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ABSTRACT
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This paper analyses the effects of disease and war on the accumulation of human and 

physical capital. We employ an overlapping-generations frame-work in which young adults, 

confronted with such hazards and motivated by old-age provision and altruism, make 

decisions about investments in schooling and reproducible capital. A poverty trap exists for 

a wide range of stationary war losses and premature adult mortality. If parents are altruistic 

and their sub-utility function for own consumption is more concave than that for the 

children’s human capital, the only possible steady-state growth path involves full education. 

Otherwise, steady-state paths with incompletely educated children may exist, some of them 

stationary ones. We also examine, analytically and with numerical examples, a growing 

economy’s robustness in a stochastic environment. The initial boundary conditions have 

a strong influence on outcomes in response to a limited sequence of destructive shocks. 
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1 Introduction

Dürer’s woodcut, ‘The Four Horsemen of the Apocalypse’, is a terrifying vision of the

great scourges of humanity from time immemorial. This paper deals with three of them

– pestilence, war and death, with their accompanying destruction of human and physical

capital. Its particular concern is how these calamities affect the accumulation of capital,

with special reference to the existence of growth paths and poverty traps. The treatment

is necessarily stylised, simple and, in contrast to Dürer’s masterpiece, desiccated.

In such a setting, the distinction between human and physical capital is vital. Not only

are they complementary in production, but they are also, in general, subject to different,

albeit not fully independent, hazard rates. The attendant risks are not, moreover, equally

insurable. These considerations weigh heavily in the decision of how much to invest and

in what form, with all the ensuing consequences for material prosperity over the long run.

A few selected examples of such calamities will convey some flavour of the historical di-

mensions of what is involved. The Black Death carried off about one-third of the entire

European population between 1347 and 1352. The so-called ‘Spanish influenza’ pandemic

of 1918-1920 is estimated to have caused at least 50 million deaths globally, with excep-

tionally high mortality among young adults. In recent times, the AIDS pandemic, far

slower in its course like the disease itself, still threatens to rival that figure, despite the im-

proved availability of anti-retroviral therapies. Pestilence and war also ride together. Half

a million died in an outbreak of smallpox in the Franco-Prussian War of 1870-71 (Morgan,

2002). For every British soldier killed in combat in the Crimean War (1854-56), another

ten died of dysentery, and in the Boer War (1899-1902), the ratio was still one to five.

War losses in the 20th Century make for especially grim reading. Between 15 and 20

million people died in the First World War, the majority of them young men. Almost two

million French soldiers fell, including nearly 30 per cent of the conscript classes of 1912-

15. Joining this companionship of death were over 2 million Germans, including almost

two of every five boys born between 1892 and 1895 (Keegan, 1998: 6-7), almost a million

members of the British Empire’s armed forces, and many millions more in those of Imperial

Austria, Russia and Turkey. Its continuation, the Second World War, was conducted, in

every respect, on a much vaster scale. Most estimates suggest that it resulted in at least

50 million deaths, directly and indirectly. Among them were 15 million or more Soviet
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soldiers and civilians, 6 million Poles (20 per cent of that country’s pre-war population)

and at least 4 million Germans (Keegan, 1990: 590-1). With these staggering human losses

went the razing of German and Japanese cities and massive destruction in the western part

of the Soviet Union as well as the states of Eastern Europe. The catalogue of conflicts in

the second half of the 20th Century is also unbearably long, with particularly appalling

casualties in South-east Asia and Rwanda.

Great epidemics and wars capture the headlines and grip the imagination, but the majority

of those adults who die prematurely fall victim to low-level, ‘everyday’ causes, especially

in poor countries: notable killers are endemic communicable diseases, accidents, violence

and childbirth. These are competing hazards – one dies only once –, but their combined

effect is not wholly negligible even in contemporary O.E.C.D. countries. In many poorer

ones, it is quite dismaying. According to the WHO (2007), those who had reached the age

of 20 in the O.E.C.D. group could expect to live, on average, another 60 years or so, their

counterparts in China and India another 50-55 years, and those in sub-Saharan Africa but

30-40. The odds that a 20-year old in the O.E.C.D. group would not live to see his or her

40th birthday were 1 or 2 in a 100, rising to 2.5-5 in a 100 for the 50th birthday. These

odds were just a little worse for young Chinese, decidedly worse for young Indians, and for

young Africans much less favourable than those of Russian roulette – in some countries

where the AIDS epidemic was raging, indeed, scarcely better than the toss of a fair coin.

The human and material losses so inflicted, whether they are caused by great epidemics

and wars, or endemic communicable diseases and low-level conflicts, have long-run as

well as immediate economic consequences. Taking as given agents’ preferences and the

technologies for producing output and human capital in the presence of these hazards, we

address the following questions.

1. Under what conditions are steady-state growth paths outcomes in equilibrium?

2. Are such paths possible when parents are moved by altruism; and if so, is stronger

altruism conducive to faster steady-state growth?

3. If mortality and destruction rates do not vary over time, are both secular, low-level

stagnation and steady-state growth possible equilibria, thus establishing the existence

of a poverty trap?
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4. If mortality and destruction rates are stochastic, under what conditions would the

economy fall into such a trap when it would otherwise be growing?

The overlapping generations model (OLG) offers the natural framework within which to

analyse the long-run consequences of economic behaviour in such environments. In the

variant adopted here, there are children, young (working) adults and the old. Young

adults decide how much schooling the children will receive and how much to put aside to

yield a stock of physical capital in the next period. In doing so, they are bound by certain

social norms, which govern the distribution of aggregate current consumption among the

three generations. Untimely destruction can undo these plans, however carefully laid.

The children may die prematurely at some point in young adulthood; and war can wreak

havoc on the newly formed capital stock. These losses, if they occur, will reduce the

resources available to satisfy claims on consumption in old age in the period that follows.

Parents may also be motivated by altruism towards their children, so that their premature

deaths will be felt as a distinct loss quite independently of the ensuing reduction in old-

age consumption under the prevailing social norms – and arguably all the more keenly if

the children have been well educated. The institutional form within which all this takes

place is assumed to be a very large extended family, in which the surviving young adults

raise all surviving children. Given such pooling, the law of large numbers makes the level

of consumption in old age – for those who survive to enjoy it – virtually certain when

mortality and war loss rates are forecast unerringly, but even then, the idiosyncratic risk

of dying earlier remains. War losses are wholly uninsurable and operate much like cohort-

specific mortality. When these rates are stochastic, as is wholly plausible, they constitute

unavoidable systemic risks, with consequent effects on investment in both forms of capital.

Our main insights are as follows. Since balanced growth paths with endogenous physical

and human capital may not exist – as Uzawa (1961) pointed out in his classic contribution

– we first establish conditions for the existence of two extreme steady states, namely,

permanent backwardness with no education and unbounded growth with a fully educated

population, which we term ‘progress’. Without altruism the well-known poverty trap

always exists under standard conditions. Moreover, both backwardness and progress may

both exist as equilibria for a wide range of mortality and destruction rates. Parents’

altruism influences the set of balanced growth paths in two ways. First, if sufficiently
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strong, it can rule out backwardness. Yet with a robust numerical example, we show that

even under quite strong altruism, a poverty trap can exist. Second, in the presence of

altruism, progress is the only steady-state path other than backwardness if the sub-utility

function for own consumption is more strongly concave than that for parents’ evaluation of

their children’s human capital. If this latter condition is reversed, other steady-state paths

with incompletely educated children may exist, some of them stationary, even if altruism

is strong.

We also establish conditions for the local stability of a poverty trap. In some settings,

both extreme states may be locally stable equilibria, which contrasts with results from

corresponding models in which only human capital accumulation matters. We also provide

conditions for balanced growth paths with intermediate levels of schooling.

Finally, we explore whether a growing economy can withstand an outbreak of war, a severe

epidemic, or a combination of both, as stochastic events; for such destructive events, even

if temporary, may pitch a growing economy into backwardness. We establish that these

risks depress investment in both physical and human capital; and only extreme destruction

of physical capital could induce an increase in schooling. We also establish thresholds for

human and physical capital above which an economy can withstand a particular configu-

ration of shocks. We show with simulations that the duration of adverse events – wars or

epidemics – is often decisive in determining whether an economy can regain growth.

There is a substantial literature on the relationship between the health of populations and

aggregate economic activity. Notable is the general empirical observation that good health

has a positive and statistically significant effect on aggregate output (Barro and Sala-I-

Martin, 1995; Bloom and Canning, 2000; Bloom, Canning and Sevilla, 2001). What is

especially relevant for present purposes, however, is a body of work on the macroeconomic

effects of AIDS, in which there are varying points of emphasis. Corrigan, Glomm and

Méndez (2005a, 2005b), for example, adopt a two-generation OLG framework in which the

epidemic can affect schooling and the accumulation of physical capital, but expectations

about future losses play no role. In two contrasting studies of South Africa, Young (2005)

uses a Solovian model to estimate the epidemic’s impact on living standards through its

effects on schooling and fertility, with a constant savings rate; whereas Bell, Devarajan

and Gersbach (2006) apply a two-generation OLG model with pooling through extended
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families and a vital role for expectations, but no role for physical capital.

Closely related theoretical contributions include Chakraborty (2004), in whose OLG frame-

work endogenous mortality is at centre-stage. Better health promotes growth by improving

longevity, and investment in health emerges as a prerequisite for sustained growth. Indi-

vidual investment in health is also the prime mechanism in Augier and Yaly (2013). Young

adults, whose only income is wages, pay a fixed fraction thereof as taxes into a fund man-

aged by the government. This fund provides all capital for the next period, with the gross

returns going to the survivors. In Boucekkine and Laffargue’s (2010) two-period frame-

work with heterogeneous levels of human capital, a rise in mortality among adults in the

first period reduces the proportion of young adults with low human capital in the second

period because the mortality rate among children at the end of the first rises more sharply

in poor families. The number of orphans in the first period increases, however, so that the

proportion of young adults with low human capital in the second period will increase if

orphans go poorly educated. Bell and Gersbach (2013) analyse growth paths and poverty

traps when epidemics take the form of two-period shocks to mortality, paying particular

attention to their effects on inequality in nuclear family systems, albeit without a place for

physical capital.

A salient feature of these studies is the central importance, if only implicitly, of premature

adult mortality. Physical capital, when it does appear, is not subject to similar hazards.

Voigtländer and Voth (2009, 2013) take a Malthusian position in explaining the rise of

growth in early modern Europe. Disease and war rode together, but ‘[war] destroyed

human life quickly while not wreaking havoc on infrastructure on a scale comparable

to modern wars.’ (Voigtländer and Voth (2013: 175). In contrast, the possibility of

destruction on such a scale is an essential element of the present paper, in which there

are no fixed factors like land. Furthermore, the second part of the paper deals with the

robustness of a growing economy to shocks: both destruction rates are stochastic. In this

connection, exponential depreciation at a constant rate in Solovian models does not lend

itself to the task of representing the shocks of war losses. To our knowledge, no other

contribution addresses the possibilities of long-term growth and stagnation when both

forms of premature destruction are salient features of the environment wherein agents

make decisions about accumulation.
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The paper’s theme is also broadly related to the existence and relevance of ‘balanced

growth paths’. The classic problem examined by Uzawa (1961) is whether such paths

exist in neoclassical growth models with capital accumulation, population growth and

labour- or capital-augmenting technological progress. Grossman at al. (2016) establish

that balanced growth requires either an absence of capital-augmenting technological change

or a unitary elasticity of substitution between physical and human capital, in which case

the forms of factor-augmenting technical change are all equivalent. In this connection, we

explore a complementary balanced growth problem: does balanced growth exist in an OLG

framework with endogenous physical and human capital accumulation, with or without

altruism? We establish conditions on the utility functions with respect to altruism and

own consumption that allow balanced growth without imposing very strong restrictions on

the production technology.

The plan of the paper is as follows: Section 2 lays out the model and specifies the gen-

eral problem to be solved. There follows an analysis of steady states, which necessarily

involves unchanging mortality and destruction rates. Sections 3 and 4 establish not only

the conditions for the existence of a stable, low-level equilibrium in which all generations

go uneducated, but also that these conditions and those under which steady-state growth

is also an equilibrium in the environment in question can be satisfied simultaneously, thus

establishing the existence of a poverty trap. Settings in which the destruction rates are

stochastic are treated in Sections 5 to 7. Section 8 briefly draws together the chief conclu-

sions.

2 The Model

There are three overlapping generations: children, who split their time between schooling

and work; young adults, who work full time; and the old, who are active neither eco-

nomically nor in raising children. The timing of events within each period t relates to a

generation born in period t − 1, thus becoming young adults at the start of period t. It

is displayed in Figure 1. Those individuals who survive into full old age in the following

period t+ 1 therefore live for the three periods t− 1 to t+ 1.

