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Altruism or Diminishing Marginal Utility?*

We challenge a commonly used assumption in the literature on social preferences and 

show that this assumption leads to significantly biased estimates of the social preference 

parameter. Using Monte Carlo simulations, we demonstrate that the literature’s common 

restrictions on the curvature of the decision-makers utility function can dramatically bias the 

altruism parameter. We show that this is particularly problematic when comparing altruism 

between groups with well-documented differences in risk aversion or diminishing marginal 

utility, i.e., men versus women, giving motivated by pure versus warm glow motives, and 

wealthy versus poor.

JEL Classification: C91, D64

Keywords: altruism, marginal utility, biased inferences

Corresponding author:
Robert L. Slonim
Faculty of Arts and Social Sciences
H04 - Merewether
University of Sydney
Sydney, NSW 2006
Australia

E-mail: robert.slonim@sydney.edu.au

* This paper has received valuable feedback from Christine L. Exley, Glenn W. Harrison, Andrew Lilley, Nikos 

Nikiforakis, Nathaniel T. Wilcox and from participants at presentations at the Sydney Experimental Brownbag, the 

Australia New-Zealand Workshop in Experimental Economics (Melbourne), the Behavioural Economics: Foundations 

and Applied Research Conference (Sydney) and the Asia Pacific Economic Science Association Conference (Brisbane). 

The Sydney Informatics Hub and the University of Sydney’s high performance computing cluster Artemis provided 

the high performance computing resources that have contributed to the results reported within this paper. We 

are grateful for financial support from the Australian Research Councils Discovery Projects funding scheme (project 

number DP150101307).



1 Introduction

Economics has long considered other-regarding preferences in shaping individuals’ choices and

behaviors (Becker, 1974). The relatively recent experimental evidence (e.g., from dictator, ulti-

matum, gift exchange and trust games) has spurred a rich body of research aimed at formally

modeling social preferences to fit the behavioral phenomenon seen in the laboratory (Forsythe

et al., 1994; Hoffman et al., 1994; Bolton and Zwick, 1995), including altruism and reciprocity

(Andreoni, 1989; Levine, 1998; Andreoni and Miller, 2002), and fairness and inequity aversion

(Rabin, 1993; Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000).

The standard model of other-regarding preferences includes a decision-maker who receives

utility from his own payoff or private consumption and utility from an other’s (e.g., another

person’s or a charitable organization’s) payoff, where a preference parameter governs the relative

intensity between these two utility components. Previous literature has taken an interest in two

aspects of these types of models: (1) the magnitude of the social preference parameter (see Table

A1 for a limited set of examples) and (2) the differences in the shape of utility functions over

payoffs to self versus payoffs to other that may result in different risk preferences and response to

incentives for self versus other (see Table A2).

However, a measurement problem, similar to the problem identified in Andersen et al. (2008)

with regards to estimating discount rates, arises when estimating the social preference parameter

in models if we ignore or make simplifying assumptions about the shape of the utility function.

Our paper stresses the importance of controlling for the curvature of the utility function when

estimating social preferences. The necessity to control for the curvature of the utility function

when estimating a parameter of interest has been shown to matter in a wide range of applications

(Harrison, 2018), such as the estimation of subjective probabilities (Andersen et al., 2014), the

estimation of correlation aversion that arises when intertemporal utility is non-separable and there

is an interaction between risk and time preference (Andersen et al., 2018), and the estimation of

bid functions in first price sealed bid auctions (Harrison and Rutström, 2008).

In this paper, we show that estimates of social preference parameters are significantly biased

by incorrect or overly strict assumptions about the curvature of the decision-maker’s utility that

are ubiquitous throughout this literature. And while the majority of the paper focuses on the

simplifying assumptions made about curvature, we also show that common and strict assumptions

about the social preference parameter lead to biased estimates of the curvatures of the decision-

maker’s utility function.

We begin with a simple illustrative model. Consider a decision-maker with separable utility

over self payoffs given by u(s) and utility over other’s payoffs given by v(o), which represents the

utility the decision-maker gets from providing money to the other individual or organization.1 The

1In this paper, we are agnostic about the source of v(o) as it is outside the scope of this paper. However, following
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decision-maker is tasked with dividing income Y between himself, s, and an other, o; that is, he

is playing a dictator game. In laboratory dictator games, other is almost always another subject

or a charitable organization. Outside the lab, an individual who is deciding whether to give to a

charitable organization is playing a dictator game with the organization. To choose the amount

he wishes to give to the other, the dictator maximizes

U(s, o) = (1− α)u(s) + αv(o), subject to Y = s+ p× o (1)

where α represents the weight the decision-maker puts on the utility from other’s payoffs relative

to the utility he gets from self payoffs, Y represents the total income the decision-maker must

split between himself and the other, and p is the price of giving. The first order condition for the

decision-maker’s maximization problem is given by

α

1− α
= p

u′(s)

v′(o)
(2)

The first order condition clearly shows that the curvature of u(·), v(·) and the social preference

parameter, α, all affect the choice of how much to keep for oneself and to give to the other.

However, one of two simplifying assumptions is often made: (1) the curvatures of u(·) and v(·) are

equal and inferences are made about α or (2) a $1 to self is the same as a $1 to other (i.e., the

decision-maker puts equal weight on payoffs to self and other) and inferences are made about the

curvature of u(·) and v(·). While we found one exception to (1), DellaVigna et al. (2013) assume

u(·) is linear and the curvature of v(·) takes on a specific value, Table A1, while not providing

an exhaustive list, demonstrates the ubiquity of this simplifying assumption in the literature.

Similarly, while we found a single exception to (2), Exley (2015) conducts a “normalization” task

to avoid confounding altruism with her measures of risk aversion, Table A2 demonstrates the

ubiquity of the second simplifying assumption in the literature. Most importantly, we found no

paper that estimates the curvature of u(·), v(·) and α. Throughout the majority of our paper, we

focus on the first case: the problem of making simplifying assumptions about the curvature and

estimating α, but we return to the second case in an example in Section 4.4. In several papers

listed in Table Appendix A, the authors do not explicitly model the preferences of the decision-

maker. However, this does not mean the problem we identify does not exist in these cases. In

fact, when preferences are not explicitly modeled and altruism is identified or measured, there is

an implicit assumption that the curvatures of u(·) and v(·) are equal.

In this paper, we use Monte Carlo simulations to generate data allowing dictators to have

different curvatures of utility over self and other’s payoffs, and then estimate the dictators pref-

Harrison (2018), we acknowledge that it could represent the decision-maker’s belief about the other’s utility function,
the other’s true utility function or the decision-maker’s paternalistic utility for the other. Alternatively, it may be
entirely divorced from the utility the other actual receives and simply represents the utility the decision-maker gets
from giving.
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erences using the most common assumption in the literature, namely that the curvatures of u(·)
and v(·) are equal. We show that this common assumption leads to significantly biased estimates

of α.

Consistent with the simple illustrative model above, the Monte Carlo simulations show that

the estimated bias in the degree of altruism, α, depends critically on u(·) and v(·). This result has

important implications that go well beyond simply recognizing that the literature’s estimates of

altruism are biased. Most importantly, this result has direct implications when comparing altruism

between groups, particularly when the two groups may significantly differ in the shape of their

utility functions due to differences in risk aversion or differences in giving motives. For example,

if two groups differ in their degree of diminishing marginal utility over their own payoffs, then,

ceteris paribus, we would incorrectly estimate different degrees of altruism for the two groups.

