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Varying Coefficients in Linear Models

This paper describes a moments estimator for a standard state-space model with 

coefficients generated by a random walk. A penalized least squares estimation is linked 

to the GLS (Aitken) estimates of the corresponding linear model with time-invariant 

parameters. The VC estimates are moments estimates. They do not require the disturbances 

to be Gaussian, but if they are, the estimates are asymptotically equivalent to  maximum 

likelihood estimates. In contrast to Kalman filtering, no specification of an initial state or 

an initial covariance matrix is required. While the Kalman filter is one sided, the VC filter is 

two sided and therefore uses more of the available information for estimating intermediate 

states.. Further, the VC filter has a clear descriptive interpretation.
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1 Introduction

�is paper describes and discusses an estimator for a linear time series model
with time-varying coe�cients. Such a model, the variable coe�cients model, or
“VC model” for short, generalizes the standard linear model. �e standard model
assumes that the coe�cients giving the in�uence of the independent variables on
the dependent variable remain constant. In the VC model, these coe�cients are
permitted to change over time.

�eVCmodel has been initially proposed for dealing empirically with economic
theories that are subject to a ceteris paribus clause (Schlicht, 1977, ch.4). Schlicht
(1989) has proposed an estimation method – the VC method – which has been
embodied in some freely available so�ware packages (Schlicht 2005b, 2005c
Ludsteck 2004; 2018). Some simulations in Schlicht and Ludsteck (2006) have
shown that the VC is preferable for studying the speci�c class of models for which
it was designed.
In the meanwhile, VC has found a number of applications in various settings,

mainly dealing with structural change, such as the recent decoupling of growth and
pollution in the wake of global warming, the changes occurring in �nancial markets
a�er the �nancial crisis of 2008, dri�s in Okun’s Law over time, and more. �e
references to contributions that have employed VC given at the end of the paper list
some of these studies.

�e following sections introduce the model and describe the “criteria” or
“penalty” approach that permits to estimate the time-paths of the coe�cients in a
purely descriptive way (Sections 2 to 4). Based on that, a moments estimator will
be proposed (Sections 5 to 8). If it is assumed additionally that the disturbances
are normally distributed, a maximum likelihood estimator can be given (Sections 9
and 10). It is shown that this estimator coincides with the moments estimator for
su�ciently long time series (Section 11).
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2 �e Linear �eoretical Model and its Empirical
Application

Consider a theory stating that the dependent variable y as a linear function of some
independent variables x1, x2, ... , xn:

y = a1x1 + a2x2 + ... + anxn (2.1)

�e coe�cients a1, a2, ... , an give the in�uence of the independent variables.
If we have T observations yt , x1,t , x2,t ,. . .xn,t with t = 1, 2, ... T denoting the time

of an observation, we can try to estimate the theoretical coe�cients a1, a2, ... , an
by a standard linear regression. In order to do that, we have to add an error term
ut to capture discrepancies of the empirical from the theoretical regularity due to
measurement errors etc. and obtain

yt = a1x1,t + a2x2,t + ... + anxn,t + ut , t = 1, 2, ...T . (2.2)

It appears, however, improbable, that outside in�uences not captured in the
theoretical model (and theoretically held constant under a ceteris paribus clause)
a�ect only the disturbance term, and not the coe�cients themselves – think of
changes in technology, preferences, market structure, and the composition of
aggregates over time. �ese outside in�uences may a�ect the coe�cients themselves,
and they might change over time.

�e problem of possibly time-varying coe�cients was the subject of the famous
Keynes-Tinbergen controversy around 1940.1 While Tinbergen (1940, p. 153)
defended the use of regression analysis with the argument that in “many cases
only small changes in structure will occur in the near future”, Keynes (1973, p. 294)
objected that “the method requires not too short a series whereas it is only in a short
series, in most cases, that there is a reasonable expectation that the coe�cients will
be fairly constant.”
It appears that both arguments are correct. �e VC model takes care of both
1See Tinbergen (1940), Keynes (1939), Keynes (1973, pp. 285–321).
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by assuming that the coe�cients change only slowly over time: �ey are highly
auto-correlated. �is is formalized by a random walk (Cooley and Prescott 1973,
Schlicht 1973, Athans 1974). If ai ,t denotes the state of coe�cient ai at time t, it is
assumed that

ai ,t+1 = ai ,t + vi ,t (2.3)

with the disturbance term vi ,t of expectation zero and with variance σ2i . �e
assumption of expectation zero formalizes the idea that “the coe�cients will be
fairly constant” in the short run, while the variance σ 2i is a measure of the stability
of coe�cient i and is to be estimated. For σ2i = 0 for some i , the case of a constant
(time-invariant) coe�cients is covered as well. As a consequence, the standard
linear model is replaced by

yt = a1,tx1,t + a2,tx2,t + ... + an,txn,t + ut
E {ut} = 0, E {u2t} = σ 2 (2.4)

ai ,t+1 = ai ,t + vi ,t ,
E {vi ,t} = 0, E {v2i ,t} = σ 2i (2.5)

�e VC method estimates the expected time-paths of the coe�cients. It can be
viewed as a straightforward generalization of the method of least squares:

● While the method of ordinary least squares selects estimates that minimize
the sum of squared disturbances ∑Tt=1 u2t in the equation, VC selects
estimates that minimize the sum of squared disturbances in the equation
and a weighted sum of squared disturbances in the coe�cients ∑Tt=1 u2t +
γ1∑Tt=2 v21,t +γ2∑Tt=2 v22,t + ... +γn∑Tt=2 v2n,t , where the weights for the changes
in the coe�cients γ1, γ2, ... , γn are determined by the inverse variance ratios,
i.e. γi = σ 2/σ 2i . In other words, it balances the desiderata of a good �t and
parameter stability over time.

