
DISCUSSION PAPER SERIES

IZA DP No. 11711

Britta Glennon
Julia Lane
Ridhima Sodhi

Money for Something: The Links between 
Research Funding and Innovation

JULY 2018



Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may 
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA 
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics 
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the 
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our 
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper 
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

DISCUSSION PAPER SERIES

IZA DP No. 11711

Money for Something: The Links between 
Research Funding and Innovation

JULY 2018

Britta Glennon
Carnegie Mellon University

Julia Lane
New York University and IZA

Ridhima Sodhi
New York University



ABSTRACT

IZA DP No. 11711 JULY 2018

Money for Something: The Links between 
Research Funding and Innovation1

Federal research funding to universities is often based on a desire to stimulate innovation 

– so that they spend taxpayer money for “something”. There is growing understanding 

of the need to change the structure of research funding in order to do so; less is known 

about the effectiveness of different organizational structures. Yet, as Jones has pointed 

out, increasing the efficiency with which we transfer knowledge from one generation to 

the next could have important implications for innovation and productivity growth. In this 

paper we use new data to examine how the main organizational structure used to train 

the next generation of scientists and inventors – teams funded by research grants – leads 

to innovative activity as measured by patents.
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1. Introduction 
Federal research funding to universities is often based on a desire to stimulate innovation – so that 

they spend taxpayer money for “something” (1).  There is growing understanding of the need to change 

the structure of research funding in order to do so; less is known about the effectiveness of different 

organizational structures. Yet, as Jones has pointed out, increasing the efficiency with which we transfer 

knowledge from one generation to the next could have important implications for innovation and 

productivity growth(2). In this paper we use new data to examine how the main organizational structure 

used to train the next generation of scientists and inventors – teams funded by research grants – leads to 

innovative activity as measured by patents.  

There are some intriguing findings in the literature, derived from analyses of patent and 

publication data, that suggests both that the structure of science is changing and the results of these 

changes are mixed.  There are increasing numbers of authors of publications and numbers of inventors on 

patents, suggesting that productive scientific research may require larger teams (3). Multi-institutional 

collaboration is also increasing, as evidenced by the increasing numbers of institutional affiliations of 

journal coauthors(4); however, research suggests that such collaborations may reduce rather than increase 

productivity(5). Diversity in teams is often cited as a concern (6, 7), yet management researchers suggest 

that functional and educational diversity is more important than race and gender (8).  

As interesting as the current research is, however, it results from analyzing the outcomes without 

understanding the process leading to these outcomes. As Whittington has noted, little is known about the 

structure of teams before patenting, and teams that do not patent at all(9). As the famous New Yorker 

cartoon would have it, we can now be more explicit on the “step 2” – the activities of research teams – 

that lie between the initial step of observing research funding and the final step of observing a miracle 

occurring in the form of publications and patents (10). In this paper, we use new data to examine the 

entire process, from research funding to resulting patenting, and the features of the teams that shape this 

process.  We can, for the first time, use administrative data to describe differences in such organizational 

features as size and diversity between those research teams that produce work that result in patents and 

those that do not. We are able to directly measure whether or not multi-institution collaboration occurs 

prior to patenting, since the administrative data capture whether or not teams from different universities 

are funded on the same research grant. We are also able to describe the differences – in terms of both 

diversity and inventor collaboration – between patenting research teams and non-patenting research 

teams. Finally, we can identify which individuals on patenting research teams are named inventors on the 

resulting patents and who is not. This last piece has important implications for any analysis that describes 

teams based on inventor characteristics alone, which may contain systematic bias. 
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The work is made possible for two reasons. The first is the availability of a new source of 

information about the ties between university research funding and patents. Patents are often seen as 

credible proxies for the innovative activity of scientists(11–13); indeed, funding agencies require the 

reporting of patents as outputs of research funding. The second is the availability of new data about 

research teams derived from the administrative records of universities themselves and matched to a 

variety of other datasets (14) 

Our descriptive results are striking. We find that higher levels of research funding are associated 

with a higher propensity to patent. But funding does not magically result in patenting; the core link to 

understanding the pathways to innovation is understanding how the funding affects the structure of teams 

that are likely to patent, and this shows up in our regression results, where funding is only one of the 

economically and statistically significant explanatory variables in predicting the propensity to patent. In 

particular, regressions using our new data suggests that larger teams, with more postdocs and graduate 

students, are more likely to patent.  

We also find marked differences in the propensity to patent in teams funded by different agencies. 