Similarly, if two groups of subjects differ over the curvature of the utility for the other (e.g., with

one group having more pure motives while another has more warm glow motives), ceteris paribus,

we would again incorrectly estimate different degrees of altruism. The most salient example is the

literature that examines differences in altruism between men and women (Eckel and Grossman,

1998; Andreoni and Vesterlund, 2001; Cox and Deck, 2006).2 In Section 4, we show that the

standard assumption about the curvature of the utility functions, i.e., the curvatures of u(·) and

v(·) are equal, is likely to lead to the over-estimation of altruism of women relative to men.

Similarly, we examine how ignoring the motive for giving (i.e., pure versus warm glow) will lead

to the over-estimation of altruism among individuals motivated by pure altruism relative to those

motivated by warm glow. In a third example, we show that ignoring background wealth will

also lead to the over-estimation of altruism among wealthier individuals relative to less wealthy

individuals. This example echoes the results from Andreoni et al. (2017). In a field experiment

Andreoni et al. (2017) found wealthier households make more pro-social choices than less wealthy

households. Ignoring differences in wealth, their results suggest more altruism among the wealthier

households. However, once they control for the marginal of money and the hardship that comes

from being poor, they find no difference in social preferences between rich and poor households.

Our paper builds off of two seminal papers: Andersen et al. (2008) and Exley (2015). Andersen

et al. (2008) demonstrates how a similar type of problem occurs in the estimation of discount rates

if incorrect assumptions are made about the curvature of the utility function. In particular, using

a similar CRRA utility framework, they show the estimated discount factors are twice as large

if risk-neutrality is assumed rather than jointly estimating the parameter of risk aversion with

the discount factor. Exley (2015) presents striking evidence of differences in the curvature of the

utility over own payoffs versus utility over payoffs to charity when decision-makers are forced to

make a trade-off between themselves and the charity. These results speak directly to our point–

2There is a large literature that looks at differences in altruism between groups. For example, older children
versus younger children (Benenson et al., 2007) or individuals exposed to violent conflict or not (Voors et al., 2012).
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the curvature of own and other’s payoffs may differ significantly in models with other-regarding

preferences and assuming otherwise leads to biased estimates of social preference parameters.

2 Modeling Altruism

The dictator game is widely used to elicit altruism (Camerer, 2010; Engel, 2011). In the earliest

dictator game experiments, the dictator chooses to divide an endowment between himself (self)

and another person (other). Building on Eckel and Grossman (1996b), Andreoni and Vesterlund

(2001) and Andreoni and Miller (2002) extend this simple game by varying the price of giving to

the other and decision-makers choose how much of an endowment to split between self and other

at various prices.3

In this paper, we consider the modified dictator game, where the decision-maker’s objective is

to maximize

U(s, o) = (1− α) ∗ s(1−rs)

(1− rs)
+ α ∗ o(1−ro)

(1− ro)
,with rs, ro < 1, 4 α ∈ [0, 1] (3)

subject to a budget constraint, Y = s+ p× o.

Our departure from the existing literature is to allow the decision-maker to have different

curvatures over self payoffs and other’s payoffs.5 Allowing decision-makers to have different curva-

tures over own and other’s payoffs means we cannot use the CES functional form, which is popular

in this literature, and instead we opt for the CRRA functional form (Andreoni and Miller, 2002;

Fisman et al., 2007).6

We allow for different curvatures over own and other’s payoffs not simply because we can write

down this less restrictive functional form, but rather, and critically, because there are substantial

theoretical reasons and empirical evidence to suggest that the curvature of u(·) and v(·) are distinct.

Here, we touch on some of the most important reasons why we should empirically allow rs (in u(·))
and ro (in v(·)) to have different potential values when we estimate altruism. First, note that there

is ample evidence that laboratory subjects do not have linear utility over own payoffs, u(·), with

most studies reporting a CRRA coefficient between .1 and .9 (Harrison and Rutström, 2008).7 In

contrast, there are many theoretical motives for giving that suggest a variety of functional forms

3This design has also been used to elicit distributional preferences (Jakiela (2013);Fisman et al. (2015);Fisman
et al. (2015);Fisman et al. (2017)).

4We restrict, rs, ro < 1 so that the functional form is well-defined ∀ s, o ≥ 0.
5One exception is DellaVigna et al. (2012) and DellaVigna et al. (2013), which assume utility is linear over own

payoffs (i.e., rs = 0) and concave over the charity’s payoff (i.e., ro ∈ [0, 1]). We consider this case in Appendix C
and show the bias in estimated altruism that results from this assumption.

6However, there is a mapping from the set of optimal allocations given by the CRRA functional form into the
set of optimal allocations given by the CES functional form, which we show in Appendix D.

7For instance, Harrison and Rutström (2008) re-investigate laboratory subjects’ decisions from Hey and Orme
(1994) and estimate a CRRA coefficient of .8 when assuming a logistic CDF (p71-72).
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for v(·), including linear.8 For example, Null (2011) represents pure altruism with a linear utility

function and warm glow with a concave utility function. Conceptually, pure motives may be

closer to linear reflecting that the additional benefit from giving may not diminish rapidly given

there essentially always remains a “need” (e.g., providing food, educational and health services to

people in less developed countries). On the other hand, utility stemming from impure motives or

warm glow may have different implications for the shape of the utility function v(·). For instance,

warm glow, including status-seeking and reputational concerns, may imply a rapidly diminishing

marginal utility, as making a first donation may dramatically increase warm glow, while subsequent

donations could add very little in terms of warm glow (e.g., donating blood once, and then seeing

oneself as a “blood donor”). There is also no theoretical reason or evidence to suggest that the

various potential shapes of v(·) are systematically correlated with the shape of u(·).9

There is also empirical evidence to suggest that the curvature over own and other’s payoffs

may differ. A model in which own payoffs and other’s payoffs enter linearly is appealing in its

simplicity (Levine, 1998), but it predicts a corner solution in dictator games, which only fits

25% of the data (Andreoni and Miller, 2002). More generally, Exley (2015) provides experimental

evidence that suggests that when individuals face a trade-off between keeping money for themselves

or giving money to other, there is a significant difference in the curvature over own payoffs versus

the curvature over payoffs for other. In the absence of trade-off between self and other payoffs

Chakravarty et al. (2011) found more risk aversion over self than other payoffs.

3 Simulation and Estimation

Fisman et al. (2007) (henceforth, FKM07) pushed the modified dictator game further by increasing

the number of choices faced by each decision-maker and structurally estimating the parameters

of a CES utility function. In the present paper, we simulate data using an experimental design

similar to FKM07. Dictators successively face J randomly generated decisions in which they have

to divide an endowment Y given the budget constraint s + p ∗ o = Y , where s and o denote the

amount allocated to self and other and p denotes the price of giving to other. In each decision,

the decision maker must choose from one of 51 choices on the budget line. We refer to each choice

on the budget line as i; (i = 1 to 51). The 51 choices on the budget line i that the decision maker

must choose from are equally spaced out across the budget line from keeping nothing for himself

to keeping everything for himself.10 Figure E7a in the Appendix shows one randomly generated

budget line and the 51 choices that the dictator has to choose among, and Figure E7b displays

8Andreoni et al. (1996), Null (2011), Lilley and Slonim (2014), and Brown et al. (2013) have all modeled pure
and impure motives as separable with potentially different parametric forms.

9For example, there is no evidence suggesting that individuals who give for pure altruism (versus warm glow)
are more or less risk-averse over own payoffs.