All individuals belong to numerous, identical and very large extended families. The number
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Generation 𝑡𝑡 born in 
𝑡𝑡 − 1,

childhood in 𝑡𝑡 − 1,
𝑁𝑁𝑡𝑡−11 = 𝑛𝑛𝑡𝑡−1𝑁𝑁𝑡𝑡−12

children

𝑁𝑁𝑡𝑡2 = 𝑁𝑁𝑡𝑡−11 young
adults,

𝑁𝑁𝑡𝑡1 = 𝑛𝑛𝑡𝑡𝑁𝑁𝑡𝑡2 children

(1 − 𝑞𝑞𝑡𝑡2)𝑁𝑁𝑡𝑡2
young adults

survive,
1 − σ𝑡𝑡 𝑆𝑆𝑡𝑡−1

Capital 
destroyed

Young adults
decide on 

education 𝑒𝑒𝑡𝑡

Production

Young adults
decide on savings
𝑆𝑆𝑡𝑡 and hence

consumption 𝑐𝑐𝑡𝑡2

𝑁𝑁𝑡𝑡2(1 − 𝑞𝑞𝑡𝑡2)(1 − 𝑞𝑞𝑡𝑡+13 )
reach full old age

Consumption 
𝑐𝑐𝑡𝑡+13

𝑡𝑡 − 1 𝑡𝑡 𝑡𝑡 + 1

Figure 1: Sequence of Events for the Generation Born in Period t− 1.

of young adults in each family at the beginning of period t is N2
t . They marry and have

children at once. Mortality among children occurs only in infancy, and any child who dies

is replaced immediately. After such replacement fertility, each couple within the extended

family has 2nt children, all of whom survive into adulthood in the next period. Thus, nt is

the net reproduction rate (NNR). Death then claims some young adults and some of those

who have just entered old age. The surviving young adults rear all children collectively and

decide how to allocate the children’s time between schooling and work, and the resulting

aggregate output between consumption and savings, whereby certain social rules govern

the claims of children and the old in relation to the consumption of young adults. The

numbers of young adults and their offspring who reach maturity are, therefore,

N2
t = nt−1N

2
t−1 and N1

t = ntN
2
t ,

respectively. The numbers of young and old adults who make claims on output in period

t are as follows:

(1− q2
t )N

2
t young adults survive to raise all children, and

(1− q3
t )N

3
t old adults survive to full old age, where N3

t = (1− q2
t−1)N2

t−1

and qat denotes the premature mortality rate among age group a(= 2, 3). All adults who

do reach full old age in period t die at the end of that period.
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Two social rules govern consumption-sharing in the extended family:

(i) When each surviving young adult consumes c2
t , each child consumes βc2

t (β < 1).

(ii) All surviving old adults receive the share ρ of the family’s current ‘full income’, Ȳt,

which is the level of output that would result if all children were to work full time.1

Since the extended family is very large, each surviving old adult will consume

c3
t =

ρȲt
(1− q3

t )N
3
t

. (1)

Output is produced under constant returns to scale by means of labour augmented by

human capital (that is, labour is measured in efficiency units) and physical capital, which

is made of the same stuff as output. All individuals are endowed with one unit of time.

The time the child spends in school in period t is denoted by et ∈ [0, 1]. Each young

adult possesses λt efficiency units of labour, each child γ units. Each fully educated child

(et = 1) requires w (< 1) young adults as teachers, so that the direct cost of providing

each child with schooling in the amount et is wλtet, measured in units of human capital.

The total endowment of the surviving young adults’ human capital is Λt ≡ (1− q2
t )N

2
t λt;

L̄t ≡ Λt + γN1
t is the household’s endowment of labour (measured in efficiency units) at

time t; and the amount of labour supplied to the production of the aggregate good is

Lt ≡ [(1− q2
t − wntet)λt + ntγ(1− et)]N2

t .

The aggregate savings of the previous period, St−1, like the cohort of children entering

adulthood, are also subject to losses early in the current one, and what does remain has

a lifetime of one period. The capital stock available for current production is therefore

Kt = σtSt−1, where σt ∈ (0, 1] is the survival rate in period t. The current levels of

aggregate output and full income are, respectively,

Yt = F (Lt, σtSt−1) (2)

1The determination of β and ρ is discussed in Section 3.3. A variant of the rule governing old-age
provision is discussed in Section 6.
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and, putting et = 0,

Ȳt ≡ Yt(et = 0) = F (Λt + γN1
t , σtSt−1),

where the function F is assumed to be monotonically increasing in both arguments, con-

tinuously differentiable and homogeneous of degree 1, with both inputs necessary in pro-

duction.

Full income is available to finance the consumption of all three generations in keeping with

the social rules, savings to provide the capital stock in the next period, and investment in

the children’s education.

Ptc
2
t + St + ρȲt = Yt, (3)

where Pt ≡ [(1 − q2
t ) + βnt]N

2
t is effectively the price of one unit of a young adult’s

consumption in terms of output, the numéraire.

The formation of human capital involves the contributions of parents’ human capital as

well as formal education. The human capital attained by a child on reaching adulthood is

assumed to be given by

λt+1 = zth(et)λt + 1. (4)

The multiplier zt(> 0) represents the strength with which capacity is transmitted across

generations; and it may depend on the number of children each surviving young adult must

raise. The function h(·) may be thought of as representing the educational technology,

albeit with the fixed pupil-teacher ratio of 1/w. Let h(·) be an increasing, differentiable

function on [0, 1], with h(0) = 0 and lime→0+ h
′(e) < ∞. The property h(0) = 0 implies

that unschooled children attain, as adults, only some basic level of human capital, which

has been normalised to unity.

2.1 Preferences And Choices

Young adults, who make all allocative decisions, have preferences over lotteries involving

current consumption, consumption in old age and, if they are altruistic, the human capital

attained by the children in their care. When deciding on an allocation (c2
t , et, St), young
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adults must forecast mortality and destruction rates in the coming period. If these forecasts

are unerring, as would be the case in a steady state, those who survive into old age will

obtain c3
t+1, from (1), which the law of large numbers renders virtually non-stochastic. The

stochastic element in the lotteries in question therefore arises only from the individual risks

of failing to reach old age and, where altruism towards the children is concerned, that the

latter will suffer the misfortune to die prematurely in young adulthood. In this connection,

let there be full altruism towards adopted children. If, in contrast, the outbreaks of war

and disease in the future are viewed as stochastic events, there will be systemic risks. The

analysis of such environments is deferred to Sections 5-7.

The surviving young adults’ preferences are assumed to be additively separable in

(c2
t , c

3
t+1, λt+1) and von Neumann-Morgenstern in form:

Vt = u(c2
t ) + δ(1− q3

t+1)u(c3
t+1) +

b(1− q2
t+1)

(1− q2
t )

ntv(λt+1), (5)

where δ is the pure impatience factor and b is a taste parameter for altruism. The term 1
1−q2t

accounts for the children in the extended family whose parents have died.2 The sub-utility

functions u and v are assumed to be strictly concave, where u satisfies lim
c→0

u′(.) = ∞. In

view of the considerations they represent, there are strong reasons to suppose that these

functions are not the same.

The surviving young adults’ decision problem is as follows:

max
(c2t ,et,St)

Vt s.t. (1)− (4), c2
t ≥ 0, et ∈ [0, 1], St ≥ 0. (6)

When solving it, they note the current state variables, (nt, zt, N
1
t , N

2
t , N

3
t , q

2
t , q

3
t , λt, Kt),

and form beliefs about all relevant future levels. Note that these decisions in period t are

not influenced by their successors in subsequent periods. Let (c20
t , e

0
t , S

0
t ) solve (6).

The evolution of the economy is governed by the following difference equations:

λ0
t+1 = zth(e0

t )λt + 1 and Kt+1 = σt+1S
0
t .

In what follows, the superscript ‘0’ will be dropped if no confusion would arise.

2If only natural children count, the ‘adjustment’ for adopted children 1/(1− q2t ) drops out.
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A preliminary step is to normalise the system by the size of the cohort Nt, exploiting the

assumption that F is homogeneous of degree one. Let lt ≡ Lt/N
2
t and st ≡ St/N

2
t , so that

(1) and (3) can be written respectively as

c3
t+1 =

ρnt
(1− q3

t+1)(1− q2
t )
· F
[
(1− q2

t+1)λt+1(et) + nt+1γ,
σt+1st
nt

]
(7)

and

[(1− q2
t ) + βnt]c

2
t + st + ρF

[
(1− q2

t )λt + ntγ,
σtst−1

nt−1

]
= F

(
lt,
σtst−1

nt−1

)
. (8)

Normalised output is

yt ≡ F
(
(1− q2

t − wntet)λt + ntγ(1− et), σtst−1/nt−1

)
.

The analogous definition of normalised full income is ȳt ≡ F
(
l̄t, σtst−1/nt−1

)
, where l̄t ≡

L̄t/N
2
t denotes the normalised endowment of labour at time t. Closely associated with

these normalisations is the ratio ζt ≡ λt/st−1, which arises from investment decisions in

the previous period.

Together with the constraints c2
t ≥ 0, et ∈ [0, 1] and st ≥ 0, the budget identity (8) defines

the set of all feasible allocations (c2
t , et, st). Upon substitution for c3

t+1 from (7) into (5), it

is seen that Vt is likewise defined in the same space.

3 Steady States

In a steady state, the levels of inputs, output and (dated) consumption all grow at a

constant rate. Thus, the parameters qt, nt, σt, and zt are constant, as is the level of the

children’s education et.
3 A special case is that wherein all per capita levels are constant,

though population may be growing. In a slight abuse of terminology, this will be called

a stationary state, even if the population is not constant. If all per capita levels are

growing at the same, positive rate, the economy is said to be on a steady-state growth

path. There are two notable steady states, which involve the extreme values of education.

3Since λt+1 = zth(et)λt + 1, the latter property is implied by the former.
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If a whole generation of children goes uneducated (et = 0), so that λt+1 = 1, the state

of backwardness is said to rule in period t + 1. If such a state, once reached, becomes

permanent, the associated stationary equilibrium implies the existence of a poverty trap.

If, at the other extreme, children born in period t enjoy a full education (et = 1), and

all generations that follow them do likewise, this will be called the progressive state, or

simply ‘progress’. It may, under certain conditions to be explored below, be an equilibrium

which exhibits steady-state growth. A fundamental question to be answered is whether

permanent backwardness and a progressive growth path are both possible equilibria of an

economy of the kind treated here.

So much for the extremes, but are there also steady-state equilibria in which there is

some constant level of education short of a full one? If both backwardness and progress

are possible equilibria, considerations of continuity suggest that there exists at least one

stationary state with et = es ∈ (0, 1) ∀t. If, moreover, steady-state growth with e0
t = 1

is not an equilibrium path, are there such growth paths with e0
t constant and sufficiently

close to 1?

It will be helpful to rewrite Vt as a function of the decision variables:

Vt = u(c2
t ) + χtu

(
ρntȳt+1

(1− q3
t+1)(1− q2

t )

)
+ νtv(zth(et)λt + 1), (9)

where

χt ≡ δ(1− q3
t+1) and νt ≡

b(1− q2
t+1)nt

(1− q2
t )

.

The budget constraint (8) can be expressed as yt = [(1 − q2
t ) + βnt]c

2
t + st + ρȳt. Hence,

the associated Lagrangian is

Φt = Vt + µt[yt − [(1− q2
t ) + βnt]c

2
t − st − ρȳt], (10)

whose multiplier is µt. Note that yt depends on the amount of child labor 1 − et. The

assumptions on u (the Inada condition at c2
t = 0) ensure that, at the optimum, c2

t > 0. By

assumption, physical capital is necessary in production. Hence, if some young adults are

forecast to survive into full old age (q3
t+1 < 1), so that χt > 0, then s 0

t > 0.
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The associated f.o.c. are set out in Appendix 1. Those w.r.t. c2
t and st yield

u′(c2
t )

u′(c3
t+1)

=
σt+1δρ[(1− q2

t ) + βnt]

(1− q2
t )

· F2

[
l̄t+1,

σt+1st
nt

]
, (11)

which holds for all et ∈ [0, 1]. Those with respect to c2
t and et yield:

δρu′(c3
t+1) · F1

[
lt+1,

σt+1st
nt

]
zh′(et) + bv′(λt+1)zh′(et) ≥

(wλt + γ)u′(c2
t )

(1− q2 + βnt)λt
F1

[
lt,
σtst−1

nt−1

]
, e ≤ 1,

(12)

where the inequality holds in the other direction for e ≥ 0. Substituting from (11) in (12),

we obtain, for all interior solutions et ∈ (0, 1),

v′(λt+1)

u′(c2t )
=

(
w+ γ

λt

)
F1

[
lt,
σtst−1
nt−1

]
−((1−q2)zh′(et)/σt+1)F1

[
l̄t+1,

σt+1st
nt

]
/F2

[
l̄t+1,

σt+1st
nt

]
b(1−q2+βnt)zh′(et)

.

(13)

3.1 Conditions For Backwardness

Given stationary demographic conditions, output per head can increase only if there is some

form of technical progress. If time t does not appear as an explicit argument of F , the

only possible form of technical progress in the present framework is the labour-augmenting

kind, which is expressed by an increase in the average level of human capital possessed

by those supplying labour to production. The first question to be answered, therefore, is

whether allocations in which no generation receives any schooling can be equilibria, with

the result that λt = 1 ∀t. The second, related question is whether such a state is locally

stable. If it is, then backwardness – should it once occur – will persist: there will be a

poverty trap. The third question, which is of central importance, is whether, in a given

stationary setting, both backwardness and progress can be equilibria.

We examine young adults’ choice of et when they expect the next generation to choose

et+1 = 0. Given this expectation, λt = 1 ∀t will be a steady state of the economy if, and

only if, each and every generation’s optimal choice is et = 0. We therefore seek to establish

13



conditions that yield a steady-state path e0
t = 0 ∀t. Along such a path,

ȳt = yt(e
0
t = 0) = F

[
(1− q2

t ) + ntγ,
σtst−1

nt−1

]
∀t,

since λt = zth(0)λt−1 + 1 = 1 ∀t.

Dropping the index t in equation (11), we have

δρσ[(1− q2) + βn]

(1− q2)
F2

[
(1− q2) + nγ,

σs

n

]
u′(c3)− u′(c2) = 0.

The budget constraint (8) specialises to

[(1− q2) + βn]c2 + s = (1− ρ)F [(1− q2) + γn, σs/n],

and (7) to

c3 =
nρ

(1− q2)(1− q3)
· F [(1− q2) + γn, σs/n].

Remark: F [(1− q2) + γn, σs/n] is the output per young adult at the start of each period.

Each of them has n children, but only the fraction (1 − q2) of these adults survive early

adulthood. The deceased make no claims on full income in the following period.