Unsurprisingly, although teams with more postdocs and graduate students are more likely to patent, 

faculty are more likely than postdocs and graduate students to be identified as inventors. In terms of 

diversity, teams with female representation are less likely to patent. Female faculty, graduate students and 

postdocs are systematically less likely than males to be identified as inventors. These findings suggest 

that analyses of team structure and diversity using the inventor teams listed on patents may 

mischaracterize the true nature of the team performing the underlying research.  Findings such as those by 

Whittington and Smith-Doerr, that women are less involved in patenting than men may simply reflect the 

lower probability of women being named as inventors(15). Although the analysis is not causal in nature, 

the results are strongly significant and robust to a variety of different specifications. Further analysis, 

particularly about the differences in the structure and composition of  collaboration networks across 

universities, is warranted using the new rich data sources which are now becoming available to 

researchers in the field(16).   

2. Background 
There is a rich organizational literature that examines the processes that lead to innovation. In the 

case of scientific research, a great deal of attention has been paid to the size of scientific teams, the 

importance of diversity and the effect of cross institutional collaboration.  

As Jones points out innovation is the result of a learning process which is increasingly done in 

teams(2), and increasingly done at greater scientific scale(17, 18). The phenomenon of greater project size 



4 
 

is likely to have substantive effects on the size and scope of scientific networks – and for the transmission 

of knowledge. Research has demonstrated that networks influence the extent to which individuals can 

access and use information and resources (19) as well as their expectations and preferences (20, 21). 

Network position also shapes both individuals’ and groups’ ability to innovate (22, 23). In particular, 

when individuals hold network positions that connect them to groups with different knowledge bases they 

are well positioned to innovate (24). Certainly, team-authored paper are characterized by higher citations 

– either because they are more novel or are have greater network reach.(3)  

In terms of the structure of science, changing team size means that, as Walsh and colleagues have 

pointed out, science is taking on the characteristics of a small factory rather than a workbench(25). 

Simply put, principal investigators have the opportunity to structure their operations differently.  Some 

could choose to staff a project with all senior investigators; others primarily with postdoctoral fellows; 

other with graduate students. We know little about how these different structures affect the production of 

knowledge; the most extensive work of which we are aware examines the size of author networks, rather 

than the entire small “factory”. (25). However, because social capital plays a significant role in the 

development of human capital(26), it is likely that different structures do lead to different innovation 

potential.  

Another way in which scientific structure has changed is through cross university collaborations. 

These have become more common both because of funding imperatives and technological advances(3).  

However, large scale collaborations have substantial drawbacks as well.  Careful analysis of NSF grants 

(as well as widespread anecdotal evidence) suggests that the coordination costs of university 

collaborations can cancel out the advantages. (5) 

The effect of diversity in both demographics and disciplines is likely to be mixed.  The work of 

Lee, Walsh and Wang in studying research teams that published at least one Web of Science paper which 

suggests that scientific creativity is related to the composition and organization of research teams (25).  

However, there is evidence from the network literature that women and underrepresented minorities tend 

to have systematically different networks than white men in the general population(27). In addition, 

Whittington examines patent data in the life sciences and finds that women are less likely to collaborate in 

positions that yield innovative benefits.  

It is important to build towards a better understanding of these process in the context of research 

funding.  In the absence of such understanding, research funders are engaging in ad hoc decision making. 

For example, in one of the most cited attempts to examine the link between research funding and 

productivity, the then director of NIGMS, Jeremy Berg, plotted average publications, and their impact 
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factor, of grant recipients and found that that researcher productivity began to diminished as grant size 

exceeded $600,000 to $750,000. (28) Lorsch,2 Berg’s successor as director of NIGMS, built on this 

research and a much earlier 1985 piece by Bruce Alberts3, which outlined inefficiencies that can arise as 

labs become larger, to argue that inefficiencies are created when research funds are heavily concentrated 

among researchers rather than distributed more widely to the research community.  The methodological 

challenges well identified by Bergstrom(29) have not apparently deterred NIH from formulating policies 

based on their analysis.  

3. Data   
3.1 Patent data 

The first source of data is the August 2017 release of the PatentsView database4 which contains 

bibliographic information on all granted patent applications to the United States Patent and Trademark 

Office (USPTO) through August 2017. The PatentsView platform longitudinally links inventors, 

assignees, locations and patenting activity. It was established in 2012 and sources its data from USPTO 

bulk data on published patent applications (2001-present) and granted patents (1976-present). As of 

August 2017, it contains 6.3 million granted patents, of which there are 5.7 million granted utility patents. 

In this analysis, we only consider granted utility patents. 

Patents filed with the USPTO can contain a field labeled “government interest” if the US government 

has any interests or rights in that patent. This interest typically arises for one of the two following reasons: 

(1) the inventor is an employee of a US government, (2) the research that produced the patent was 

supported by a government-sponsored grant or through a government contract. Our analysis dataset 

focuses exclusively on the 2nd type; we are interested in understanding how grants or contracts generate 

patents and how grant-funded patents are different, not how government employee inventors are different. 