10Note that FKM07 used a continuous budget line. We depart from them by dividing the budget constraint in
51 choices along the budget line for computational reasons.
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a graphical example of 50 randomly generated budget lines that a dictator could face.11,12 In our

simulation we use J=3, 000 decisions, which corresponds to 60 dictators making 50 decisions and

similar to the sample size used in FKM07.

In this Section, we describe the Monte Carlo simulations and the estimation that we perform

to demonstrate that altruism and the curvature of utility function are confounded, leading to

erroneous conclusions regarding altruism.

3.1 Simulation

We denote the true preference values (i.e., the values from the Data Generating Process, DGP)

of altruism and the curvature over self payoffs and the curvature of other’s payoffs as αDGP , and

rs,DGP , ro,DGP , respectively. We model the decision-makers’ choices over the 51 i choices on each

of the J budget lines (i.e., decisions) as a multinomial logit. The DM’s probability to pick the ith

choices on the jth budget line (i.e., for decision j) is given by:

Pj(i|αDGP , rs,DGP , ro,DGP , µDGP ) =
e

ui
µDGP∑51

l=1 e
ul

µDGP

(4)

where µDGP is the decision error (or noise) associated with each choice. When µ→∞ each choices

i become equally likely to get selected and when µ→ 0 the choice with the highest utility is chosen

with certainty (see Harrison and Rutström (2008); Wilcox (2008) for reviews of stochastic model

of choices).

The step-by-step process for each simulation with αDPG, rs,DGP , ro,DGP and µDGP is as follows13

1. Set αDGP = .5, rs,DGP and ro,DGP to some given value in rs,DGP ∈ {0, 0.01, ...0.9}× ro,DGP ∈
{0, 0.01, ...0.9}.14,15

2. We then run K = 1, 000 trials. Each trial will be designated as trial k, k = 1 to K, and each

trial k consists of the following steps 2a to 2d:

(a) Set µk,DGP ∼ U [(0.8, 1.2)].

11Figure E8 shows choices made by representative subjects in FKM07 experiment on those budget lines.
12We generate the budget lines using a procedure similar to FKM07’s. First, we randomly pick one of the axis

(self or other’s payoffs) with equal probability. Second, we randomly pick the intersect of this axis with the budget
line from U(50, 85). And finally, we randomly pick the intersect of the remaining axis and the budget line from
U(5, 85).

13The Stata code used to perform the simulation and estimation is available upon request.
14Our results are robust to the choice of αDGP . In Appendix F, we perform the same exercise with αDGP = .25

and αDGP = .75.
15We choose to simulate data for rs,DGP and ro,DGP over the range [0, 0.9] as it is the values commonly found

in the literature. For instance, Harrison and Rutström (2008) estimate curvature over self payoff and Chakravarty
et al. (2011) estimate curvature over other’s payoffs.
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(b) Randomly generate J = 3, 000 budget lines.

(c) For each decision j:

i. Calculate Pj(i|αDGP , rs,DGP , ro,DGP , µk,DGP ) ∀i.
ii. Randomly choose one choice on the budget line i, Aj(αDGP , rs,DGP , ro,DGP , µk,DGP )

where the probability that i is chosen is equal to Pj(i|αDGP , rs,DGP , ro,DGP , µk,DGP ).

(d) Using these Aj(·)s, we estimate the parameters of the utility function from equation

3, denote estimated values as (α̃k, r̃s,k, r̃o,k, µ̃k). We estimate (see Section 3.2 below)

the utility function under two main cases by maximizing the log-likelihood of those

J = 3, 000 decisions using the Stata’s modified Newton-Raphson (NR) algorithm.

3. From the K estimates of α, compute the percentage of over/under estimation and statistical

power of the estimates.

4. Repeat steps 1 to 3 for (rs,DGP , ro,DGP ) ∈ {0, 0.01, ...0.9} × {0, 0.01, ...0.9}.

3.2 Estimation

We begin by estimating the model without making any restrictions on the values of rs, ro, α and

µ. The detailed results from the unrestricted model are presented in Appendix B. The estimates

from the unrestricted model show that we are always able to recover the DGP parameters; that

is, at the 5 percent significance level we reject that r̃s = rs,DGP , r̃o = ro,DGP , and α̃ = αDGP in 5%

of the trials. In other words, any bias in the estimates that arises when we estimate models with

restrictions on the parameters cannot be attributed to sample size or our estimation method, and

will thus be due to the model assumptions that are (in)correctly imposed.

Next, we turn to the main exercise, where we estimate the model given in (3) assuming that

rs = ro, as is commonly done in the literature.16 We show that this commonly used assumption

results in biased estimates. We also show that when this restriction imposed on the parameters

coincidentally matches the data generating process (i.e., when rs,DGP = ro,DGP ) then the estimates

on α are unbiased. After performing the estimation, we calculate the bias in the estimated α,

investigate confidence intervals and issues surrounding hypothesis testing, including Type I and

Type II errors.

3.2.1 Assuming identical curvature over self and other’s payoffs.

Following the bulk of the literature, we consider the case when the curvatures of utility over self

and other’s payoffs are assumed to be identical. Therefore, we estimate the parameters of the

16In Appendix C we also consider the case examined in DellaVigna et al. (2012) and DellaVigna et al. (2013),
where they assume linear utility over self payoffs, rs = 0, and concavity over other’s payoff o, ro ∈ [0, 1]. Again, we
obtain biased estimates.

7



following utility function:

u(s, o) = (1− α) ∗ s(1−r)

(1− r)
+ α ∗ o(1−r)

(1− r)
,with r < 1, α ∈ [0, 1] (5)

by maximizing the log-likelihood of the generated choices.

3.2.2 Bias

We first examine the percentage by which the estimated level of altruism, α̃, is under and over

estimated. Recall, we defined α̃k as the value at which the parameter α is estimated in trial k and

αDGP the true value of α used to generate the data. This bias is defined as:

%bias(α) =
1

K

K∑
k=1

α̃k − αDGP
αDGP

∗ 100 (6)

where K is the number of trials. Figure 1 reports the percentage of over/under estimation in α̃

depending on the true value of coefficient of risk aversion. Figure 1a shows that there is 0 bias

from assuming rs = ro in our estimation when, in fact, rs,DGP = ro,DGP .

In Figure 1b, we hold the value of ro,DGP constant (at ro,DGP=.3) and report the percentage

of bias depending on the true value of rs,DGP . For example, when rs,DGP = .7 and ro,DGP = .3,

but the estimated model incorrectly restricts that rs = ro, we will over-estimate α by 47.5%.17,18

On the other hand, when rs,dgp = .1, we under-estimate α by 29.2%.

Figure 1c provides a more general perspective and allows both ro,DGP and rs,DGP to vary

simultaneously. The x-axis represents the coefficient of risk aversion over self payoffs rs,DGP and the

y-axis represents the coefficient of risk aversion over other’s payoffs ro,DGP . The z-axis represents

the percentage of over- or under-estimation of α̃. The blue plane represents the area on the z-axis

where the bias is equal to 0, while the area above and below this plane represents an upward and

downward estimated bias on α̃, respectively. When rs,DGP = ro,DGP , along the diagonal, note that

we estimate no bias and the shaded estimates exactly cross this diagonal line. However, when

rs,DGP does not equal ro,DGP , there is bias.

More specifically, assuming identical curvature over self and other’s payoffs, we overestimate

altruism when rs,DGP > ro,DGP . The intuition is as follows. When the decision-maker’s utility is

more concave over self payoffs than over other’s payoffs, but we do not account for this additional

concavity in our estimation, we attribute higher levels of giving to a higher level of altruism rather

than the greater concavity over self payoffs than other’s payoffs. Similarly, we underestimate

17The value chosen for rs,DGP and ro,DGP in this example are realistic. Indeed, Chakravarty et al. (2011) eliciting
risk preferences from multiple price list, estimated a CRRA coefficient of .689 over self payoffs and .248 over other’s
payoffs.