Substituting for c2 and c3 in (11), we obtain an equation in s, given the constellation

(n, q2, q3, σ) and the parameters (ρ, β, γ, δ). Denote the smallest positive value of s that

satisfies this equation by sb = sb(n, q2, q3, σ).

The final step is to examine the counterpart of (13) when et = 0 ∀t. Rearranging terms,

we obtain(γ + w)− 1− q2

σ
· zh′(0)

F2

(
l̄,
σs

n

)
u′(c2)F1

(
l̄,
σs

n

)
≥
[
(1− q2) + βn

]
bv′(1)zh′(0), (14)

where the derivatives are evaluated at the arguments ((1− q2) + γn, σsb/n).

If parents are at all altruistic, the r.h.s. of (14) will be positive, so the said condition can
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hold as a strict inequality at the hypothesised e0
t = 0 only if

(1− q2)zh′(0) < σ(γ + w) · F2

[
(1− q2) + γn, σsb/n

]
. (15)

A small investment in a child’s education will yield zh′(0) units of human capital, over

and above the basic endowment of unity, in the next period, with the fraction 1− q2 of all

children surviving early adulthood, and so contributing to output.

The cost of this investment involves the sum of the opportunity and direct costs of edu-

cation at the margin, measured in units of human capital. When λt = 1, this combined

direct cost is (γ + w) for each child, which is surely less than unity. For a child is much

less productive than an uneducated adult and w is the teacher-pupil ratio, with some al-

lowance for an administrative overhead. The alternative is to invest in physical capital.

The marginal product thereof, F2, is a pure number, since capital is made of the same stuff

as output. When adjusted by the survival rate σ, it measures the yield of investing a little

more in physical capital, the proportional claim on future full income being ρ for both

forms of investment. Hence, σF2 is the opportunity cost of investing a little in education,

considering only making provision for one’s old age.

We make the following assumption, which will be relaxed in Section 4:

Assumption 1.

u(ct) = ln ct and v(λt+1) = lnλt+1 .

Under Assumption 1, a sufficient condition for (15) to hold is derived as follows.

u′(c2
t )

u′(c3
t+1)

=
c3
t+1

c2
t

=
[(1− q2) + βn]nρ

(1− q2)(1− q3)[(1− ρ)− sb/F ]
,

where F is evaluated at the arguments ((1 − q2) + γn, σsb/n). Recalling (11) and noting

that sb > 0, it is seen that (15) will hold if

n

δ(1− q2)(1− q3)(1− ρ)
>
zh′(0)

γ + w
. (16)

The l.h.s. depends only on fertility and mortality rates, and the social norm and preference

parameters ρ and δ; the r.h.s. only on those representing the costs of education and the

associated marginal yield of human capital at et = 0. This separation establishes the
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existence of a measurable subset of all these parameters such that (15) will indeed hold.

Since n ≥ 1, δ < 1 and both mortality rates and ρ are positive, this is not a very exacting

condition, even though γ + w < 1. In particular, it creates some scope for z to exceed 1,

and hence of fulfilling the growth requirement zh(1) > 1.

In the absence of altruism (b = 0), condition (15) is also sufficient to ensure the existence of

a locally stable, steady-state equilibrium in which there is no investment in human capital,

children work full time, and output per head is stationary. It does not, however, rule out

zh(1) > 1, and hence the possible existence of a steady-state path along which output per

head grows without limit. If condition (15) holds strongly, then by continuity, the same

conclusions will also hold if the altruism motive is sufficiently weak, since the latter implies

that the r.h.s of (14) will be small and hence that (14) will hold as a strict inequality. If,

however, altruism is strong, such a low-level equilibrium may well not exist. We summarize

our findings in Proposition 1.

Proposition 1.

Under Assumption 1, conditions (14) and zh(1) > 1 are compatible, especially if altruism

is not too strong and the survival rates for investments in both forms of capital are similar.

If (14) holds as a strict inequality, backwardness will be a locally stable state. If both

conditions hold, an escape can be followed by an asymptotic approach to a steady-state

growth path along which output per head increases without bound.

3.2 Conditions For Both a Poverty Trap and Progress

On any steady-state growth path, λt and st−1 will increase without bound, and when

they are sufficiently large, the contribution of γ in the relevant terms can be neglected.

The (asymptotic) rate of growth of λt and st at any fixed e, denoted by g(e), is given

by (4): 1 + g(e) = zh(e). A growth path with et = e is feasible, therefore, only if

the education technology and intergenerational transmission of human capital satisfy the

condition zh(e) > 1. Each path is effectively defined by the value of e. The state of

progress is a steady state with e = 1∀t.
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The f.o.c for positive investment in education may be written as

δρu′(c3
t+1)F1

[
(1− q2)ζ,

σ

n

]
zh′(e) + bv′(λt+1)zh′(e) ≥

wu′(c2
t )

1− q2 + βn
F1

[
(1− q2 − wne)ζ, σ

n

]
, e ≤ 1,

(17)

so that (13) becomes

v′(λt+1)

u′(c2
t )
≥
wF1

[
lt,

σst−1

n

]
− ((1− q2)zh′(e)/σ)F1

[
l̄t+1,

σst
n

]
/F2

[
l̄t+1,

σst
n

]
b[(1− q2) + βn]zh′(e)

, e ≤ 1, (18)

The following conditions must be satisfied if both states are to be equilibria.

(i) Condition (15), which must hold for backwardness (e0
t = 0 ∀t) to be a locally stable

equilibrium.

(ii) zh(1) > 1, so that unbounded growth results when et = 1∀t.

(iii) e0
t = 1 along the steady-state path e = 1.

In order to ensure that Vt is concave over the feasible set, we also impose

(iv) Z(et) ≡ v(zh(et)λt + 1) is concave ∀et ∈ [0, 1].

This technical requirement is satisfied if h(e) is concave.4 We now examine whether these

conditions can be met simultaneously.

The social norms, as represented by the values of the parameters β and ρ, play an im-

portant role. In the state of backwardness, λt = 1, and although a child’s endowment

of human capital, γ, is smaller, his or her potential contribution to output will be rela-

tively important. If β < γ, the (relative) claim on the common pot is, in a sense, less

than the child’s potential contribution, thus favouring child labour over education. This

consideration argues for keeping β fairly close to γ, n being exogenous.

The old-age generation’s claim to the fraction ρ of current full income can be regarded

as stemming from its investments in the previous period. Under pure individualism, with

no family considerations other than pooling for insurance purposes, this claim comprises

4This analytically convenient restriction on h is not easy to square with the fact that there is the need
to lay secure foundations early on in schooling in order to enable the rapid development of wider abilities
later on.
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the imputed share of physical capital in current output and the return to investments

in educating their children. In the state of backwardness, there are no investments in

education, so that ρ would then be the said imputed share. In the state of progress, the

direct cost of educating each child is wλt and full income is larger than output, the actual

input of human capital being (1 − q2 − wn)λt. Thus, ρ is a weighted average of physical

capital’s imputed share in current output and the combined imputed share of physical

capital and, neglecting the opportunity cost of the children’s endowment, wnλt units of

human capital. Since wn is unlikely to be much greater than 0.1 and altruism enters

through v, this way of regarding the norm expressed by ρ argues for keeping its value

fairly close to physical capital’s imputed share of output in the state of progress. With

this preliminary settled, we turn to conditions (i)-(iii).

Condition (i). A sufficient condition for (15) to hold is (16), which is independent of η, b, σ

and F and imposes only a mild restriction on h(e), thereby leaving considerable scope to

satisfy conditions (ii) and (iii).

Condition (ii). To illustrate, let h = e, so that h′(e) = h(1) = 1 and z > 1 yields g(1) > 0.

Condition (iii). Let us define ζ(1) as the constant ratio of λt and st−1 along the state

of progress with e = 1. Then in this state, F [(1 − q2 − wn)ζ(1), σ/n] is obtained using

(44), which is derived in the proof of Lemma 1 below (see Appendix 1). When F is

Cobb-Douglas, yt = A · l1−αt kαt , and u = ln ct, this condition specialises to

Aζ(1)1−α(σ/n)α[(1− q2 − wn)1−α − ρ(1− q2)1−α] =

(
1 +

σ

(1− q3)δ

)
zh(1),

that is,

F [(1− q2 − wn)ζ(1), σ/n] =
(1− q2 − wn)1−α

[(1− q2 − wn)1−α − ρ(1− q2)1−α]
·
(

1 +
σ

(1− q3)δ

)
zh(1),

≡ F [·p]. (19)

where it should be noted that the right-hand side is independent of the TFP-parameter A.

It is proved in Appendix 1, that the condition for progress to be an equilibrium is

zh′(1) ≥ w(1− α)

(1− q2 − wn)
· F [·p] ·

(
bσzh(1)

(1− q3)δ
+

1− α
(1− q2)nα

)−1

. (20)
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In the absence of altruism (b = 0), (15) is both necessary and sufficient to ensure the

existence of backwardness as a stable equilibrium. Given u = ln ct and h(e) = e, conditions

(i), (ii) and (iii) will be satisfied if there exists a z > 1 such that

n(γ + w)

δ(1− q2)(1− q3)(1− ρ)
> z ≥ αnw(1− q2)

(1− q2 − wn)
· F [(1− q2 − wn)ζ(1), σ/n], (21)

whereby the weak inequality is also a necessary condition. The left-hand inequality is

readily satisfied by very large ranges of plausible parameter values, with z > 1. The same

holds for that on the right. For it is seen that although F [(1−q2−wn)ζ(1), σ/n] > zh(1) >

z, the term αnw takes values quite close to zero, plausibly in the range [0.02, 0.07]. We

summarize our findings in proposition 2.

Proposition 2.

If u = ln ct and F is Cobb-Douglas, both backwardness and progress will be equilibria if

there exists an h(et) and a z such that conditions (16) and (20) are satisfied, whereby

altruism is sufficiently weak. In the absence of altruism (b = 0), condition (21) is both

necessary and sufficient when h(e) = e.

The robust numerical examples that follow in Section 3.3 confirm that a poverty trap,

coupled with steady-state growth as an alternative equilibrium, will exist for a wide range

of functional forms and plausible parameter values. The function h(e), for example, may be

sufficiently weakly convex. If it is strictly convex for all e close to zero, but weakly concave

thereafter, it will restrict h′(0) without necessarily making h′(1) too small. Technologies

close to Cobb-Douglas will also serve, as will sub-utility functions close to u = ln ct.

3.3 Numerical Examples

Let h(e) = d1 ·e−d2 ·ed3 . Table 1 sets out the whole constellation of parameter values: h(e)

is fairly weakly concave (d3 = 1.5), with h(1) = 0.8, h′(0) = 1 and h′(1) = 0.7. Long-run

growth at a steady rate is feasible: zh(1) = 1 + g(1) = 1.2.

In the first variant, there is no altruism (b = 0). Backwardness is an equilibrium; for

zh′(0) = 1.5 <
n(γ + w)

δ(1− q2)(1− q3)(1− ρ)
=

1.2(0.6 + 0.075)

0.85(1− 0.1)(1− 0.3)(1− 0.35)
= 2.327,
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Table 1: Poverty traps and progress: a constellation of parameter values
.
Parameter Value Variable

n 1.2 net reproduction rate
q2 0.1 mortality rate at the start of young adulthood
q3 0.3 mortality rate at the close of young adulthood
σ 0.75 survival rate of physical capital
γ 0.6 a child’s endowment of human capital
d1 1 a parameter of h(e)
d2 0.2 a parameter of h(e)
d3 1.5 a parameter of h(e)
z 1.5 transmission factor for human capital formation
w 0.075 teacher-pupil ratio
A 5 TFP parameter
α 1/3 elasticity of output w.r.t. physical capital
δ 0.85 pure impatience factor
b (0, 0.1) taste parameter for altruism
ρ 0.35 share of current full income accruing to the old
β 0.325 share parameter for a child’s consumption

this inequality being itself a sufficient condition for (15) to hold. The progressive state will

also be an equilibrium if, and only if,

zh′(1) ≥ αnw(1− q2)

(1− q2 − wn)
· F [(1− q2 − wn)ζ(1), σ/n].

Using the chosen parameter values, we have zh′(1) = 1.05, which substantially exceeds

αnw(1− q2)

(1− q2 − wn)
· F [(1− q2 − wn)ζ(1), σ/n]

=
(1.2 · 0.075/3)(1− 0.1)

(1− 0.1− 0.09)

(1− 0.1− 0.09)2/3

(1− 0.1− 0.09)2/3 − 0.35(1− 0.1)2/3
·
(

1 +
0.75

(1− 0.3)0.85

)
1.2

= 0.1448.

The scope for substantial changes to this constellation of values, while satisfying the con-

ditions in question, is evidently large. Of particular interest is its robustness to altruism.

When b = 0.1, the said condition is easily satisfied: zh′(1) = 1.05 ≥ 0.1742, whereby

0.1742 is not much larger than the value 0.1448 when b = 0. We conclude that even quite

strong altruism is compatible with a poverty trap.
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3.4 The Choice Of Schooling

To establish whether there are also other, ‘intermediate’, equilibria, we now analyze how

the choice of the level of schooling depends on the stocks of human and physical capital.

The optimal level, e0
t , depends on the state of the world today, expectations about the

state that will rule in the next period, and various state variables, including λt and ζt.

Let F be Cobb-Douglas. Substituting (7) and (8) into (11) and recalling assumption 1, we

obtain

ζt+1

ζαt
=

(
zh(et) + 1

λt

αδ(1− q3)
+ 1

)
·(

A

(
1− q2 − wnet +

nγ(1− et)
λt

)1−α

− ρA
(

1− q2 +
nγ

λt

)1−α
)−1 (σ

n

)−α
≡ ψ(et;λt; ·).