We make this distinction by restricting our sample to patents with a grant or contract award number. It is, 

of course, possible that there is “over-claiming” of the link between grants and patents.   This possibility 

is discussed in the context of life sciences research by Azoulay et al. (30), who make the convincing 

argument that scientists often use grant funding to subsidize their entire research agenda, and outputs 

should still be counted as related products. 

                                                            
2 The argument is summarized in Lorsch http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436771/.  For an IBiology 
presentation by Lorsch see http://www.ibiology.org/ibiomagazine/jon-lorsch-lab-size-is-bigger-better.html. 
3 Alberts BM. Limits to growth: in biology, small science is good science. Cell. 1985;41337–338 
4 www.patentsview.org 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436771/
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The government interest field previously has been difficult to analyze because it contains complex 

textual information that is difficult to extract. For instance, the field might say “The invention described 

herein was made by an employee of the United States Government and may be manufactured and used by 

or for the Government for governmental purposes without the payment of any royalties thereon or 

therefor” or “The U.S. government has rights in this invention pursuant to Grant No. GI42298 awarded by 

the National Science Foundation”. The second example contains two important pieces of information: (1) 

the Federal agency with government interest in the patents (NSF), and (2) the Federal contract award 

number associated with the patent (Gl42298). The PatentsView database used the Stanford-maintained 

Named Entity Recognition library and information retrieval techniques5 to parse the raw government 

interest text into the two important pieces of information described above: the government organization 

name and contract or grant number. This information not only allows us to understand how government 

interest patents might differ from private patents, but it also allows us to link patent data to the 

UMETRICS data using Federal award numbers. 

3.2 UMETRICS data 
The second part of the analysis relies on new data infrastructure that can be used to examine 

differences between research teams that patent and those that do not.  This new data captures information 

on all individuals funded on all research grants at a large sample of major universities and is now 

available at the Institute for Research on Innovation and Science (IRIS) (14). These data can also be 

combined with the patent data (through the grant identification number) to capture information on the 

characteristics of teams associated with grants that lead to patents, as well as those associated with grants 

that do not. Since the data include sub-award information, it is possible to capture whether there is cross-

university collaboration6. Even more interestingly, the IRIS data enable the identification of which 

individuals on research-funded teams that patent are credited with being an inventor.   

This work was based on the UMETRICS 2017Q4a7 dataset for research. This dataset contains annual 

data from 26 IRIS member universities including coverage between 2001 and 2017 (this coverage varies 

by institution). The core files include university financial and personnel administrative data pertaining to 

sponsored project expenditures at IRIS member universities during a given year. IRIS core files are based 

on administrative data drawn directly from sponsored projects, procurement, and human resources data 

                                                            
5 Further information about the process can be found in the complete Government Interest Processing Report. 
http://www.patentsview.org/data/GovtInterestReport-July2016.pdf 
6 The degree of collaboration, however, will be understated for those agencies that allow parallel collaborative 
submissions from different universities. 
7 The Institute for Research on Innovation & Science (IRIS). Documentation for UMETRICS 2017Q4a Dataset: The 
Second Annual Data Release. Ann Arbor, MI: IRIS [distributor], 2018-04-10, doi:10.21987/R7R94D  
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systems on each IRIS member university’s campus. Individual campus files are de-identified, cleaned and 

aggregated by IRIS to produce these core files. The 2018 release includes transactions from about 

300,000 unique federal and non-federal awards including wage payments to 480,000 individuals. In 

addition, about 13,000 unique organizations / institutions received sub-awards from IRIS member 

universities transferring their prime awards. Approximately 22,000 unique prime awards were used as the 

funding source to transfer sub-awards to sub-recipients. Vendor and sub-award payment8 total $27.2 

billion. 9  

We matched the PatentsView data with UMETRICS data by taking the award number identified in 

the government interest field, together with information on whether the assignees include a UMETRICS 

university. The analytical subset was defined to include only information on employees or expenses up 

through 2013, to permit sufficient time for a patent to be submitted. Analysis was limited to observations 

with information on both employees (employee table) & expenses (from any of vendor/sub-award/award 

tables). Any grant with a total expenditure less than $2000 was removed10. The final subset included a 

total of 89,527 (53,974 federal) unique grant (or award) numbers spread across 19 universities, 35 federal 

agencies and 255,548 employees. Out of this subset, we were able to match 1,188 distinct awards with 

Patentsview.  