18In that case, r̃ is on average estimated to .48.
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altruism when ro,DGP < rs,DGP because we attribute the lower level of giving to differences in

altruism rather than differences in concavity over self payoffs and other’s payoffs.

Result 1. When we assume rs = ro, but rs,DGP 6= ro,DGP , then estimates of altruism, α̃, are

biased.

(i) When rs,DGP > ro,DGP , α̃ > αDGP .

(ii) When rs,DGP < ro,DGP , α̃ < αDGP .

3.2.3 Hypothesis Testing: Significance Levels and Statistical Power

Next, we investigate the confidence intervals obtained on the biased estimates and examine the

likelihood of rejecting the null hypothesis when true (Type I error) and the likelihood of failing to

reject a null when untrue (Type II error).

First, we test the null hypothesis that the level of altruism is equal to its true value, H0 :

α̃ = αDGP = .5.19 Figure 2 shows the probability of a Type I error. Figure 2c allows rs,DGP and

ro,DGP to vary simultaneously while Figures 2a and 2b show two-dimensional slices of Figure 2c.

We should reject the null in 5% of the trials, but when the curvatures over self and other’s payoffs

are distinct from each other, we reject the null in a majority of trials even though the null is true.

When risk aversion over self and other’s payoffs are approximately equal, the statistical test is of

correct size and we reject the null in 5% of the trials. For instance, in Figure 2a ro,DGP is fixed to

.3, when rs,DGP is also equal to .3 the null is rejected in 5.9% of the trials, but when rs,DGP = .31

it is rejected in 91.4% of the trials and when rs,DGP = .32 it is rejected in 100% of the trials.

Figure 2c shows that when rs,DGP and ro,DGP differ by more than a few percents, then the null

that estimated α̃ = αDGP is rejected in 100% of the trials.

Second, we examine Type II error by testing the probability of rejecting a null hypothesis that

α̃ is equal to a value distinct from its true value. In particular, we test H0 : α̃ = .4 and H0 : α̃ = .6,

when the true value of αDGP = .5. Figure 3 reports the results. Figure 3c shows the probability to

reject H0 : α̃ = .4 and Figure 3d the probability to reject H0 : α̃ = .6. Figure 3a and 3b represents

2-dimensional slices of Figure 3c and 3d. In these figures the blue line is the probability to reject

H0 : α̃ = .4 and the green line the probability to reject H0 : α̃ = .6. By construction, we should

reject the null hypotheses in the majority of trials but we fail to reject the null in 95% of the trials

for several set of values (rs,DGP , ro,DGP ). For instance, as shown by the green line in Figure 3a, if

we assume rs = ro, but rs,DGP = .169 and ro,DGP = .3, we reject the null that α̃ equals .4 in only

5.5% of the trials despite the fact that αDGP is in fact equal to .5. In Figure 3c, we fail to reject

the null H0 : α̃ = .4 when rs,DGP ≈ ro,DGP − 0.13 and in Figure 3d we fail to reject the null that

19Standard errors are clustered by subjects (i.e., by group of 50 decisions.). Recall that we simulate 60 dictators
which each make 50 decisions.
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Figure 1: Bias in Estimated Altruism, α̃

(a) ro,DGP = rs,DGP (b) ro,DGP = 0.3

(c) 3-Dimensional

Percentage of under/over estimation of altruism, α̃. In Figures 1b and 1a the dash line is
the corresponding 95% Monte Carlo confidence interval.

H0 : α̃ = .6 when rs,DGP ≈ ro,DGP + 0.13. Hence, we do not only reject the null hypothesis when

true but, in some cases, we also fail to reject it when false.

Result 2. When we assume rs = ro, but rs,DGP 6= ro,DGP , then statistical tests reach erroneous

conclusions:

(i) Type I error: We reject the null, H0 : α̃ = αDGP , when true in too many trials.

10



Figure 2: Power Calculations, Type I Error

(a) ro,DGP is fixed to .3 (b) rs,DGP = ro,DGP

(c) 3-Dimensional

Probability to reject the null hypothesis H0 : α̃ = αDGP at the 5% level. 1,000 trials per
set of parameters (rs,DGP , ro,DGP ). In panel (a), rs,DGP ∈ {0, 0.001, .., 0.9}.

(ii) Type II error: In some cases, we fail to reject the null, H0 : α̃ = α, when it is not true in

too many trials.
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Figure 3: Power Calculations, Type II Error

(a) ro,DGP is fixed to .3 (b) rs,DGP = ro,DGP

(c) H0 : α̃ = .4 (d) H0 : α̃ = .6

Probability to reject the null hypotheses at the 5% level. In Figures 3a and 3b, H0 : α̃ = .4
(blue) and H0 : α̃ = .6 (green). Estimated assuming rs = ro. 1,000 trials per set of
parameters (rs,DGP , ro,DGP ). In panel (a), rs,DGP ∈ {0, 0.001, .., 0.9}.

4 Implications

In this section, we consider three examples that highlight how the common assumption that rs = ro

can lead to erroneous conclusions. First, we examine gender differences in altruism. Second, we

look at motives for giving. Third, we look at wealth effects and altruism. In each of our examples,

we set αDGP = .5 for each considered group (e.g., men versus women) and impose assumptions

on either the curvature of rs,DGP or on the curvature of ro,DGP . That is, we generate data where

there is no difference in altruism between the two groups and show how the empirically incorrect

assumption that rs = ro leads to differences in estimates of altruism between the two groups. We

then test the null hypothesis that the level of altruism between each of the two considered groups

are equal. In each example, we incorrectly reject the null in 100% of trials.

We then consider a fourth example in which we show that assuming individuals put equal
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weight on self and other payoffs, i.e., α = .5, when αDGP leads to incorrect inferences about the

differences between rs and ro. This incorrect assumption can lead researchers to conclude that

individuals are more risk-averse towards others and provide a more inelastic labor supply when

working for charity payoffs than working for self payoffs.

4.1 Gender

Suppose we have a sample of 30 men and 30 women with the same level of altruism, αmale,DGP =

αfemale,DGP = .5. The women in our sample are more risk averse than men over self payoffs,

rs,female,DGP = .9, rs,male,DGP = .1, but men and women have the same level of risk aversion over

other’s payoffs, ro,female,DGP = ro,male,DGP = .6.20 In other words, the only difference between men

and women in our simulation is their degree of risk aversion. In our simulation, we assume women

are more risk averse to reflect a number of experimental results (see Croson and Gneezy (2009))

though other experimental evidence does not find this difference (e.g., see Harrison et al. (2007)).

If we analyze this sample restricting risk aversion to be identical over self and other’s payoffs, but

allowing altruism to differ by gender, we estimate the coefficient of altruism to be .22 for men

and .69 for women.21 We reject the null hypothesis of absence of gender difference in altruism

(H0 : αmale = αfemale) in 100% of the trials. To illustrate Figure 4 represents the values at which

α̃ are estimated for men and women on a 3-dimensional figure.

4.2 Motives for Giving

Next, we examine the estimated level of altruism based on two distinct motives for giving: pure

altruism and warm glow. Suppose our sample consists of two group of decision-makers with

equal levels of altruism, αPA,DGP = αWG,DGP = .5, but who differ in their motive for giving.