(22)

Likewise, from (13), we have

ζt+1

ζαt
=

(
δ(1− q3)(1− q2)

1− q2 + nγ
λt+1(et,λt)

+
bn

1− α

)
·

αδ
(
w + γ

λt

)
zh′(et)

(1− q3)A

(
1− q2 − wnet +

nγ(1− et)
λt

)−α (σ
n

)α−1

≡ φ(et;λt; ·).

(23)

It is seen that this particular iso-elastic combination of preferences and technology yields

an optimal choice that depends only on the state variable λt and the various parameters;

for the optimum satisfies ψ(e0
t ;λt; ·) = ψ(e0

t ;λt; ·), which is independent of the physical

capital stock inherited from the decision st−1 (> 0). The extreme values of et are covered

by noting that if ψ(et; ·) = φ(et; ·) is satisfied by e′t ≤ 0 or e′t ≥ 1, then e0
t = 0 or e0

t = 1,

respectively. With e0
t thus determined, ψ(e0

t ;λt; ·) = ζt+1/ζ
α
t yields s0

t .

To summarise these results precisely:

Proposition 3.

If u = ln(ct) and F is Cobb-Douglas, the functions ψ and φ yield the optimum values of et
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and ζt+1 as follows:

(i) If et < 0 satisfies ψ(et; ·) = φ(et; ·), then e0
t = 0 and ψ(0; ·) = ζ1

t+1/ζ
α
t yields the value

of ζt+1 (= λt+1(e0
t = 0)/s0

t = 1/s0
t ).

(ii) If et ∈ (0, 1) satisfies ψ(et; ·) = φ(et; ·), then both (36) and (37) yield the value of

ζt+1.

(iii) If et > 1 satisfies ψ(et; ·) = φ(et; ·), then e0
t = 1 and ψ(1; ·) = ζ1

t+1/ζ
α
t yields the value

of ζt+1.

In Figure 2, we illustrate the determination of e0
t with the parameter values given above.

We plot the difference between ψ(et; ·) and φ(et; ·), which we call G(et, λt), over the values

of et ∈ [0, 1] for the values of λt ∈ {1, 2, 3, ..., 20}. An increase in λt shifts G(et, λt) upwards,

and so increases e0
t , the value of et satisfying G = 0. This explains how a poverty trap and

a progressive state can coexist in our model. A state with a low level of human capital

implies a low level of education and the opposite holds for a state with high values for λt.

This means that once one generation is schooled sufficiently for human capital to increase,

the next generation will receive even more schooling and the economy will converge to the

progressive state.

Figure 2: G(et, λt) and the optimal values of et(λt).
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3.5 Stationary Paths With Incomplete Schooling

The possibility of paths with stationary levels of st and λt is of particular interest. If λt

is stationary, (1 − zh(et))λt = 1 ∀t, where zh(et) < 1. We seek an e∗ ∈ (0, 1) such that

et = e∗, λ∗ = 1/(1− zh(e∗)) and s∗ = s0
t (λ
∗). Substituting for λ∗ in (22) and rearranging,

we obtain

1
s∗

= 1+αδ(1−q3)
αδ(1−q3)

n
σ

(
A
(

1−q2−wne∗
1−zh(e∗)

+ nγ(1− e∗)
)1−α

− ρA
(

1−q2
1−zh(e∗)+nγ

)1−α
)−1

.

All pairs (e∗ ∈ (0, h−1(1/z)), s∗) satisfying this equation are stationary configurations of

the system. For any such pair to be an equilibrium, however, it must also satisfy (13). In

the absence of altruism, the latter becomes

zh′(et) =

(
w +

γ

λt

)
σF2[l̄t+1,

σst
n

]

F1[l̄t+1,
σst
n

]
F1[lt, σst−1/n],

where lt = [(1 − q2 − wne∗)/(1 − zh(e∗))] + nγ(1 − e∗), l̄t and st = s∗ are stationary. It

is seen that if the derivative h′(e∗) can be chosen independently of the level h(e∗), there is

considerable scope to satisfy both conditions. If, in contrast, h is linear or nearly so, then

it is far from clear that there exists an equilibrium path with et = e∗ ∈ (0, 1). It appears,

therefore, that some fairly strong restrictions must be imposed on h to ensure the existence

of such stationary paths, with or without altruism.

4 A Generalisation: Isoelastic Functions

We now relax the assumptions on u and F regarding the existence of steady state paths

with positive education. The state called progress is of central importance, so the social

norm represented by ρ should not make it infeasible. A (weak) necessary condition for

them to be compatible is yt(e = 1) > ρȳt, or F
[
(1− q2 − wn)ζ, σ

n

]
> ρF

[
(1− q2)ζ, σ

n

]
.

We now turn to (18). The numerator on the r.h.s. of the left weak inequality may be
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written as a function of e and ζ. Where the latter is also constant along any such path:

D(e, ζ) ≡ wF1

[
(1− q2 − wne)ζ, σ

n

]
− (1− q2)zh′(e)

σ
·
F1

[
(1− q2)ζ, σ

n

]
F2

[
(1− q2)ζ, σ

n

] , (24)

and hence the ratio v′(λt+1)/u′(c2
t ) must be likewise. Condition (11) specialises to

u′(c2
t )

u′(c3
t+1)

=
σδρ[(1− q2) + βn]

(1− q2)
· F2

[
(1− q2)ζ,

σ

n

]
, (25)

so that u′(c3
t+1)/u′(c2

t ) must also be constant, a requirement that motivates the following

restriction on preferences:

Assumption 2.

u(ct) = c1−ξ
t /(1− ξ).

Hence, (25) may be written

F2

[
(1− q2)ζ,

σ

n

]
=

(1− q2)[(1 + g(e))(c3
t/c

2
t )]

ξ

δρσ[(1− q2) + βn)]
. (26)

The following lemma enables comparisons to be made across steady-state growth paths.

Lemma 1.

Let e vary parametrically to yield steady-state growth paths. Then ζ is increasing in e for

all F that are:

(i) Sufficiently close to Cobb-Douglas in form, provided ξ ≤ 1; or

(ii) Members of the CES family the absolute value of whose elasticity of substitution,

|(ε− 1)−1|, is at most 1, provided ξ + ε ≤ 1.

Proof. See Appendix 1.

Remark : The condition ξ ≤ 1 in part (i) can be weakened to include values exceeding,

but sufficiently close to, 1. Regarding part (ii), if, for example, ε = −1, the elasticity of

substitution is −0.5, and the result holds for all ξ ≤ 2.

Corollary 1.

If h(e) is concave or sufficiently weakly convex, D(e, ζ(e)) is increasing in e across paths.
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Proof. See Appendix 1.

The whole yield of human capital in the next period, zh(e), as well as the marginal yield

zh′(e) in optimisation, plays a central role. Let ep denote the smallest value of e satisfying

zh(e) = 1, where ep > 0 in virtue of h(0) = 0. If ep ≥ 1, there will exist no steady-state

growth path. Corollary 1 yields:

Corollary 2.

If h is strictly concave for all e ∈ [ep, 1] and D(ep, ζ(ep)) > 0, the expression

D(e, ζ(e))/[b[(1 − q2) + βn]zh′(e)] on the r.h.s. of the left weak inequality in (18) will be

continuous, positive and increasing in e for all e ∈ (ep, 1].

Under the hypothesis that growth is occurring at a steady rate, the said expression in

(18) is a constant. If e < 1, the l.h.s. of the left weak inequality must be likewise. If,

however, (18) holds as a strict inequality at e = 1, the behaviour of v′(λt+1)/u′(c2
t ) is not

so restricted. That is to say, the requirement that c2
t and λt grow at the same rate imposes

certain restrictions on both v and u.

Assumption 3.

The sub-utility function v is iso-elastic: v(λ) = λ1−η/(1− η).

4.1 No Altruism

A special case of particular interest is the absence of altruism (b = 0), wherein v plays no

role. Condition (17) then specialises to 0 ≥ D(e), e ≤ 1. In virtue of Corollary 1, this

yields:

Proposition 4.

If F satisfies the conditions in Lemma 1 and ep < 1, then in the absence of altruism, there

are just three possibilities when e is parametric:

(i) If D(ep) > 0, there exists no steady-state growth path.

(ii) If D(ep) ≤ 0 < D(1), there exists a unique, steady-state growth path such that e ∈
(ep, 1).

(iii) If D(1) ≤ 0, the only such path is the progressive state.
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The direct costs of education, as represented by the parameter w, exert a strong influence

on which of these holds. If w is sufficiently close to zero, it follows from (24) that D < 0, so

that progress is the only possible outcome, a result which accords with intuition. In fact,

the educational system is a fairly heavy user of its own output, so that the other outcomes

are then distinctly possible.

The feasibility of growth at a steady rate g(e) when z and h are such that zh(e) > 1

does not imply that families will choose to maintain the value of e everywhere along the

path in question. Suppose the economy is on such a path. The pairwise marginal rates of

transformation among c2
t , et and st are obtained from the budget constraint (8). For any

value of et ∈ [0, 1],

MRTce = − (1− q2) + βn

n(wλt + γ)F1

[
lt,

σst−1

n

] , (27)

where F1

[
lt,

σst−1

n

]
is constant and terms involving γ can be neglected along the hypothe-

sised path.

Total differentiation of (9) yields the corresponding marginal rate of substitution:

MRSce = − u′(c2
t )

n
[
δρF1

(
l̄t+1,

σst
n

)
u′(c3

t+1) + bv′(λt+1)
]
zh′(et)λt

≡ − u′(c2
t )

Qtzh′(et)λt
≡ −Rt . (28)

We now compare the levels of MRTce and MRSce along the path in question, noting that

et and F1

[
l̄t,

σst−1

n

]
are constant. A continuous approximation yields:

dst/st = dkt/kt = dλt/λt = dc2
t/c

2
t = dc3

t/c
3
t = zh(et)− 1 = g(et). (29)

In the absence of altruism (b = 0), it is seen from Assumption 2 that λtRt is constant,

so that Rt is falling at the rate g(et). From (27), the same holds for |MRTce|. Hence,

if the optimality condition |MRTce| ≥ |MRSce|, et ≤ 1 is once established, it will hold

thereafter. This yields the following result.

Proposition 5.

In the absence of altruism, the parametric growth paths defined by parts (ii) and (iii) of

Proposition 4 will be sustained by families’ optimal choices.
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4.2 Altruism

Altruism introduces the additional term bv′(λt+1) into Qt. Differentiating (28) totally and

recalling (29) and Assumption 2, we obtain

dRt

Rt

= −
(
ξ +

dQt

dλt

λt
Qt

+ 1

)
dλt
λt

. (30)

It is shown in Appendix 1 that the elasticity of Qt w.r.t. λt can be expressed in the form

dQt

dλt
· λt
Qt

= −ξA+ ηb ·B(1 + g)−(η−ξ)

A+ b ·B(1 + g)−(η−ξ) , (31)

where A = δρF1

(
l̄t+1,

σst
n

)
is constant along such a path and B is also a positive constant.

The final step is to establish conditions under which the choice et = e, once attained,

remains optimal as λt grows without bound at the rate g(e). As noted above from (27),

|MRTce| falls at the rate g(e). To maintain the optimality of et = e when e < 1, however,

the |MRSce| (= Rt) must fall at exactly the same rate. If, in any period t, |MRSce(e =

1)| < |MRTce(e = 1)|, then e0
t = 1, which will remain optimal thereafter if |MRSce(e = 1)|

falls at least as fast as |MRTce(e = 1)|.

Rewriting (30) as

dRt

dλt

λt
Rt

= −ξ +
ξA+ ηb ·B(1 + g(e))−(η−ξ)

A+ b ·B(1 + g(e))−(η−ξ) − 1,

we obtain:

Lemma 2.

With altruism (b > 0), there exists a steady-state growth path with e0
t = e if

1 ≥ A+ (η/ξ)b ·B(1 + g(e))−(η−ξ)

A+ b ·B(1 + g(e))−(η−ξ) , (32)

which must hold as an equality if e < 1.

If e < 1, (32) will hold iff ξ = η, whereas if e = 1, then η ≤ ξ.

This leaves open what paths are possible if η > ξ. For if |MRSce(e = 1)| < |MRTce(e = 1)|
the former may still fall more slowly than the latter without necessarily violating the
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condition itself. Suppose, therefore, that e0
t = 1, with growth proceeding at the steady

rate g(1) > 0. For t sufficiently large, the child-labour parameter γ can be neglected, and

|MRSce(e = 1)| < |MRTce(e = 1)| if, and only if,

(1− q2) + βn

wF1

[
lt,

σst−1

n

] > u′(c2
t )[

δρF1

(
l̄t+1,

σst
n

)
u′(c3

t+1) + bv′(λt+1)
]
zh′(1)

.

By hypothesis, c2
t , c

3
t and λt are all growing at the same steady rate, and the derivatives

F1(·) are constant. Thus the l.h.s. is constant. By assumptions 2 and 3, the r.h.s. may be

written A1/[B1 + b ·B2(1 + g(1))(ξ−η)t]zh′(1), where A1, B1 and B2 are positive constants.

If η > ξ, then in the limit as t → ∞, the r.h.s. goes to A1/B1zh
′(1): the altruism term

b · B(1 + g(1))(ξ−η)t goes to zero. It then follows from Propositions 4 and 5 that the

postulated path of progress can hold if, and only if, D(1) ≤ 0. The same argument holds

if the postulated steady-state growth path is such that et < 1, whereby D(ep) ≤ 0 < D(1)

must now hold.

The only remaining possible steady states are stationary ones, wherein e0
t = e0

t−1, λt = λt−1

and s0
t = s0

t−1 for all t. Denoting stationary values by a ∗, we have λ∗ = 1/[1 − zh(e∗)].

In virtue of the assumption zh(1) > 1, there exists an e∗ ∈ (0, 1) satisfying the latter

condition. If such an equilibrium exists, then MRSce(e
∗) = MRTce(e

∗) and, from (13),

D(e∗) > 0. The altruism term is now operative for all t, and Qt = n
[
δρF1

(
l̄∗, σs

∗

n

)
u′(c3∗) +

bv′(λ∗)
]

is constant. There may exist more than one such e∗ ∈ (0, 1).