● Estimation can proceed by focusing on some selected coe�cients and
keeping the remaining coe�cients constant over time. �is is done by
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keeping the corresponding variances σ2i close to zero, rather than estimating
them. (If all coe�cients are frozen in this manner, the OLS result is
obtained.)

● �e time-averages of the regression coe�cients are GLS estimates of the
corresponding regression with �xed coe�cients, i.e. 1T ∑t at = aGLS .

● �e VCmethod does not require initial values for the initial state and the
initial variances. Rather all states and variances are estimated in an integrated
uni�ed procedure. �is is an advantage over Kalman �ltering and of some
importance for shorter time series.

● All estimates are moments estimates. It is not necessary to presuppose
Gaussian disturbances.

● For increasing sample sizes T and under the assumption that all disturbances
are normally distributed, the moments estimates approach the maximum
likelihood estimates.

3 Notation and Basic Assumptions

All vectors are conceived as column vectors, and their transposes are indicated
by an apostrophe. �e observations at time t are x′t =(x1,t , x2,t , ..., xn,t) and yt for
t = 1, 2, .. , T . We write

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

y1
y2
.
.
yT

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x′1
x′2
.
.
x′T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x′1 0
x′2
.
.

0 x′T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

order T T × n T × Tn
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at =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1,t
a2,t
.
.
an,t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1
a2
.
.
aT

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, vt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

v1,t
v2,t
.
.
vn,t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

v1
v2
v3
.
.
vT−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

order n Tn n (T − 1) n

We write further

Σ = diag

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

σ21
σ22
.
.

σ2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

σ 21 0 0
0 σ22

.
. 0

0 0 σ2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

order n n × n

and de�ne

p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 1 0 0
0 −1 1 0

. .
. . 0

0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, P = p⊗ In =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−In In 0
−In In

. .
. .

0 −In In

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

order (T − 1) × T (T − 1) n × Tn

with In denoting the identity matrix of order n.
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�emodel is obtained by writing equations (2.4) and (2.5) in matrix form:

�e model

y = Xa + u, E {u} = 0, E {uu′} = σ2IT (3.1)

Pa = v , E {v} = 0, E {vv′} = V = IT−1 ⊗ Σ (3.2)

Note that the explanatory variables X are taken as predetermined, rather than
stochastic.
Regarding the observations X and y we assume that a perfect �t of the model to

the data is not possible:

�is assumption rules out the (trivial) case that the standard linear model (2.2) �ts
the empirical data perfectly, a case that cannot reasonably be expected to occur
in practical applications. Further, the assumption implies that the number of
observations exceeds the number of coe�cients to be estimated:

T > n. (3.3)

Assumption (“No Perfect Fit”).

Pa = 0 implies y ≠ Xa. (3.4)

4 Least Squares

In a descriptive spirit, the time-paths of the coe�cients can be determined by
following the penalized least square approach, where some criteria are employed
that formalize some descriptive desiderata.2 In the case at hand, the desiderata are
that the model �ts the data well and that the coe�cients change only slowly over

2For the penalized least squares approach, see Green and Silverman (2000). �e approach was
introduced byWhittaker (1923), Henderson (1924) and Leser (1961). It has been used also by Hodrick
and Prescott (1997), and has been further developed by Leser (1963), Schlicht (1981), Schlicht and
Pauly (1983), Schlicht (1984) and Schlicht (2005a).
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time – u and v ought to be as small as possible. �e sum of the squared errors u′u
is taken as a criterion for the goodness of �t of equation (3.1), the weighted sum of
the squared changes of the coe�cients v′ivi over time give criteria for the stability
of the coe�cients over time. �e combination of all these criteria gives an overall
criterion that combines the desiderata of a good �t and stability of coe�cients over
time. �e weights (γ1, γ2, .. , γn) give the relative importance of the stability of the
coe�cients over time, where weight γi relates to coe�cient ai . For the time being,
these weights are taken as given but will later be estimated, too.
Write

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

γ1 0 . 0
0 γ2 0 .
. 0 . .

. . 0
0 0 γn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.1)

and

G = IT−1 ⊗ Γ. (4.2)

Adding the sum of squares u′u and the weighted sum of squares v′Gv gives the
overall criterion

Q = u′u + v′Gv (4.3)

�is expression is to be minimized under the constraints given by the model (3.1),
(3.2) with the observations X and y

u = y − Xa (4.4)

v = Pa. (4.5)

�is determines the time-paths of the coe�cients a that optimize this criterion.
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Hence we can write

Q = (y − Xa)′ (y − Xa) + a′P′GPa (4.6)

�e weighted sum of squares Q is the sum of two positive semi-de�nite quadratic
forms. �e “no perfect �t” assumption (3.4) rules out the case that Q can be
zero. Hence Q is positive de�nite and of full rank. �e �rst order condition for a
minimizing a is

∂Q
∂a

= −2Xy + 2 (X′X + P′GP) a = 0 (4.7)

and the second order condition is that the Jacobian

∂2Q
∂a∂a′

= 2 (X′X + P′GP) (4.8)

be positive de�nite, which is the case. Solving (4.7) for a and plugging this into
(4.4) and (4.5) gives the estimates

aLS = (X′X + P′GP)−1 X′y (4.9)

uLS = (IT − X (X′X + P′GP)−1 X′) y (4.10)

vLS = P (X′X + P′GP)−1 X′y (4.11)

where the subscript LS stands for “least squares”.