Group PA is driven by pure altruism, ro,PA,DGP = .1 and group WG is driven by warm glow,

ro,WG,DGP = .9.22 Further, assume that the two groups have similar curvatures over self payoffs,

rs,PA,DGP = rs,WG,DGP = .6. In this case, we estimate the coefficient of altruism to be .77 for the

individuals motivated by pure altruism and .31 for the individuals motivated by warm glow.23 We

therefore over-estimate the altruism of the pure altruist and under-estimate the altruism of the

individual motivated by warm glow. Again, we incorrectly reject the null hypothesis (H0 : α̃PA =

20We chose values for rs,female,DGP and rs,male,DGP that are found in the literature. For instance, using the
data from Harrison and Rutström (2009) and performing the same estimation, but using the CRRA utility function

u(x) = x1−r

1−r instead the power utility function u(x) = xr, we estimated rs,female = .91 and rs,male = .06.
21r̃ is on average estimated to .35 for men and 0.74 for women.
22Null (2011) models pure motives with linear utility and warm glow with concave utility. The results are not

sensitive to the exact values chosen for ro,DGP .
23r̃ is on average estimated to .35 for individuals motivated by pure altruism and 0.74 for individuals motivated

by warm glow.
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Figure 4: Mean of the estimated level of altruism α̃

The red dots represents the values at which α̃ is estimated in the gender and motives for
giving illustrative examples.

α̃WG) in 100% of the trials.24 Figure 4 represents the values at which α̃ are estimated for both

groups on a 3-dimensional figure.

Result 3. Assuming rs,group1 = ro,group1 and rs,group2 = ro,group2, when rs,DGP,group1 6= ro,DGP,group1

or rs,DGP,group2 6= ro,DGP,group2, can lead to incorrect inferences about the relative levels of altruism

between groups.

4.3 Wealth Effects

In our third example, we examine how unobserved wealth may affect the estimated level of altru-

ism. The CRRA utility function displays decreasing absolute risk aversion, meaning that, ceteris

paribus, wealthier individuals are willing to take on more risk. Thus, suppose we are comparing two

group of subjects. Group W (Wealthy) is given $20 before playing the dictator game and group P

(Poor) is not given anything. Both groups are otherwise identical, with the same level of altruism,

αW,DGP = αP,DGP = .5, the same curvature of utility over other’s payoffs, ro,W,DGP = ro,P,DGP = .6,

and the same curvature of utility over self payoffs, rs,W,DGP = rs,P,DGP = .6. In this case, ignoring

the initial wealth of both groups we estimate α̃ to .62 for the group which received the $20 and

α̃P = .5 for the other group.25 We reject the null hypothesis (H0 : α̃W = α̃P ) in 100% of the trials.

24In this test statistic we again assume 30 dictators which each make 50 decisions in each groups. The standard
errors are clustered by dictator.

25r̃ is on average estimated to .46 in group W and 0.6 in group P.
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If we do take into account the initial wealth of both groups in the estimation we reject the null

hypothesis that the level of altruism is different in both groups in 5% of the trials.

Result 4. Ignoring difference in wealth, can lead to incorrectly inferring that wealthier individuals

are more altruistic than less wealthy individuals.

4.4 Risk and Elasticity

Our fourth example addresses the problem of confounding α with the curvature of the utility

functions from a different perspective. Here, we show how incorrectly assuming that a $1 in

self payoffs is equivalent to a $1 in other’s payoffs will lead to the conclusion that the curvature

between u(·) and v(·) differ, when in truth, they do not. Using the CRRA utility framework,

this problem manifests as concluding that individuals have different risk preferences for payoffs

to self than payoffs to other (Chakravarty et al., 2011) or that individuals respond differently to

incentives when working for self than working for charity (Imas, 2014). Suppose, that αDGP = 1
3
,

rs,DGP = ro,DGP = .6 and in the estimation we wrongly assume that α = 0.5 while allowing

rs and ro to differ. In that case, r̃s is, on average, estimated to .46 and r̃o to .69. The null

H0 : r̃s = r̃o is rejected in 100% of the trials. We thus underestimate risk aversion over self payoffs

and overestimate it over other’s payoffs.

Result 5. Assuming α = .5, when α 6= .5, can lead to incorrect inferences about rs and ro.

5 Two Approaches to Address Bias

Our simulations demonstrate that estimates of social preferences can be biased if we do not take

into consideration the shape of the utility function over both own payoffs and other’s payoffs. We

suggest two potential solutions to address this. A first approach follows the structural estimation

put forth in Andersen et al. (2008), but adapting it to social preferences. An alternative approach

follows the calibration exercise in Exley (2015) and allows the researcher to assess whether the

assumption of rs = ro is innocuous and suggests an upper or lower bound on the social preference

parameter. The appropriateness of each of the two approaches we propose below greatly depends

on the aims of the researcher.

5.1 A Structural Approach

One method to estimate altruism that accounts for curvature is to experimentally generate data

data to identify curvature over own payoffs, curvature over other payoffs and altruism and then

estimate all three parameters in a structural model. This follows closely from the time preference

literature (Andersen et al., 2008). In fact, Harrison (2018) discuss the numerous applications and
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advantages of joint estimation of parameters of the utility function and mention the advantages

of jointly estimating utility over self and other payoffs in the estimation of social preferences.

In Appendix B, we show that when one allows the curvature over self and other payoffs to

differ the coefficient of altruism is estimated without bias. We estimated all parameters of our

model on simulated data using the modified dictator game used in Fisman et al. (2007). While we

used values of the parameters as found in the literature, and a sample size to simulate the data

that is common in many laboratory experiments, we expect that the structural estimation would

be more demanding on actual experimental data.

To address the increased demand we propose that an additional direction for research is to

develop an experiment that can identify all three parameters, which mimics the design proposed

by Andersen et al. (2008). For example, the design would include three distinct tasks: (1) a task

to elicit curvature over self-payoffs; (2) an analogous task to elicit curvature over others payoffs;

and (3) a task to elicit the coefficient of altruism, such as a modified dictator game.

While jointly estimating the parameters of the utility function has many advantages (see Harri-

son (2018)), it requires experimental subjects to make many decisions which might not be possible

if the researcher has time or budget constraints. Next, we turn to an alternative approach.

5.2 A Calibration Approach

In this section, we propose a simple calibration exercise to help researchers test for the validity

of the assumption rs = ro and provides either an upper or lower bound on α. The goal of the

calibration exercise is to find points of indifference between amounts of money for self and money to

the other person or charity for each subject. Exley (2015) provides an easy-to-implement approach

to do this. For instance, Exley (2015) finds the amount a subject would give to a charity, $X,

that is indifferent to receiving $1 for themselves, i.e., where u($1) = v($X), by presenting subjects

with a multiple price list in which the amount to self is held constant ($1) and the amount given

to charity increases incrementally. Subjects are then asked, on each line, whether they prefer $1

to self (and $0 to charity) or $0 for self and some amount $X for charity, and uses the line where

they switch to determine the point of indifference.

Suppose an individual has preferences over payoffs to self (s) and payoffs to another person

or charity (o), where we will denote on as the o such that the individual is indifferent between sn

and on. The idea is to use a multiple price list calibration approach to find the on for each sn

contained in the relevant payoff space, S. For example, suppose our decision-maker has CRRA

utility and let S ∈ s1 = 1, s2 = 2, s3 = 3 and denote O ∈ o1, o2, o3. We now consider the three

relevant assumptions about curvature: (1) rs = ro; (2) rs > ro; and (3) rs < ro. If case 1 is true,

then o2 = 2 × o1 and o3 = 3 × o1. If case 2 is true, then o2 < 2 × o1 and o3 < 3 × o1. Finally if

case 3 is true, then o2 > 2× o1 and o3 > 3× o1. Let the corresponding α for each case be ᾱ, αlo
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and αhi, respectively. Thus, when oi is increasing at a slower (faster) rate than si, then it must

be that rs < (>)ro and ᾱ is an upper (lower) bound on the true α.

