
DISCUSSION PAPER SERIES

IZA DP No. 12153

Charles Bellemare
Alexander Sebald

Measuring Belief-Dependent Preferences 
without Information about Beliefs

FEBRUARY 2019



Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may 
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA 
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics 
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the 
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our 
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper 
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

DISCUSSION PAPER SERIES

ISSN: 2365-9793

IZA DP No. 12153

Measuring Belief-Dependent Preferences 
without Information about Beliefs

FEBRUARY 2019

Charles Bellemare
Université Laval, CIRPÉE, CESifo and IZA

Alexander Sebald
University of Copenhagen and CESifo



ABSTRACT
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We derive bounds on the causal effect of belief-dependent preferences (reciprocity and 

guilt aversion) on choices in sequential two-player games without exploiting information 

or data on the (higher-order) beliefs of players. We show how informative bounds can 

be derived by exploiting a specific invariance property common to those preferences. We 

illustrate our approach by analyzing data from an experiment conducted in Denmark. 

Our approach produces tight bounds on the causal effect of reciprocity in the games we 

consider. These bounds suggest there exists significant reciprocity in our population – a 

result also substantiated by the participants’ answers to a post-experimental questionnaire. 

On the other hand, our approach yields high implausible estimates of guilt aversion. We 

contrast our estimated bounds with point estimates obtained using data on self-declared 

higher-order beliefs, keeping all other aspects of the model unchanged. We find that point 

estimates fall within our estimated bounds suggesting that elicited higher-order belief data 

in our experiment is weakly (if at all) affected by a potential endogeneity problem due to 

e.g. false consensus effects. 
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1 Introduction

In recent years there has been a growing interest in using belief-dependent preferences to

explain experimental behavior at odds with classical assumptions about human prefer-

ences (e.g. Charness and Dufwenberg (2006), Falk, Fehr, and Fischbacher (2008), Fehr,

Gächter and Kirchsteiger (1997)). Belief-dependent preferences capture the idea that

psychological factors such as people’s beliefs concerning other people’s intentions and

expectations affect decision making.1 Behavior may for example be motivated by the

propensity to avoid feelings of guilt which result from ‘letting down’ others expectations

(see e.g. Battigalli and Dufwenberg (2007)). Alternatively, behavior may be motivated by

reciprocity, i.e. the propensity to react kindly to perceived kindness (see e.g. Dufwenberg

and Kirchsteiger (2004), Rabin (1993)).

A natural approach to measure the relevance of belief-dependent preferences has been

to test whether elicited higher-order beliefs predict behavior in a way consistent with

a given type of belief-dependent preference (see e.g. Charness and Dufwenberg (2006),

Dhaene and Bouckaert (2010)). Empirical work exploiting higher-order belief data is

challenging for several reasons. First, recent research has suggested that the measured

effect of beliefs on choices may not be causal as assumed by models of belief-dependent

preferences. In particular, it has been argued that elicited higher-order beliefs can be

correlated with preferences of players, causing a spurious correlation between elicited

beliefs and choices. While elicited beliefs and preferences may be correlated for various

reasons, the source of this correlation is most often attributed to the presence of consensus

effects which arise when individuals believe that others feel and think like themselves.2

Recent empirical evidence for this include Bellemare, Sebald, and Strobel (2011) and

Blanco, Engelmann, Koch, and Normann (2011). Another challenge is that data on

1Geanakoplos, Pearce, and Stacchetti (1989) and Battigalli and Dufwenberg (2009) present general

frameworks that allow for the analysis of belief-dependent preferences.
2Charness and Dufwenberg (2006) discuss the possibility that false consensus effects explain the cor-

relation between decisions and beliefs in their data. See also Ellingsen et al. (2010). They provide a test

for guilt aversion using an experimental design which tries to reduces the scope for consensus effects.
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elicited beliefs may contain significant measurement error. It is now well documented

that subjects, for example, tend to round their responses to probabilistic questions about

beliefs – a concern which greatly complicates analyses (see e.g. Manski and Molinari

(2010), Kleinjans and van Soest (2014)). These findings highlight the complexity and

challenges facing empirical work analysing the relevance of belief-dependent preferences

using elicited higher-order belief data.

In this paper we take a different approach which avoids the problems just discussed.

We examine whether it is possible to learn something meaningful about the causal effect

of belief-dependent preferences on choices without data or assumptions on beliefs. The

answer turns out to be positive: informative bounds around the causal effect of belief-

dependent preferences on choices can be derived and estimated using a simple experimen-

tal design. These bounds are informative in the sense that they provide information on

the range of values of the causal effect of specific belief-dependent preferences on choices.

In this way our approach allows to not only learn about the quantitative importance of

belief-dependent preferences, but also to detect preferences which are only weak or im-

plausible predictors of choices. Importantly, the estimated bounds using our approach

are by definition unbiased, i.e. free of any problem associated with the correct elicita-

tion of higher-order beliefs. We illustrate our approach by conducting an experiment

to analyze the relevance of two prominent models of belief-dependent preferences: reci-

procity (Dufwenberg and Kirchsteiger (2004)) and guilt aversion (Battigalli and Dufwen-

berg (2007)).

Our approach builds on random utility models to interpret the decisions of players in

our experiment.3 We specify the utility of players as a function of their own monetary

payoffs, their psychological payoffs which capture their belief-dependent preferences, as

well as other unobservable factors. Our main parameter of interest is the players’ ‘sensitiv-

ity’ to belief-dependent preferences, which measures the importance of these preferences

relative to other elements of the model such as self-interest. Belief-dependent psychologi-

3Random utility models have been extensively used to analyze choice behavior in experiments. See

Cappelan, Hole, Sørensen, and Tungodden (2007), Bellemare, Kröger, and van Soest (2008).
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cal payoffs are unknown variables without data or assumptions on beliefs. However, they

are known to lie within well defined intervals determined by the payoffs of the experimen-

tal game. An immediate consequence of interval-measurements of the belief-dependent

psychological payoffs is that the model parameters are set rather than point identified

(see Manski and Tamer (2002)). Set identification implies that a range of parameter val-

ues – the identification region – are consistent with the data given the assumed model.

The informativeness of the data given the model naturally decreases with the size of the

identification region.

Existing theoretical and empirical work on decision making under uncertainty have

demonstrated that informative identification regions for preference parameters in random

utility models are difficult to derive without prior knowledge or assumptions on beliefs

(Manski (2010); Bellemare, Bissonnette, and Kröger (2010)). We show how to over-

come these difficulties by using a simple experimental design which exploits the fact that

prominent belief-dependent models (guilt aversion and reciprocity) are predicted to play

no role in determining choices in games in which players cannot influence the payoffs of

others (henceforth ‘invariant games’). To be specific, players in these invariant games

cannot let down others and thus cannot feel guilt when making their choices. They also

cannot be reciprocal and kind in return for the kindness of others given the payoffs of

others are invariant to their choices. Our empirical strategy exploits choice data from

games with and without this invariance property regarding others’ payoffs. Intuitively,

we show that games with this payoff invariance property can (nonparametrically) identify

the distribution of unobservables underlying the choice model. Games without this payoff

invariance property (henceforth ‘variant games’) on the other hand are used to identify

bounds on the importance of belief-dependent preferences, conditional on the distribution

of unobservables identified using data from games with payoff invariance.

Our main analysis exploits data from a large-scale Internet experiment (henceforth

Experiment 1) conducted using the CEE panel, an Internet panel administered by the

Center of Experimental Economics at the University of Copenhagen. More than 2100

panel members completed our experiment which involved 203 payoff-wise unique 2-player
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games. Each subject participated in only one of those 203 games meaning that Experiment

1 is based on an across-subject design. 200 of these games satisfied the payoff invariance

condition discussed above. The behavioral data from these games is used to recover

nonparametric estimates of the distribution of decision making errors entering the model.

The remaining three games allowed guilt and reciprocity to be determinants of choice, but

varied with respect to the potential importance these preferences can have relative to self-

interest. Data from the later games are used to estimate bounds around the sensitivity

parameters conditional on the estimated distribution of decision making errors.

Our main analysis reveals that estimated bounds for reciprocity are very informative –

we find evidence of significant reciprocity across all three variant games. These estimated

levels of reciprocity vary significantly across games and suggest that reciprocal preferences

play a diminishing role relative to self-interest as the potential to be kind increases across

games. On the other hand, estimated bounds measuring the importance of guilt aversion

are implausibly high. We contrast these bounds with point estimates of the sensitivity to

guilt aversion and reciprocity using data on higher-order beliefs. We find that point esti-

mates generally fall within our estimated bounds. However, the online appendix presents

Monte Carlo simulation results suggesting this need not be the case when false consensus

effects lead stated beliefs to be endogenous, suggesting that our bounding approach can

additionally be used to detect possible false consensus effects in stated belief data.

In addition to collecting choice data we also elicit people’s underlying motivation for

their behavior in a post-experimental questionnaire (i.e. selfishness, reciprocity, guilt

aversion, inequity aversion etc). An interesting feature of this data is that it reveals

the underlying heterogeneity in people’s motivations. Given the observed motivational

heterogeneity, we interpret our choice data as stemming from a mixture distribution of

(social) preference types. The finite mixture approach that we employ in our analysis

has recently received a lot of attention in the area of risk and social preferences [see e.g.

Cappelen et al. (2007), Bellemare, Kröger, and van Soest (2008), Andersen et al. (2008),

Bruhin et al (2010) and Bruhin et al. (2016)]. Among others Fehr and Schmidt (2010)

point out that the application of the finite mixture approach to the domain of social
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preferences could achieve a parsimonious characterization of social preference types. Our

experiment was designed to implement a finite mixture approach by typing participants

on the basis of their self-declared motives in the post-experimental questionnaire which

was administered for this purpose. We find that a subgroup analysis controlling for the

presence of other social preference types using this type classification corroborates the

results above.