5 Orthogonal Parametrization

For purposes of estimation we need a model that explains the observation y as
a function of the observations X and the random variables u and v. �is would
permit calculating the probability distribution of the observations y contingent on
the parameters of the distributions of u and v, viz. σ2 and Σ. �e true model does
not permit such an inference, though, because the matrix P is of rank (T − 1) n
rather than of rank Tn and cannot be inverted. Hence v does not determine a
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unique a but rather the set of solutions

A ∶= {a = P̃v + Zβ∣ β ∈ Rn} . (5.1)

with β as a shi� parameter and

P̃ ∶= P′ (PP′)−1 (5.2)

of order Tn × (T − 1) n as the right-hand pseudo-inverse of P. For any v we have
a ∈ A⇔ Pa = v. Hence equation (3.1) and the set (5.1) give equivalent descriptions
of the relationship between a and v.
De�ne further the Tn × n matrix

Z ∶=

⎛
⎜⎜⎜⎜⎜
⎝

In
In
.
In

⎞
⎟⎟⎟⎟⎟
⎠

. (5.3)

It is orthogonal to P:

PZ = 0

and the square matrix (P′, Z) is of full rank. Note further that

Z′Z = T ⋅ In , P′ (PP′)−1 P + ZZ′ = ITn . (5.4)

�e last equality is implied by the identity

( P′ Z )
⎛
⎝
⎛
⎝
P
Z′
⎞
⎠
( P′ Z )

⎞
⎠

−1
⎛
⎝
P
Z′
⎞
⎠
= ITn .
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Regarding the matrices P, P̃, and Z we have

PP̃ = P̃′P′ = I(T−1)n
P̃P = P′P̃′ = ITn − ZZ′

Z′P̃ = P̃′Z = 0.
(5.5)

In view of (5.1), any solution a to Pa = v can be written as

a = P̃v + Z β (5.6)

for some β ∈ Rn. Equation (3.1) can be re-written as

y = u + XP̃v + XZβ. (5.7)

�e model (5.6), (5.7) will be referred to as the equivalent orthogonally
parameterized model. It implies the true model (3.1), (3.2). It implies, in particular,
that at is a random walk even though at depends, according to (5.6), on past and
future realizations of vt .

�e formal parameter β has a straightforward interpretation. Pre-multiplying
(5.6) by Z′ gives

Z′a = Z′Zβ = Tβ

and therefore

β = 1
T

T

∑
t=1
at .

Hence β gives the averages of the coe�cients ai ,t over time.
Equation (5.7) permits calculating the density of y dependent upon the

parameters of the distributions of u and v and the formal parameters β. In a second
step, all these parameters – σ2, Σ, and β – can be determined bymoments estimators
that will be derived in Section 8.

�e orthogonal parametrization, proposed in Schlicht (1985, Sec. 4.3.3), entails
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some advantages with respect to symmetry and mathematical transparency, as
compared to more usual procedures, such as parametrization by initial values. It
permits to derive our moments estimator that does not require normally distributed
disturbances, and to write down an explicit likelihood function for the case of
normally distributed disturbances that permits estimation of all relevant parameters
in a uni�ed one-shot procedure.

�e formal parameter vector β relates directly to the coe�cient estimates of a
standard generalized least squares (GLS, Aitken) regression. Equation (5.7) can
be interpreted as a standard regression for this parameter vector with the matrix
x = XZ giving the explanatory variables:

y = xβ +w (5.8)

and the disturbance

w = XP̃v + u. (5.9)

It has expectation zero

E {w} = 0 (5.10)

and covariance
E {ww′} = XP̃VP̃′X′ + σ2IT =W . (5.11)

�e Aitken estimate βA satis�es

x′W−1 (y − xβA) = 0 (5.12)

or
βA = (x′W−1x)−1 x′W−1y. (5.13)

where the subscript A stands for “Aitken”. As x = XZ andW = XP̃VP̃′X′ + σ2IT ,
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equations (5.12) and (5.13) can be written as

Z′X′ (XP̃VP̃′X′ + σ2IT)
−1 (y − XZβA) = 0 (5.14)

and equation (5.13) gives rise to

βA = (Z′X′ (XP̃VP̃′X′ + σ 2IT)
−1
XZ)

−1
Z′X′ (XP̃VP̃′X′ + σ 2IT)

−1
y. (5.15)

6 �e Filter

�is section derives the VC �lter which gives the expectation of the coe�cients a
for given observations X and y, a given shi� parameter β, and given variances σ2

and Σ.
For given β and X, the vectors y and a can be viewed as realizations of random

variables determined jointly by the system (5.6), (5.8) as brought about by the
disturbances u and v:

⎛
⎝
a
y
⎞
⎠
=
⎛
⎝
Z
XZ
⎞
⎠

β +
⎛
⎝
P̃ 0
XP̃ IT

⎞
⎠
⎛
⎝
v
u
⎞
⎠

�e covariance is

E
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a
y
⎞
⎠
( a′ y )

⎫⎪⎪⎬⎪⎪⎭
=
⎛
⎝
P̃ 0
XP̃ IT

⎞
⎠
⎛
⎝
V 0
0 σ2IT

⎞
⎠
⎛
⎝
P̃′ P̃′X′

0 IT

⎞
⎠

=
⎛
⎝
P̃V P̃′ P̃V P̃′X′

XP̃VP̃′ XP̃VP̃′X′ + σ2IT

⎞
⎠
.

�e marginal distribution of y is as given by (5.8) and (5.11). On this basis, we take
our estimate of a as

aA = ZβA + P̃V P̃′X′ (XP̃VP̃′X′ + σ 2IT)
−1 (y − XZβA) . (6.1)

which is the expectation of a for the case that u and v are Gaussian and y, β, σ 2, and
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Σ are given. (It will turn out later on that aA is the expectation of a for non-Gaussian
disturbances as well, see equation (7.10) below.)
Note that the variance-covariance matrix of w, as given in equation (5.11), tends

to σ 2IT if the the variances σ 2i go to zero, and equation (5.7) approaches the standard
unweighted linear regression. In this sense, the OLS regression model is covered as
a special limiting case by the model discussed here.

7 Least Squares and Aitken

�e following theorem states that the least squares estimator aLS and the Aitken
estimator aA coincide if the weights are given by the variance ratios.

Claim 1. G = σ2V−1 implies aLS = aA.

Proof. Consider �rst the necessary conditions for a minimum of (4.3). �e �rst-
order condition (4.7) de�nes aLS with weights G = σ2V−1 uniquely and can be
written as

(X′X + σ2P′V−1P) aLS = X′y (7.1)

It will be shown that (6.1) implies

(X′X + σ 2P′V−1P) aA = X′y (7.2)

which will establish the proposition.
Pre-multiplication of (6.1) by (X′X + σ2P′V−1P) gives

(X′X + σ2P′V−1P) aA = (X′X + σ 2P′V−1P)ZβA +

+(X′X + σ 2P′V−1P) P̃V P̃′X′ (XP̃VP̃′X + σ2IT)
−1 ⋅

⋅ (y − XZβA) .
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Because of PZ = 0 this can be written as

(X′X + σ 2P′V−1P) aA = X′XZβA +

+X′XP̃VP̃′X′ (XP̃VP̃′X + σ2IT)
−1 (y − XZβA)

+σ2P′P̃′X′ (XP̃VP̃′X + σ2IT)
−1 (y − XZβA) .

Adding and subtracting σ2X′ (XP̃VP̃′X + σ2IT)
−1 (y − XZβA) and using P′P̃′ =

(ITn − ZZ′) results in

(X′X + σ2P′V−1P) aA = X′XZβA +

+X′ (XP̃VP̃′X′ + σ 2IT) (XP̃VP̃′X + σ2IT)
−1 (y − XZβA)

−σ 2X′ (XP̃VP̃′X + σ 2IT)
−1 (y − XZβA)

+σ 2 (ITn − ZZ′)X′ (XP̃VP̃′X + σ 2IT)
−1 (y − XZβA)

which reduces to

(X′X + σ2P′V−1P) aA = X′XZβA +
+X′ (y − XZβA)
−σ 2X′ (XP̃VP̃′X + σ2IT)

−1 (y − XZβA)

+σ2X′ (XP̃VP̃′X + σ2IT)
−1 (y − XZβA)

−σ2ZZ′X′ (XP̃VP̃′X + σ2IT)
−1 (y − XZβA) .

According to (5.14), the last term is zero and we obtain

(X′X + σ2P′V−1P) aA = X′y.

�is shows that the least squares estimator aLS and the Aitken estimator aA
coincide.

As a consequence of Claim 1, the least-squares estimates for u, v, and w and their
Aitken counterparts coincide for G = σ 2V−1. We need not distinguish them and
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denote all our estimates by circum�ex:

aA = aLS = â = Zβ̂ + P̃V P̃′X′ (XP̃VP̃′X′ + σ 2IT)
−1 (y − XZβ̂) (7.3)

uA = uLS = û = (IT − X (X′X + σ 2P′V−1P)−1 X′) y (7.4)

vA = vLS = v̂ = P (X′X + P′σ2P′V−1P)−1 X′y (7.5)

wA = wLS = v̂ = XP̃v̂ + û. (7.6)

For the sake of completeness and later use, the following observation is added:

Claim 2. G = σ 2V−1 implies Q̂ = σ 2ŵ′W−1ŵ . In other words: the sum of squared
deviations weighted by the variance ratios σ 2

σ 21
, σ 2

σ 22
, ... , σ 2

σ 2n
equals the weighted sum of

squares (the squared Mahalanobis distance) in the Aitken regression.