6 Conclusion

This paper has demonstrated that imposing an incorrect restriction of the equality on the curvature

of the utility function for self and other, which is ubiquitous in the economics literature, leads to

systematically biased estimates of the relative intensity of social preferences. While point estimates

are usually taken with ”a grain of salt” due to many factors associated with laboratory data, the

current paper also demonstrates that extensive comparative static inferences on social preferences,

such as based on gender differences, should also be broadly questioned. More generally, the current

paper provides a blunt reminder of the critical importance of combining theory, experimental

evidence, and econometric analysis to avoid generating seemingly robust yet potentially incorrect

inferences across substantive research agendas (such as gender differences in social preferences).

The current results stress the critical need for future empirical research on social preferences to

relax assumptions on the curvature of preferences over self and other.
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Appendix A Past Literature

Table A1: Example of past Experimental Literature estimating altruism from dictator game

Paper Setting Recipient Assumption Finding
Measuring Altruism
Andreoni and Miller
(2002)

Laboratory Other subject rs = ro Choices are consistent with general-
ized axiom of revealed preferences.

Harrison and Johnson
(2006)

Laboratory Other subject &
Charity

rs = ro Revealed altruism depends upon the
identity of the residual claimant.

Fisman et al. (2007) Laboratory Other subject rs = ro Choices are consistent with general-
ized axiom of revealed preferences.

Comparing Altruism Be-
tween Decision Makers
Andreoni and Vesterlund
(2001)

Laboratory Other subject rs = ro Men are more sensitive to the price of
giving.

Eckel and Grossman
(1998)

Laboratory Other subject rs = ro Women are more altruistic.

Cox and Deck (2006) Laboratory Other subject rs = ro Women are more sensitive to the price
of giving.

Benenson et al. (2007) Laboratory Other subject rs = ro Older children and children from
higher SES environments are more al-
truistic.

Carpenter et al. (2008) Laboratory Charity rs = ro Students are less altruistic than non
student subjects.

Ahmed (2009) Laboratory Other subject rs = ro Religious students are more altruistic.
Jacobsen et al. (2011) Laboratory Charity rs = ro Nurses are more altruistic than real es-

tate brokers.
Voors et al. (2012) Laboratory in the

Field
Other subject rs = ro Victims of conflict are more altruistic

toward their neighbors.
DellaVigna et al. (2012) Field Charity rs = 0, ro >

0
Social pressure is a determinant of giv-
ing.

DellaVigna et al. (2013) Field Charity rs = 0 Women are more altruistic.
ro ∈ [0, 1]

Fisman et al. (2015) Laboratory Other subject rs = ro Subjects exposed to economic reces-
sion are less altruistic and more sen-
sitive to the price of giving.

Fisman et al. (2015) Laboratory & On-
line Laboratory

Other subject rs = ro Elite students are less altruistic and
more sensitive to the price of giving
than the average American.

Fisman et al. (2017) Online Laboratory Other subject rs = ro Republicans are more sensitive to
price of giving than democrats. No
significant relationship between voting
behavior and altruism.

Comparing Altruism Be-
tween Recipients
Eckel and Grossman
(1996a)

Laboratory Other subject &
Charity

rs = ro Recipients’ perceived worthiness in-
creases giving.

Slonim and Garbarino
(2008)

Laboratory Other subject rs = ro Choosing the recipient increases altru-
ism.

Fong and Luttmer (2009) Online Laboratory Charity rs = ro On average, recipient’s race does not
influence giving.

Fong and Luttmer (2011) Online Laboratory Charity rs = ro Recipients’ perceived worthiness in-
creases giving.

Comparing Altruism
Across contexts
Benz and Meier (2008) Laboratory & Field Charity rs = ro Altruism is more pronounced in the

laboratory. Altruism in the laboratory
and in the field correlate.



Table A2: Example of past Experimental Literature comparing curvature over self and other’s
payoffs.

Paper Setting Recipient Experimental task Assumption Finding
Comparing Risk Aver-
sion over self and
other’s payoffs
Eriksen and Kvaløy
(2010)

Laboratory Other subject Investment Task α = 0.5 More risk averse over other’s than self
payoffs.

Chakravarty et al.
(2011)

Laboratory Other subject Multiple Price List α = 0.5 Less risk averse over other’s than self
payoffs.

Andersson et al. (2014) Online
Labora-
tory

Other subject Multiple Price List α = 0.5 No difference in utility’s curvature
over self and other’s payoffs. More loss
averse over other’s than self payoffs.

Exley (2015) Laboratory Other subject
& Charity

Multiple Price List
/ Dictator Game

- More risk averse over other’s than self
payoffs when decision forces trade-off
between self and other’s payoffs. But
no difference in the absence of trade-
off.

Rogers (2017) Laboratory Charity Multiple Price List
& Bomb Risk Elic-
itation Task

α = 0.5 No difference in risk aversion over self
and other’s payoffs.

Comparing response to
incentives toward self
and other’s payoffs
Imas (2014) Laboratory Charity Real Effort Task α = 0.5 When incentives increase, effort to-

ward self payoffs increases but effort
toward other’s payoffs remain con-
stant.

Tonin and Vlassopou-
los (2014)

Online
Labora-
tory

Charity Real Effort Task α = 0.5 Incentives toward other’s payoffs are
less effective than incentive toward self
payoffs to increase effort but the dif-
ference is not large.

Charness et al. (2016) Laboratory Charity Real Effort Task α = 0.5 With high incentives more effort is
exerted for self than other’s payoffs.
With low incentives less effort for self
than other’s payoffs.

Imas and Loewnstein
(2018)

Laboratory Charity Real Effort Task α = 0.5 Sensitivity to incentives’ scope on ef-
fort expenditure toward other’s pay-
offs depends on the tangibility of the
outcomes.



Appendix B Unrestricted model: Allowing Different Cur-

vatures of Utility over self and other’s payoffs

In this Section, we show that we are able to accurately retrieve the true parameters when estimating

the model used in the DGP. We perform the same simulation as in Section 3 and re-estimate the

parameter of the utility function used to generated dictators’ choices.26 We therefore estimate the

utility function:

u(s, o) = (1− α) ∗ s(1−rs)

(1− rs)
+ α ∗ o(1−ro)

(1− ro)
,with rs, ro < 1, α ∈ [0, 1] (7)

Appendix B.1 Bias

Figure B1 displays the percentage of bias in the estimated α̃ depending on the true value of rs,DGP

and ro,DGP . Figure B1c allows rs,DGP and ro,DGP to vary simultaneously while Figure B1a and

B1b show two-dimensional slices of Figure B1c. In Figure B1a, rs,DGP = ro,DGP and in Figure

B1b, ro,DGP is fixed to 0.3. In all cases, there is no bias; we accurately recover the parameter α.

