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1 Introduction

Annual deductibles are a common feature in health insurance contracts in many countries, as
well as in other types of insurance contracts. In the United States, 82% of employer-sponsored
health insurance plans feature an annual deductible (Kaiser Family Foundation, 2019 Health
Benefits Survey). In the Netherlands, annual deductibles are mandatory by law in health in-
surance contracts for adults. With deductibles, patients have to pay for a specific amount of
healthcare out-of-pocket before insurance coverage begins, which gives rise to both static and
dynamic incentives. Static incentives exist when patients have to make deductible payments
for current healthcare use. Dynamic incentives exist when deductible payments for current
healthcare utilization reduce deductible payments for healthcare utilization later in the year.
Decisions about healthcare utilization will be affected by dynamic incentives if patients are
aware of them, are forward-looking, and value future states sufficiently. Consider for instance
the case of a patient with an expensive chronic disease, who will cross the limit for the annual
deductible (almost) certainly. Such a patient will pay the full deductible amount anyway and
therefore her current healthcare use should not (or should barely) respond to the deductible.

From a policy perspective, knowledge of whether and how individuals respond to dynamic
incentives imposed by deductibles (or similar cost-sharing schemes) is crucial for the design
of health insurance contracts: setting the amount of a deductible is an essential element in the
design of many health insurance contracts, and understanding how people respond to insurance
contracts with different deductible limits requires knowledge of how people respond to dynamic
incentives. For example, forward-looking patients will respond less to a deductible than myopic
(not forward-looking) patients, because forward-looking patients anticipate that higher out-of-
pocket spending now might decrease future out-of-pocket spending while myopic patients do
not. Related to this, it is important to understand whether different groups in the population
respond differently to dynamic incentives because this will lead to differences in utilization
even if healthcare needs are the same.

It remains a challenge to quantify the reaction to dynamic incentives in this context because
doing so requires a setting where dynamic incentives vary while all other factors—including
static incentives—are kept constant. Previous studies have taken two alternative approaches: a
reduced-form approach, where quasi-experimental sources of variation are used to test whether
individuals respond to dynamic incentives, or structural modeling, where the response to dy-
namic incentives is quantified using a fully specified structural model. Studies that use reduced-
form methods (e.g., Aron-Dine et al., 2015, and Guo and Zhang, 2019) deliberately abstain
from interpreting the magnitude of the effect they estimate, as the estimation equation is not
derived from a structural model. Studies that use structural models (e.g., Einav et al., 2015,
and Dalton et al., 2020) rely on functional form and distributional assumptions. An additional
challenge researchers face when pursuing a structural approach is the difficulty in accounting
for unobserved heterogeneity in healthcare needs and their persistence over time.
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The aim of this paper is to quantify the response to dynamic incentives in the context of
health insurance with a deductible. For this, we propose an approach that (i) combines ad-
vantages of the reduced form and the structural approach, and (ii) can be pursued in other
institutional contexts, provided that healthcare usage data are available at a high frequency
and deductible limits exogenously vary across multiple years. Related to (i), we combine the
advantages of the reduced form and the structural approach by estimating a micro-founded
reduced-form equation exploiting quasi-experimental variation. As a consequence of deriving
the equation from a full structural model, we can interpret the magnitude of the effects we esti-
mate in terms of utility parameters and (to some extent) perform counterfactual experiments. At
the same time, by abstaining from estimating a full structural model and focusing on estimating
one key parameter of one structural equation, we can make very explicit which variation we ex-
ploit. Related to (ii), our approach is applicable in many contexts, because it uses two standard
features of health insurance contracts with a deductible. The first feature is that deductibles
reset at the beginning of the year. The second feature is that dynamic incentives change across
years, because the deductible limit changes. Changes in deductible limits across years are often
set either by law (e.g. in the Netherlands) or by changes in employer policy for employment
based health insurance in the United States (e.g. Brot-Goldberg et al., 2017). We show that
the combination of these two features gives rise to a differences-in-regression-discontinuities
design.