These results are summarised as:

Proposition 6.

With iso-elastic preferences, the possible steady-state paths with positive education are as

follows.

(i) If u and v differ, with η < ξ, progress (e = 1) is the sole steady-state path that can

be supported by families’ optimising decisions.

(ii) If η = ξ, there may exist steady-state growth paths with a less than fully educated

population (e < 1); but the state of progress is also possible as a limiting case.

(iii) If η > ξ and D(1) ≤ 0, then progress is the sole steady-state path that can be supported

by families’ optimising decisions. If D(1) > 0, progress is ruled out. If D(ep) ≤ 0 <
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D(1), then by part (ii) of Proposition 4, steady-state growth is possible with et < 1.

If D(ep) > 0, there is no steady-state growth path, but there may exist a stationary

state wherein e > 0.

What is the intuition for these findings? If Rt is falling at the rate g(e) and e < 1, both

terms in Qt must fall at the same rate to preserve MRSce = MRTce, which imposes ξ = η

– a very strong restriction on preferences. In relaxing it, consider the path e = 1, along

which Rt may fall at a rate faster than g(1) without violating the conditions for optimality.

Investing in education provides both for old age and the children’s well-being in adulthood,

as expressed by the two terms comprising Qt. Since λt+1 and c3
t+1 are growing at the rate

g(1), it suffices that v′(λt+1) fall no faster than u′(c3
t+1). That is to say, if v is less strongly

concave than u, then steady-state growth will be maintained. If parents are perfectly

selfish, this consideration does not arise.

If, however, u is less strongly concave than v (η > ξ), potential difficulties arise; for along

any postulated growth path, v′(λt+1) is falling faster than u′(c2
t ) and u′(c3

t+1). With iso-

elastic preferences, there is a common growth term in the numerator and denominator of

MRSce, but with different exponents. If η > ξ, then upon division, the altruism term,

which appears only in the denominator, goes asymptotically to zero as t becomes arbitrarily

large, and the results of Section 4.1 apply.

We have already established that altruism can rule out backwardness, which is not sur-

prising. It now emerges that it may also fail to yield steady-state growth when u and v

are iso-elastic and v is more concave than u. For diminishing marginal returns then set in

faster where the evaluation of the children’s human capital is concerned than that of own

consumption, and growth renders altruism effectively inoperative over the long run. With

steady growth ruled out when the direct costs of education are so high that D(ep) > 0,

the only remaining possible steady states are stationary ones.

5 War and Pestilence as Stochastic Events

In reality, mortality and destruction rates are, in some degree, stochastic; for the outbreak

of war or a severe epidemic are events that cannot be forecast with certainty. This fact rules

out steady-state growth, and if there is a poverty trap, such shocks may pitch a growing
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economy into backwardness. In order to analyse this possibility, a preliminary step is

needed, namely, to establish how such events influence consumption and investment. We

formulate the shock as the actual outbreak of war, coupled with the (prior) probability of

its occurrence. This prior is assumed to be sharp.5

Let It ∈ {0, 1} denote the states of peace and war, respectively, in period t, and let

πt+1 = Pr(It+1 = 0) denote the probability of peace in period t + 1. The survival rate

of physical capital is σt(It), where σt(1) < σt(0) ≤ 1. Mortality rates qt are likewise

dependent on It. It is almost surely the case that qat (1) > qat (0) (a = 2, 3), and this

much will be assumed. By assumption, It is known when decisions are taken in period

t. Consumption in old age, denoted by c3
t+1(It+1) for those who survive to enjoy it, now

depends on the state ruling in period t + 1. The large extended family cannot provide

insurance against this particular risk, which does not exist in a steady state.

The young adults’ preferences now involve not only the compound lottery arising from the

future state It+1, but also the current realisation of It if this affects q2
t .

Vt(It) = u(c2
t ) + δ

[
πt+1(1− q3

t+1(0))u(c3
t+1(0)) + (1− πt+1)(1− q3

t+1(1))u(c3
t+1(1))

]
+

b
[
πt+1(1− q2

t+1(0)) + (1− πt+1)(1− q2
t+1(1))

]
(1− q2

t (It))
· nv(λt+1) , It = 0, 1. (33)

Exploiting as before the assumption that F is homogeneous of degree one, we have

c3
t+1(It+1; It) =

ρn · F [(1− q2
t+1(It+1))λt+1(et) + nγ, σt+1(It+1)st/n]

(1− q2
t (It))(1− q3

t+1(It+1))
. (34)

The budget constraint becomes

[(1− q2
t (It)) + βn]c2

t + st + ρF

[
(1− q2

t (It))λt + nγ,
σt(It)st−1

n

]
≤ F

[
(1− q2

t (It)− wnet)λt + nγ(1− et),
σt(It)st−1

n

]
, It = 0, 1, (35)

where the dependence of current decision variables on the current realised state can be

(notationally) suppressed without ambiguity.

To analyze the economy’s behaviour in the face of systemic shocks, we proceed essentially

5For a vigorous argument that rational actors must have sharp priors, see Elga (2010).
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as before, noting that the choices of st and et determine the productive endowments in the

next period and hence ζt+1. Let F be Cobb-Douglas. We provide the generalized versions

of (22) and (23) in a stochastic setting:

ζt+1

ζαt
=

(
zh(et) + 1

λt

αδEt[1− q3
t+1(It+1)]

+ 1

)
·
(
σt(It)

n

)−α
· (36)(

A

(
1− q2

t (It)− wnet +
nγ(1− et)

λt

)1−α

− ρA
(

1− q2
t (It) +

nγ

λt

)1−α
)−1

= ψ(et, It; ·)

and, if et ∈ (0, 1),

ζt+1

ζαt
=

(
αδ
(
w + γ

λt

)
zh′(et)

Et[1− q3
t+1(It+1)]A

(
1− q2

t (It)− wnet +
nγ(1− et)

λt

)−α
·

(
σt(It)

n

)α)−1

·

(
Et

[
(1− q3

t+1(It+1))(1− q2
t+1(It+1))

1− q2
t+1(It+1) + nγ/λt+1

]
δ +

b̃n

1− α

)
= φ(et, It; ·), (37)

where b̃ = b · [πt+1(1−q2
t+1(0))+(1−πt+1)(1−q2

t+1(1))]/(1−q2
t (It)) = b ·Et[1−q2

t+1]/1−q2
t .

The forms of ψ and φ are highly complicated, even under the assumption that F is Cobb-

Douglas, so it would be as well to untangle their elements, relying rather on intuition. We

therefore discuss how the various factors in play influence the final outcome, but without

the said restriction on F .

5.1 The Occurrence Of War

The first step is to examine how It and q2
t affect the set of current feasible choices, which

is independent of πt+1. This set is denoted by

S(It) = {c2
t , et, st : (35), c2

t ≥ 0, et ∈ [0, 1], st ≥ 0}.

It is seen that if the ratio of survival rates, σt(It)/(1−q2
t (It)), is independent of the current

state, then the outer frontier of the feasible set is affected only by the mortality rate q2
t (It),

though the latter may certainly depend on the current state. If the said ratio is indeed

independent of It, an increase in q2
t , whether associated with war or not, also makes c2

t
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Figure 3: Feasible sets of consumption and investment

cheaper relative to st.

The extreme allocations of S(It) ’s outer frontier, which are depicted as the points A, B, C

and D, respectively, in Figure 3, are examined in Appendix 2. To summarise: A sufficient

condition for (dc2
t/dq

2
t (It)) et=st=0 < 0 ∀λt is β > γ, which is not a very strong requirement.

If the ratio of survival rates, σt(It)/(1−q2
t (It)), is fixed for each current state It and β > γ,

the outer frontier of the feasible set S(It) will contract inwards everywhere as the mortality

rate q2
t (It) rises. If the said ratio is the same for both states, the contraction from S(0) to

S(1) represents the effects of an outbreak of war.

To complete the argument, consider the case where et = 1 is infeasible for sufficiently

large values of q2
t (It). Suppose that when q2

t (It) = 0, the maximal values of c2
t and st,

respectively, are both positive, as depicted in the figure when ABCD corresponds to a zero

level of such premature mortality. As q2
t (It) progressively increases, BD will shift towards

G until the allocations B and D coincide at G (et = 1, c2
t = st = 0). Further increases in

q2
t (It) will reduce the maximal feasible level of et below one, with the associated allocation

moving downwards along the et-axis towards the origin O. Since AC also shifts progressively

inwards towards O, the outer frontier of S(It) contracts everywhere as q2
t (It) increases.
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The contraction of the feasible set established above points to unambiguous income effects,

c2
t , et and st being all normal goods; but changes in survival rates also imply changes in

marginal rates of transformation, which are now examined. As noted above, given the

current state It, an increase in q2
t (It) makes c2

t cheaper relative to st, as does an outbreak

of war if this event leaves the ratio of survival rates unchanged. Turning to the marginal

rate of transformation between st and et, we have

MRTse(It) = −
(

[n(wλt + γ)]F1

[
(1− q2

t (It)− wnet)λt + nγ(1− et), σt(It) ·
st−1

n

])−1

.

For any given It and et, an increase in q2
t (It) will increase F1 and so reduce |MRTse(It)|:

st will be come cheaper relative to et, as intuition would suggest.

An outbreak of war, however, has ambiguous effects on MRTse(It). Since F1 is homoge-

neous of degree zero, MRTse(It) can be expressed in the form

MRTse(It) = −
(

[n(wλt + γ)]F1

[
λt +

n[γ − (wλt + γ)et]

1− q2
t (It)

,
σt(It)

1− q2
t (It)

· st−1

n

])−1

.

Suppose, as before, that the ratio of survival rates is independent of It, but with q2
t (1) >

q2
t (0). It is seen that the associated increase in mortality reduces, or increases, the (nor-

malised) input of human capital according as et
>
< γ/(γ+wλt). For sufficiently large values

of λt, the latter ratio will be very small, so that war in the current period will make st

cheaper relative to et for all values of et except those very close to zero. The converse holds

when λt is close to one; for γ/(γ + wλt) is then close to one, and the n/(1 − q2
t (It)) chil-

dren cared for by each surviving young adult constitute a potentially large pool of labour,

relatively speaking. The outbreak of war reduces the opportunity cost of their labour and

so makes investment in their education more attractive relative to investment in physical

capital. We summarise our findings in Proposition 7:

Proposition 7.

The contraction of the feasible set caused by war in the current period reduces both current

consumption and investment in both forms of capital. Consumption also becomes cheaper

relative to investment in physical capital. Investment in education is likely to suffer espe-

cially when λt is large, but not when λt is small.
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It seems rather unlikely that the associated changes in the marginal rates of transformation

will offset the reduction in investment in general arising from the adverse income effect.

5.2 The Probability Of War

Intuition suggests that an increase in the prior probability of war in the future will depress

investment in the present. It will now be demonstrated that this is indeed so in our

framework provided an additional – and plausible – condition holds.

The feasible set in period t, as defined by (35), is independent of πt+1, so that changes

in the latter will affect decisions only through V (It). Inspection of (33) reveals that the

weight on the altruism term v is increasing in πt+1, since q2
t+1(1) > q2

t+1(0). Where the

terms involving old age are concerned, the probability of surviving into full old age is

increasing in the probability of peace, πt+1. This does not, however, settle the matter; for

the pay-off received by survivors depends on the number of claimants as well as the size of

the common pot. From (34), it is seen that for any given (et, st, It), c
3
t+1(It; 0) >

< c
3
t+1(It; 1)

according as

F

[
(1− q2

t+1(0))λt+1(et) + nγ, σt+1(0)st
n

]
F

[
(1− q2

t+1(1))λt+1(et) + nγ, σt+1(1)st
n

] >
<

1− q3
t+1(0)

1− q3
t+1(1)

.

The numerator on the l.h.s. is the level of full income in period t+1 when peace prevails, the

denominator is the corresponding level when war does so. The r.h.s. is the corresponding

ratio of survival rates into old age. Both ratios exceed 1, but it is very likely that the

former ratio is the larger; for war is likely to take a proportionally heavier toll on young

adults, and it will surely destroy some of the capital stock. It is highly plausible, therefore,

that the condition

F

[
(1− q2

t+1(0))λt+1(et) + nγ, σt+1(0)st
n

]
F

[
(1− q2

t+1(1))λt+1(et) + nγ, σt+1(1)st
n

] ≥ 1− q3
t+1(0)

1− q3
t+1(1)

(38)

holds. This suffices to ensure that the second term on the r.h.s. of (33), which may be

expressed as EIt+1u[c3
t+1(It; It+1)], is increasing in πt+1, It = 0, 1. Hence, we have:
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Proposition 8.

If (38) holds, an increase in the (prior) probability that war will prevail in the next period

will depress investment in favour of consumption in the current one.

Consumption in old age depends on, inter alia, the savings made when young that survive

destruction at the start of old age. War and peace, respectively, affect the second arguments

of F in the denominator and numerator on the l.h.s of condition (38). The prospect of

heavy destruction of physical capital makes saving less attractive when war in the next

period has rather small effects on the survival rate of those then entering old age, and

hence on the number of such claimants. The argument in Section 5.1 indicates that how

the balance between et and st will be affected thereby depends in a complicated way

on the differences in survival rates between the two states. The weight on the altruism

term v(λt+1(et)) in (33) is decreasing in the future mortality rate among young adults,

and the stronger is altruism, as represented by b, the larger will be the absolute size of

the reduction in the said weight. War would have to be extremely destructive of physical

relative to human capital such that substitution between the two forms of investment could

induce a net increase in et.