Proof. As v̂ = XP̃v̂ + û, we have

Q̂ = û′û + σ2 ˆ̂v′V−1 ˆ̂v

= û′ (ŵ − XP̃v̂) + σ 2v̂′V−1v̂

= û′ŵ − û′XP̃v̂ + σ2v̂′V−1v̂

= û′ŵ − (û′XP̃ − σ2v̂′V−1) v̂
= û′ŵ − (û′XP̃ − σ2v̂′V−1)Pâ
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With (7.3) and (5.8) this gives

Q̂ = û′ŵ − (û′XP̃ − σ2v̂′V−1)P (Zβ̂ + P̃V P̃′X′W−1ŵ)

= û′ŵ − (û′XP̃ − σ2v̂′V−1)PP̃V P̃′X′W−1ŵ

= û′ŵ − (û′XP̃ − σ2v̂′V−1)VP̃′X′W−1ŵ

= û′ŵ − (û′XP̃VP̃′X′ − σ 2v̂′P̃′X′)W−1ŵ

= û′ŵ − û′XP̃VP̃′X′W−1ŵ + σ 2v̂′P̃′X′W−1ŵ

= û′ŵ − û′ (XP̃VP̃′X′ + σ 2IT − σ 2IT)W−1ŵ + σ 2v̂′P̃′X′W−1ŵ

= û′ŵ − û′ (XP̃VP̃′X′ + σ 2IT)W−1ŵ + σ 2û′W−1ŵ + σ 2v̂′P̃′X′W−1ŵ

= û′ŵ − û′ŵ + σ2û′W−1ŵ + σ2v̂′P̃′X′W−1ŵ

= σ 2 (û′ + v̂′P̃′X′)W−1ŵ

and �nally

Q̂ = σ 2ŵ′W−1ŵ .

Hence the weighted sum of squaresQ equals the squaredMahalanobis distance.

Consider now the distribution of â. �e matrix (X′X + σ 2P′V−1P), henceforth
referred to as the “system matrix”, will be denoted byM:

M = (X′X + σ2P′V−1P) . (7.7)

With this, the normal equation (7.2), which de�nes the solution for the vector of
the coe�cients â can be written as

M â = X′y. (7.8)
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With (3.1) and (7.7) we obtain

â = M−1X′ (Xa + u)
= M−1 (X′Xa + X′u + σ 2P′V−1Pa − σ2P′V−1Pa)

= a +M−1 (X′u − σ2P′V−1v) . (7.9)

Given a realization of the time-path of the coe�cients a, the estimator â is
distributed with mean

E {â ∣a} = a (7.10)

and covariance

E {(a − â) (a − â)′} = M−1 ( X′ −σ2P′V−1 )
⎛
⎝

σ2IT 0
0 V

⎞
⎠
⎛
⎝

X
−σ 2V−1P

⎞
⎠
M−1

which reduces to

E {(a − â) (a − â)′} = M−1 ( σ 2X′X +σ4P′V−1P )M−1

and �nally to
E {(a − â) (a − â)′} = σ2M−1. (7.11)

�e system matrix (7.7) is determined by the observations X, the variance σ 2 and
the variances Σ. Equation (7.11) gives the precision of our estimate which is directly
related to the system matrixM. �e next step is to determine the variance σ2 and
the variances Σ.

8 Moments Estimation of the Variances

�emoments estimator that will be developed in this section has, for any sample
size, a straightforward interpretation: It is de�ned by the property that the variances
of the disturbances in the estimated coe�cients equal their expectations. It has, thus,
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a straightforward connotation even in shorter time series and does not presuppose
that the perturbations u and v are normally distributed. It will be shown later that
the moments estimators approach the respective maximum likelihood estimators
in large samples if the disturbances are normally distributed. Hence the intuitive
appeal of the moments estimator carries over to the likelihood estimator, and the
attractive large-sample properties of the likelihood estimator carry over to the
moments estimator.
In the following we denote the estimated coe�cients by â and the

estimated perturbations by û and v̂. For some variances σ 2 and ∑ =
diag ( σ 21 , σ22 , . . , σ2n ), the estimated coe�cients â along with the estimated
disturbances û and v̂ are random variables brought about by realizations of the
random variables u and v. Consider û = y − Xâ = X (a − â) + u �rst. With (7.9) we
obtain

û = −X (M−1 (X′u − σ2P′V−1v)) + u
= (IT − XM−1X′)u + σ2XM−1P′V−1v .

Regarding v̂, consider the vectors v̂′i = ( v̂2i ,1, v̂2i ,3, . . , v̂2i ,T−1 ) for i =
1, 2, .. , n, that is, the disturbances in the coe�cients âi for each coe�cient separately.
�ese are obtained as follows.
Denote by ei ∈ Rn the n-th column of an n × n identity matrix and de�ne the

(T − 1) × (T − 1) n-matrix
Ei ∶= IT−1 ⊗ e′i (8.1)

that picks the time-path of the i−th disturbance vi = (vi ,1, vi ,3, ...vi ,T−1)′ from the
disturbance vector v:

vi ∶= Eiv .
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Note that

n

∑
i=1

σ2i E′iEi = V . (8.2)

Pre-multiplying (7.9) with the matrices Ei yields

v̂i = Ei (I(T−1)n − σ 2PM−1P′V−1) v + EiPM−1X′u.

�us û and v̂i are linear functions of the random variables u and v, and their
expected squared errors can be calculated.