4. Descriptive analysis 
4.1 Research-funded patenting activity  

The new data show that research-funded patenting activity has clearly increased over time both in 

terms of the numbers of patents associated with federally funded grants and in relative size. The former 

                                                            
8 Throughout the documentation, ‘grant’ and ‘award’ are interchangeably used as is often the case—e.g., NIH also 
uses these terms somewhat interchangeably, indicating “award conditions and information for NIH grants.”  To be 
precise, an award is defined as “(f)inancial assistance that provides support or stimulation to accomplish a public 
purpose. Awards include grants and other agreements in the form of money or property in lieu of money, by the 
federal government to an eligible recipient. The term does not include: technical assistance, which provides services 
instead of money; other assistance in the form of loans, loan guarantees, interest subsidies, or insurance; direct 
payments of any kind to individuals; and contracts which are required to be entered into and administered under 
federal procurement laws and regulations, ” according to grant terminology at: 
https://www.grants.gov/web/grants/learn-grants/grant-terminology.html 

9 Boston University, Emory University, Indiana University, Michigan State University, New York University,  
Northwestern University, Ohio State University, Pennsylvania State University, Princeton University,  
Purdue University, Rutgers University, Stony Brook University, University of Arizona, University of California - 
San Diego, University of Cincinnati, University of Colorado, Boulder, University of Hawaii,  University of Illinois 
at Urbana-Champaign, University of Iowa, University of Kansas, University of Michigan, University of Missouri, 
University of Pennsylvania, University of Pittsburgh, University of Virginia, University of Wisconsin - Madison 
10 Total expenditure here refers to the net aggregate of expenditure observed for the grant across the three sources: 
vendor, award and subaward tables over the total lifetime of grant observed within UMETRICS database (2018Q4A 
data release) until and including the year 2013.  

https://www.grants.gov/web/grants/learn-grants/grant-terminology.html
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have risen from almost zero in 1976 to almost 5,000 a year by 2012, and the latter from below 0.5% to 

2.5% of all patenting activity (Figure 1a). Even if the benchmark year is moved to a full 10 years after the 

passage of Bayh-Dole, the increase is still consistently greater than patent growth overall – an almost 

five-fold increase in the level of grant-funded patenting, compared to 2.5 fold increase in all USPTO 

patents.  

The increase has not come at the expense of traditional measures of quality. As Figure 1b shows, 

the trend is consistent when adjusted for a traditional measure of quality – forward citations- and hence 

does not seem to be a result of the spurious patenting in response to funding incentives noted in other 

countries (31).  

 

 

Figure 1a       Figure 1b. 

 In sum, government-funded patents are increasing over time, and that increase has not come at the 

expense of patent quality as measured by the standard metric of patent citations.  

4.2 Grant funded teams and patenting activity 
Our analysis of the 89,000 grants at UMETRICS universities shows that just over 1% of awards 

lead to a patent that cites the grant as contributing to the invention.  There are substantial differences in 

patenting rates across by different funders – ranging from over 5% from the Defense Department to less 

than .4% for other federal agencies. 
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Table 1: Distribution of Awards by Agency & Patenting Activity 
Agency Led to Patent Did Not Lead to Patent Total Patent% 
Dept of Defense 205 3,696 3,901 5.30% 
Dept of Energy 70 1,862 1,932 3.60% 
NSF 348 11,963 12,311 2.80% 
NIH 377 22,985 23,362 1.60% 
Non Federal 163 35,852 36,015 0.50% 
Other federal 51 12,445 12,496 0.40% 
Total number of grants 1,188 88,339 89,527 1.34% 
Numbers in table are count of unique awards. The rows/columns do not sum up into totals since a 
particular patent can be associated with multiple agencies. Source: UMETRICS 2017Q4A* (2018 
release); PatentsView (August 2017) Data: Analytical subset of C3:G12 federal and non-federal grants 
who have a minimum net expenditure of $2,000 over the life of the grant as observed within UMetrics 
database; including information up to 2013.  

 

 Table 2 provides an overview of the characteristics of teams by whether or not the grant resulted 

in a patent.  The differences are consistent with the literature. Teams on grants that result in patents are 

about twice as likely to work with other universities, have budgets that are almost three times larger and 

team sizes that are almost twice as large11.  The structure of the teams is quite different as well.  The 

number of faculty is greater on patenting teams, and probably by virtue of the scale, more likely to have a 

female represented in the senior team.  Interestingly, however, the proportion of post-doctoral fellows and 

graduate students is substantially higher in a patenting team than in a team that doesn’t patent. 