Our main analysis based on Experiment 1 relies on the assumption that the distribu-

tion of decision making errors is homogenous across players’ (social) preferences types.

We test this assumption by running an additional experiment (Experiment 2) in which

we recontacted players that had previously participated in Experiment 1 in one of the

three variant games, this time requiring them to play the invariant games of Experiment

1 which were to measure the distribution of decision making errors. We use the data from

Experiment 2 to re-estimate the distribution of decision making errors for different (social)

preferences types separately. These estimated distributions tend to agree with each other.

Moreover, there are no significant differences with respect to the original function used in

our main analysis. In addition, we re-estimated our identification regions replacing the

original function with a new function estimated by using data from Experiment 2. Results

are practically identical to those obtained in the main analysis based on Experiment 1.

The organization of the paper is as follows. Section 2 describes our main experiment:

Experiment 1. Section 3 presents our data. Section 4 presents our approach to derive

bounds on the relevance of belief-dependent preferences and examines in detail the case

of guilt aversion and reciprocity. Section 5 presents the results of our main analysis and

robustness tests using data from Experiment 2. Section 6 concludes.

2 Experiment 1

In the first part of this section we describe the two-player games which form the basis of

Experiment 1 and present some basic behavioral predictions. Subsequently we describe

the experimental procedure.
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2.1 The games

Our approach exploits decisions of players randomly assigned across two different sets

of games, Set I and Set II. Set I contains three strategy-wise equivalent but payoff-wise

different games as depicted in Figure 1.

t
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❅
❅
❅
❅

�
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❅
❅
❅
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210

z

150

45

30

Figure 1: Structure of the three main games in Set I, where z = 60 in ‘Game

1’, z = 90 in ‘Game 2’, and z = 120 in ‘Game 3’.

For each game of the set, player A can first choose between L and R. In case player

A chooses his outside option R, the game ends and both players receive their respective

outside option (45 for player A and 30 for player B). On the other hand, if player A

chooses L, player B gets to decide between l and r. Choosing l provides player A with

a payoff of 30 and player B with a payoff of 210. Choosing r provides player A with a

payoff of z and player B with a payoff of 150. The three games in Set I only differ with

respect to the value of z: z = 60 in ‘Game 1’, z = 90 in ‘Game 2’, and z = 120 in ‘Game

3’.

Set II contains 200 different ‘invariant games’ as depicted in Figure 2.

[Figure 2 here]

The outside options of both players and the payoff of player B when choosing l in Set

II games are identical to their corresponding values across all Set I games. However, a
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Figure 2: Structure of the 200 games in Set II. The first 100 games have

x = 60 and y takes 100 different values between 150 and 250. The last 100

games set x = 120 and y takes 100 different values between 150 and 250.

player B choosing the final allocation in an invariant game cannot influence the payoff of

player A, which is set to x independent of B’s choice. In our experiment we consider two

values of x. A first subset of 100 invariant games has x = 60, while the other subset of

100 invariant games has x = 120. Each game in the two subsets has a different value of

y ranging from 150 to 250.

A selfish B-player should choose l in all three games of Set I. Choosing r, on the

other hand, is consistent with different behavioral models. Our empirical analysis focuses

on two prominent models of belief-dependent preferences: guilt aversion (Battigalli and

Dufwenberg (2007)) and reciprocity (Dufwenberg and Kirchsteiger (2004)). As we de-

scribe more formally in the following section, increasing z from Game 1 to Game 3 in

our variant games keeping everything else constant increases the potential feeling of ‘let

down’ of player A associated with player B’s selfish option l, making the selfish choice

l less appealing for a guilt averse B-player. It follows that simple guilt aversion pre-

dicts that the proportion of subjects choosing the selfish option will decrease as we move

from Game 1 to Game 3. An analogous prediction emerges for B-players motivated by

belief-dependent reciprocity who reciprocate kind actions. There, the potential kindness
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of choosing r increases with z as we move from Game 1 to Game 3.

The invariant games in Set II were designed (i) to mimic the strategic character of the

variant games of Set I and (ii) to neutralize the impact of belief-dependent preferences

as well as minimize the influence of inequity aversion. As will be explained more formally

below, points (i) and (ii) are crucial in our design as they allow a good and unbiased mea-

surement of the remaining decision noise in the data helping us to bound the importance

of the belief-dependent preferences which are the focus of our analysis.

First, belief-dependent guilt aversion and reciprocity cannot explain player B’s behav-

ior in invariant games of Set II as player B’s choice l or r is immaterial for player A’s

payoff. Intuitively, B-players cannot let down or act in a reciprocal fashion towards player

A in these games. Section 4 formalizes this intuition.4 Second, the chosen parameters of

the invariant games also minimize the role of inequity aversion. Taking the prominent

model of inequity aversion à la Fehr & Schmidt (1999) as a basis for our design, only

extremely high levels of advantageous inequality aversion not permissable by the model

can impact behavior in our invariant games. That is, only B-players with an extreme

aversion to having more than player A may be willing to accept a lower payoff in order

to minimize payoff differences with their matched A-player. When discussing our data

in section 3 we also provide a test analysing the potential prevalence of such extreme

inequity aversion in the data.

4Other approaches to neutralize potential feelings of e.g. reciprocity can also be found in Blount

(1995), Cox (2004) and Falk et al. (2008). For example, Cox (2004) uses a triadic experimental design -

a combination of ‘2-player investment’ and ‘dictator games’ - to distinguish between (i) other-regarding

behavior that is driven by e.g. people’s propensity to reciprocate and (ii) other-regarding behavior

stemming from people’s altruism or inequality aversion. These alternative approaches rely on removing

the players’ motivation to reciprocate by removing potential feelings of being treated kind or unkind.

Instead, our approach does not remove the players’ motivation but ability to reciprocate by making the

payoff of the A-players independent of the B-players’ choices in the invariant games. The advantage of

our approach in the context of our analysis is that it does not only remove reciprocity but also guilt

aversion as B-players cannot let down A-players.
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2.2 The experimental procedure

Our large-scale experiment was conducted online via the CEE-panel, an Internet survey

panel managed by the Center of Experimental Economics at the University of Copen-

hagen. In total about 20.000 panel members were invited and 2155 distinct members of

the panel completed the experiment.5 Each panel member was randomly assigned a role

and one game in Set I or II. Respectively 80% and 20% of the invited subjects were

randomly allocated to the role of player B and player A. About 4000 of the B-players

and 1000 of the A-players were randomly assigned to each of the three games in Set I,

while 4000 of the B- and 1000 of the A-players where randomly assigned to one of the

200 invariant games in Set II.

Before revealing their role and specific game, participants were provided general in-

structions, informed about the payment procedure, and asked to answer some control

questions.6 After the revelation of their role and game and after correctly answering

the control questions, participants were presented the game they had been assigned, they

were told that A- and B-players would choose simultaneously and that decisions would be

matched ex-post. More specifically, A-players were asked to choose between the outside

option R and letting player B decide. B-players, on the other hand, were asked to decide

between l and r. B-players were informed that their choice would only be payoff-relevant

in case the A-player they were matched with decided to let them decide. Subsequently,

all participants were asked to state point predictions of their beliefs regarding the other

people’s behavior and beliefs. In particular, B-players were asked to think about player

5In total our dataset contains 2268 observations. Due to a technical issue some panel members were

able to participate more than once. For all these panel members we only included the results from their

first participation in the analysis.
6Participants were informed before revealing their role and specific game that we expected about 2000

people to participate in this experiment and that the expected likelihood with which they would be paid

at the end was 40%. Furthermore, participants were informed that (i) they would receive an email two

weeks after the end of the experiment about whether their game had been chosen to be paid out and (ii)

the standard payment procedure was used, i.e. that their payoff was directly transferred to their bank

account in case their game had been selected to be paid out.

9



A’s belief about the behavior of B-players in their decision situation. They were asked

the following question:

What do you think about Person A’s belief about the behavior of B-Players?

Please complete the following statement by indicate a number between 0 and

100 below:

I think that Person A believes that the number of B-players (out of 100) that

choose Allocation B.1 (l) is: [Answer]

As also mentioned in the introduction, following the belief elicitation B-players were

asked to answer a question regarding the motivation underlying their choice in the exper-

iment. The following multiple choices were presented from which B-players had to select

the option which most closely characterized the motivation underlying their choice in the

game:

1. If the person I am matched with is nice to me by letting me decide, I want to be
nice to him/her as well.

2. I did not want to disappoint the person I am matched with.

3. I wanted to minimize the payoff-difference between me and the person I am matched
with.

4. I chose the option that gave me the highest payoff.

5. None of the above.

The first and second choices respectively capture the notions of reciprocal behavior and

behavior driven by guilt considerations. The third choice captures distributional concerns

and the desire to reduce payoff differences between players. The fourth choice captures

selfishness. The last choice captures all other types of motives such as a preference for

efficiency. Finally, participants were asked to provide (voluntarily) information regarding

their gender, age and nationality.

1832 distinct panel members completed the experiment in the role of player B while

323 panel members completed the experiment in the role of player A. Specifically, 467
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B-players and 90 A-players completed Game 1 of Set I, 460 B-players and 81 A-players

completed Game 2 of Set I and 463 B-players and 83 A-players completed Game 3 of

Set I. Furthermore, 442 B-players and 69 A-players completed the 200 invariant games

in Set II. We gathered more decisions of B-players as their decisions are the primary

focus of our analysis. After the experiment we randomly matched A-players with one

B-player that had played the same game and paid these participants. We paid out 646

distinct participants after the experiment which amounts to 30% of all participants who

completed the experiment.7 Two weeks after the end of the experiment participants

received feedback concerning whether their game had been chosen to be paid out.