In our analysis, we proceed in two steps. In a first step, we follow individuals who have
crossed the deductible in year y as they experience a reset in the deductible at the beginning of
year y+1. This means that they do not face cost-sharing incentives at the end of year y, but face
them at the beginning of year y+1. The change in care consumption is local and driven by the
change of static and dynamic incentives, from the end of year y to the beginning of year y+1.
We repeat this approach for other year-pairs. Importantly, by estimating changes locally, around
the turn of the year, we control for seasonality in healthcare needs and individual heterogeneity.
Moreover, by design, the change in static incentives around the turn of the year is the same for
all year-pairs. This means that differences in regression discontinuities are directly related to
differences in dynamic incentives across years. Therefore, in a second step, we relate the sizes of
the estimated discontinuities to a commonly used measure of dynamic incentives, the expected
end-of-year price at the beginning of the second year of the respective year-pair. The average
expected end-of-year price can be estimated as the fraction of individuals who have not hit the
deductible limit by the end of the year. It varies across years due to changes in the deductible
amount. A lower expected end-of-year price makes it more attractive to consume more care
earlier in the year. Forward-looking behavior would imply a negative relationship between the
changes of care consumption we estimate around the turn of the year and the expected end-of-
year price at the beginning of the second year of the respective year-pair. To test this prediction,
we apply both parametric and non-parametric statistical tests. Moreover, we estimate the size
of the dependence between the discontinuities and our measure of dynamic incentives, and we
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give these estimates a structural interpretation.
We implement this approach using administrative data from a Dutch health insurer for the

years 2008 to 2015. The population of insured individuals for which we have data is broadly
representative of the Dutch population. It is not limited to certain groups such as the elderly
or employees of a specific firm. The Netherlands provides a favorable setting for our pur-
pose. Health insurance coverage and the set of providers patients have access to is comparable
across insurance companies. Furthermore, cost-sharing incentives are the same across insur-
ance providers. Deductibles are mandatory for all health insurance contracts for adults, and the
minimum deductible amount is set by the Dutch government each year. Deductible amounts
are low, which means that dynamic incentives are important. At the same time, deductibles
have increased substantially over our study period, from e150 in 2008 to e375 in 2015. This
provides variation in dynamic incentives that we exploit with our differences-in-regression-
discontinuities approach.

We find that individuals respond to the expected end-of-year price, in a way that is consistent
with forward-looking behavior. An increase in the expected end-of-year price reduces daily
expenditures at the beginning of the year. Increasing the deductible bye100 leads to a reduction
of around 3.0% in daily healthcare expenditures at the beginning of the year when patients
have not yet exceeded their deductible. Our results are robust to alternative specifications, and
they cannot be explained by changes to the healthcare system other than changes in dynamic
incentives.

We also explore whether the the reaction to dynamic incentives differs across subgroups in
our sample, defined by age, gender, and income. We control for differences in healthcare needs
and find that almost every subgroup exhibits forward-looking behavior. The only exception is
the group of individuals that are below age 45. For the remaining groups, we find the reactions
are very similar. An increase in the size of the deductible by e100 leads to a percentage change
in daily expenditures that ranges from -2.5% to -3.5%.

Finally, we show that our framework allows us to conduct interesting counterfactual exper-
iments that incorporate prior knowledge about reactions to static incentives from the literature.
We find that increasing the deductible by e100 leads to a reduction in per capita yearly expen-
ditures by approximately e211, which is around 10.55% of total yearly expenditures that count
towards the deductible. The reaction to dynamic incentives accounts for a similar share in this
reduction as the reaction to static incentives. Generalizing our findings to the Dutch population
would imply that the reaction to dynamic incentives alone leads to a reduction in expenditures
by approximately e2 billion when the deductible size is increased by e100.

Our study relates to the literature on patients’ responses to cost-sharing incentives (see sur-
veys by Cutler and Zeckhauser, 2000, McGuire, 2011, Einav and Finkelstein, 2018). Earlier the-
oretical contributions have examined patients’ responses to dynamic incentives under a health
insurance contract with a deductible. They conclude that, under some assumptions, forward-
looking individuals should only respond to the expected end-of-year price and not to static
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incentives (Keeler et al., 1977, Ellis, 1986). This forms the basis for using the end-of-year price
as a measure of dynamic incentives. We discuss this literature in detail in Appendix A, where
we also provide the micro foundation for our analysis.