  

                                                            
11 The difference in relative between the budget size and the team size is due to the fact that patenting teams spend 
more on other inputs, such as equipment and travel.   UMETRICS data includes information (at the detailed object 
code level) about those expenditures; a parallel research thread is examining the production function of this research.     
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Table 2: Grant funded Teams by Patenting Activity 
Averaged Attribute No Patent Patent 
Proportion with inter-university collaboration* 14.6% 27.6% 
Average yearly expenditure $172,222 $496,257 
Average annual team size 5.1 8.8 
Average proportion of post-docs and grad students on team 30% 40% 
Average count of faculty 1.2 2.4 
Average share of grants with at-least one senior female employee** 41.9% 50.8% 
Count of grants 52,925 1,049 
Notes: (1) A grant is said to have an inter-university collaboration if it has a sub-award with another university; 
(2) A female who is a faculty/clinician/graduate/postgraduate is referred to as a senior female employee; (3) 
Numbers in table are count of unique awards. The rows/columns do not sum up into totals since a particular 
award can be associated with multiple agencies, and can be patented with one and not with another.  
Source: UMETRICS 2017Q4A* (2018 release); PatentsView (August 2017); Data: Analytical subset of 53,974 
federal grants that have a minimum net expenditure of $2,000 over the life of the grant as observed within 
UMETRICS database; including information until and for the year 2013.  

 

As noted in the previous section, the data also permit an examination of who gets named as 

inventors.  Of the almost 16,000 individuals funded on patenting teams, about 12% are named as 

inventors.  Almost one in three faculty working on a grant leading to a patent are named as inventors, 

while just over one in ten postdocs or graduate students.  Those in other categories have a one in twenty 

chance of being named. While these results are consistent with prior expectations, they do indicate that 

prior work that describes teams based on inventor characteristics alone is likely to understate the size and 

structure of the team in systematic ways. 

Table 3: Who gets named as inventors on patenting teams 
Occupation class Inventors  Total Employees Inventor Rate 
Faculty  848   2,958  28.7% 
Grad or Postdoc  776   6,017  12.9% 
Other  387   6,948  5.6% 
Total  1,976   15,786  12.5% 
Source: UMETRICS 2017Q4A* (2018 release); PatentsView (August 2017). Data: Analytical subset 
of 15,786 employees working on federal grants (up to 2013).  

 

5. Analytical Results 
 We estimate two separate models.  The first estimates the likelihood that a grant funded research 

team does work that results in a patent.  The second estimates the likelihood that an individual on the 

research team is named as an inventor. 
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5.1 Teams and patenting 
In the former case, the data (described in more detail below) permit us to characterize all research 

funded grants by their level of funding, the size of the team, the organizational structure (namely, the 

number of faculty, the proportion of postdocs, and whether there is a female on the team), whether or not 

the grant includes a subaward to another university and controls for the university and funding source.  

𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝑔𝑔 = 𝑓𝑓(𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓 𝑔𝑔, 𝑆𝑆𝑓𝑓𝑆𝑆𝑝𝑝𝑔𝑔, 𝑆𝑆𝑝𝑝𝑆𝑆𝑓𝑓𝑆𝑆𝑝𝑝𝑓𝑓𝑆𝑆𝑝𝑝𝑔𝑔,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝐶𝐶𝐶𝐶𝑆𝑆𝑝𝑝𝑝𝑝𝑓𝑓𝐶𝐶𝑝𝑝𝑔𝑔,𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑔𝑔) (1) 

The unit of observation is the grant (g), and the model is run on the full sample of grants. The funding is 

measured directly by the log of average annual spending on the grant. Team size is the log of the annual 

average of funded individuals working on the grant. Team structure is measured with three variables. The 

proportion of graduate students and postdocs is the annual average of graduate students and postgraduates 

on the team divided by team size. The faculty count is the average number of faculty. There is also a 

binary indicator if at least one of the research team working on the grant is identified as a female.12 

Collaboration is a binary indicator for whether or not the grant had more than two universities 

collaborating. This is defined here if the grant had a subaward. We include agency fixed effects and 

university fixed effects. Year fixed effects are included for the first year in which the award showed 

spending activity13. 

Table 4 shows the results of estimating this model. Columns one and two only include funding 

agency fixed effects, while columns three and four also include university and year fixed effects. 

Columns two and four simply examine team size, while columns one and three break team size down into 

two components: number of faculty, and proportion of postdocs and graduate students. 

The first immediate takeaway is that even after controlling for the agency and the funding 

amount, organizational and team characteristics are strongly associated with the propensity to patent.  

Second, there is a great deal of heterogeneity in the patenting process, as is evident from the relatively 

low explanatory power. Third, while university collaboration and larger team sizes are positively 

associated with the propensity to patent, teams that have a female are negatively associated with the 

propensity to patent, although this result is dependent on specification. In particular, university 

collaboration is associated with a one percent higher propensity to patent, and a ten percent increase in 

team size is associated with a seven percent higher propensity to patent. If team size is broken down into 

components, we see that growth in team size in terms of faculty members or in terms of additional 

                                                            
12  A binary indicator is also included if it cannot be determined whether a research team member working on the 
grant is a female from the gender inference algorithm. 
13 This variable was revised for various conditions such as (a) life within UMETRICS, (b) the applic ation year of 
the matched patent, if any.   
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postdocs or graduate students are both associated with a higher propensity to patent. In short, while the 

amount of grant funding matters, the structures of the organizations and teams involved in the research 

that the grant funds are also highly indicative of whether patenting is the outcome. 