3 Data

Table 1 presents the fractions of (selfish) l-choices for B-players across the three games of

Set I. The first column of Table 1 presents the corresponding averages across all subjects

assigned to each game. We find that 47.9% out of 467 B-players assigned to Game 1

chose the selfish option. This fraction drops to 41.3% of players in Game 2, and further

drops to 34.5% of players in Game 3. The remaining columns of Table 1 present the

corresponding fraction of selfish decisions, grouped according to the 5 motivations which

could be expressed by B-players in the post-experimental questionnaire. We find that

177, 172 and 142 B-players indicated that their choice was motivated by own-payoff

maximization in Games 1-3 respectively. Analogously, 145, 165 and 167 players expressed

that their behavior had been motivated by reciprocal concerns. In comparison to this,

only 14, 11 and 19 players (i.e. on average about 3% of B-players) indicated that they

had been motivated by guilt aversion in Games 1, 2 and 3 respectively. As expected,

the proportion of selfish decisions is very close to one for self-reported selfish players and

constant across all three games. We also find that the proportion of selfish decisions

amongst self-declared reciprocal, guilt averse, and inequity averse players is low across

7Note that the actual percentage of participants paid is somewhat lower than the expected percentage

because there were relatively more B- and less A-players that completed the experiment.
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all three games and never exceeds 9.1%. Finally, a minor fraction of B-players in each

of the three games in Set I clicked ’Other’ in the post-experimental questionnaire and in

this way indicated that their motivation was neither driven by reciprocity, guilt aversion,

inequality aversion nor selfishness. Some of the B-players in this category might have been

motivated by efficiency concerns (i.e., they tried to maximize the sum of both payoffs),

which can also be seen by the fact that the fraction of selfish decisions amongst those

having reported a motivation in the category ’Other’ drops from 58% to 38% and 29% as

we move from Game 1 towards Game 3. This drop is primarily responsible for the drop

of the pooled choice probabilities in the first column of the table. Overall, all expressed

motivations display coherence with observed choices in the experiment. In addition to the

observed coherence, Table 1 reveals that motivations underlying people’s choices in the

variant games of Set I are very heterogenous. As already alluded to in the introduction,

we interpret this heterogeneity as stemming from subjects in the data being drawn from

a mixture distribution with different pure (social) preference types (e.g. reciprocity, guilt,

inequality, selfish, other).

Elicited higher-order beliefs of B players are very coarse, with bunching of responses

at several prominent values. In particular, we find that 93% of the elicited beliefs are

expressed using either multiples of 5 and 10. Probabilistic expectations data is often char-

acterized by similar reporting patterns, a feature often attributed to subjects rounding

their responses. Rounding represents non-classical measurement error which undermines

the quality of subjective expectations data (see Manski and Molinari (2010) and Klein-

jans and van Soest (2014) for further discussion and analysis of rounding of probabilistic

beliefs).

Let s denote a binary variable taking a value of 1 when a player selected the selfish

option, and zero otherwise. The left panel of Figure 3 plots the nonparametric regres-

sion of s on elicited second-order beliefs for all B players assigned a game in Set I.

The estimated curve increases modestly from probabilistic beliefs of 0 to beliefs near 60.

Note that the estimated confidence intervals are wider in this area, reflecting the fewer

number of observations in the area. The estimated curve increases significantly starting
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from beliefs of 60. Overall the relationship suggests that the probability of selecting the

selfish option increases significantly with B-players’ second-order beliefs. This positive

relationship is consistent with a belief-dependent model of guilt aversion à la Battigalli

and Dufwenberg (2007) – the more players think others expect them to be selfish, the

lower is their potential feeling of guilt from behaving accordingly, resulting in more selfish

behavior. Furthermore, this positive correlation seems inconsistent with belief-dependent

reciprocity à la Dufwenberg and Kirchsteiger (2004). There, the more B-players think

others expect them to be selfish, the more they perceive player A’s decision to let them

decide the final allocation as kind. This increased kindness in turn should result in fewer

selfish decisions.

Separating guilt aversion from reciprocity using the estimated curve in the left panel of

Figure 3 is tricky as B players vary with respect to their underlying choice models revealed

in the post-experimental questionnaire. There, reciprocal concerns and selfishness emerge

as the leading motivations expressed by players. The middle and right hand panels of

Figure 3 present the corresponding relationships between choices and elicited higher-order

beliefs for selfish and reciprocal players. We find a very strong positive relation for selfish

players. Although selfish players do not base their decisions on their higher-order beliefs

(stated or not), the relationship is supportive of false consensus effects, with players stating

beliefs that rationalize their choices. The relationship between choices and beliefs is less

straightforward for reciprocal players. We find a negative slope covering the range of low

elicited beliefs, followed by an upward trend near high elicited beliefs. As discussed above,

measurement errors and false consensus effects may also affect the elicited belief for this

sub-group of players. Section 4.2 will provide further analysis of the issues surrounding

estimation of belief-dependent preferences using elicited higher-order beliefs.

As explained before, Set II games can be divided into two subsets according to the

value of x, the later which is either 60 or 120 (see Figure 2). As argued before, choices

in the invariant games do not depend on the belief-dependent preferences we consider.

However, it is not excluded by design that inequity averse B-players with a very high

aversion to having more than player A may be willing to accept a lower payoff in order to
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minimize payoff differences with their matched A-player. In order to test this hypothesis

we use the variation in the value x in the following way. Let ∆πB = πB(l)−πB(r), denote

the difference between player B payoff from choosing l and r. For a given ∆πB > 0,

a selfish B-player would choose l. An inequity averse B-player on the other hand may

prefer to forego own payoffs and choose the non-selfish option r in order to reduce payoff

differences. Given the reduction in inequity is higher for the subset of games where

A players receive 120, a lower share of selfish decisions for this subset of games would

be consistent with inequity aversion. We ran a nonparametric regression of s on ∆πB

separately for each subset of our invariant games. The estimated functions are combined

in the left panel of Figure 4 along with their 95% confidence intervals. Both estimated

regression curves closely overlap over the entire range of ∆πB and are well within each

others’ set of confidence intervals. The right panel of Figure 4 presents the nonparametric

regression of s on ∆πB obtained by pooling data from both subsets of invariant games.

This estimated curve will be used in the empirical analysis presented in the next section.

Finally, the empirical analysis of the following section interprets deviations from payoff

maximisation in Figure 4 as decision making errors. Support for this interpretation is

obtained by noting that error rates of self-declared selfish players in Set 1 games (see Table

1.) who face an advantageous payoff difference of 60 are consistent with corresponding

error rates in Figure 4 for the same payoff difference. Figure 4 also shows that the error

rate is highest near the point where both options offer the same payoffs (∆πB
j = 0),

given any small deviation of ∆πB
j from 0 should cause all players to choose one of the

two options with a probability of 1. This suggests that errors dominate relative to the

utility difference of both options near the point of indifference, a prediction consistent

with a random utility model where decision errors enter additively as presented in the

next section.
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4 Empirical analysis

Section 4.1 discusses how our experimental design can be used to derive bounds around

the sensitivity parameter measuring the importance of belief-dependent preferences in

each game of Set I. This analysis does not exploit any information about the beliefs of

players. Section 4.2 discussed how point estimates of the sensitivity parameters can be

recovered by additionally exploiting the elicited higher-order beliefs of B-players.

4.1 Bound estimates without information on beliefs

Let j = 1, 2, 3 denote the three games of Set I, and let k = 1, 2, ..., 200 denote all payoff

invariant games of Set II. We focus on choices made by B-players in each game j. We

start by assuming that preferences of B-players are given by

uB(a) = πB
j (a) + φjP (a,πj,E

B
(
EA

(
πA
j , π

B
j

))
) + ǫj(a) for a ∈ {l, r}

where a denotes a choice alternative, πj = [πA
j (l), π

A
j (r), π

B
j (l), π

B
j (r), π

A
j (R), π

B
j (R)] de-

notes the vector of possible material payoffs of both players in the game, φj captures game

j sensitivity to the belief-dependent payoff P (·), EB
(
EA

(
πA
j , π

B
j

))
denotes player B’s be-

lief about player A’s expectations regarding material payoffs, and ǫj(a) denotes the resid-

ual decision noise which is assumed to be independent of all variables entering the model.

We denote by F (·) the unknown cumulative distribution function of ∆ǫj = ǫj(l) − ǫj(r).

We assume that F (·) can be transported from Set II games to Set I games and is also

independent of preferences. Section 5.3 discusses this assumption and provides supportive

evidence.

The central element of the model is the belief-dependent psychological payoff function

P (a,πj,E
B
(
EA

(
πA
j , π

B
j

))
) which is allowed to depend on the alternative a, the vector

of material payoffs πj, and player B’s higher-order expectations EA
(
πA
j , π

B
j

)
. The two

belief-dependent preferences we consider below differ with respect to the function P (·)

and to the expectations EB
(
EA

(
πA
j , π

B
j

))
entering the model. Our parameters of interest

are φj for j = 1, 2, 3.
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Assuming utility maximization, the probability of choosing l (the selfish option) is

given by

Pr(s = 1|game = j) = F (∆πB
j + φj∆Pj) (1)

where ∆πB
j = πB

j (l)− πB
j (r), and

∆Pj = P (l,πj,E
B
(
EA

(
πA
j , π

B
j

))
)− P (r,πj,E

B
(
EA

(
πA
j , π

B
j

))
) (2)

Equation (1) represents a standard single index binary choice model. Our interest is

learning about the value of φj without information on higher-order beliefs. Clearly, the

lack of information on EB
(
EA

(
πA
j , π

B
j

))
prevents the construction of ∆P . This implies

that φj cannot be point identified or estimated directly. However, the range of values that

EB
(
EA

(
πA
j , π

B
j

))
can take is known by design. This information can be used to derive

an identification region [φl,j, φu,j] containing all values of φj which are consistent with the

choice data and model.

