication and Work Ethic 0.054 0.111 0.265 0.545 

Increasing Students' Understanding of the Subject 0.171 0.093 0.849 0.451 

Liked by Students 0.193 0.093 0.956 0.44 

Maintaining Discipline Among Students 0.172 0.107 0.853 0.535 

Positive Relationship with Colleagues 0.072 0.130 0.355 0.652 

Organizational/Administration Skills 0.193 0.086 0.955 0.423 

Correlations based on ratings of 106 subject teachers from 13 schools in the analysis sample.  

Standard errors calculated using 150 bootstrap replications 

 

  



Appendix 1: Correcting for Estimation Error in the Correlation between Principal Ratings and Value 

Added Measures of Teacher Effectiveness 

This discussion is based on the exposition in Jacob and Lefgren 2008. Let �̂� denote principal rating and 𝛿 

denote estimated value added measure of teacher effectiveness i.e. the estimated teacher effect. 𝛿 = 𝛿 + 𝑒, 

where 𝛿 is the true teacher effect and 𝑒 is the estimation error.  

The un-adjusted correlation between principal rating and estimated value added measure is given by: 

𝐶𝑜𝑟𝑟(�̂�, 𝛿) =
𝐶𝑜𝑣(�̂�, 𝛿)

√𝑉𝑎𝑟(�̂�)𝑉𝑎𝑟(𝛿)

 

The corrected correlation is the correlation between principal rating and true teacher effect and is given by: 

𝐶𝑜𝑟𝑟(�̂�, 𝛿) = 𝐶𝑜𝑟𝑟(�̂�, 𝛿)
√𝑉𝑎𝑟(𝛿)

√𝑉𝑎𝑟(𝛿)
 

where,  

𝑉𝑎𝑟(𝛿) = 𝑉𝑎𝑟(𝛿) − 𝑀𝑒𝑎𝑛 𝑜𝑓 [𝑠𝑡𝑑 𝑒𝑟𝑟𝑜𝑟(𝛿)
2

] 

We estimate 𝑠𝑡𝑑 𝑒𝑟𝑟𝑜𝑟(�̂�) using 150 bootstrap replications of 𝛿.  



Appendix 2: School Selection 

We followed convenience sampling based on school location. Figure A2.1 presents a map of Delhi showing the 

22 sampled schools. As seen, there is geographical clustering of schools. Here we check whether our sampled 

schools represent the population of DOE schools.   

Figure A2.1: Map of Delhi showing sampled schools 

 

 

Table A2.1 shows select descriptive statistics by sampling status. At the 10 percent level of significance, it 

would seem that we oversampled smaller schools. However, the Bonferroni corrected critical value for testing 

15 characteristics at this level is 0.0067. Given that all the p-values are above this cut off, we do not reject the 

null that our sample is representative.  

  



 

Table A2.1: Descriptive Statistics for Higher Secondary Public Schools by Sampling Status, 2015-16 

  All Schools Sampled  Not Sampled  Difference  
p-

value 

Number 871 22 849     

Gender, Percent            

Girls 43.7 36.4 43.9 -7.5 0.4767 

Boys 41.2 45.5 41.1 4.4 0.6927 

Co-ed 15.0 15.0 18.2 -3.2 0.7048 

Shift, Percent           

Morning 69.9 81.8 69.6 12.2 0.1544 

Evening 30.1 18.2 30.4 -12.2   

Mean Number of Students  150.8 (111.6) 109.6 (62.9) 151.9 (112.4) -42.3 0.080 

Streams Taught, Percent           

Has Arts 99.1 95.5 99.2 -3.7 0.4143 

Has Commerce 69.4 72.7 69.3 3.4 0.7247 

Has Science 30.8 40.9 30.5 10.4 0.3377 

Pupil Teacher Ratio  26.5 (14.7) 24.7 (9.6) 26.6 (14.8) -1.9 0.565 

Pupil Classroom Ratio  39.4 (17.6) 35.9 (11.8) 39.5 (17.7) -3.2 0.347 

Mean Pass Percentage            

Arts 89.6 (12.8) 90.5 (13.2) 89.5 (12.8) 1.0 0.742 

Commerce 91.6 (12.1) 93.6 (8.2) 91.6 (12.2) 2.0 0.509 

Science 95.2 (9.9) 98.1 (4.2) 95.1 (10.1) 3.0 0.371 

Mean Marks per Student            

Arts 285.6 (32.0) 295.0 (31.3) 285.3 (32.0) 9.7 0.171 

Commerce 296.2(37.6) 302.6 (30.0) 296.0 (37.8) 6.6 0.488 

Science 336.3 (37.4) 349.5 (20.4) 335.9 (37.8) 13.6 0.284 

Source: Directorate of Education, Government of National Capital Territory of Delhi 

Standard deviation in parentheses. p-values are for the null hypothesis that the 'Difference' is zero. 