 

 
Table 4: Team Characteristics and Patenting 
Dependent Variable: Grant cited by a patent 

 (1) (2) (3) (4) 
Constant  -0.067*** -0.053*** 0.879*** 0.890*** 
 (0.010)  (0.012)  (0.010)  (0.010)  
Collaboration  0.012*** 0.012*** 0.012*** 0.012*** 
 (0.003)  (0.003)  (0.002)  (0.002)  
Ln(expenditure)  0.006*** 0.004**  0.006*** 0.005*** 
 (0.001)  (0.001)  (0.001)  (0.001)  
Proportion of grad students and postdocs 0.028***  0.029***  
 (0.004)   (0.004)   
IHS(count of faculty) 0.011***  0.011***  
 (0.003)   (0.002)   
Ln(team size)   0.007***  0.007*** 
  (0.002)   (0.001)  
Is there a female faculty member on the 
team?  

-0.006**  0.002  -0.008*** -0.000  

 (0.002)  (0.001)  (0.002)  (0.001)  
DEPT OF DEFENSE 0.037*** 0.044*** 0.033*** 0.040*** 
 (0.008)  (0.008)  (0.008)  (0.008)  
DEPT OF ENERGY 0.022*** 0.028*** 0.018*** 0.024*** 
 (0.004)  (0.005)  (0.004)  (0.004)  
NIH  0.003  0.006*  -0.002  0.000  
 (0.002)  (0.003)  (0.003)  (0.003)  
NSF  0.017*** 0.023*** 0.013*** 0.018*** 
 (0.003)  (0.003)  (0.002)  (0.003)  
University Fixed Effects? No no yes yes 
Year Fixed Effects? No no yes yes 
Observations  54291  54291  54291  54291  
R2 0.020  0.017  0.043  0.041  
Adjusted R2 0.020  0.017  0.043  0.040  
Log likelihood 30595.433  30520.471  31250.938  31175.460  

 
Standard errors clustered at the university level in parentheses ; * p < 0.05, ** p < 0.01, *** p < 0.001; 
controls included for imputation  
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5.2 The likelihood of being named inventor 
The award data permit one more interesting insight into the patenting/inventor process. Because 

the award data capture information on all individuals who are funded on all research awards in general 

and all awards that lead to patents in particular, we can investigate the characteristics of the team 

members who are named as inventors on each patent. We used name matching techniques to do this for 

the 12,665 unique individuals who worked on the 800 federally funded research teams that were granted a 

patent. 1951 of these were named inventors on their team’s patent.  

We estimate a simple linear probability model regression, restricted to individuals who worked on 

teams that were granted a patent, to examine the factors that are correlated with being named as an 

inventor. We use the same factors as in model 1, and we include information on the individual’s position 

in the grant, as well as the individual’s gender. This regression is at the individual level (i). 

𝑃𝑃(𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑓𝑓 𝑓𝑓𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝑆𝑆)𝑖𝑖𝑔𝑔(𝑝𝑝) = 𝑓𝑓�𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓 𝑔𝑔(𝑝𝑝), 𝑆𝑆𝑓𝑓𝑆𝑆𝑝𝑝𝑔𝑔(𝑝𝑝), 𝑆𝑆𝑝𝑝𝑆𝑆𝑓𝑓𝑆𝑆𝑝𝑝𝑓𝑓𝑆𝑆𝑝𝑝𝑔𝑔(𝑝𝑝),𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝐶𝐶𝐶𝐶𝑆𝑆𝑝𝑝𝑝𝑝𝑓𝑓𝐶𝐶𝑝𝑝𝑔𝑔(𝑝𝑝), 𝐼𝐼𝑝𝑝𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝐶𝐶𝑖𝑖𝑔𝑔(𝑝𝑝)�(2) 

As with the first model, we include agency fixed effects and university fixed effects. Year fixed 

effects are included for the first year in which the award showed spending activity14. While the first 

regression was run on the full sample of grants, this sample is restricted to the subsample of grants that 

led to a patent. 

The results, shown in Table 5, reveal that faculty were (unsurprisingly) much more likely to be 

named as an inventor (a 42% chance) than was a post doc or a graduate student. What was surprising was 

that female faculty were half as likely as male faculty to be named an inventor. Similarly, while 

postdoc/graduate students in general had about a 5% chance of being named an inventor, the effect of 

being a female postdoc or graduate student completely offset that chance – on net, a female 

postdoc/graduate student had no chance of being named an inventor in this data. 