26In this section we perform our simulation K = 1, 000 times for each case (rs,DGP , ro,DGP ) ∈ {0, 0.025, ...0.9}×
{0, 0.025, ...0.9} instead of K = 1, 000 times for each case (rs,DGP , ro,DGP ) ∈ {0, 0.01, ...0.9} × {0, 0.01, ...0.9} as in
Section 3. We reduce the number of cases to save computing time.
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Figure B1: Bias in Estimated Altruism, α̃

(a) ro,DGP = rs,DGP (b) ro,DGP = .3

(c) 3-Dimensional

Percentage of under/over estimation of altruism α̃ for the unrestricted model. In Figures
B1b and B1a the dash line is the corresponding 95% Monte Carlo confidence interval.
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Appendix B.2 Statistical Power

Figure B2 reports the probability of Type I error. We test the null hypothesis that α̃ equals its

true value (H0 : α̃ = αDGP ). In all cases, the test statistics is of correct size; we reject the null

that α̃ is equal to its true value in 5% of the trials at the 5% level.

Figure B2: Power Calculations, Type I Error

(a) rs,DGP = ro,DGP (b) ro,DGP is fixed to .3

(c) 3-Dimensional

Probability to reject the null hypothesis H0 : α̃ = αDGP at the 5% level. 1,000 trials per
set of parameters (rs,DGP , ro,DGP ).

Figure B3 reports the probability of Type II error. We test two null hypotheses that α̃ is equal

to values distinct from its true value. We report the probability to reject the null H0 : α̃ = .4 and

H0 : α̃ = .6 at the 5% level. We reject these null hypotheses in at least 85% of the trials in all
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cases. We therefore have enough power to reject the null when false.

Figure B3: Power Calculations, Type II Error

(a) ro,DGP is fixed to .3 (b) rs,DGP = ro,DGP

(c) H0 : α̃ = .4 (d) H0 : α̃ = .6

Probability to reject the null hypotheses at the 5% level. In Figures B3a and B3b, H0 :
α̃ = .4 (blue) and H0 : α̃ = .6 (green). Estimated assuming rs = ro. 1,000 trials per set of
parameters (rs,DGP , ro,DGP ).
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Appendix C Assuming linear utility over self and concave

utility over other’s payoffs.

DellaVigna, List, and Malmendier (2012) assumed linear utility over self payoffs and concave

utility over other’s payoffs. In particular, they estimated the utility function:

u(s, o) = s+ α ∗ log(Γ + o),with Γ ≥ 0 (8)

We investigate whether this assumption could lead to biased estimates by performing the same

simulation as in Section 327 but estimating the utility function:

u(s, o) = s+ α ∗ o(1−ro)

(1− ro)
,with ro < 1 (9)

instead of (5).

Appendix C.1 Bias

Figure C4 reports the percentage of under/over estimation in the level of altruism given rs,DGP

and ro,DGP . Figure C4a and C4b show two-dimensional slices of Figure C4c. In Figure C4a, ro,DGP

is fixed to .3 and in Figure C4b, rs,DGP is fixed to 0. When the utility over self payoffs is not

linear (i.e., when rs,DGP > 0), the estimated level of altruism exhibit a substantial upward bias.

For instance, when rs,DGP = .7 and ro,DGP = .3 the altruism level is, on average, estimated to 0.94

which represents an overestimation of 88%.28 However when rs,DGP = 0 (e.g., as in Figure C4b)

there is no bias.

27In this section we perform our simulation K = 500 times for each case (rs,DGP , ro,DGP ) ∈ {0, 0.025, ...0.8} ×
{0, 0.025, ...0.8} instead of K = 1, 000 times for each case (rs,DGP , ro,DGP ) ∈ {0, 0.01, ...0.9} × {0, 0.01, ...0.9} as in
Section 3. We reduce the number of cases and trials per cases to save computing time. We restrained our simulation
to the cases where rs,DGP ≤ 0.8 and ro,DGP ≤ 0.8 because the Maximum Likelihood is difficult to maximize when
we assume rs = 0 and rs,DGP > 0.8 or ro,DGP > 0.8

28In that case ro is, on average, estimated to 0.54.
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Figure C4: Bias in Estimated Altruism, α̃

(a) ro,DGP = .3 (b) rs,DGP = 0

(c) 3-Dimensional

Percentage of under/over estimation of altruism α̃. In Figures 1b and 1a the dash line is
the corresponding 95% Monte Carlo confidence interval.
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Appendix C.2 Statistical Power

We now turn to the probability of Type I error. Figure C5 shows the probability to reject the

null hypothesis that the estimated altruism level is equal to its true value (H0 : α̃ = αDGP ) given

rs,DGP and ro,DGP . Figure C5a and C5b show two-dimensional slices of Figure C5c. When rs,DGP

is equal to 0 (e.g., in Figure C5b) the statistical test is of correct size; we do reject the null in 5%

of the trials. But when the utility over self payoffs is concave (rs,DGP > 0) we reject the null in

too many trials. For instance, when rs,DGP = .7 and ro,DGP = .3 we reject the null in 100% of the

trials. We therefore reject the null even when it’s true.

We have seen that α̃ exhibit a large upward bias. We now explore how likely we are to fail

to reject the null that α̃ is equal to values above its true value. We consider the null hypothesis

H0 : α̃ = .6 and H0 : α̃ = .8. That is, we test whether the estimated level of altruism is estimated

20% and 60% above its true value. Figure C6 reports the results. For a large set of parameters

(rs,DGP , ro,DGP ) we do not reject the null that α̃ = .6 or that α̃ = .8 in a sufficient number of

trials. For instance, when rs,DGP = .293 and ro,DGP = .3 we reject H0 : α̃ = .8 in only 5% of the

trials. Therefore, assuming linear utility over self payoffs comes at a price; if the utility over self

payoffs is instead concave the altruism level will be substantially over-estimated.
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Figure C5: Power Calculations, Type I Error

(a) ro,DGP is fixed to .3 (b) rs,DGP is fixed to 0

(c) 3-Dimensional

Probability to reject the null hypothesis H0 : α̃ = αDGP at the 5% level. 500 trials per set
of parameters (rs,DGP , ro,DGP ). In panel (a), rs,DGP ∈ {0, 0.001, .., 0.9}.
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Figure C6: Power Calculations, Type II Error

(a) ro,DGP is fixed to 0.3 (b) rs,DGP is fixed to 0

(c) H0 : α̃ = .6 (d) H0 : α̃ = .8

Probability to reject the null hypotheses at the 5% level. In Figures C6a and C6b, H0 :
α̃ = .4 (blue) and H0 : α̃ = .6 (green). 500 trials per set of parameters (rs,DGP , ro,DGP ).
In panel (a), rs,DGP ∈ {0, 0.001, .., 0.9}.
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Appendix C.3 An Illustrative Example

DellaVigna, List, Malmendier, and Rao (2013) found women to be more altruistic than men by

allowing the distribution of altruism to differ by gender in DellaVigna et al.’s (2012) estimation.

To investigate whether this gender difference could be due to the specific assumption made on the

utility’s curvature we re-investigate the sample examined in Section 4.1.29 Estimating the level of

altruism assuming utility to be linear over self payoffs, we estimate the coefficient of altruism at

.59 for men and .95 for women. We reject the null hypothesis of absence of gender difference in

100% of the trials. The gender difference observed in DellaVigna et al. (2013), may therefore be

due to the specific assumption they made over self and other’s curvature of utility.

29In this sample, there is 30 men and 30 women with αmale,DGP = αfemale,DGP = .5, rs,female,DGP =
.9, rs,male,DGP = .1 and ro,female,DGP = ro,male,DGP = .6.
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Appendix D Proof: Relationship between CES and CRRA

functional form

In this Section, we show that the CES functional form and the CRRA functional form, when

rs = ro, give the same optimal allocation.