6 Shocks and Stability

The system’s stability in the face of shocks will now be examined in some detail, drawing

upon the above findings. The argument proceeds in a series of taxonomic steps. It rests on

the claim that that the two extremes, i.e., backwardness with et = 0 and the progressive

state with et = 1 are both locally stable steady states. Sufficient conditions for this claim

to hold are given in the following proposition.

Proposition 9.

If u = ln ct and F is Cobb-Douglas, both backwardness and the progressive state are locally

stable steady states if:

(i) (1− α)αδ(1− q3) < (1− q2 + nγ)1−α − (1− α)nγ;

(ii) the production function for human capital h(et) is concave or sufficiently weakly con-

vex;
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(iii) 1− q2 > αwn.

Remark. In the light of Section 4, the assumptions on u and F can be weakened.

Condition (ii) has been discussed in Section 3.2. Condition (iii) is also easily fulfilled,

as the term αwn is close to zero for plausible values of w, whereas q2 is not close to 1.

This leaves condition (i) as the only additional assumption we have to make to ensure

convergence when shocks are not too large.

Suppose backwardness is a locally stable, long-run equilibrium, even when peace always

reigns (e0
t = 0, It = 0∀t). Then once in backwardness, the economy is perpetually trapped

in that state, be there war or peace thereafter.

Suppose there also exists, when peace always reigns, a set of stationary states with e0
t ∈

(0, 1). Let e∗(0) denote the smallest such value of e0
t , so that λt is stationary, at λ∗(0), where

λ∗(0) = zh(e∗(0))λ∗(0) + 1. Associated with e∗(0) there is a stationary level of kt, denoted

by k∗(0). Since the state of backwardness is locally stable, the equilibrium (λ∗(0), k∗(0))

is unstable. If, at time t, the state variables are such that (λt, kt) << (λ∗(0), k∗(0)),6 a

descent into permanent backwardness will certainly occur. This conclusion holds a fortiori

if there is some chance of war. For given any π < 1, it is established in Section 5.1 that an

outbreak of war in the current period will almost surely reduce current investment relative

to the state of peace, and in Section 5.2 that an increase in the hazard rate 1− π will do

likewise, cet. par.

Taking a longer view where the economy’s capacity to withstand shocks is concerned, a

robust economy can be defined as one in which growth can occur even in a state of perpetual

war: e0
t = e∗∗(1), It = 1∀t, where λt+1 = zh(e∗∗(1))λt + 1 > λt. This requires, inter alia,

that (32) hold at qt = q(1), σt = σ(1). If steady growth is possible in a state of perpetual

war, growth will also be possible when peace sometimes rules, but it will not be steady.

For any growth path to be attained, the starting values of the state variables must be

sufficiently favourable. The said values depend on the economy’s particular history of war

and peace. If, at time t′, the state variables (λt, kt) are such that, should war become

permanent, e0
t ≥ e∗∗(1)∀t ≥ t′, then a sustained growth path will be attained for all π.

Analogously to (e∗(0), k∗(0)), suppose there is also a pair (λ∗(1), k∗(1)) in the state of

6The inequality x << y indicates that each component of the vector y exceeds its counterpart in x.

36



perpetual war. Since survival rates are higher in peace, (λ∗(0), k∗(0)) = (λ∗(1), k∗(1))

cannot hold, and it is natural to conjecture that (λ∗(0), k∗(0)) << (λ∗(1), k∗(1)). If war

and peace are both possible, i.e. π ∈ (0, 1), this conjecture introduces chance into the final

outcome in the long run if the initial conditions satisfy

(λ∗(0), k∗(0)) << (λ0, k0) << (λ∗(1), k∗(1)).

For suppose (λ0, k0) exceeds, but lies close to, (λ∗(0), k∗(0)). With some positive proba-

bility, the economy will enjoy an uninterrupted run of peace; and if long enough, this run

could yield state variables exceeding (λ∗(1), k∗(1)), and hence ultimately, if the next sta-

tionary value of e0
t is such that zh(e0

t ) > 1, sustained growth. Then again there is the grim

possibility that (λ0, k0) falls short of, but lies close to, (λ∗(1), k∗(1)), and that this initially

tantalising prospect recedes ever farther away as the economy endures an unbroken run

of wars, an event whose probability of occurrence is also strictly positive. If long enough,

such a run could well yield state variables short of (λ∗(0), k∗(0)) and hence, ultimately,

backwardness with certainty.

One consequence of the sharing rule for old-age provision, as specified by (7), in a stochastic

environment is that if war is more destructive of property than life, then the aggregate

payment to the old will fall disproportionately, though war will also exact an additional toll

on the numbers of those making a claim on it. Consider, therefore, the variation in which

all those who survive into old age are allocated, not a fixed share of total full income at

that time, but each one of them a fixed proportion ρ′ of the full income of each surviving

young adult: c3
t = ρ′Ȳt/(1 − q2

t )N
2
t . It is seen that if mortality rates are varying over

time and sharply forecast, the difference in the respective denominators can yield different

incentives to invest. Under the alternative rule, we have, instead of (7),

c3
t+1 =

ρ′

(1− q2
t+1)
· F
[
(1− q2

t+1)λt+1(et) + nγ, σt+1st/n
]
.

The arguments of F are formally identical, embodying the decision (et, st) in the previous

period. If the environment is stationary and non-stochastic, so that steady-state equilibria

may exist, choose ρ′ such that ρ′ = ρn/(1 − q3). The two rules then yield identical

allocations.
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An unexpected outbreak of war in period t after an uninterrupted state of peace will leave

each of the surviving young adults less well equipped with physical capital than their

elders had intended, thus producing an adverse income effect on both forms of investment

in period t. The alternative sharing rule will relieve the current loss by reducing the

payment to each of the old-age survivors. If, however, war takes a heavier toll on young

adults than their elders, that rule will not necessarily make the economy more robust to

such asymmetric shocks to life and property.

An unexpected outbreak of pestilence, such as the Black Death, is an asymmetric shock

of another kind, carrying off much of the population, but leaving the capital stock un-

touched. This will be a windfall for the survivors, but it will avail them little if physical

and human capital are poor substitutes in production – indeed, not at all if they are strict

complements. If, in contrast, they are perfect substitutes, then the windfall will yield a

correspondingly large income effect, which may be sufficiently strong to propel an economy

out of backwardness onto a growth path, even with perpetual, but not unduly destructive

warfare.7

7 Simulations

Establishing more precisely whether an economy will withstand a particular shock in the

presence of a poverty trap involves some resort to simulations, whereby the initial condi-

tions need to be specified in a tractable form. Suppose, therefore, that the economy has

been proceeding along some steady-state growth path in the state of peace, when it is

suddenly hit by war out of the blue. Agents then form some sharp prior 1 − π that war

will also occur in the next period, and make their investment decisions accordingly.

If much time has elapsed along that path, both state variables will be very large indeed,

so that extremely heavy loss rates will have to occur in order to reduce the normalised

endowments to levels where even et = 1 will not be optimal, let alone a certain collapse

into backwardness. Suppose, therefore, that both state variables are still relatively small.

Given the resulting normalised endowments and the (sharp) prior πt+1, the households

7For an analysis of this potentially liberating stroke, see Bell and Gersbach (2013), in which there is
only human capital. The assumption that both inputs are necessary in production leaves the matter open.
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will choose (e0
t , s

0
t ). If the worst occurs again in period t + 1, the resulting normalised

endowments will be, suppressing the time subscripts for nt and q2
t ,

l̄t+1 = (1− q2(1))λt+1(e0
t ) + nγ and kt+1 = σ(1)s0

t/[(1− q2(1))n].

If peace is confidently expected in period t + 2, (e0
t+1, s

0
t+1) are chosen accordingly. Since

peace also actually rules, the resulting normalised endowments in period t+ 2 will be

l̄t+2 = (1− q2(0))λt+2(e0
t+1) + nγ and kt+2 = σ(0)s0

t+1/[(1− q2(0))n]. (39)

Given the values of the state variables in period t, (λt(e
0
t−1), s0

t−1), where these conform to

the ζ associated with the path under consideration, it can be checked numerically whether

the economy will recover from what are, in effect, the new starting endowments under a

regime of perpetual peace given by (39) or fail to do so.

There remains the alternative possibility that peace, not war, rules in period t+ 1. In that

event, the normalized endowments will be

l̄t+1 = (1− q2(1))λt+2(e0
t ) + nγ and kt+1 = σ(1)s0

t/[(1− q2(1))n];

and the calculations for period t+ 2 then proceed as before.

A particular limitation of the two-period phase t and t + 1 during which war can ever

occur is that its influence on decisions ex ante is confined to period t. The only possible

sequences are war-war and war-peace, each followed by permanent peace. Two consecutive

adverse shocks are possible, but the certainty of peace from t+ 2 onwards makes ultimate

recovery more likely. It is desirable, therefore, to extend the said phase to three periods,

thus yielding an ex ante influence in both periods t and t+ 1. The possible sequences are

{1, 1, 1}, {1, 1, 0}, {1, 0, 1}, {1, 0, 0}, {0, 1, 1}, {0, 1, 0}, {0, 0, 1}, {0, 0, 0},

with all outcomes preceded by development in the environment (q(0), σ(0)) up to t = 0.

We concentrate on the grimmest outcome: three consecutive periods of war.

The constellation of parameter values in Table 1 must be extended to cover the states of

war and peace. Let those values hold in the state of peace, so there is a poverty trap, even

39



with unbroken peace, {0,0,0}, as the actual outcome. The associated long-run value of ζt

when ‘progress’ rules, ζt(0; e = 1), is 5.6. Let the prior probability of war in periods 1 and 2,

1−πt+1(t = 0, 1), be 0.5, and the mortality rates in that state be q1
t (1) = 0.25, q3

t (1) = 0.35,

with σt(1) = 0.4. As noted above, the initial values of human and physical capital, λ0 and

k0, which are inherited from period t = −1, must be sufficiently small for a sequence of

shocks even as heavy as {1,1,1} to rule out any path to progress. Recalling Section 6,

the stationary (critical) values of λ∗ are now in play. Under perpetual peace, expected as

well as realised, λ∗(0) = 2.378. With πt+1 = 0.5, the critical value of λ0 when the realised

sequence is indeed {0, 0, 0} is 2.541, but 2.894 when the outcome is three periods of war,

{1, 1, 1}. To complete the initial conditions, let ζ0 = 2.8; for physical capital plausibly

forms the greater part of the whole endowment in the state of backwardness than that of

progress.

The trajectories of λt and ζt for each of the values λ0 = 1, 2, 2.7, 3, 5 are depicted in Figure

4. As intuition suggests, three periods of warfare generate an immediate and sharp upward

spike in ζt, even when backwardness is the ultimate outcome. The two trajectories that

closely bracket the critical value of λ0 = 2.894, namely, those for λ0 = 2.7 and 3, have

more than one local extremum. The former follows the spike by first undershooting, and

then converging from below to the value under backwardness; the latter goes on to attain

a second local maximum, at t = 12, before converging from above to the value under

progress. These oscillations indicate complex and long drawn-out transitional dynamics

near critical values of the boundary conditions, though these dynamics are less apparent

in the trajectories of λt. The latter for λ0 = 2.7 recovers only slowly from the three

consecutive episodes of war, whereas that for λ0 = 5 is little affected.

8 Conclusions

It is not difficult to think of conditions that will keep a society in a state of backwardness.

Unremitting warfare and endemic communicable diseases untrammelled by public health

measures, together with the privation that accompanies warfare and disease, will almost

surely suffice to bring about a Hobbesian existence, even when productive technologies are

available. What we have established, however, is that there are constellations of unchanging
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Figure 4: Three consecutive periods of war followed by peace

war losses and premature adult mortality such that backwardness, the state in which there

is no investment in human capital through schooling, and steady growth with a fully

educated population are both possible equilibria. The associated poverty trap is also

precisely characterised.

Parents’ altruism can exert a decisive influence on the outcome. If sufficiently strong, it

can rule out backwardness in environments in which the hazards of destruction are such

as to keep a selfish population in that condition for good. That is no great surprise.

Where attaining – and maintaining – steady-state growth is concerned, however, altruism

also comes into play in a different way. If parents’ preferences are such that the sub-

utility functions for their own consumption and their children’s well-being in adulthood

differ – which is highly likely – and the former is more concave than the latter, then the

only steady-state path other than backwardness is progress: there is growth with a fully

educated population. If, however, the sub-utility function for own consumption is less

concave than that for the children’s human capital, then steady-state growth paths with

an incompletely educated population may exist, as may stationary paths. The same holds

if parents are perfectly selfish, so that provision for old age is the sole motive for investment.

Thus, not only does altruism tend to promote growth as an outcome, as expected, but it
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may also lead to permanently faster growth.

The fact that outbreaks of war and pestilence are stochastic events introduces a central role

for expectations. It also raises the question of whether a growing economy is sufficiently

robust to withstand a series of adverse shocks. Mature economies that have experienced

growth for long periods will have large per capita stocks of human and physical capital.

They will be correspondingly robust, unless nuclear war destroys the environment itself.