Define ∆Pj = inf ∆Pj and ∆Pj = sup∆Pj, where inf and sup are taken with respect

to EB
(
EA

(
πA
j , π

B
j

))
. It follows that

∆Pj ∈ [∆Pj,∆Pj ] (3)

where ∆Pj and ∆Pj depend on the material payoffs of game j. Consider the case where

φj ≥ 0. It follows from (3) and the proof of Proposition 4 in Manski and Tamer (2002)

that the following holds for each game j

Pr(s = 1|game = j) ∈ [F
(
[∆πB

j + φj∆Pj ]
)
, F

(
∆πB

j + φj∆Pj ]
)
] (4)

Inverting Pr(s = 1|game = j) in (4) yields an equivalent and useful expression given by

∆πB
j + φj∆Pj ≤ Qj ≤ ∆πB

j + φj∆Pj (5)

where Qj ≡ F−1(Pr(s = 1|game = j)). The identification region [φl,j, φu,j] contains all

values of φj which satisfy (5). The lower and upper bounds of this region have simple

analytical expressions which follow from equation (5),

φl,j =
Qj −∆πB

j

∆Pj

(6)

φu,j =
Qj −∆πB

j

∆Pj

(7)

16



These bounds depend on the experimental payoffs of the game as well as Qj . In practice,

bounds can be estimated by replacing Qj with a consistent estimate. A natural estimate

is obtained using Q̂j = F̂−1( ̂Pr(s = 1|game = j)), where ̂Pr(s = 1|game = j) corresponds

to the estimated proportion of players choosing the selfish option in game j. The main

challenge consists of estimating the distribution function F (·). As we will discuss in the

following subsections, prominent belief-dependent preferences play no role in games of Set

II. In the context of the model above this will imply ∆Pk = 0 for all games k in Set II. It

follows from 1 that the choice probabilities in Set II games will have a very simple form

given by

Pr(s = 1|game = k) = F (∆πB
k ) (8)

Our strategy is to estimate F (·) using a local constant nonparametric regression of s

on ∆πB
k using data from all invariant games in Set II. This approach thus exploits the

fact that πB
k has wide and dense support in the data, allowing to cover the range of

values of Pr(s = 1|game = k) required to construct Qj. It is not possible ex-ante to

ensure that the support of πB
k in the invariant games will cover the necessary range for all

values of Pr(s = 1|game = k) as the later depend on the strength of the belief-dependent

preferences in relation to decision making errors which are not under experimental control.

This boundary issue can occur in particular when Pr(s = 1|game = k) is close to 0 or 1. In

the later cases, it may be necessary to extrapolate outside the support of πB
k to construct

Qj . The simplest approach would be to impose parametric assumptions about F (·). The

realism of these parametric assumptions can be tested by comparing non-parametric and

parametric based estimates for values of Pr(s = 1|game = k) on the support of πB
k . We

return to this issue when discussing our results in the next section.

Inference on the identification region [φl,j, φu,j] can be performed using the bootstrap

procedure outlined in Horowitz and Manski (2000) adapted to the two stage estimation

approach we use. Manski and Horowitz (2000) analyze the finite sample accuracy of

their bootstrap procedure by conducting a Monte Carlo experiment by drawing samples

from the empirical distribution of their data, keeping sample sizes of samples the same

as in their original data. They estimated the true coverage probabilities of nominal 95%
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confidence intervals for bounds on their parameter of interest. The empirical coverage

probabilities were in the range of (0.93-0.96). We replicated their analysis in our setting.

We draw samples from the empirical distribution of choices given game assignments. This

ensures that we have the same number of observations per game as in the original data.

In line with Manski and Horowitz (2000), we find similar empirical coverage probabilities

(0.93-0.97). Finally, the proposed approach can be applied on subsets of players along

observable dimensions (i.e. gender, age, etc...), thus allowing some heterogeneity of φj

across the population.

4.1.1 Example 1: Guilt aversion (φj ≤ 0)

Battigalli and Dufwenberg (2007) propose a model of simple guilt, where players are

assumed to be averse to letting down other players. More specifically, player B feels

guilty of ‘letting down’ player A when his choice a provides player A with a final payoff

below the payoff player B believes player A expects to get. Let EA
(
πA
j

)
denote player A’s

expectation of his own final payoff, and EB
(
EA

(
πA
j

))
player B’s expectation of EA

(
πA

)
.

Applied to our strategic context, Battigalli and Dufwenberg (2007) assume that player B

never feels guilty from choosing the kind option r, i.e. Pj(r, ·, ·) = 0. On the other hand,

the feeling of guilt from choosing the selfish option l is given by

P (l,πj,E
B(EA

(
πA
j

)
)) =

[
EB(EA

(
πA
j

)
)− πA

j (l)
]

(9)

Note thatEB(EA
(
πA
j

)
) lies in the interval

[
πA
j (l), π

A
j (r)

]
. Without knowledge ofEB(EA

(
πA
j

)
),

it follows that

∆Pj ∈ [0, πA
j (r)− πA

j (l)] (10)

where the lower bound ∆Pj = 0 is obtained when EB(EA
(
πA
j

)
) = πA

j (r), while the upper

bound ∆Pj = πA
j (l) − πA

j (r) is obtained when EB(EA
(
πA

)
) = πA

j (l). From (6) and (7)

we get for each game j

φl,j = −∞ (11)

φu,j =
Qj −∆πB

j

πA
j (r)− πA

j (l)
(12)
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Note, the lower bound φl,j is not finite. This follows from the fact that ∆Pj = 0. Finally,

our approach requires that belief-dependent preferences do not influence choices in Set II

games (see Section 4.1). To verify this condition note that πA
k (r)− πA

k (l) = 0 by design

for all invariant games of Set II. It follows from (10) that ∆Pk = 0 in all Set II games.

4.1.2 Example 2: Reciprocity (φj ≥ 0)

Dufwenberg and Kirchsteiger (2004) propose a model of belief-dependent reciprocity where

the psychological payoff P (·) of player B is given by the product PKj ×Kj(a). The first

term PK involves player B’s perception of player A’s kindness towards him in the game.

Dufwenberg and Kirchsteiger (2004) assume PKj is negative whenever player B’s belief

about player A’s intentions towards him are below a certain ‘equitable’ payoff and positive,

if they are above. Let EA
(
πB
j

)
denote player A’s expectation of B’s final payoff in game

j conditional on letting player B decide, and EB
(
EA

(
πB
j

))
denote player B’s expectation

of EA
(
πB
j

)
. Moreover, define the ‘equitable’ payoff in any game of our experiment as

πe
j = θEB

(
EA

(
πB
j

))
+ (1− θ)πB

j (R). (13)

Player B’s perceived kindness of player A is given by the following difference

PKj = EB
(
EA

(
πB
j

))
− πe

j

Expected payoffs higher (lower) than the equitable payoff are thus perceived as kind

(unkind). The second term entering the psychological payoff function involves the kindness

of player B towards player A when choosing a. Assume that player B’s kindness towards

player A from choosing action a in game j is:8

Kj(a) = πA
j (a)− πA

j (−a)

Multiplying PKj with Kj(a) gives

P (a,πj,E
B
(
EA

(
πB
j

))
) =

[
EB

(
EA

(
πB
j

))
− πe

j

] [
πA
j (a)− πA

j (−a)
]

(14)

8Note that for simplicity this definition of kindness is slightly different to the equivalent definition used

in Dufwenberg and Kirchsteiger (2004). Using Dufwenberg and Kirchsteiger (2004)’s original definition

in our strategic context means Kj(a) =
1

2
[πA

j (a)− πA
j (−a)].
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It follows from the above that

∆Pj = 2
[
EB

(
EA

(
πB
j

))
− πe

j

]
[πA(l)− πA(r)] (15)

Combining (15) with (3) yields ∆Pj ∈ [∆Pj,∆Pj ]. Again, ∆Pj and ∆Pj correspond to

the inf and sup of ∆Pj over possible values of EB
(
EA

(
πB
j

))
. This analysis assumes

the researcher is willing to assume a specific value for θ which controls the weighting in

equation (13). Dufwenberg and Kirchsteiger (2004) assume that θ = 0.5. Other values of

θ may be considered.9

A more conservative approach is to derive bounds on φj without making any assump-

tion on both θ and EB
(
EA

(
πB
j

))
. This conservative approach implies that ∆Pj and ∆Pj

correspond to the inf and sup of ∆Pj over possible values of both EB
(
EA

(
πB
j

))
and θ.

The identification region derived using this conservative approach is naturally larger than

the region derived for a known value of θ. In particular, it follows from our experimental

design that ∆Pj = 0 which holds when θ = 1 (see equations (13) and (14)). On the other

hand, ∆Pj > 0 and is characterized by θ = 0. Both features imply that the identification

region for this conservative approach is φj ∈ [φl,j,+∞). This follows from (5) and the fact

that ∆Pj = 0, which implies that the term which is less than or equal to Qj in (5) can

never increase in value as φj → +∞. As a result, the data and maintained assumptions of

the conservative approach do not place sufficient restrictions to identify the highest value

of φj which is compatible with the data.

Note that our approach requires that the reciprocal preferences defined above do not

influence choices in Set II games. As with guilt aversion, the condition that πA
k (r) −

πA
k (l) = 0 by design for all invariant games of Set II implies that ∆Pk = 0 in all Set II

games (see equation (15)).