Several recent empirical studies examine whether and how patients respond to dynamic
incentives in the context of patient cost-sharing. For Medicare Part D, some studies test the
hypothesis of full myopia through the estimation of a discount factor; a discount factor of 0
would indicate full myopia. Einav et al. (2015) utilize the non-linearity in prices caused by the
donut hole structure of Medicare Part D plans to estimate a weekly discount factor of around
0.96, or 0.12 at the annual level, rejecting the hypothesis of full myopia. Dalton et al. (2020), on
the other hand, estimate a discount factor of 0—an indication of complete myopia. Similarly,
Abaluck et al. (2018) find evidence for substantial myopia.

In the setting of employee insurance in the United States, Brot-Goldberg et al. (2017) find
that for high deductible health insurance plans dynamic incentives play only a minor role in
determining healthcare utilization. Similarly, Guo and Zhang (2019) study the spending pat-
terns of individuals who have a large expenditure planned in the future (childbirth). Their
results are consistent with individuals exhibiting myopic behavior. Aron-Dine et al. (2015) fo-
cus on employees that enroll into health plans in different months within the same year. Under
the assumption that individuals who enrolled into these health plans in different months are
comparable, they relate differences in healthcare utilization to the differences in the expected
end-of-year price that are driven by differences in the time at which individuals enrolled during
the year. Using a differences-in-differences approach, they reject the hypothesis of full myopia
and conclude that dynamic incentives do matter for healthcare utilization.

We contribute in various ways to the literature. On the substantial side, we show that a
broad population of individuals strongly react to dynamic incentives and that changing these
incentives through increasing deductible limits has quantitatively important effects. Moreover,
we show that the reaction to dynamic incentives is similar across groups in the population, with
the exception of young individuals.

In addition, our study makes two methodological contributions. First, we show that a combi-
nation of a key feature of standard deductible contracts, namely that they reset at the turn of the
year, and exogenous variation in the deductible amount across years give rise to a differences-in-
regression-discontinuities design. We demonstrate how this can be used to estimate the effects
of dynamic incentives on patient behavior.

Second, we explicitly derive our estimation equation as a reduced form from an economic
model. This allows us to give a structural interpretation to the response to dynamic incentives
at the beginning of the year that we estimate, and to perform counterfactual experiments. More-
over, we show that the expected end-of-year price is either a valid measure or a good proxy of
dynamic incentives for a broad class of models that includes the model by Keeler et al. (1977)
and more recent models with quasi-hyperbolic discounting, such as the model by Abaluck et al.
(2018).
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Our study continues as follows: we describe our empirical approach in Section 2. Then,
in Section 3 we provide details on the institutional background and the data. We discuss our
empirical implementation in Section 4. Results of our main analysis are presented in Section
5. In Section 6 we present robustness checks. In Section 7 we perform a counterfactual exper-
iment and quantify the effect of an increase of the deductible on annual expenditures, and the
contribution of dynamic incentives to this effect. Section 8 concludes.

2 Empirical approach

2.1 Financial incentives and care consumption

The primary aim of this paper is to measure patients’ responses to dynamic incentives. We
do so in the context of a deductible contract for health insurance, where a patient pays for the
first euros of care consumption herself and faces no out-of-pocket payments after exceeding
the deductible limit. A key institutional feature of almost all deductible contracts is that they
reset at the beginning of the calendar year. In this section, we explain how our differences-in-
regression-discontinuities approach exploits this to identify the reaction to dynamic incentives
and to disentangle it from the reaction to static incentives.

It is useful to think of deductible contracts in terms of prices. If individuals have to pay for
the last unit of care in a given period, then we say that the current price in that period is 1, and 0
otherwise. The current price in period t is specific to person i, as it depends on individual care
consumption since the beginning of the year.

As noted already by Keeler et al. (1977), when deciding how much care to consume in
t, individuals should take into account that out-of-pocket spending today can be seen as an
investment that is associated with what they call a bonus: in expectation, out-of-pocket spending
today will lower the price of care tomorrow. Based on a contribution by Ellis (1986), who
characterizes optimal behavior for that model, a commonly used measure of dynamic incentives
in this context is the expected end-of-year price.1 For the standard deductible contracts we
consider in this paper, at any point in time, this is equal to the probability that the patient will
have to pay for the last unit of care in the year. This is also the measure we use. So, our aim is
to measure how care consumption depends on the probability to pay out-of-pocket for the last
unit of care in the year, controlling for medical needs and the current price.