Claim 3. For given observations X and y and given variances σ2and Σ, the expected
squared deviations of û and v̂i , i = 1, 2, ... , n are

E {û′û} = σ2 (T − trXM−1X′) (8.3)

E {v̂′i v̂i} = (T − 1) σ 2i − σ2trEiPM−1P′E′i . (8.4)

�is implies that the expected sum of squares is

E {Q̂} = σ 2 (T − n) . (8.5)

Proof. �e expectation of the squared estimated error û is
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E {û′û} = E {(u′ (IT + XM−1X′) + σ 2v′V−1PM−1X′) ⋅
((IT − XM−1X′)u + σ 2XM−1P′V−1v)}

= E {u′ (IT − XM−1X′) (IT − XM−1X′)u} +
+σ4E {v′V−1PM−1X′XM−1P′V−1v}

= trE {u′ (IT − XM−1X′) (IT − XM−1X′)u} +
+σ4trE {v′V−1PM−1X′XM−1P′V−1v} S

= trE {(IT − XM−1X′)uu′ (IT − XM−1X′)} +
+σ4trE {XM−1P′V−1vv′V−1PM−1X′}

= trσ2 (IT − XM−1X′) (IT − XM−1X′) + trσ4XM−1P′V−1PM−1X′

= σ 2tr ((IT − XM−1X′) (IT − XM−1X′) + σ2XM−1P′V−1PM−1X′)

= σ 2tr (I − 2XM−1X′ + XM−1X′XM−1X′ + σ2XM−1P′V−1PM−1X′)

= σ 2tr (IT − 2XM−1X′ + XM−1 (X′X + σ2P′V−1P)M−1X′)

= σ 2tr (IT − XM−1X′)

= σ 2 (T − trXM−1X′) .

In a similar way, the expectation of the squared estimated disturbance in the
i-th coe�cient v̂i is evaluated as
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E {v̂′i v̂i} = E {(u′XM−1P′E′i + v′ (I(T−1)n − σ2V−1PM−1P′)E′i)

⋅ (EiPM−1X′u + Ei (I(T−1)n − σ2PM−1P′V−1) v)}

= E {u′XM−1P′E′iEiPM−1X′u +
v′ (I(T−1)n − σ2V−1PM−1P′)E′iEi (I(T−1)n − σ2PM−1P′V−1) v}

= E {tr (u′XM−1P′E′iEiPM−1X′u +
v′ (I(T−1)n − σ2V−1PM−1P′)E′iEi (I(T−1)n − σ2PM−1P′V−1) v)}

= E {tr (EiPM−1X′uu′XM−1P′E′i +
Ei (I(T−1)n − σ2PM−1P′V−1) vv′ (I(T−1)n − σ2V−1PM−1P′)E′i)}

= tr (σ 2EiPM−1X′XM−1P′E′i) +
tr (Ei (I(T−1)n − σ 2PM−1P′V−1)V (I(T−1)n − σ2V−1PM−1P′)E′i)

= tr (σ 2EiPM−1X′XM−1P′E′i) +
tr (Ei (V − σ 2PM−1P′) (I(T−1)n − σ 2V−1PM−1P′)E′i)

= tr (σ 2EiPM−1X′XM−1P′E′i) +
tr (Ei (V − σ 2PM−1P′)E′i − σ 2Ei (V − σ2PM−1P′)V−1PM−1P′E′i)

= tr (σ 2EiPM−1X′XM−1P′E′i) +
tr (Ei (V − σ 2PM−1P′ − σ2PM−1P′ + σ4PM−1P′V−1PM−1P′)E′i)

= tr (σ 2EiPM−1X′XM−1P′E′i +
Ei (V − σ 2PM−1P′ − σ2PM−1P′ + σ4PM−1P′V−1PM−1P′)E′i)

= tr (Ei ((σ2PM−1 (X′X + σ 2P′V−1P)M−1P′) + V − 2σ2PM−1P′)E′i)

= tr (Ei (V − σ 2PM−1P′)E′i)

= tr (EiVE′i − σ2EiPM−1P′E′i)

= tr ((IT−1 ⊗ e′i) (IT−1 ⊗ Σ) (IT−1 ⊗ ei) − σ2EiPM−1P′E′i)

= tr (IT−1 ⊗ e′iΣei) − σ2tr (EiPM−1P′E′i)

= (T − 1) σ2i − σ2tr (EiPM−1P′E′i) .
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Regarding Q̂ we note that

X′X + σ2P′V−1P = X′X + σ 2
n

∑
i=1

1
σ2i
P′iPi = M

and obtain

E {Q̂} = σ 2 (T − trXM−1X′) +
n

∑
i=1

σ 2

σ 2i
((T − 1) σ2i − σ 2trEiPM−1P′E′i)

= σ 2 (T − trXM−1X′ +
n

∑
i=1
(T − 1) −

n

∑
i=1

σ2

σ2i
trEiPM−1P′E′i)

= σ 2 (T + n (T − 1) − trXM−1X′ − tr(
n

∑
i=1

σ 2

σ2i
EiPM−1P′E′i))

= σ 2 (Tn − T − n − trM−1X′X − tr(M−1
n

∑
i=1

σ 2

σ 2i
P′E′iEiP))

= σ 2 (Tn − T − n − trM−1X′X − tr(M−1
n

∑
i=1

σ2P′V−1P))

= σ 2 (Tn − T − n − trM−1 (X′X − σ2P′V−1P))

= σ 2 (Tn − T − n − trInT)
= σ 2 (T − n) .