Economies at an earlier stage of development are more vulnerable. Numerical simulations

in which the realised outcome is three consecutive periods of war followed by a confidently

expected era of perpetual peace reveal how the boundary conditions at the start have a

decisive influence on whether this series of shocks will pitch the economy into permanent

backwardness.
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Appendix 1. Proofs

The f.o.c. are, noting that 0 ≤ et ≤ 1,

∂Φt

∂c2
t

= u′(c2
t )− µt[(1− q2

t ) + βnt] = 0, (40)

∂Φt

∂st
=
δu′(c3

t+1) · ntρ
(1− q2

t )
· ∂ȳt+1

∂st
− µt = 0, (41)

∂Φt

∂et
=
δu′(c3

t+1) · ntρ
(1− q2

t )
· ∂ȳt+1

∂λt+1

∂λt+1

∂et
+ νtv

′(λt+1)
∂λt+1

∂et
+ µt

∂yt
∂et
≤ 0, et ≥ 0, (42)

∂Φt

∂et
=
δu′(c3

t+1) · ntρ
(1− q2

t )
· ∂ȳt+1

∂λt+1

∂λt+1

∂et
+ νtv

′(λt+1)
∂λt+1

∂et
+ µt

∂yt
∂et
≥ 0, et ≤ 1, (43)

where, recalling that F is homogeneous of degree 1 and ζt = λt/st−1,

∂λt+1

∂et
= zth

′(et)λt ,

∂ȳt+1

∂st
=
σt+1

nt
· F2

[
(1− q2

t+1)ζt+1 +
nt+1γ

st
,
σt+1

nt

]
,

∂yt
∂et

= −(γ + wλt)nt · F1

[
(1− q2

t − wntet)ζt +
ntγ(1− et)

st−1

,
σt
nt−1

]
and

∂ȳt+1

∂λt+1

= (1− q2
t+1)F1

[
(1− q2

t+1)ζt+1 +
nt+1γ

st
,
σt+1

nt

]
.

Proof of Lemma 1

Since st and λt are growing at the steady rate g(e) = zh(e)− 1 > 0, we have

c2
t

c3
t+1

=
(1− q2)(1− q3)

ρn((1− q2) + βn)
·
(
yt − st
ȳt+1

− ρ

zh(e)

)
,

where
yt − st
ȳt+1

− ρ

zh(e)
=

1

zh(e)

(
F [(1− q2 − wne)ζ, σ/n]− zh(e)

F [(1− q2)ζ, σ/n]
− ρ
)
,
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which is a constant for any given e. Substituting for c2
t/c

3
t+1 from (26), we obtain

ρδα(1− q2 + βn)F2[(1− q2)ζ, σ/n]

1− q2

=

(
ρn((1− q2) + βn)zh(e)F [(1− q2 − wne)ζ, σ/n]

(1− q2)(1− q3)[F [(1− q2 − wne)ζ, σ/n]− ρF [(1− q2)ζ, σ/n]− zh(e)]

)ξ
,

which may be rearranged as

F [(1− q2 − wne)ζ, σ/n]− ρF [(1− q2)ζ, σ/n]

=

(
1 +B′

F [(1− q2)ζ, σ/n]

(F2[(1− q2)ζ, σ/n])1/ξ

)
zh(e), (44)

where

B′ ≡ n

(1− q3)(δα)1/ξ

(
ρ(1− q2 + βn)

1− q2

)1−1/ξ

is a positive constant.

The assumption that F is homogeneous of degree 1, with both inputs are necessary in pro-

duction, implies that ζ is differentiable in e when e is varied parametrically. For continuous

changes in e produce continuous changes in the feasible set and the preference functional

Vt; and the isoquant map is smooth everywhere and strictly convex to the origin, and no

isoquant intersects either axis.

Part (i)

By assumption, F is Cobb-Douglas: yt = Al1−αt kαt . Substituting into (44) and collecting

terms, we have

A
(σ
n

)α
[(1− q2 − wne)1−α − ρ(1− q2)1−α]ζ1−α

=

(
1 +

( n

ασ

)1/ξ

B′ · (F [(1− q2)ζ, σ/n])1−1/ξ

)
zh(e). (45)
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Differentiating (45) totally, noting that ∂F/∂ζ = (1 − α)F/ζ, and collecting terms, we

obtain [
A
(σ
n

)α
[(1− q2 − wne)1−α − ρ(1− q2)1−α](1− α)ζ−α

−
(

1− 1

ξ

)( n

ασ

)1/ξ (1− α)B′

ζ
· (F [(1− q2)ζ, σ/n])1−1/ξ

]
· dζ

=

[(
1 +

( n

ασ

)1/ξ

B′ · (F [(1− q2)ζ, σ/n])1−1/ξ

)
zh′(e)

+ A
(σ
n

)α
[(1− q2 − wne)−α]wn(1− α)ζ1−α

]
· de.

Now, the condition F [(1 − q2 − wn)ζ, σ/n] > ρF [(1 − q2)ζ, σ/n] implies that (1 − q2 −
wn)1−α > ρ(1 − q2)1−α, so that ζ is increasing in e if ξ ≤ 1. By continuity, this result

also holds for all F sufficiently close to Cobb-Douglas in form and for all ξ exceeding, but

sufficiently close to, 1.

Part (ii)

By assumption, yt = A[b1l
ε
t + b2k

ε]1/ε, ε ≤ 1: the elasticity of substitution is (ε − 1)−1,

where ε = 0 is Cobb-Douglas. Proceeding as before,

F [(1− q2)ζ, σ/n]

(F2[(1− q2)ζ, σ/n])1/ξ
=

A[b1((1− q2)ζ)ε + b2(σ/n)ε]1/ε

[b2(σ/n)ε−1A[b1((1− q2)ζ)ε + b2(σ/n)ε]1/ε−1]
1/ξ

= B1[b1((1− q2)ζ)ε + b2(σ/n)ε]ψ,

where ψ = (1/ξ)+(1−1/ξ)/ε and B1 is a positive constant. Substituting into (44), noting

the derivative of [b1((1 − q2)ζ)ε + b2(σ/n)ε]1/ψ w.r.t. ζ and rearranging as before in part

(i), there are two terms on the l.h.s. The first is the partial derivative of {F [(1 − q2 −
wne)ζ, σ/n] − ρF [(1 − q2)ζ, σ/n]} w.r.t. ζ, which is positive if ε ≤ 0 and F [(1 − q2 −
wn)ζ, σ/n] > ρF [(1 − q2)ζ, σ/n]. The second term has the sign of ψ · ε. Now, ψ · ε ≤ 0

iff ε + ξ ≤ 1. Since both inputs are assumed to be necessary in production, ε ≤ 0, which

yields the required result. Q.E.D.
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Proof Of Corollary 1

Recalling that both inputs are necessary in production, it follows that for all such F ,

F1

[
(1− q2)ζ, σ

n

]
and F2

[
(1− q2)ζ, σ

n

]
are, respectively, decreasing and increasing in e.

Now, F1

[
(1− q2 − wne)ζ, σ

n

]
decreases more slowly than F1

[
(1− q2)ζ, σ

n

]
as e increases.

Hence, if h(e) is concave or sufficiently weakly convex, it is seen that D is increasing in e

across paths. Q.E.D.

Derivation Of Condition (20)

We simplify the denominator of (18) using

F1[lt,
σst−1

n
] =

1− α
(1− q2 − wn)ζ

F [(1− q2 − wn)ζ, σ/n],

F1[lt+1,
σst
n

]

F2[lt+1,
σst
n

]
=

1− α
α
· σ
n
· 1

(1− q2)ζ
.

Noting (19) and that (44) specialises to

F [(1− q2 − wn)ζ,
σ

n
]− ρF [(1− q2)ζ,

σ

n
] =

(
1 +

σ

(1− q3)δ

)
zh(1),

we obtain

c2
t = st−1

((
1 +

σ

(1− q3)δ

)
zh(1)− st

st−1

)
1

1− q2 + βn
and

c2
t = st−1

σ

(1− q3)δ
· zh(1)

1− q2 + βn
.

Substituting into (18) and rearranging terms, we have

λ−1
t+1st−1

σzh(1)

(1− q3)δ
≥(

w(1− α)

(1− q2 − wn)ζ(1)
F [·p]− zh′(1)

σ

(
(1− α)σ

(1− q2)ζ(1)nα

))
· 1

bσzh′(1)
,
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Since ζt = λt/st−1 and λt+1/λt → zh(1) in the state of progress, a further rearrangement

yields

zh′(1) ≥
(

w(1− α)

(1− q2 − wn)
F [·p]− zh′(1)(1− α)

(1− q2)nα

)
· (1− q3)δ

bσzh(1)
,

so that

zh′(1) ≥ w(1− α)

(1− q2 − wn)
F [·p] ·

(
bσzh(1)

(1− q3)δ
+

1− α
(1− q2)nα

)−1

.

Derivation Of Equation (31)

Total differentiation of

Qt = n
(
δρF1

(
l̄t+1,

σst
n

)
u′(c3

t+1) + bv′(λt+1)
)

yields, noting (29) once more,

dQt = n

[
δρ

(
(1− q2)F11

(
l̄t+1,

σst
n

)
u′(c3

t+1) +
u
′′
(c3
t+1)c3

t+1

zh(e)λt
F1

(
l̄t+1,

σst
n

))
+ bv′′(λt+1)

]
· zh(e) dλt + δρσF12

(
l̄t+1,

σst
n

)
u′(c3

t+1)dst

≡ A′ · zh(e) · dλt + δρσF12

(
l̄t+1,

σst
n

)
u′(c3

t+1)dst . (46)

We examine next the expression
dQt

dλt
· λt
Qt

on the r.h.s. of (30). From (46), we have

dQt

dλt
· λt
Qt

=
A′zh(e) · λt + δρσF12

(
l̄t+1,

σst
n

)
u′(c3

t+1)st

n
(
δρF1

(
l̄t+1,

σst
n

)
u′(c3

t+1) + bv′(λt+1)
) .

Collecting terms in the numerator involving u′(c3
t+1), the multiplicand is

J ≡ nδρ
[
(1− q2)λt+1F11

(
l̄t+1,

σst
n

)
− ξF1

(
l̄t+1,

σst
n

)
+
σst
n
F12(l̄t+1,

σst
n

)
]
.

Since F1

(
l̄t+1,

σst
n

)
and F2

(
l̄t+1,

σst
n

)
are homogeneous of degree zero, it follows from Euler’s
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Theorem that

[(1− q2)λt+1 + nγ]F11

(
l̄t+1,

σst
n

)
+
σst
n
F12

(
l̄t+1,

σst
n

)
= 0,

so that for sufficiently large λt, J reduces to −nδρξF1

(
l̄t+1,

σst
n

)
. Hence, recalling that v is

iso-elastic, we obtain the elasticity of Qt w.r.t. λt:

dQt

dλt

λt
Qt

=
−ξδρF1

(
l̄t+1,

σst
n

)
u′(c3

t+1)− ηbv′(λt+1)

δρF1

(
l̄t+1,

σst
n

)
u′(c3

t+1) + bv′(λt+1)
.

By hypothesis, (λt, st) are growing at the rate g = zh(e)− 1. Hence, this elasticity can be

expressed in the form

dQt

dλt
· λt
Qt

= −ξA+ ηb ·B(1 + g)−(η−ξ)

A+ b ·B(1 + g)−(η−ξ) ,

where A = δρF1

(
l̄t+1,

σst
n

)
and v′(λt+1)/u′(c3

t+1) are positive constants along the path in

question.

Stability Analysis

Equations (22) and (23) provide our starting point. We take their total derivatives, given

that the right-hand sides depend on λt and et. We then equate the left-hand sides and find

the sign of det/dλt, that is, of the derivative ∂e0
t/∂λt: it turns out to be positive. Hence, it

follows from (4) that a higher value of λt also increases λt+1 through its indirect effect on

the choice e0
t . Two further statements can be made. First, if an economy has reached the

progressive state and is then hit by a sufficiently small shock, e0
t will fall, if at all, not much

below 1, and the economy will remain in, or return to, that state. Second, if λt is close

to some stationary level associated with e0
t < 1 and the economy is hit by a sufficiently

adverse shock, there will be a descent into backwardness.

In the following, we take the derivatives of the aforementioned equations with respect to

et and λt. We then analyze their signs when (et, λt) = (0, 1) and et = 1 with λt large.

48



The derivative of the right hand side of (22) with respect to et is

(
A
(σ
n

))−1
[
((1− q2 − wnet) +

nγ(1− et)
λt

)1−α − ρ(1− q2 +
nγ

λt
)1−α

]−1

·{
zh′(et)

αδ(1− q3)
+

(
zh(et) + 1

λt

αδ(1− q3)
+ 1

)
·[

(1− q2 − wnet + nγ(1−et)
λt

)1−α − ρ(1− q2 + nγ
λt

)1−α
]−1

(1− q2 − wnet + nγ(1−et)
λt

)α
· (1− α)(w + γ)n

λt

}
.

When et = 0 and λt = 1, this yields[
A
(σ
n

)
(1− q2 + nγ)1−α(1− ρ)

]−1

·{
zh′(0)

αδ(1− q3)
+

(
1

αδ(1− q3)
+ 1

)
(1− α)(w + γ)n

(1− ρ)(1− q2 + nγ)

}
,

which is positive.

When et = 1 and λt is large, we have

[
A
(σ
n

)
(1− q2 + nγ)1−α(1− ρ)

]−1

·

{
zh′(1)

αδ(1− q3)
+

(
zh(1) + 1

λt

αδ(1− q3)
+ 1

)
·[

(1− q2 − wn)1−α − ρ(1− q2 + nγ
λt

)1−α
]−1

(1− q2 − wn)1−α (1− α)(w +
γ

λt
)n

}
,

which is also positive.

The derivative of (22) with respect to λt is

(
A
(σ
n

))−1 1

λ2
t

[(
(1− q2 − wnet) +

nγ(1− et)
λt

)1−α

− ρ
(

1− q2 +
nγ

λt

)1−α
]−1

·{
− 1

αδ(1− q3)
+

(1− q2 − wnet + nγ(1−et)
λt

)−α(1− et)− ρ(1− q2 + nγ
λt

)−α

(1− q2 − wnet + nγ(1−et)
λt

)1−α − ρ(1− q2 + nγ
λt

)1−α
·

(1− α)nγ

(
zh(et) + 1

λt

αδ(1− q3)
+ 1

)}
.
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Evaluating this expression at et = 0 and λt = 1 gives(
A
(σ
n

)α [
(1− q2 + nγ)1−α(1− ρ)

])−1

(w + γ)−1·{
− 1

αδ(1− q3)
+

(
1

αδ(1− q3)
+ 1

)
(1− α)nγ

(1− q2 + nγ)1−α

}
,

which can be negative if (1− α)αδ(1− q3) < (1− q2 + nγ)1−α − (1− α)nγ.