Denote current prices by Pc
it and the expected end-of-year price by Pe

it . The superscript “c”
stands for current and the superscript “e” stands for expected. Our reduced-form estimation
equation makes the dependence of healthcare consumption on medical needs and both prices
explicit by writing it as the sum of three parts: baseline consumption κit that is specific to

1See for instance Keeler and Rolph (1988), Aron-Dine et al. (2015), Brot-Goldberg et al. (2017), and Abaluck
et al. (2018). See Appendix A and in particular Appendix A.5.1 for a detailed discussion.
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individual i in period t, and two price effects:

cit = κit− γ
c ·Pc

it − γ
e ·Pe

it . (1)

So, κit is the consumption of care when care is free. Our aim is to estimate the dependence of
care consumption on dynamic incentives, γe.

2.2 Micro foundation

The reduced form equation (1) can be derived from a dynamic structural model of healthcare
consumption. The advantage to providing such a structural foundation is that it gives the pa-
rameters γc and γe in the reduced form equation (1) a structural interpretation. Moreover, it
justifies basing counterfactual experiments on estimates of the parameters of the reduced-form
equation, as we can think of such a structural relationship as being stable under policy variation.

We now briefly describe the model setup. Appendix A contains all derivations for a more
general version of the model and a discussion of various technical points. It also discusses how
the model relates to other models in the literature and in which sense the expected end-of-year
price is a good measure of dynamic incentives.

In the model, patient i knows how much care she has consumed up to t. She learns in period
t about her medical needs λit and forms expectations on the likelihood to hit the deductible
limit by the end of the calendar year. Her flow utility is quasi-linear in money and quadratic
in the difference between care consumption and medical needs. Patients are quasi-hyperbolic
discounters (O’Donoghue and Rabin, 1999) and dynamically optimize.

The utility function is specified such that if a patient has to pay for care consumption in
the last period of the year (so that choice is static), then care consumption will be equal to the
medical need λit . Conversely, if care is free, then patients consume λit +ω . This means that
ω is the additional care patients consume when it is free, a price effect. The parameters γc and
γe in (1) are both functions of ω and β . β is a measure of present bias. It is between 0 and
1. If patients are fully aware of dynamic incentives, are forward-looking, and are not present-
biased, then β = 1. The lower β the more patients react to static incentives and the less they
react to dynamic incentives. The most important two results that are derived in Appendix A
are that (i) changes in dynamic incentives can be well measured by changes in the expected
end-of-year price and that (ii) the effect of changes in dynamic incentives, γe, is equal to ω ·β .
Next we show how we exploit the differences-in-regression discontinuities design to estimate
this parameter of interest.

2.3 Differences-in-regression-discontinuities design

We treat both prices, Pc
it and Pe

it , as known. A challenge for estimating the effect of prices
on care consumption is that prices are endogenous: higher care consumption earlier in the
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year is associated with lower current and expected end-of-year prices, and at the same time
likely positively correlated with medical needs later in the year. This means that prices will be
negatively correlated with medical needs so that a regression of medical care on prices yields
negatively biased coefficient estimates. The approach we pursue in this paper is to identify γe

by exploiting a differences-in-regression-discontinuities design that allows us to use variation
in Pe

it across years while at the same time controlling for static incentives and time effects.
In our analysis we work with samples for year-pairs. The samples consist of observations

for the last periods of the first year of the year-pair and the first periods of the second year. We
restrict the samples to individuals who have reached the cost-sharing limit after January and
before September of the first year.2 Thus, all individuals in our samples face a current price of
0 by the end of the first year of the year-pair, and therefore their expected end-of-year price is
0. Deductibles reset each year and therefore all individuals face a current price of 1 right at the
beginning of the second year in the year-pair. This is the same for all years. Importantly, the
expected end-of-year price at the beginning of the year is different across years due to changes
in deductible amounts. From now on, we denote expectations over individuals in our samples
in period t of year y by a bar indexed by t and y.