�e moments estimators are obtained by selecting variances σ2 and σ2i , i =
1, 2, ..., n such that the expected moments E {û′û} and E {v̂′i v̂i} , i = 1, 2, ..., n are
equalized to the estimatedmoments û′û and v̂′i v̂i , i = 1, 2, ..., n. As both the expected
moments and the estimated moments are functions of the variances, the moments
estimators, denoted by σ̂2 and σ̂2i , i = 1, 2, ..., n, respectively, are de�ned as a �x
point of the system

E {û′û} = û′û

E {v̂′i v̂i} = v̂′i v̂i .
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Alternatively, the moments estimators can be equivalently de�ned as a �x point
of the system:

E {v̂′i v̂i} = v̂′i v̂i
E {Q̂} = Q̂ .

�e implementations Schlicht (2005a, 2005b) use the latter alternative and employ
a gradient process to �nd the solution of the equation system

v̂′i v̂i = (T − 1) σ̂ 2i − σ̂2trEiPM̂−1P′E′i
1

T − n
Q̂ = σ̂ 2.

�is can be written as

σ̂ 2i
σ̂ 2

= (
v̂′i v̂i
Q̂
(T − n) − trEiPM̂−1P′E′i)

1
T − 1

(8.6)

σ̂2 = 1
T − n

Q̂ . (8.7)

Iteration starts with some variance ratios γi = σ 2
σ 2i
. �is permits to determine the

right-hand sides of equations (8.6) and (8.7). �e variance ratios at the le�-hand side
of (8.6) and the variance at the le� hand side of (8.7) are used for a new iteration,
and this continues until convergence is reached, delivering the �x-point values
γ̂i = σ̂ 2

σ̂i 2
and σ̂2 and the corresponding variances σ̂ 2i = σ̂ 2

γ̂ i
. (If this process does not

converge, another solution procedure is available that will be discussed in Section
10 below.)

9 Maximum Likelihood Estimation of the Variances

�is section derives a maximum-likelihood estimator for the variances under the
additional assumption that the disturbances u and v are normally distributed.
Using equations (3.2) and (5.9) – (5.13) together with the identity x = XZ, the

concentrated log-likelihood function for the Aitken regression (5.8) can be written
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as

L ( σ 2, Σ ) = −
1
2
(T (log 2 + log π) + log detW) − 1

2
(y − XZβ)′W−1 (y − XZβ)

(9.1)
with

W = XP̃ (IT−1 ⊗ Σ) P̃′X′ + σ 2IT .

By maximizing (9.1) with respect to β,σ2 and Σ, the maximum likelihood estimates
for the variances are obtained and the corresponding expectation for the parameter
a is given in analogy to (7.3) as

ǎ = Zβ̌ + P̃V̌ P̃′X′ (XP̃V̌ P̃′X′ + σ̌ 2IT)
−1 (y − XZβ̌)

with a caron denoting the maximum likelihood estimates and V̌ = (IT−1 ⊗ Σ̌).
�e maximum likelihood estimator can be characterized in another way. �is

will be explained in the following. In order to do so, the following lemma is needed.

Claim 4.

log detW = log det (PMP′) + (T − 1)
n

∑
i=1
log σ2i −

((T − 1) n − T) log σ2 − 2 logdet (PP′) . (9.2)
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Proof.

detW = det (XP̃VP̃′X′ + σ2IT)

= (σ2)T det( 1
σ2
XP̃V

1
2V

1
2 P̃′X′ + IT)

= (σ2)T det( 1
σ2
V

1
2 P̃′X′XP̃V

1
2 + I(T−1)n)

= (σ2)T det(V 1
2 ( 1

σ 2
P̃′X′XP̃ + V−1)V 1

2)

= (σ2)T det(V ( 1
σ 2
(PP′)−1 PX′XP′ (PP′)−1 + V−1))

= (σ2)T det( 1
σ2
V (PP′)−1 P (X′X + σ 2P′V−1P)P′ (PP′)−1)

= (σ2)T det( 1
σ2
V)det (PP′)−1 det (PMP′)det (PP′)−1

= (σ2)T (
n

∏
i=1

σ2i
σ2
)
(T−1)

det (PP′)−2 det (PMP′) .

Hence the result

log detW = log det (PMP′) + (T − 1)
n

∑
i=1
log σ 2i −

(T − 1)n − T) log σ 2 − 2 logdet (PP′)

is obtained.

Claim 5. Minimizing the criterion

CL = log det (PMP′) + (T − 1)
n

∑
i=1
log σ2i − (T − 1)n − T) log σ 2+

+ 1
σ2
u′u + v′V−1v (9.3)

is equivalent to maximizing the likelihood function (9.1).
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Proof. With (9.2) we have

CL+2L ( σ 2, Σ ) =
1

σ2
u′u+v′V−1v−w′W−1w+2 logdet (PP′)−T (log 2 + log π) .