9Note that the right choice of θ might depend on many factors including the entire strategic decision

situation which is analyzed. Dufwenberg and Kirchsteiger (2004) choose θ = 1

2
but mention: ‘We see no

deep justification for picking the average (rather than some other intermediate value), except that the

choice is simple and does not affect the qualitative performance of the theory.’ (p.277). See Aldashev et

al. (2017) for a further discussion of the possible implications of different assumptions on the ‘weighting’

in the ‘equitable’ payoff.
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4.2 Point estimates using second-order belief data

An alternative is to exploit data on the elicited higher-order beliefs of B-players to point

estimate the magnitude of guilt aversion and reciprocal preferences. Data on higher-order

beliefs can be used to construct ∆Pij (which now varies across subjects i) which is added

to ∆πB
j in order to form the set of explanatory variables of the model. We have from (1)

that the choice probability of subject i in game j is given by

Pr(s = 1|game = j, i) = F (∆πB
j + φj∆Pij) (16)

Note that ∆πB
j does not vary across players. This implies that the distribution of Pr(s =

1|∆Pij) across subjects for a given game is induced by the dispersion of ∆Pij. Let Med

denote the median operator. We have

Med(Pr(s = 1|game = j, i)) = F (∆πB
j + φjMed(∆Pij)) (17)

where (17) exploits the equivariance property of quantiles to monotone transformations

induced by F (·).10 Solving for φj from (17) we get

φj =
QMed

j −∆πB
j

Med(∆Pij)
(18)

where QMed
j = F−1(Med(Pr(s = 1|game = j, i))). Notice that (18) has the same structure

as the bounds (6) and (7) we derived in the absence of beliefs. Our direct estimates

compute (16) for each game, using nonparametric estimates of Pr(s = 1|game = j, i) as

well as F (·) obtained from our invariant games (as was done in Figure 4). The online

appendix provides Monte Carlo evidence that the direct estimator (18) behaves well given

our design and sample sizes.

Point estimates of φj obtained using elicited beliefs need not fall within the corre-

sponding bounds derived in section 4.1. In particular, the literature on belief-dependent

preferences emphasizes that stated higher-order beliefs may be endogenous because of a

so-called false consensus effect (see Charness and Dufwenberg (2006), Bellemare, Sebald,

10The monotone relationship holds more generally for any quantile (see Koenker (2005)). We also

experimented with the 25th and the 75th quantile. Results are almost identical and available on request.
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and Strobel (2011), and Blanco, Engelmann, Koch, and Normann (2011) for discussions

of this effect). Subjects who succumb to false consensus effects state higher-order beliefs

rationalizing their decisions, thinking that other players in their position would behave

similarly. In terms of our model, false consensus effects would be captured when stated

higher-order beliefs associated with choosing the selfish option l are positively correlated

with the propensity to act selfishly (higher values of ∆ǫj). The online appendix presents a

Monte Carlo analysis documenting the impact of the false consensus effect in our setting.11

The analysis reveals that a significant share of samples can generate direct point estimates

that fall outside the estimated bounds when false consensus effects are present. The on-

line appendix also presents Monte Carlo evidence suggesting that direct point estimates

are robust to the chosen quantile. These results suggest that a direct point comparison

of estimated bounds with direct point estimates can help detect possible endogeneity of

stated higher-order beliefs.

11Let µ ∈ [0, 1] denote the true higher order probability placed by a given player on choosing the selfish

option l. False consensus effects are modelled by letting stated beliefs µs be drawn from the following

process

µs = µ+ ψ∆ǫj if µi + ψ∆ǫj ∈ [0, 1]

= 0 if µ+ ψ∆ǫj < 0

= 1 if µ+ ψ∆ǫj > 1

False consensus effects imply ψ > 0. as players more prone to choose the selfish option (higher values

of ∆ǫj) state a higher probability µs that other believe they will choose the selfish option. Conversely,

players more prone to choose the non-selfish option (lower values of ∆ǫj) state lower probabilities of

choosing the selfish option. Censoring from below at 0 and from above at 1 is imposed to keep stated

higher probabilities in the unit interval when ψ > 0. Censoring does not play a role when ψ = 0 as

µs = µ where the later is restricted to the unit interval.
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5 Results

5.1 Guilt aversion

Table 2 presents results for the guilt aversion model. Column Interval presents estimated

bounds and corresponding confidence regions derived without assumptions or data on

beliefs. Column Point presents the corresponding point estimates and standard errors

obtained using the elicited second-order belief data of B-players. Estimates are presented

by combining choice data from all B-players (under the heading All) as well as split up

by gender (under the headings Men and Women).

We first discuss pooled estimates presented in column All. We find that the estimated

upper bound of the identification region is -2.144 for Game 1, -1.128 for Game 2, and

-0.793 for Game 3. The confidence regions suggest that the values of φu,j are estimated

precisely. Interestingly, the estimated values are surprisingly high. Estimates for Game

1 for example suggest that players are willing to forego at least 2.144 DKK in order to

avoid letting down the other player by 1 DKK. These estimated sensitivities are consid-

erably higher than those currently reported in the literature (see e.g. Bellemare, Sebald,

and Strobel (2011)) and clearly warrant some caution. Point estimates obtained using

elicited second-order belief data fall within the estimated bounds but are also very high

in magnitude. One interpretation is that the guilt aversion model is not the most rep-

resentative model of behavior in our experiment and that model mis-specification may

explain these high estimates. This interpretation is clearly supported by the participants’

self-reported motivations in the post-experimental questionnaire. Remember, only about

3% of B-players in our variant games reported that their choice had been motivated by

an aversion to letting down the other player. In order to investigate these issues further

it would clearly be useful to apply our partial identification approach to the subset of

subjects that expressed that they had been motivated by the need to avoid letting down

the other player. Unfortunately there are too few subjects reporting this motivation to

do so. We will return to this point in the context of our analysis of reciprocity.

The estimated intervals, confidence regions, and point estimates for the two sub-
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samples Men and Women are well in line with our pooled estimates, indicating no sig-

nificant variation in preferences across gender. All suggest unreasonable levels of guilt

aversion.

5.2 Reciprocity

Table 3 presents results based on our model of reciprocity. This table is structured analo-

gously to Table 2. That is, Column Interval presents estimated bounds and corresponding

confidence regions derived without assumptions or data on beliefs. Column Point presents

the corresponding point estimates and standard errors obtained using the elicited second-

order belief data of B-players. Results are presented by pooling all subjects (column

‘All’), and separately for men and women. In addition, in the following subsection we

present results for the subset of subjects that expressed to have been motivated by recip-

rocal concerns (column Reciprocal). Estimates are presented for θ = 0.5 as well as for the

more conservative approach which allows θ ∈ [0, 1].

The first block of results concerns the case assuming θ = 0.5 since this corresponds

to the value commonly used in the literature. We find that the estimated identification

region combining all data is relatively narrow and precisely estimated. The estimated

regions for all three games are significantly higher than zero, suggesting significant re-

ciprocal preferences. Specifically, the lower and upper bounds respectively are 0.012 and

0.018 for Game 1, 0.006 and 0.009 for Game 2 and 0.004 and 0.007 for Game 3. Inter-

estingly, the confidence region for Game 1 does not overlap with the confidence region

for Game 2, the later which spans lower values of φj . We computed bootstraped 95%

confidence intervals for the difference φl,0 − φu,1, where a positive differences implies di-

minishing sensitivity.12 The confidence region for φl,0 − φu,1 is [0.0015,0.0029], consistent

with diminishing sensitivity. The confidence region for φl,1 − φu,2 on the other hand is

12Our bootstrap algorithm integrates correlation across estimated bounds due to the shared estimated

function F (·). The algorithm resamples with replacement players from all games in both sets (variant

and invariant games). Bounds for each variant game are computed conditional on the same estimated

function F (·) for a given bootstrap sample. We find that bootstrap sampling distributions for φl,0 −φu,1

and φl,1 − φu,2 are close to normal and symmetric.
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[-0.0008, -0.0002]. Diminishing sensitivity thus appears present moving from Game 1 to

Game 2 only. Similar results hold for men and women, suggesting again limited differences

between both gender groups. We also estimated bounds for θ ∈ {0, 0.25, 0.75}. Results

not reported here are very similar to the case with θ = 0.5 – estimated regions are narrow,

they reflect diminishing sensitivity and no gender effects.

The bottom part of Table 3 presents the estimated identification regions using the

more conservative approach which does not impose restrictions on the value of θ. Clearly,

the main drawback of such a conservative approach is that the upper bound for φj is no

longer finite (see Section 4.1.2). This limits what we can learn about φj without using

information on higher-order beliefs. We find that reciprocal preferences remain significant

in all three games, the magnitude of the estimated lower bounds are similar across gender.

As before, we also find in this case that the estimated lower bound tends to decrease as

we move from Game 1 to Game 3 potentially indicating that the trade-off between taste

for own payoffs and the belief-dependent psychological payoffs might not be constant

across games. This interpretation is now more complicated, however, because the lack of

a finite upper bound does not preclude the possibility that φj is constant across j. The

contrast of these results with those for known values of θ highlights the importance of

better understanding what equitable payoff (i.e reference point) players actually use to

judge whether an action is kind or not.

Interestingly, Table 3 reveals that point estimates of φj obtained by exploiting elicited

higher-order belief data from all subjects fall within the estimated identification regions.

The same holds for point estimates obtained by splitting the data by gender. As discussed

in Section 4.2, the sampling probability that point estimates fall outside estimated bounds

can result from stated higher-order belief data that are endogenous as a result of false

consensus effects.

5.2.1 Finite mixture approach

As in the case of belief-dependent guilt aversion, one limitation of the pooled results

relating to reciprocity is that they are based on the presumption that all players are
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reciprocal, ignoring possible alternative motivations for behavior including inequity aver-

sion. Data on self-reported motivations allow to undertake a finite mixture approach by

typing players according to their motivation for choice and thus to focus our analysis on

pure reciprocal players, controlling for the presence of alternative types. On average 160

participants in each game of Set I reported to have been motivated by repaying kindness

with kindness. Focusing on these self-declared reciprocity motivated players amplifies the

results of our estimation. We find that the identification regions of φj span higher values

of φj, reflecting stronger reciprocal preferences. Specifically, the lower and upper bounds

respectively are 0.019 and 0.028 for Game 1, 0.009 and 0.014 for Game 2 and 0.006 and

0.009 for Game 3.