There is a legal basis underpinning differences in being named an inventor. Patent law is clear 

that not every person who works on a research project constitutes an inventor15. An individual must 

contribute to the “conception” of an invention, as opposed to reduction to practice16. Therefore, we would 

                                                            
14 This variable was revised for various conditions such as (a) life within UMETRICS, (b) the application year of the 
matched patent, if any.   
15 We are grateful to Amanda Myers, from the USPTO, for pointing us to the relevant text. 
16 Manual of Patent Examining Procedure (MPEP) 2137.01.I. "The definition for inventorship can be simply stated: 
"The threshold question in determining inventorship is who conceived the invention. Unless a person contributes to 
the conception of the invention, he is not an inventor. … Insofar as defining an inventor is concerned, reduction to 
practice, per se, is irrelevant” 



14 
 

not expect every team member to appear as an inventor on the patent. However, this requirement leaves 

room for interpretation and could be implemented differently across applicant institutions or Principal 

Investigators. However, patent law also notes that "Difficulties arise in separating members of a team 

effort, where each member of the team has contributed something, into those members that actually 

contributed to the conception of the invention, such as the physical structure or operative steps, from 

those members that merely acted under the direction and supervision of the conceivers” and "there is no 

requirement that the inventor be the one to reduce the invention to practice so long as the reduction to 

practice was done on his behalf"17, although "Each joint inventor must generally contribute to the 

conception of the invention."18. 

The work of sociologists is of particular interest in this context(32–35).  Their research has found 

that the observed gender productivity puzzle in patenting and publications might be due to organizational 

structure rather than innate productivity differences by gender. Whittington and Smith-Doerr find that 

different network structures and hierarchies are important reasons for gender disparities(34).  

 

 

  

                                                            
17 MPEP 2137.01.IV.  
18 MPEP 2137.01.V.  
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Table 5: Likelihood of an individual being named an inventor 
Dependent Variable: Binary Indicator for Named Inventor 

 (1) (2) 
Constant  0.777*** 0.752*** 
 (0.060)  (0.074)  
Collaboration -0.031*  0.027  
 (0.013)  (0.016)  
Is the inventor a faculty member  0.438*** 0.448*** 
 (0.021)  (0.021)  
Is the inventor a female faculty member  -0.262*** -0.254*** 
 (0.024)  (0.024)  
Is the inventor a grad student/postdoc  0.072*** 0.075*** 
 (0.009)  (0.010)  
Is the inventor a female grad student/postdoc  -0.078*** -0.074*** 
 (0.010)  (0.010)  
Ln(expenditure)  -0.047*** -0.047*** 
 (0.004)  (0.004)  
DEPT OF DEFENSE 0.021  0.033  
 (0.023)  (0.025)  
DEPT OF ENERGY 0.000  -0.002  
 (0.021)  (0.022)  
NIH  -0.066*** -0.023  
 (0.020)  (0.023)  
NSF  -0.017  0.012  
 (0.021)  (0.023)  
Observations  14726  14726  
R2 0.202  0.217  
Adjusted R2 0.202  0.215  
AIC  10558.640  10353.547  
Log lik.  -5268.320  -5132.773  
Standard errors clustered at the grant level in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001  

 

 Conclusion 

This work provides new evidence on the links between research funding and one measure of 

innovation (patenting).  We exploit two sources of new data – information about government funding on 

patents linked to information about government funded research teams – to examine the ways in which 

research funding and the structure of teams affects their propensity to patent.   

The results are striking. There are marked differences in the propensity to patent and the 

likelihood of researchers being named as inventors along the dimensions of team size, funding agency, 

and gender representation. There is evidence that larger teams and more funding generates more patents, 

which militates against the somewhat specious findings by NIGMS that resulted in recommendations of 

capping funding levels(29). The field specific differences are completely in line with prior results.   Most 



16 
 

interestingly, however, the gender results are very consistent with the work of sociologists who have 

shown that women in the academy occupy much less central positions in scientific networks, and that this 

affects their productivity(34).  

As noted, however, these results are descriptive, not causal in nature. One possible way to 

estimate causal effects would be to implement randomized controlled trials (36), given that there are 

limited research funds to be distributed across agencies and fields, and similar approaches have been 

implemented in other policy areas (such as health care, training programs and education). Another 

approach would be to expand the network analyses to – for the first time – explain the role of team 

network positions in patenting behavior. It should also be possible to analyze the impact of individuals 

switching teams and institutions at all occupation levels.(15)  As Owen-Smith has pointed out, the 

UMETRICS offers a unique potential to examine the full dynamics of networks and characterize network 

positions in ways that not hitherto been possible(16). Other approaches, which are possible with links to 

Census Bureau data, are to investigate changes in team diversity and changes in agency funding structures 

on innovation.  