Figure 1 illustrates our setup with an example. The left side shows spending around the turn
of the year for individuals who have crossed the deductible in year y. The solid blue line denotes
average spending before the turn of the year, when P̄c

T,y = 0 and P̄e
T,y = 0. When individuals enter

the new year, they face a current price of P̄c
1,y+1 = 1 and a positive expected end-of-year price

P̄e
1,y+1, and they respond to the increase in prices by reducing their average spending. The right

side shows care consumption around the turn of the year from y+ 1 to y+ 2 for a comparable
sample of individuals who have exceeded the cost sharing limit in y+1. For this group we have
P̄c

T,y+1 = 0 and P̄e
T,y+1 = 0. In the figure, consumption just before the end of y+1 (in the right

year-pair) is the same as just before the end of y (in the left year-pair). At the beginning of the
year, the current price is again P̄c

1,y+2 = 1 in y+2. However, the expected end-of-year price is
higher than in y+1, P̄e

1,y+2 > P̄e
1,y+1, because the deductible is higher (and hence it is less likely

that comparable individuals exceed the cost sharing limit). Therefore, when they enter the new
year, they face a higher P̄e

1,y+2 and reduce their spending by a larger amount than in y+1.
In the following, we formalize the intuition illustrated in Figure 1 and describe how we can

estimate γe from differences in regression discontinuities. Formally, it follows from (1) that the
discontinuity in care consumption around the turn of the year from year y to y+1 is

c̄1,y+1− c̄T,y = κ̄1,y+1− κ̄T,y− γ
c · P̄c

1,y+1− γ
e · P̄e

1,y+1,

since our samples include only individuals for whom P̄c
T,y = 0 and P̄e

T,y = 0. For the discontinuity
from year y+1 to y+2 we obtain a similar expression. Combining those, the difference in the

2We select the samples in a way so that the level of medical needs is comparable across year-pairs. Details are
provided in Section 3.2 below.
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Figure 1: Differences-in-regression-discontinuities design

first days of 
year 𝑦 + 1

last days 
of year 𝑦

first days of 
year 𝑦 + 2

last days of 
year 𝑦 + 1

ത𝑃𝑇,𝑦
𝑐 = 0
ത𝑃𝑇,𝑦
𝑒 = 0

ത𝑃1,𝑦+1
𝑐 = 1
ത𝑃1,𝑦+1
𝑒 > 0

ത𝑃𝑇,𝑦+1
𝑐 = 0
ത𝑃𝑇,𝑦+1
𝑒 = 0

ത𝑃1,𝑦+2
𝑐 = 1
ത𝑃1,𝑦+2
𝑒 > ത𝑃1,𝑦+1

𝑒

healthcare
consumption

healthcare
consumption

year-pair {𝑦, 𝑦 + 1} year-pair {𝑦 + 1, 𝑦 + 2}

low deductible in 𝑦 + 1 high deductible in 𝑦 + 2

Notes: The figure illustrates the intuition of our empirical approach for hypothetical year-pairs {y,y+1} and
{y+1,y+2}. The vertical lines depict the respective turn of the year. For both year-pairs the solid line
depicts average care consumption at the end of the year (to the left of the vertical line) and average care
consumption at the beginning of the new year (to the right of the vertical line). Individuals in the figure on
the right reduce their average spending by a larger amount than individuals in the figure on the left because
they face a higher expected end-of-year price at the beginning of the new year. The notation in the bottom is
explained in the main text.

discontinuities is given by

(c̄1,y+2− c̄T,y+1)− (c̄1,y+1− c̄T,y) =(κ̄1,y+2− κ̄T,y+1)− (κ̄1,y+1− κ̄T,y)

− γ
c · (P̄c

1,y+2− P̄c
1,y+1)− γ

e · (P̄e
1,y+2− P̄e

1,y+1).

Since P̄c
1,y+2 = P̄c

1,y+1 = 1 at the beginning of the year,3 we obtain

(c̄1,y+2− c̄T,y+1)− (c̄1,y+1− c̄T,y) = (κ̄1,y+2− κ̄T,y+1)− (κ̄1,y+1− κ̄T,y)− γ
e · (P̄e

1,y+2− P̄e
1,y+1).

This equation differences out different levels in baseline care consumption across year-pairs.
Such differences could arise, for example, because the flu was particularly severe in some win-
ters. If the flu season was particularly severe around the turn of the year from y to y+ 1, then
this would affect both κ̄T,y and κ̄1,y+1. By taking differences between regression discontinuities
we control for such differences in seasonal effects across year-pairs.