Some caution is required when interpreting these results as the choice probabilities of

self-declared reciprocal types fall in a range where the estimated F (·) does not overlap

the support of ∆πB
j in the invariant games. As discussed in Section 4.1, an alternative

is to extrapolate beyond this range assuming a parametric function for F (·). The online

appendix replicates Tables 2 and 3 assuming F (·) follows a normal distribution.13 We find

that estimated bounds are almost identical in all cases. The later implies that the normal

distribution is a very good approximation to the distribution of errors in the experiment,

and that results for reciprocal players are robust when extrapolated beyond the support

of ∆πB
j .

As in the aformentioned case based on all data, we also reestimated bounds for

θ ∈ {0, 0.25, 0.75} restricting the analysis to self-declared reciprocal types. Results not

reported here are very similar to the case with θ = 0.5 – stronger measured preferences

for self-declared reciprocal types.

Finally, also in this case where we restrict the analysis to self-declared reciprocal types

we find that the point estimates of φj obtained by exploiting elicited higher-order belief

data fall within the estimated identification regions. Overall, our results from Table

3 suggest that elicited higher-order belief data in our experiment is weakly (if at all)

13This analysis assumes that F (∆πB
j ) = Φ(β∆πB

j ) where Φ(·) denotes the cumulative distribution of

the standard normal distribution and β is a parameter to be estimated.

26



affected by potential endogeneity. Estimated bounds thus additionally provide a means

to infer possible concerns for false consensus effects.

5.3 Error rates, transportability, and types

Consistent with semiparametric binary choice models with unspecified distributions of

errors (see Horowitz (1998)), the analysis above assumes that the function F (·) capturing

errors in decision-making is unrelated to (social) preference types (whether selfish, recip-

rocal, etc) and that it can be transposed from Set II games to Set I games. Other papers

measuring social preferences under this assumption include Cappelen, Hole, Sorensen,

Tungodden, (2007); Bellemare, Kröger, and van Soest, (2008); Cox, Friedman, Gjerstad,

(2007)).

We analyzed the plausibility of this assumption in our context in two different ways.

First, we reinvited 682 people that had previously participated in one of our variant

games in Experiment 1. The experiment (Experiment 2) to which we reinvited them was

identical to the original experiment with the only difference that they now had to take a

decision in one randomly chosen invariant game of Set II that were used in Experiment

1 to estimate F (·) and conduct the empirical analysis presented above. Subsequently

we merged the data from Experiment 1 and 2 to identify the motivations that B-players

in Experiment 2 had self-declared when playing the variant game in Experiment 1. The

resulting within-subject data allows to test for the validity of the homogeneity assumption

concerning function F (·) across players’ (social) preference types.

We were able to match 250 B-players that completed Experiment 2 to their choices and

answers in the previous experiment in which they took a decision in one of the three variant

games. In total 89 and 90 self-declared selfish and reciprocal players from Experiment 1

played this follow-up experiment in the role of player B.14 The left hand graph in Figure

5 plots the estimated functions for self-declared selfish and reciprocal types. The right

14Another 71 B-players having self-declared other types (guilt, inequity aversion, else) completed Ex-

periment 2. The sample sizes for these groups are too small to perform meaningful separate inferences

for these types.
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hand graph plots the function used in our empirical analysis for a visual comparison (this

graph coincides with the right hand graph of Figure 4). Estimated confidence intervals

are wider than in the right hand graph, reflecting the lower sample sizes. Yet, we find

that estimated functions for selfish and reciprocal types tend to agree over the range of

player B payoff differences. There is also a strong similarity with the F (·) function used

in the empirical analysis presented above, suggesting that error rates are weakly related to

player types. Finally, we replicated Tables 2 and 3 replacing our original estimated F (·)

with a new estimate of F (·) obtained using Experiment 2 data, pooling decisions of both

selfish and reciprocal types. Tables 5 and 6 in the online appendix present the results.

All results are very similar to those above, with confidence intervals slightly wider when

estimating F (·) using data from Experiment 2, reflecting lower sample sizes.

Consequently, using the merged data from Experiment 1 and 2 we find corroborating

evidence in line with our homogeneity assumption regarding the distribution function

F (·). As argued for in our main analysis based on the across-subject design employed

in Experiment 1, the function F (·) capturing errors in decision-making is unrelated to

players’ (social) preference types.

Second, another simple way to assess the validity of our homogeneity assumption is

to compare predicted error rates using Set II games captured in Figure 4 with those of

self-declared selfish players in Set I games (see Table 1.) who face an advantageous payoff

difference of 60. There, we find that deviations from payoff maximization and selfishness

occur less than 10% of the time, a proportion falling within the confidence bounds of

Figure 4 for an advantageous payoff difference of 60.

6 Conclusion

The empirical analysis of belief-dependent preferences has focused on the measurement

of higher-order beliefs and the need to control for possible confounding effects associated

with the belief data collected. Our analysis suggests that meaningful inferences can be

conducted without information on beliefs, overcoming many of the important obstacles
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confronting empirical work in this area. We provided Monte Carlo evidence that false

consensus effects can push point estimates outside estimated bounds with high probability,

thus providing a new approach to detect false consensus effects. Estimated bounds and

point estimates agree in our experiment, suggesting a minor role for consensus effects in

our data. Strong estimates of guilt sensitivity in our experiment are thus more likely

attributable to model mis-specification due to few players having these preferences.

Widths of estimated bounds help quantify the importance of measuring high-order

beliefs relative to other aspects of a model. In general, large uninformative bounds provide

incentives to collect better data which can be used to generate tighter bounds. Our

analysis of reciprocity is particularly insightful in this respect. We have shown that

estimated bounds around the strength of reciprocal motives are narrow and informative

despite not exploiting information or data about beliefs. The informativeness of these

bounds holds however only when researchers are able to specify the equitable payoff (i.e.

reference point) used by subjects to judge the perceived kindness of an action. Inferences

without any assumption about both the equitable payoff and beliefs are substantially less

informative. These results suggest that future work and efforts should primarily focus

on understanding how subjects form these equitable payoffs (or other aspects of a given

model), and to a lesser extent on dealing with difficulties surrounding the measurement

and use of elicited higher-order belief data.

In the ideal case, the bounding approach would be extended to recover finite mix-

tures of types using observed choices alone, allowing subjects to differ with respect to

the motives (belief-dependent or not) driving their choices. Our analysis implements a

finite mixture approach where subjects are typed on the basis of motives stated in a post-

experimental questionnaire. We showed that this type classification is informative and

very consistent with observed choices. While this approach has the advantage of being

simple to implement, it remains open to the pitfalls of using stated types rather than

inferring the later from choices. Research on identification and estimation of finite mix-

tures is very active (see e.g. Bonhomme, Jochmans, Robin (2015)). However, we are not

aware of a choice-based approach which can be applied to our semiparametric setting with
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incomplete information about a covariate (i.e. higher-order beliefs) entering the choice

problem of a subset of preference types. Developing such a choice-based finite-mixture

approach with a partially identified component is of great relevance beyond our specific

application. Future work in this direction is warranted.
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Stated motives

Total Reciprocity Guilt Inequity Selfish Other

Game 1 0.479 (467) 0.048 (145) 0.071 (14) 0.057 (69) 0.994 (177) 0.580 (62)
Game 2 0.413 (460) 0.030 (165) 0.091 (11) 0.029 (70) 0.965 (172) 0.381 (42)
Game 3 0.345 (463) 0.018 (167) 0.052 (19) 0.023 (85) 0.972 (144) 0.292 (48)

Table 1: Fraction of subjects choosing the selfish option l in the three games of Set I. Numbers in parentheses
represent sample sizes.

31



Guilt aversion All (N = 1832) Men (N = 577) Women (N = 1255)
Interval Point Interval Point Interval Point

Game 1 (−∞,−2.144] −8.359 (−∞,−2.026] −6.651 (−∞,−2.193] −8.482
(−∞,−2.044) (0.722) (−∞,−1.884) (1.069) (−∞,−2.087) (0.799)

Game 2 (−∞,−1.128] −3.857 (−∞,−1.102] −4.346 (−∞,−1.140] −4.044
(−∞,−1.072) (0.359) (−∞,−1.052) (0.619) (−∞,−1.084) (0.345)

Game 3 (−∞,−0.793] −2.079 (−∞,−0.785] −2.093 (−∞,−0.797] −2.004
(−∞,−0.747) (0.152) (−∞, 0.736) (0.236) (−∞,−0.756) (0.203)

Table 2: Interval and point estimates for guilt aversion. Bootstrap 95% confidence sets for the identification
regions and bootstrap standard errors for direct point estimates in parenthesis.
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Reciprocity All (N = 1832) Men (N = 577) Women (N = 1255) Reciprocal (N = 510)
Interval Point Interval Point Interval Point Interval Point

θ = 0.5
Game 1 [0.012, 0.018] 0.012 [0.011, 0.017] 0.012 [0.012, 0.018] 0.013 [0.019, 0.028] 0.022

(0.011, 0.019) (0.000) (0.010, 0.018) (0.001) (0.011, 0.019) (0.000) (0.008, 0.038) (0.000)
Game 2 [0.006, 0.009] 0.007 [0.006, 0.009] 0.007 [0.006, 0.010] 0.007 [0.009, 0.014] 0.011

(0.006, 0.010) (0.000) (0.006, 0.010) (0.000) (0.006, 0.011) (0.000) (0.004, 0.018) (0.000)
Game 3 [0.004, 0.007] 0.005 [0.004, 0.007] 0.005 [0.004, 0.007] 0.005 [0.006, 0.009] 0.007