Optimal allocation with the CES utility function

We define the CES utility function as:

uces(s, o) = [(1− γ)sρ + γoρ]
1
ρ ,with ρ < 1, γ ∈ [0, 1] (10)

The DM maximizes (10) subject to Y = s+ p× o

The Lagrangian is

Lces(s, o, λ) = uces(s, o)− λ(s+ p ∗ o− Y ) (11)

The first order conditions are given by,

∂Lces(s, o, λ)

∂s
=

1

ρ
(1− γ)ρ ∗ sρ−1[(1− γ)sρ + oρ]

1−ρ
ρ − λ = 0 (12)

∂Lces(s, o, λ)

∂o
=

1

ρ
γ ∗ ρ ∗ oρ−1[(1− γ) ∗ sρ + oρ]

1−ρ
ρ − λ ∗ p = 0 (13)

∂Lces(s, o, λ)

∂λ
=s+ p ∗ o− Y = 0 (14)

Which gives

s∗ces =
Y

1 + p
ρ
ρ−1 ( γ

1−γ )
1

1−ρ
(15)

o∗ces =
Y

p+ (1−γ
γ

)
1

1−ρp
1

1−ρ
(16)

Optimal allocation with the CRRA functional form

The DM maximizes the utility function

ucrra(s, o) = (1− α) ∗ s(1−r)

(1− r)
+ α ∗ o(1−r)

(1− r)
,with r < 1, α ∈ [0, 1] (17)

subject to Y = s+ p× o
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The Lagrangian is

Lcrra(s, o, λ) = ucrra(s, o)− λ(s+ p ∗ o− Y ) (18)

The first order conditions are given by,

∂Lcrra(s, o, λ)

∂s
=(1− α)s−r − λ = 0 (19)

∂Lcrra(s, o, λ)

∂o
=α ∗ o−r − λ ∗ p = 0 (20)

∂Lcrra(s, o, λ)

∂λ
=s+ p ∗ o− Y = 0 (21)

Which gives

s∗crra =
Y

1 + p
r−1
r ( α

1−α)
1
r

(22)

o∗crra =
Y

p+ (1−α
α

)
1
r p

1
r

(23)

Mapping between the two sets of optimal allocation

When r = 1− ρ, and α = γ then (s∗ces, o
∗
ces) = (s∗crra, o

∗
crra)
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Appendix E Budget lines

Figure E7: Graphical example of randomly generated budget lines

(a) (b)

One randomly generated budget line and the 51 choices that the dictator has to choose
among (Panel A). Graphical example of 50 randomly generated budget lines that a dictator
could face (Panel B). On the x-axis payoffs for other and on the y-axis payoffs for self.

Figure E8 shows the choices made by representative subjects in FKM07 experiment. On panel

A the subject exhibit selfish preference, on panel B preference for decreasing difference in payoffs,

and on panel C preference for maximizing total payoff.

Figure E8: Graphical example of choices made by subjects in the FKM07
experiment

(a) (b) (c)

Selfish preference (Panel A), preference for decreasing difference in payoffs (Panel B),
preference for maximizing total payoffs (Panel C). On the x-axis payoffs for other and on
the y-axis payoffs for self.
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Appendix F Robustness to the value of αDGP

In the body of the paper, we used the value αDGP = .5 to simulate the data. Here we perform the

same exercise with αDGP = .25 and αDGP = .75. Our results are robust to the choice of αDGP .

In this Section, we perform our simulation K = 500 times for each case in (rs,DGP , ro,DGP ) ∈
{0, 0.025, ...0.9} × {0, 0.025, ...0.9}.

Appendix F.0.1 Unrestricted model: Allowing Different Curvatures of Utility over

self and other’s payoffs.

First, we reproduce the estimation made in Appendix B. We estimate the utility function:

u(s, o) = (1− α) ∗ s(1−rs)

(1− rs)
+ α ∗ o(1−ro)

(1− ro)
,with rs, ro < 1, α ∈ [0, 1] (24)

Figure F9 shows the percentage of under/over estimation of altruism α̃ depending on the true

value of rs,DGP and ro,DGP . On the Left panel, the figures represents the results for αDGP = .25

and on the Right the results for αDGP = .75. In all cases, there is no bias in the estimation; we

accurately retrieved the true parameters when estimating the unrestricted model.
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Figure F9: Bias in Estimated Altruism, α̃ for αDGP = .25 (Left) and αDGP = .75
(Right)

(a) ro,DGP = rs,DGP (b) ro,DGP = rs,DGP

(c) ro,DGP = .3 (d) ro,DGP = .3

(e) 3-Dimensional (f) 3-Dimensional

Percentage of under/over estimation of altruism α̃ for the unrestricted model with αDGP =
.25 (Left) and αDGP = .75 (Right). In Figures F9a, F9b, F9c and F9d the dash line is the
corresponding 95% Monte Carlo confidence interval.
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Appendix F.0.2 Assuming identical curvature over self and other’s payoffs.

We now impose the restriction rs = ro in the estimation to reproduce the estimation made in

Section 3.2.1 where we used αDGP = .5. We estimate the utility function:

u(s, o) = (1− α) ∗ s(1−r)

(1− r)
+ α ∗ o(1−r)

(1− r)
,with r < 1, α ∈ [0, 1] (25)

Figure F10 shows the results. On the Left panel αDGP = .25 and on the Right panel αDGP =

.75. Our conclusions are robust to the choice of αDGP ; we overestimate altruism when rs,DGP >

ro,DGP , underestimate it when rs,DGP < ro,DGP and there is no bias when rs,DGP = ro,DGP .
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Figure F10: Bias in Estimated Altruism, α̃ for αDGP = .25 (Left) and αDGP = .75
(Right)

(a) ro,DGP = rs,DGP (b) ro,DGP = rs,DGP

(c) ro,DGP = .3 (d) ro,DGP = .3

(e) 3-Dimensional (f) 3-Dimensional

Percentage of under/over estimation of altruism α̃ when imposing the restriction rs = ro
in the estimation with αDGP = .25 (Left) and αDGP = .75 (Right). Note that the scale
on the z-axis is not the same on the Left and Right panel. In Figures F10a, F10b, F10c
and F10d the dash line is the corresponding 95% Monte Carlo confidence interval.
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Appendix F.0.3 Assuming linear utility over self and concave utility over other’s

payoffs.

Finally, we test the robustness of the results presented in Appendix C. We assume linear utility

over self payoffs and concave utility over other’s payoffs in the estimation. In particular, we

estimate the utility function:

u(s, o) = s+ α ∗ o(1−ro)

(1− ro)
,with ro < 1, α ∈ [0, 1] (26)

Figure: F11 shows the results. On the Left panel αDGP = .25 and on the Right panel αDGP =

.75. Our conclusions are robust to the choice of αDGP ; if ro,DGP > 0 we overestimate altruism.

40



Figure F11: Bias in Estimated Altruism, α̃ for αDGP = .25 (Left) and αDGP = .75
(Right)

(a) ro,DGP = .3 (b) ro,DGP = .3

(c) rs,DGP = 0 (d) rs,DGP = 0

(e) 3-Dimensional (f) 3-Dimensional

Percentage of under/over estimation of altruism α̃ when imposing the restriction rs = 0
in the estimation with αDGP = .25 (Left) and αDGP = .75 (Right). Note that the scale
on the z-axis is not the same on the Left and Right panel. In Figures F11a, F11b, F11c
and F11d the dash line is the corresponding 95% Monte Carlo confidence interval.
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