3It is possible that some individuals already exceed the deductible limit in the first period of the year. We
discuss this in Section 6.1.
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Our main identifying assumption is that

(κ̄1,y+2− κ̄T,y+1) = (κ̄1,y+1− κ̄T,y) (2)

This assumes that the difference in mean baseline consumption across the turn of the year is
the same for both year-pairs. In Section 6, we discuss the plausibility of this assumption, and
we conduct a number of robustness checks. Under this assumption, our parameter of interest
is given by the ratio between the difference in regression discontinuities and the difference in
expected end-of-year prices from the perspective of the beginning of the year,

γ
e =

(c̄1,y+2− c̄T,y+1)− (c̄1,y+1− c̄T,y)

(P̄e
1,y+2− P̄e

1,y+1)
.

The derivation so far was for two year-pairs. For multiple year-pairs, as we have in our
study, we can obtain the discontinuity for each year-pair and then plot it against the expected
end-of-year price in the respective second year of each year-pair. We can use this as the basis
for testing whether the relationship is monotonic and to estimate γe using a linear regression of
the discontinuity on the expected end-of-year price. See Section 4.2.

3 Institutional background and data

3.1 Institutional background

In the Netherlands, health insurance is mandatory. Patients have to buy insurance that covers
a “basic package”. Since 2008, by law it has to feature a deductible for all residents who are
at least 18 years old. For each calendar year, the minimum, mandatory deductible amount is
set by the Dutch Government to a baseline amount. Individuals are allowed to opt for a higher
deductible.4 There have been substantial increases in the amount of the mandatory deductible
over time: for example, the deductible was e150 in 2008; in 2015, it was e375.5 The de-
ductible resets annually, regardless of how much healthcare was consumed in the previous year.
Some services are exempt from the deductible, such as consults by General Practitioners (GPs),
maternity care, and medical equipment on rent (e.g., wheelchairs).

The contents of the basic package are determined by law, and they are adjusted annually.6

Treatments are largely billed in terms of diagnosis treatment combinations (DTCs). A DTC
compensates for all care administered within an episode of treatment, including follow-up visits.

4This voluntary deductible can be up to e500 above the mandatory deductible. Very few people in our data
choose a voluntary deductible and we omit them from our sample.

5The mandatory deductible was e155 in 2009, e165 in 2010, e170 in 2011, e220 in 2012, e350 in 2013 and
e360 in 2014.

6A list of the changes can be found (in Dutch) on https://www.cbs.nl/nl-nl/onze-
diensten/methoden/onderzoeksomschrijvingen/aanvullende%20onderzoeksbeschrijvingen/pakketwijzigingen-
zorgverzekeringswet.
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Compensation for DTCs are determined through bargaining between insurers and providers.
Providers send a bill to health insurers, who then determine how much patients have to pay
out-of-pocket depending on their remaining deductible.

3.2 Data

We use claims data from a large Dutch health insurer for the years 2008 to 2015 (see Hayen
et al., 2015 for details).7 We restrict our analysis to types of care that count towards the de-
ductible.8 Our data include the amount paid for a claim, the date of claim initiation, the type of
claim, and demographic information, such as age and gender of the enrollees.

We construct separate samples for each year-pair. Each sample consists of individuals who
cross the deductible at any point between February and August (inclusive) in year y and we
follow these individuals around the turn of the year, from y to y+ 1.9 Conditioning on indi-
viduals who cross the deductible in a given year leads to sicker samples in years with a larger
deductible, as individuals have to spend more to be included in the sample of crossers for these
years: for example, in 2008, an individual would have to spend only e150 to cross the de-
ductible, while in 2014 she would have to spend e360. To address such concerns, we utilize a
percentile-matching strategy based on Brot-Goldberg et al. (2017). Specifically, across all years
we include only the top 38% of cumulative spenders by the end of August in our sample. 38%
is the share of individuals who exceed the deductible limit between February and the end of
August in the year 2014, the year with the lowest share of such individuals in our data. In 2008,
for example, even though 47% of the sample crossed the deductible between February and the
end of August, we only include the top 38% of total spenders in our sample.10 The total number
of individuals in our final sample, after applying percentile-matching, and the total number of
individuals without matching in each year are reported in the last two rows of Table 1.