(0.004, 0.007) (0.000) (0.004, 0.008) (0.000) (0.004, 0.007) (0.000) (0.003, 0.012) (0.000)
θ ∈ [0, 1]
Game 1 [0.006,+∞) 0.012 [0.005,+∞) 0.012 [0.006,+∞) 0.012 [0.010,+∞) 0.022

(0.005,+∞) (0.000) (0.005,+∞) (0.000) (0.006,+∞) (0.000) (0.005,+∞) (0.000)
Game 2 [0.003,+∞) 0.007 [0.003,+∞) 0.007 [0.005,+∞) 0.007 [0.005,+∞) 0.011

(0.003,+∞) (0.000) (0.003,+∞) (0.000) (0.004,+∞) (0.000) (0.003,+∞) (0.000)
Game 3 [0.002,+∞) 0.005 [0.002,+∞) 0.005 [0.002,+∞) 0.005 [0.003,+∞) 0.007

(0.002,+∞) (0.000) (0.002,+∞) (0.000) (0, 002,+∞) (0.000) (0.002,+∞) (0.000)

Table 3: Interval and point estimates for reciprocity. Bootstrap 95% confidence sets for the identification regions
and bootstrap standard errors for direct point estimates in parenthesis.
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Figure 3: Left panel presents the nonparametric regression of the decision to
choose the selfish option on second-order beliefs of all B players in Experiment
1. Middle panels show corresponding estimates for self-declared selfish players,
right panel shows corresponding estimates for reciprocal players. Estimated re-
gression curves (full lines) and corresponding 95% confidence intervals (dashed
lines) are presented. All estimates use the gaussian kernel and bandwidth se-
lected using Silverman’s rule.
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Figure 4: Nonparametric regression of s on ∆πB. Left panel presents the
estimated regression curves (full lines) and corresponding 95% confidence in-
tervals (dashed lines) for subset of invariant games with player A payoff set
to 60 (black) and subset of games with player A payoff set to 120 (grey).
Right panel presents the corresponding estimates obtained by pooling data
from both subsets of invariant games. All estimates use the gaussian kernel
and bandwidths selected using Silverman’s rule.
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Figure 5: Left panel presents estimated nonparametric regression curves of
s on ∆πB in Experiment 2 (full lines) along with 95% confidence intervals
(dashed lines) for self-declared selfish (black, N = 89) and reciprocal (grey,
N = 90) B-players who played Set 1 games in Experiment 1. Right panel
presents the corresponding estimates obtained by pooling data from both sub-
sets of invariant games in Experiment 1. All estimates use the gaussian kernel
and bandwidths selected using Silverman’s rule.
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7 Online appendix

The online appendix serves to address issues raised during the review process of the paper.

Section 7.1 discusses Monte Carlo simulations that explore the question whether false-

consensus effects or neglected individual level heterogeneity can explain point estimates

falling outside the bounds estimated using our partial identification approach. Section 7.2

presents some additional results. Specifically, Tables 5 and 6 replicate results in Tables 2

and 3 in the paper, replacing F (·) estimated using invariant games data from Experiment

1 with data from invariant games from Experiment 2. Tables 7 and 8 replicate results in

Tables 2 and 3 in the paper, assuming F (·) follows a normal distribution and is estimated

using invariant games data from Experiment 1. Estimates expand the support of πB
j to

the [-80,80] interval.

7.1 Direct point estimates

Two different points were raised concerning possible direct point estimates falling outside

the estimated bounds. The first point poses the question whether a possible endogeneity

in stated higher-order beliefs – caused by e.g. the false consensus effect – can move point

estimates outside the bounds estimated using our partial identification approach. The

second relates to the question whether ignoring possible individual level heterogeneity of

φj can have a similar effect. We address both issues by conducting a series of Monte Carlo

simulations.

7.1.1 Endogenous higher-order beliefs

Let µi ∈ [0, 1] denote the true higher order probability placed by player i on choosing the

selfish option l. Choices in our setting are determined by the utility difference of choosing

the selfish option l relative to the non-selfish option r. This utility difference for player i

is given by

∆uBji = ∆πB
j + φj∆P

(
EB

i

(
EA

(
πA, πB

)))
+∆ǫji
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where the difference in psychological payoffs between the selfish and non-selfish options

∆P
(
EB

(
EA

i

(
πA, πB

)))
are computed using µi. False consensus effects imply that players

state beliefs µs
i that differ from µi as they try to rationalize their decision. We capture

false consensus effects by letting stated beliefs be drawn from the following process

µs
i = µi + ψ∆ǫji if µi + ψ∆ǫji ∈ [0, 1]

= 0 if µi + ψ∆ǫji < 0

= 1 if µi + ψ∆ǫji > 1

False consensus effects imply ψ > 0 as players more prone to choose the selfish option

(higher values of ∆ǫji) state a higher probability µs
i that others believe they will choose

the selfish option. Conversely, players more prone to choose the non-selfish option (lower

values of ∆ǫji) state lower probabilities of choosing the selfish option. Censoring from

below at 0 and from above at 1 is imposed to keep stated higher probabilities in the unit

interval when ψ > 0. Censoring does not play a role when ψ = 0 as µs
i = µi where the

later is restricted to the unit interval.

Our Monte Carlo simulations generate choices using the utility difference given above,

drawing values of µi from a uniform distribution on the [0,1] interval. Estimated bounds

are based on these choices and the payoffs of the game. All choices are simulated using

true µi to compute the difference in psychological payoffs. Direct point estimates exploit

µs
i instead of µi. We consider two cases – (i) false consensus is absent (ψ = 0) and (ii)

present (ψ = 0.05). Our focus is on the sampling probability that direct point estimates

fall outside estimated identification regions. We thus estimate bounds and direct points

estimates for each sample generated. All simulations were conducted separately for each

game using payoffs of both players that were specified in the experiment. For each game,

values of ∆ǫji are drawn from the distribution F (·) estimated using data from the invariant

games. We draw 150 decisions for each of the three games for a given simulation. True

value of φj are set to 0.02, 0.01, and 0.007 for Games 1,2, and 3, in accordance with point

estimates reported in the paper.

Table 4 reports the results of the simulations. The upper part of Table 4 focuses on
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the model of belief-dependent reciprocity. Baseline refers to the case where ψ = 0 and

stated beliefs are independent of unobservables, while False consensus effects refers to the

case where ψ = 0.05 and false consensus effects are present. For both cases we present

the average bounds and point estimates as well as the sampling probabilities that direct

point estimates of reciprocity sensitivity fall below or above the estimated identification

regions. 1000 simulations were carried out for each scenario.

We find that estimated bounds and direct point estimates are one average ‘correct’.

We find little evidence that the direct point estimator has finite sample bias. Moreover,

sampling probabilities that direct point estimates fall outside estimated identification

regions are close to 0. Figure 6 plots the estimated distribution of direct point estimates

in the Baseline scenario for each of the three games. We find that all three distributions

are symmetric and close to normal. In line with the average estimates reported in Table

4, all three distributions are centered near their true value.

The effects of false consensus effects can be seen by comparing Baseline simulation

results with those under False consensus effects. As expected, we find that average esti-

mated lower and upper bounds are similar to those under Baseline, reflecting that bounds

do not depend on stated beliefs. We find that 88% of point estimates in Game 1 and Game

2 and 78% of estimates in Game 2 exceed estimated upper bounds. Violations of estimated

bounds from below happen less frequently (between 4.3% and 5.9% of samples). Cumu-

lative violations from below and above occur in more than 85% of samples for all three

games. These results indicate there is a large sampling probability that false consensus

effects push direct point estimates outside estimated identification regions.

The bottom of Table 4 repeats the analysis in the context of guilt aversion. As we

show in the paper, point estimates are implausibly large. We conduct our Monte Carlo

analysis with lower estimates of guilt sensitivity, setting φj to -3, -2, and -1 for Games

1 to 3. These values remain vary large yet capture the main features of our data. We

find that estimated bounds and point estimates agree under the Baseline scenario. False

consensus effects on the other hand slightly push point estimates towards more negative

values.
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Setting ψ = 0.05 implies that the correlation between ∆ǫji and µs
i averages around

0.75 across samples. This level of correlation appears necessary to explain measured false

consensus effects reported in other studies, starting with Ellingsen et al. (2010) for guilt

aversion. Reducing the correlation to 50% almost eliminates point estimates falling outside

estimated bounds (results available upon request). It follows that studies documenting

significant false consensus effects are characterized by a high level of correlation between

stated beliefs and unobservables.

7.1.2 Individual level heterogeneity

We next consider the consequences of ignoring possible individual level heterogeneity of

φj. Our simulations proceed as described above with two changes. First, we set ψ = 0,

i.e. we assume there is no false consensus effect. We generate a value of φj for each player

by adding a draw from a N (0, 0.012) to the values of (now average) 0.02, 0.01, and 0.007

used in the simulations above for Games 1 to 3. The variance of these draws was chosen

to minimize negative values of φj while allowing for reasonable heterogeneity around

the corresponding means. Table 4 presents the simulation results under the heading

Heterogeneity.

In case of belief-dependent reciprocity it can be concluded that the sampling proba-

bilities that neglected individual level heterogeneity push direct point estimates outside

estimated identification regions are close to zero. The analysis above suggests that point

estimates falling outside estimated identification regions will likely reflect false consensus

effects rather than neglected preference heterogeneity.

Similarly, allowing for unobservable preference heterogeneity using the model of belief-

dependent guilt aversion also does not have an important impact on estimated bounds

and point estimates. Simulations for the later used draws from N (0, 0.12) which were

added to the φj values presented above. Finally, Figure 7 plots the estimated distribution

of direct point estimates in the Baseline scenario for each of the three games. We find

that all three distributions are again symmetric and close to normal. In line with the

average estimates reported in Table 4, all three distributions are centered near their true
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value.