In sum, this paper represents what we hope is the first step in filling the data infrastructure gap 

identified in the introduction – and begins to unpack the human mechanism by which research 

funding(money) results in innovation (something).   
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Appendix 1: Patent Data 

In our analysis, we also use additional information from the PatentsView data: the patent assignee, 

forward and backward citations, the inventors on the patent, the application and grant years, and the 

technology class of the patent. Company names can vary slightly in the raw patent data, so the 

PatentsView data uses a disambiguation process to group variations of the same company name together. 

This process first uses the University of Michigan’s STATA Utilities to correct typos and misspellings 

(37) and then uses the Jaro-Winkler string similarity algorithm to identify similar assignee names (38). 

An inherent problem in analyzing inventor information in patent data is that there is no unique identifier 

for each inventor in the patent data. However, the PatentsView data uses an inventor disambiguation 

algorithm developed from a September 2015 Inventor Disambiguation Workshop by Andrew McCallum 

and Nicholas Monath to do so (39). This algorithm uses discriminative hierarchical conference19 to 

disambiguate inventors, allowing us to trace each inventor’s patenting activity over their inventive career. 

There are four distinct schemes for classifying patents according to their technology area, all of which are 

available in the PatentsView data: cooperative patent classification (CPC), World Intellectual Property 

(WIPO) technology fields, US patent classification (USPC), and the National Bureau of Economic 

Research (NBER) technology area subcategories. In our analysis we primarily use the USPC 

classification. Finally, we also utilize information on application and grant year of the patent. The 

application year is the year of application for issue of the patent. If the patent is approved, it is eventually 

granted or issued, and the grant year reflects that date. There is typically a lag of about 3 years between 

application and grant year, but there is a lot of heterogeneity in this lag. The application year is closer to 

the actual year of invention, so it is typically used in measuring the timing of inventive activity, but the 

shortcoming of its use is the problem of truncation. Because it can take several years for a patent to be 

granted, this means that there will be an artificial decline in the number of granted patents corresponding 

to a given application year in the most recent years of the sample.  

 

Appendix 2: UMETRICS 

Figure 1 provides information about the coverage of each institution.  

                                                            
19 http://www.patentsview.org/data/presentations/UMassInventorDisambiguation.pdf 
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IRIS adds value to the data received by member institutions by identifying and resolving data 

discrepancies when possible, providing standardized occupational classification codes, as well as through 

various cleaning processes including name standardization. IRIS carefully masks information from the 

release files in order to minimize the risk of re-identifying member universities or individuals from 

particular data elements.  

We matched the PatentsView data with UMETRICS data by taking the award number identified in 

the government interest field, together with information on whether the assignees include a UMETRICS 

university. The analytical subset was defined to include only information on employees or expenses up 

through 2013, to permit sufficient time for a patent to be submitted. Analysis was limited to observations 

with information on both employees (employee table) & expenses (from any of vendor/sub-award/award 

tables). Any grant with a total expenditure less than $2000 was removed20. The final subset included a 

total of 90,512 observations out of which 54,291 belong to federal agencies. This consists of 89,527 

                                                            
20 Total expenditure here refers to the net aggregate of expenditure observed for the grant across the three sources: vendor, award 
and subaward tables over the total lifetime of grant observed within UMETRICS database (2018Q4A data release) until and 
including the year 2013.  

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 ID

2009 8060

2014 9730

2007 10075

2011 10151

2012 10161

2010 10171

2004 10181

2011 10191

2011 11479

2014 11584

2008 12090

2010 14105

2010 20150

2001 22165

2013 22480

2007 23402

2008 23790

2007 26195

2004 27201

2009 27591

2010 38770

2011 45700

2017 62799

2011 74915

2011 77480

2014 87501

Figure 1: IRIS Member universities- Temporal Coverage by Institution 

Note:  Institutions/Universities in the figure are masked by ID. The color coding demonstrates coverage by file. 
Deep blue indicates file availability for all four files (award, employee, vendor & subaward); light blue indicates 
that not all of the 4 files are available for a given year. 
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(53,974 federal) unique grant (or award) numbers spread across 19 universities, 35 federal agencies and 

255,548 employees. Out of this subset, we were able to match 1,188 distinct awards with Patentsview. 

It is worth noting that a particular employee can be associated with multiple awards and multiple 

occupations. The difference can occur because of many different reasons, including career progression, 

classification imprecision and data entry errors (40) . In these cases, if an employee-award combination 

has more than one occupation listed, precedence was given to the highest rank: 

faculty>grad/postgrad>other.   
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