When et = 1 and λt is large, we have

− (A(
σ

n
))−1 1

λ2
t

[
((1− q2 − wn) +

nγ

λt
)1−α − ρ(1− q2 +

nγ

λt
)1−α

]−1(
w +

γ

λt

)−1

·{
1

αδ(1− q3)
+

(
zh(1) + 1

λt

αδ(1− q3)
+ 1

)
ρ(1− q2 + nγ

λt
)−α(1− α)nγ

(1− q2 − wn)1−α − ρ(1− q2 + nγ
λt

)1−α

}
,

which is clearly negative.

We repeat these steps in Equation (23). The derivative with respect to et is

(
αδ(1− q3)A

(σ
n

)α)−1

zh′(et)(1− q2 − wnet +
nγ(1− et)

λt
)α
(
w +

γ

λt

)−1
zh′(et)

λ2
t

·{
δ(1− q3)(1− q2)

(1− q2 + nγ
λt+1

)2

nγλt
λt+1

zh′(et) +

(
δ(1− q3)(1− q2)

1− q2 + nγ
λt+1

+
bn

1− α

)
·h′′(et)

h′(et)
−

αn
(
w + γ

λt

)
1− q2 − wnet + nγ(1−et)

λt

}.
When et = 0 and λt = 1, we have(

αδ(1− q3)A
(σ
n

)α)−1

zh′(0)
(
1− q2 − wn

)α ·{
δ(1− q3)(1− q2)

(1− q2 + nγ)2
nγzh′(0) +

(
δ(1− q3)(1− q2)

1− q2 + nγ
+

bn

1− α

)[
h′′(0)

h′(0)
− αn(w + γ)

1− q2 + nγ

]}
.
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When et = 1 and λt is large, we have(
αδ(1− q3)A

(σ
n

)α)−1

zh′(1)
(
1− q2 − wn

)α ·{
δ(1− q3)(1− q2)

(1− q2 + nγ
λt+1

)2

nγ

λ2
t+1

zh′(1) +

(
δ(1− q3)(1− q2)

1− q2 + nγ
λt+1

+
bn

1− α

)[
h′′(1)

h′(1)
− αn(w + γ)

1− q2 − wn

]}
.

Both can be negative if h is concave or sufficiently weakly convex.

Finally, we examine the derivative of the right hand side of (23) with respect to λt:

(
αδ(1− q3)A

(σ
n

)α)−1

(1− q2 − wnet +
nγ(1− et)

λt
)α
(
w +

γ

λt

)−1
zh′(et)

λ2
t

·{
δ(1− q3)(1− q2)

(1− q2 + nγ
λt+1

)2

nγλ2
t

λ2
t+1

zh′(et) +

(
δ(1− q3)(1− q2)

1− q2 + nγ
λt+1

+
bn

1− α

)
·[(

w +
γ

λt

)
γ − α

(
1− q2 − wnet +

nγ(1− et)
λt

)−1

nγ(1− et)

]}
.

Plugging in et = 0 and λt = 1 yields

(αδ(1− q3)A
(σ
n

)α
)−1(1− q2 + nγ)α (w + γ)−1 zh′(0)·{

δ(1− q3)(1− q2)

(1− q2 + nγ)2
nγzh′(0) +

(
δ(1− q3)(1− q2)

1− q2 + nγ
+

bn

1− α

)[
γ

w + γ
− αnγ

1− q2 + nγ

]}
,

where 1− q2 > αwn is a sufficient condition for the derivative to be positive.

When et = 1 and λt is large, the derivative is

(
αδ(1− q3)A

(σ
n

)α)−1

(1− q2 − wn)α
(
w +

γ

λt

)−1
zh′(1)

λ2
t

·{
δ(1− q3)(1− q2)

(1− q2 + nγ
λt+1

)2

nγλ2
t

λ2
t+1

zh′(1) +

(
δ(1− q3)(1− q2)

1− q2 + nγ
λt+1

+
bn

1− α

)[(
w +

γ

λt

)−1

γ

]}
,

which is positive.

In summary, we find that the derivative of (22) w.r.t. et is positive and that w.r.t. λt is

negative. The opposite holds for (23), given the previously stated conditions. Equating
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the total derivatives yields

[+] · det + [−] · dλt = [−] · det + [+] · dλt,

where [+] and [−] stand for the respective derivatives and their signs. It follows that

det/dλt > 0.

In the cases where (23) holds as a strict inequality, we can make the following statements.

If the right hand-side of (23) is larger than the left-hand side, then det/dλt is larger than

some positive value. In the opposite case, det/dλt is smaller than this positive value,

theoretically allowing for a negative relationship. Yet, if (23) holds almost as an equality,

we can conclude from continuity considerations that the derivative will be positive.

Appendix 2. The Extreme Allocations of St(It)

In what follows, it will be useful to rewrite (35) in the form[
1 +

βn

1− q2
t (It)

]
c2
t +

st
1− q2

t (It)
+ ρF

[
λt +

γn

1− q2
t (It)

,
σt(It)

1− q2
t (It)

· st−1

n

]
≤ F

[(
1− wnet

1− q2
t (It)

)
λt +

γn(1− et)
1− q2

t (It)
,

σt(It)

1− q2
t (It)

· st−1

n

]
, It = 0, 1. (47)

Allocation A: c2
t = et = 0. Given It, st is maximal. From (35), we have st = (1 −

ρ)F

[
(1− q2

t (It))λt + nγ,
σt(It)st−1

n

]
, It = 0, 1. Given It, an increase in q2

t (It) will induce

A to shift towards the origin O, as depicted by the point A′. Given that q2
t (1) > q2

t (0),

the allocations A and A ′ also represent those ruling under peace and war, respectively, in

period t.

Allocation B: c2
t = 0, et = 1. Given It and maximum (full-time) investment in education,

st is maximal. We have, for It = 0, 1,

st = F

[
(1− q2

t (It)− wn)λt,
σt(It)st−1

n

]
− ρF

[
(1− q2

t (It))λt + nγ,
σt(It)st−1

n

]
.

We begin by noting that the outer boundary of S(It) in the plane defined by c2
t = 0, AB,

is strictly concave in virtue of the strict concavity of F in each argument.
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We next establish conditions under which the said value of st is positive, i.e., B lies to the

right of G on the plane defined by et = 1. From (47), we have, for It = 0, 1,

(1− q2
t (It)− wn)−1st =F

[
λt,

σt(It)

1− q2
t (It)− wn

· st−1

n

]
− ρF

[
λt +

n(wλt + γ)

1− q2
t (It)− wn

,
σt(It)

1− q2
t (It)− wn

· st−1

n

]
.

The input of human capital in the second term on the r.h.s. is larger in the proportion

n(w + γ/λt)/(1 − q2
t (It) − wn). This proportion is maximal when λt = 1. Since F is

homogeneous of degree one, λt = 1 will therefore yield the best chance that st < 0, as

intuition would suggest. Now, w is fairly small, say about 1/20, and γ would be about 0.6.

In such a state of economic backwardness, n = 3/2 and q2
t = 0.2 are broadly plausible, so

that the said proportion of inputs of human capital would be about 4/3. Hence,

λt +
n(wλt + γ)

1− q2
t (It)− wn

≤ 7λt/3, ∀λt.

Observe, however, that F is strictly concave in each argument alone and ρ is unlikely to

exceed 1/3. Comparing the two terms on the r.h.s., inputs of human capital in the second

are slightly more than double those in the first, but the share in the resulting output

is at most one-third. It follows that, for plausible values of parameters and demographic

variables, st(c
2
t = 0, et = 1) > 0 for all values of λt, and points B and B ′ are correspondingly

depicted in the diagram.

An increase in q2
t (It) induces a larger movement in B than in A. For the said difference in

st is

F

[
(1− q2

t (It))λt + nγ,
σt(It)st−1

n

]
− F

[
(1− q2

t (It)− wn)λt + nγ,
σt(It)st−1

n

]
, It = 0, 1,

which is increasing in q2
t (It) in virtue of the strict concavity of F in each argument.

If the cross-derivative F12 is sufficiently small, it is seen that the same claim will hold

concerning a comparison of peace and war, respectively.
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Allocation C: et = st = 0. Given It, c
2
t is maximal. From (35), we have

c2
t =

1− q2
t (It)

1− q2
t (It) + βn

· (1− ρ)F

[
λt +

nγ

1− q2
t (It)

,
σt(It)

1− q2
t (It)

· st−1

n

]
, It = 0, 1.

Suppose the ratio of survival rates is fixed for each It. Then

dc2
t

dq2
t (It)

=
(1− ρ)n

(1− q2
t (It) + βn)2

·
[
−βF +

γ(1− q2
t (It) + βn)F1

1− q2
t (It)

]
, It = 0, 1,

and (dc2
t/dq

2
t (It)) et=st=0 < 0 iff

β >
γ(1− q2

t (It) + βn)F1

(1− q2
t (It))F

.

The input of human capital is λt +nγ/(1− q2
t (It)). Its imputed share in output is 1−α ≡

(λt + nγ(1− q2
t (It))

−1)F1/F ), so the foregoing inequality can be written

β >
(1− α)γ(1− q2

t (It) + βn)

(1− q2
t (It))λt + γn

,

which certainly holds for all sufficiently large λt. The denominator takes a minimum under

backwardness (λt = 1), when the inequality becomes

(β − (1− α)γ)(1− q2
t (It)) + αβγn > 0.

Since both inputs are necessary in production, F is strictly concave in both arguments and

α ∈ (0, 1). It is plausible that α < 0.5, but n ≥ 1, so that the inequality may hold even if

β < γ, as in Table 1, for which constellation the inequality holds.

Under the assumption that the ratio of survival rates is fixed for each It, we have established

that the points C and C ′ relate to each other as depicted in the figure, which reveals that

there is damage even under a mild mortality shock, given It. If the ratio of survival rates

is the same in both states, the points C and C ′ also represent the respective allocations in

peace and war.

Allocation D: et = 1, st = 0. Given It and maximum investment in (full-time) education,

c2
t is maximal. Analogously to AB, the outer boundary of S in the plane defined by s2

t = 0,

CD, is strictly concave in virtue of the strict concavity of F in each argument.
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Given et and It, all pairs (c2
t , st) on the outer frontier of S are linearly related and inde-

pendent of et : dst = −(1 − q2
t (It) + βn) dc2

t . Hence, AC is parallel to BD, and A ′C ′ to

B ′D ′. An increase in q2
t (It) makes c2

t cheaper relative to st; but since C ′ lies closer to O

than does C, it follows that D ′ lies closer to G than does D. The same holds when the

ratio of survival rates is the same in both states.

Appendix 3. Analysis for the Simulations

The optimization problem under uncertainty is specified by (33)-(35). The term u(c2
t ) in

the objective function is unchanged, but its derivatives with respect to st and et require

close attention. We have

∂u(c3
t+1(It+1))

∂st
= u′(c3

t+1(It+1)) · ρn

(1− q2
t (It))(1− q3

t+1(It+1))

σt+1(It+1)

n

F2[lt+1, σt+1(It+1)st/n]

∂u(c3
t+1(It+1))

∂et
= u′(c3

t+1(It+1)) · ρn

(1− q2
t (It))(1− q3

t+1(It+1))
(1− q2

t+1(It+1))

zh′(et)λtF1[lt+1, σt+1(It+1)st/n].

After defining Et[xt+1] = πt+1xt+1(0)+(1−πt+1)xt+1(1) for some variable x and substituting

for the above derivatives, we obtain the following two equations:

δρ

1− q2
t (It)

Et
[
u′(c3

t+1)σt+1(It+1)F2[lt+1, σt+1(It+1)st/n]
]

=
u′(c2

t )

1− q2
t (It) + βn

δEt

[
u(c3

t+1)ρn(1− q2
t+1(It+1))

1− q2
t (It)

F1[lt+1, σt+1(It+1)st/n]

]
zh′(et)λt

+ b̃nv′(λt+1)zh′(et)λt =
u′(c2

t )(wnλt + nγ)

(1− q2
t (It) + βn)

F1[lt, σt(It)st−1/n],

where b̃ = b
πt+1(1−q2t+1(0))+(1−πt+1)(1−q2t+1(1))

(1−q2t (It))
= b · Et[1− q2

t+1]/(1− q2
t ).
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In the next step, we substitute the following expressions into the two equations:

u′(c2
t (It)) =

A(l1−αt − ρl1−αt )
(
σt(It)st−1

n

)
− st

1− q2
t (It) + βn

−1

,

u′(c3
t+1(It+1)) =

(
ρn

(1− q2
t (It))(1− q3

t+1(It+1))
F [lt+1, σt+1(It+1)st/n]

)−1

.

Hence, the first equation can be written as

A(l1−αt − ρl1−αt ) (σt(It)st−1/n)α − st =
st

αδEt[1− q3
t+1]

,

which is equivalent to

A[(1− q2
t (It)− wnet)1−α − ρ(1− q2

t (It))
1−α]

(σt
n

)α
ζ−αt

= ζ−1
t+1

zh(et)

αδEt[1− q3
t+1(It+1)]

+ ζ−1
t+1,

where ζt = λt/st−1 ∀t. The second equation can be written as

δ(1− α)zh′(et)Et[1− q3
t+1(It+1)]

1

λt+1

+ b̃nv′(λt+1)zh′(et)

=

αδ

st
Et[1− q3

t+1(It+1)]wnF1[lt, σt(It)st−1/n],

or equivalently as(
Et[1− q3

t+1(It+1)]δ +
b̃n

1− α

)
ζ−1
t+1 =

αδwn

zh′(et)
Et[1− q3

t+1(It+1)]A−1(1− q2
t (It)− wnet)−α (σt(It)/n)α ζ−αt .
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