7.1.3 Rounding

In our final simulation we analyze the expected impact of measurement errors due to

rounding of probabilistic responses on direct point estimates. Consistent with the ap-

parent rounding patterns in our belief data, we performed our simulations by replacing

true unrounded beliefs µi with stated beliefs rounded to the nearest 5 percent integer.

Results for direct point estimates are practically identical to Baseline results in Table 4

and are thus omitted from the table. Rounding to the nearest 10 percent integer, al-

though inconsistent with our data, does not alter these findings. We thus conclude that

measurement errors due to rounding will likely play a minor role in pushing direct point

estimates outside identification regions.
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Baseline False consensus effects (ψ = 0.05) Heterogeneity
Reciprocity (θ = 0.5) φl,j φu,j φj φj /∈ [φl,j, φu,j] φl,j φu,j φj φj /∈ [φl,j, φu,j] φl,j φu,j φj φj /∈ [φl,j, φu,j]
Game 1 (φj = 0.02) 0.017 0.026 0.020 0.002 (0.000) 0.017 0.026 0.012 0.786 (0.003) 0.019 0.029 0.023 0.000 (0.000)
Game 2 (φj = 0.01) 0.008 0.013 0.010 0.004 (0.000) 0.008 0.013 0.006 0.802 (0.001) 0.010 0.016 0.012 0.000 (0.000)
Game 3 (φj = 0.007) 0.006 0.009 0.007 0.000 (0.000) 0.006 0.009 0.005 0.592 (0.002) 0.007 0.011 0.009 0.000 (0.000)

Guilt aversion
Game 1 (φj = −3) −∞ -1.782 -3.055 0.000 −∞ -1.782 -3.378 0.000 −∞ -1.783 -3.055 0.002
Game 2 (φj = −2) −∞ -1.058 -2.022 0.000 −∞ -1.058 -2.196 0.000 −∞ -1.058 -2.121 0.000
Game 3 (φj = −1) −∞ -0.594 -1.014 0.000 −∞ -0.594 -1.115 0.000 −∞ -0.594 -1.014 0.000

Table 4: Monte Carlo simulation results. All entry cells in the table are based on 1000 samples. Numbers under
φl,j and φu,j are average estimates of lower and upper bounds of the identifications regions. Number under φj are
average point estimates. Number under φj /∈ [φl,j, φu,j] represent the sampling probabilities that point estimates
fall below the lower bound and above the upper bound (the later appear in parenthesis. )
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Figure 6: Nonparametric density estimates of direct points estimates in the
Monte Carlo simulation analysis under the Baseline scenario with reciprocal
preferences. True values of phij are 0.02, 0.01, and 0.007 for Games 1 to 3.
1000 simulations for each game. Full, dashed, and dotted lines present density
estimates respectively for Games 1 to 3. All estimates use the gaussian kernel
and bandwidths selected using Silverman’s rule.
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Figure 7: Nonparametric density estimates of direct points estimates in the
Monte Carlo simulation analysis under the Baseline scenario with guilt aver-
sion preferences. True values of phij are -3, -2, and -1 for Games 1 to 3. 1000
simulations for each game. Full, dashed, and dotted lines present density es-
timates respectively for Games 1 to 3. All estimates use the gaussian kernel
and bandwidths selected using Silverman’s rule.
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7.2 Additional tables
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Guilt aversion All (N = 1832) Men (N = 577) Women (N = 1255)
Interval Point Interval Point Interval Point

Game 1 (−∞,−2.06] −8.470 (−∞,−2.019] −6.579 (−∞,−2.289] −8.668
(−∞,−1.962) (0.928) (−∞,−1.718) (1.197) (−∞,−1.964) (1.043)

Game 2 (−∞,−1.120] −4.217 (−∞,−1.155] −4.513 (−∞,−1.229] −4.706
(−∞,−0.939) (0.617) (−∞,−970) (0.805) (−∞,−1.041) (0.628)

Game 3 (−∞,−0.897] −2.577 (−∞,−0.879] −2.652 (−∞,−0.907] −2.298
(−∞,−0.694) (0.303) (−∞, 0.658) (0.376) (−∞,−0.713) (0.338)

Table 5: Interval and point estimates for guilt aversion using link function F (·) estimated using data from
Experiment 2. Bootstrap 95% confidence sets for the identification regions and bootstrap standard errors for
direct point estimates in parenthesis.
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Reciprocity All (N = 1832) Men (N = 577) Women (N = 1255) Reciprocal (N = 510)
Interval Point Interval Point Interval Point Interval Point

θ = 0.5
Game 1 [0.012, 0.018] 0.012 [0.011, 0.017] 0.012 [0.013, 0.019] 0.012 [0.019, 0.028] 0.022

(0.010, 0.021) (0.000) (0.009, 0.019) (0.001) (0.010, 0.021) (0.000) (0.007, 0.039) (0.000)
Game 2 [0.006, 0.010] 0.007 [0.006, 0.009] 0.007 [0.007, 0.010] 0.007 [0.009, 0.014] 0.011

(0.005, 0.012) (0.000) (0.005, 0.011) (0.000) (0.005, 0.012) (0.000) (0.004, 0.019) (0.000)
Game 3 [0.005, 0.007] 0.005 [0.005, 0.007] 0.005 [0.005, 0.008] 0.005 [0.006, 0.009] 0.007

(0.004, 0.009) (0.000) (0.004, 0.009) (0.000) (0.004, 0.008) (0.000) (0.003, 0.012) (0.000)
θ ∈ [0, 1]
Game 1 [0.006,+∞) 0.012 [0.005,+∞) 0.012 [0.007,+∞) 0.012 [0.010,+∞) 0.022

(0.005,+∞) (0.000) (0.005,+∞) (0.000) (0.006,+∞) (0.000) (0.004,+∞) (0.000)
Game 2 [0.003,+∞) 0.007 [0.003,+∞) 0.007 [0.006,+∞) 0.007 [0.005,+∞) 0.011

(0.002,+∞) (0.000) (0.003,+∞) (0.000) (0.003,+∞) (0.000) (0.002,+∞) (0.000)
Game 3 [0.002,+∞) 0.005 [0.002,+∞) 0.005 [0.002,+∞) 0.005 [0.003,+∞) 0.007

(0.002,+∞) (0.000) (0.002,+∞) (0.000) (0, 002,+∞) (0.000) (0.002,+∞) (0.000)

Table 6: Interval and point estimates for reciprocity obtained using link function F (·) estimated using data
from Experiment 2. Bootstrap 95% confidence sets for the identification regions and bootstrap standard errors
for direct point estimates in parenthesis.
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Guilt aversion All (N = 1832) Men (N = 577) Women (N = 1255)
Interval Point Interval Point Interval Point

Game 1 (−∞,−2.042] −7.894 (−∞,−2.019] −6.579 (−∞,−2.100] −8.000
(−∞,−1.977) (0.670) (−∞,−1.718) (1.197) (−∞,−2.001) (0.815)

Game 2 (−∞,−1.090] −3.748 (−∞,−1.155] −4.513 (−∞,−1.104] −3.961
(−∞,−1.044) (0.358) (−∞,−970) (0.805) (−∞,−1.055) (0.351)

Game 3 (−∞,−0.775] −2.042 (−∞,−0.879] −2.652 (−∞,−0.779] −1.960
(−∞,−0.731) (0.155) (−∞, 0.658) (0.376) (−∞,−0.734) (0.207)

Table 7: Interval and point estimates for guilt aversion using link function F (·) estimated assuming a normal
distribution. Bootstrap 95% confidence sets for the identification regions and bootstrap standard errors for direct
point estimates in parenthesis.
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Reciprocity All (N = 1832) Men (N = 577) Women (N = 1255) Reciprocal (N = 510)
Interval Point Interval Point Interval Point Interval Point

θ = 0.5
Game 1 [0.011, 0.017] 0.012 [0.011, 0.017] 0.012 [0.012, 0.018] 0.012 [0.019, 0.028] 0.023

(0.011, 0.018) (0.000) (0.010, 0.018) (0.001) (0.011, 0.019) (0.000) (0.007, 0.039) (0.000)
Game 2 [0.006, 0.009] 0.007 [0.006, 0.010] 0.007 [0.006, 0.009] 0.007 [0.010, 0.015] 0.012

(0.006, 0.009) (0.000) (0.006, 0.010) (0.000) (0.006, 0.010) (0.000) (0.004, 0.021) (0.000)
Game 3 [0.004, 0.007] 0.005 [0.004, 0.006] 0.005 [0.004, 0.006] 0.005 [0.007, 0.010] 0.010

(0.004, 0.007) (0.000) (0.004, 0.008) (0.000) (0.004, 0.007) (0.000) (0.003, 0.014) (0.000)
θ ∈ [0, 1]
Game 1 [0.006,+∞) 0.012 [0.005,+∞) 0.012 [0.006,+∞) 0.012 [0.010,+∞) 0.022

(0.005,+∞) (0.000) (0.005,+∞) (0.000) (0.006,+∞) (0.000) (0.005,+∞) (0.000)
Game 2 [0.003,+∞) 0.007 [0.003,+∞) 0.007 [0.005,+∞) 0.007 [0.005,+∞) 0.011

(0.003,+∞) (0.000) (0.003,+∞) (0.000) (0.004,+∞) (0.000) (0.003,+∞) (0.000)
Game 3 [0.002,+∞) 0.005 [0.002,+∞) 0.005 [0.002,+∞) 0.005 [0.003,+∞) 0.007

(0.002,+∞) (0.000) (0.002,+∞) (0.000) (0, 002,+∞) (0.000) (0.002,+∞) (0.000)

Table 8: Interval and point estimates for reciprocity obtained using link function F (·) estimated assuming a
normal distribution. Bootstrap 95% confidence sets for the identification regions and bootstrap standard errors
for direct point estimates in parenthesis.
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