As, according to Claim 2, w′W−1w = (y − XZβ)′W−1 (y − XZβ) equals 1
σ 2u′u +

v′V−1v and logdet (PP′) and T (log 2 + log π) are independent of the variances, we
can write

CL = −2L ( σ2, Σ ) + constant

where “constant” is independent of the variances and maximization of L with
regard to the variances is equivalent to minimization of CL .

10 Another Representation of the Moments
Estimator

�e relationship between the likelihood estimator and the moments estimator can
be elucidated with the aid of a criterion that is very similar to the likelihood criterion
(9.3). �is criterion function is

CM ( σ 2, Σ ) = log detM + (T − 1)
n

∑
i=1
log σ2i − T (n − 1) log σ2 +

+ 1
σ2
u′u + v′V−1v . (10.1)

Claim 6. Minimization of the criterion function (10.1) with respect to the
disturbances u and v and the variances σ 2 and Σ yields the moments estimators as
de�ned in (8.3) and (8.4).

Proof. Note that the envelope theorem together with (8.2) implies
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∂
∂σ2
( 1

σ2
û′û + v̂′V−1v̂) = − 1

σ4
û′û (10.2)

∂
∂σ2i
( 1

σ2
û′û + v̂′V−1v̂) = −σ 2

σ4i
v̂i ′v̂i . (10.3)

In view of (8.2) we obtain further

∂ log detM
∂σ 2

= tr (M−1P′V−1P) . (10.4)

By de�nition (7.7) we have

M−1 (X′X + σ 2P′V−1P) = I

and hence

M−1P′V−1P = 1
σ 2
(I −M−1X′X) .

With this, equation (10.4) can be written as

∂ log detM
∂σ2

= tr( 1
σ 2
(ITn −M−1X′X))

= 1
σ2
(trITn − trM−1X′X)

= Tn
σ2

− 1
σ2
trXM−1X′.

∂ log detM
∂σ 2i

= −σ 2

σ4i
tr (M−1P′E′iEiP)

and we �nd
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∂CM
∂σ 2

= Tn
σ2

− 1
σ 2
trXM−1X′. − T (n − 1)

σ 2
− 1

σ4
û′û = 0 (10.5)

∂CM
∂σ 2i

= −σ 2

σ4i
trP′F ′iFiPM−1 + (T − 1) 1

σ2i
− σ2

σ4i
v̂i ′v̂i = 0 (10.6)

which gives

û′û = σ 2 (T − σ2trXM−1X′)

v̂i ′v̂i = (T − 1) σ 2i − σ2trP′F ′iFiPM−1.

�ese �rst-order conditions are equivalent to equations (8.3), (8.4) that de�ne the
moments estimator.

Johannes Ludsteck’s (2004, 2018) Mathematica packages for VC proceed by
minimizing the criterion function (10.1). �is permits very clean and transparent
programming. As Claim 6 is con�ned to moments and does not require any
assumption about the normality of the disturbances, Ludsteck’s estimators are
moments estimators as well.

11 �e Relationship Between the Likelihood and the
Moments Estimator

�e likelihood estimates minimize, according to Claim 5, the criterion CL and the
moments estimatesminimize, according to Claim 6, the criterion CM . It is claimed in
the following that, for increasing T and bounded X, both estimates tend to coincide.
To show that, the following lemma is needed.

Claim 7. For su�ciently large T and bounded explanatory variables X, the following
holds true approximately:

detPMP′ ≈ detM det (PP′) .
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Proof. De�ne the Tn × Tn matrix

P =
⎛
⎝

P
T−

1
2 Z′
⎞
⎠

and consider the matrix PMP′. One way to calculate it is as follows:

PMP′ =
⎛
⎝

P
T−

1
2 Z′
⎞
⎠
M ( P′ T− 12 Z )

=
⎛
⎝

PMP′ T−
1
2 PMZ

T−
1
2 Z′MP′ T−1Z′Z

⎞
⎠

=
⎛
⎝

PMP′ T−
1
2 PX′XZ

T−
1
2 Z′X′XP′ In

⎞
⎠
.

�is implies

detPMP′ = det In det(PMP′ −
1
T
PX′XZZ′X′XP′)

= det(PMP′ − 1
T
PX′xx′XP′)

= det(P (M − 1
T
X′xx′X)P′)

= det(P (X′ (IT −
1
T
xx′)X + σ 2P′V−1P)P′) .

For increasing T and bounded x, 1T xx′ tends to zero and (IT −
1
T xx′) tends to IT .

Hence detPMP′ tends to detPMP′ and we can write

detPMP′ ≈ detPMP′ (11.1)
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for large T . Another way to evaluate det (PMP) is the following:

detPMP′ = det (MP′P)
= detM det (P′P)
= detM det (PP′)

As

det (PP′) = det
⎛
⎝
PP′ 0
0 In

⎞
⎠
= det (PP′) ,

detPMP′ = detM det (PP′) (11.2)

is obtained. Combining (11.1) and (11.2) gives the result.

Claim 8. For increasing T and with bounded explanatory variables X, the moments
criterion and the likelihood criterion coincide.

Proof. For large T and in view Claim (7), CM and CL di�er by the constant
logdet (PP′) + n. Hence the minimization of both criteria with respect to the
variances will generate the same result.

In consequence, the descriptive appeal of the moments estimator carries over to the
likelihood estimator, and the theoretical appeal of the likelihood estimator carries
over to the moments estimator.
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