 

Another way to look at whether our sample is representative is to calculate the probability of drawing a random 

sample with our sample characteristics. We do this exercise for the mean marks per student. Assuming that in 

each stream, the mean marks per student follows a normal distribution with the population mean and standard 

deviation, the probability of drawing a random sample of size 22 with a mean within a 5 percent interval of the 

observed sample mean in Arts, Commerce and Science is 0.783, 0.858 and 0.704, respectively. These are 

reasonably high to claim that our sample is representative of the population of all DOE schools. 

  



Appendix 3: Teacher Effects by Surveyed Status 

Out of a total of 273 subject teachers, 186 filled up the teacher survey. Since we have estimates of teacher 

effects for all 273 teachers, we examine whether surveyed teachers are more or less effective compared to those 

who chose not to participate in our survey. 

Figure A3.1 shows the estimated kernel densities of teacher fixed effects (from the specification without 

controlling for student inputs) for surveyed and non-surveyed teachers. Using the Kolmogorov-Smirnov test for 

equality of distribution functions we cannot reject that the two distributions are identical (p-value 0.579).  

Figure A3.1 Teacher Fixed Effects Density Functions by Survey Status 

 

A rather long question in the teacher survey was the 44-item Big Five personality test. The responses to this test 

are useful only when all 44 items have been answered, without skipping a single item. Of the 186 teachers who 

participated in the survey, 145 fully completed the Big Five component (53.1 percent completion rate when 

considering all 273 teachers). Figure A3.2 shows the estimated kernel densities of teacher fixed effects by Big 



Five completion status. When we carry out the Kolmogorov-Smirnov test we cannot reject that the two 

distributions are identical (p-value 0.883).  

Figure A3.2 Teacher Fixed Effects Density Functions by Big Five Completion  

 

  



Appendix 4: Student Effects by Surveyed Status 

Out of a total of 1,733 students in our analysis sample, 1,190 were surveyed. We surveyed them in school 

towards the end of the academic year. The survey was administered in class on the days we visited the school. If 

a student was absent on the day that his/her class was surveyed, or if he/she chose not to fill up the survey, we 

do not have information on their socio-economic background. This would be a serious limitation if surveyed 

students were fundamentally different from non-surveyed ones. Here we examine whether there is a difference 

between the two groups according to estimated student effects. We use student effects estimated from the 

specification without student inputs as we have values for all 1,733 students in this case.  

Figure A4.1 shows the estimated kernel densities of student fixed effects according to surveyed status. The 

densities almost overlap each other. Further, using the Kolmogorov-Smirnov test for equality of distribution 

functions we cannot reject that the two distributions are identical (p-value 0.835).  

Figure A4.1 Student Fixed Effects Density Functions by Survey Status 

 



Appendix 5: Teacher Effects by whether or not Principal Rated the Teacher  

Out of a total of 196 subject teachers in the 16 schools, principals rated 159 of them. Here we examine whether 

or not teachers who were rated are more or less effective compared to those who were not. 

Figure A5.1 shows the estimated kernel densities of teacher fixed effects (from the specification without 

controlling for student inputs) by rating status. Using the Kolmogorov-Smirnov test for equality of distribution 

functions we cannot reject that the two distributions are identical (p-value 0.605).  

Figure A5.1 Teacher Fixed Effects Density Functions by Rated Status 

 

  



Appendix 6: Pairwise Correlations between Multiple Dimensions of Principal Ratings 

Principals were required to rate teachers on a scale of 1 (lacking a lot) to 5 (exceptional), along six performance 

dimensions: dedication and work ethics; increasing students' understanding of the subject; liked by students; 

maintaining discipline among students; positive relationship with colleagues; and organizational/administration 

skills.  

Table A6.1 presents the pairwise correlations between these six dimensions.  

Table A6.1: Pairwise Correlations between Performance Ratings 

  D1 D2 D3 D4 D5 D6 

              

D1 1           

D2 0.560 1         

D3 0.635 0.764 1       

D4 0.545 0.659 0.625 1     

D5 0.602 0.440 0.601 0.592 1   

D6 0.641 0.541 0.587 0.521 0.605 1 

D1: Dedication and Work Ethic 

D2: Increasing Students' Understanding of the Subject 

D3: Liked by Students 

D4: Maintaining Discipline Among Students 

D5: Positive Relationship with Colleagues 

D6: Organizational/Administration Skills 

All correlations are significant at the 1 percent level 

 