Our goal is to compare healthcare utilization at the end of year y with healthcare utilization
at the beginning of year y+ 1. For this, we specify the date of treatment as the date the claim
was initiated and aggregate our claims data to the daily level.

7Our data were obtained under a pilot project in which a new payment model for GPs was evaluated, The pilot
project started in July 2014, and the data cover multiple years before the start of the pilot project. While the pilot
project was not related to patient cost-sharing we cannot exclude the possibility that the results for the last year-
pair {2014,2015} could be influenced by the treatment in the pilot project. In order to take this into account, we
conduct a sensitivity analysis in which we restrict our analysis to year-pairs before the start of the pilot project.
See Appendix D.5.

8This implies we do not look at consults at a GP or maternity care, for example.
9We exclude individuals that cross the deductible in January of year y since they have a very different pattern of

healthcare expenditures when compared to the rest of the sample. We exclude individuals who cross the deductible
after August of year y because healthcare expenditures can be autocorrelated over time, and we aim to limit the
influence of healthcare expenditures associated with crossing the deductible in the previous year on expenditures
across the turn of the year.

10The underlying idea is that there is a monotone relationship between healthcare needs and spending. Then,
by selecting the top 38% spenders in all years, one makes sure that the sample populations are comparable across
years in terms of needs. The exact assumptions underlying this approach are discussed in Brot-Goldberg et al.
(2017).
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Non-emergency care is limited in availability on weekends and during the Christmas break.
Therefore, we only use week days for our analysis. Moreover, for each year-pair we omit a set of
days that include the Christmas break. For this, we specify a last regular day before the start of
the Christmas break (day t = T in the first year of the year-pair) and a first regular day (day t = 1
in the second year of the year-pair) after the end of the Christmas break. The resulting empirical
setup is commonly referred to as a donut regression discontinuity (RD) design (Barreca et al.,
2011).11 Gerfin et al. (2015) have used it earlier to estimate the size of the discontinuity in
healthcare expenditures around the turn of the year for one year-pair.12

The distribution of healthcare expenditures is characterized by a heavy right tail. Although
our sample size is not small, outliers can still have a large influence on estimated coefficients.
To ensure that our results are not influenced by high healthcare expenditures far above the de-
ductible amount, we pseudo-censor our expenditure variable, i.e., we code any daily expenditure
above e500 as e500. This cutoff is higher than the highest deductible in our study period. In
Appendix D we show that our results are robust to changes in this cutoff amount and to an
alternative transformation of the expenditure variable from levels to logs, adding a constant of
1 to account for the zeros present in the data.

Table 1 shows summary statistics, separately for all 7 year-pairs, {y,y+1}, in our data. The
first three rows report the average age, proportion female, and average income at the 6-digit
postal code level in each year y. The next two rows show the deductible in year y+ 1 and the
in-sample expected end-of-year price P̄e

1,y+1 at the beginning (t = 1) of year y+1.13 Generally
speaking, there is a positive relationship between the two, but this is not always the case: for
example, between 2008 and 2009 the deductible increased by e10, while P̄e

1,y+1 decreased.
Table 1 also shows different measures of average healthcare utilization, on regular days,

for the last four months in year y and the first month of year y+ 1. We look at mean daily
expenditures, mean pseudo-censored daily expenditures, and the probability of having any daily
expenditure. We see that utilization, across all measures, increases across years both at the end
of year y and at the start of year y+ 1. We also see that spending at the start of year y+ 1 is
generally lower than at the end of year y, suggesting that patients lower healthcare spending in
response to financial incentives, and we see that the difference between spending at the end of
year y and spending at the beginning of year y+1 is generally larger for year-pairs with a larger
P̄e

1,y+1, pointing to forward-looking behavior.

11The dates we use in our preferred specification are detailed in Appendix B. We use a donut hole of 20 days
across all year-pairs, except for the year-pair {2011,2012}, where the donut hole is 27 days long. Section 6.4
delves into the robustness of our primary results with respect to changes to the days—and the distance between the
days—for which utilization changes are compared.

12They also document in detail, in their Figure 2, that care consumption is lower on weekends and during the
Christmas break.

13 We compute the expected end-of-year price as 1− Pr(crossy+1), where Pr(crossy+1) is the proportion of
individuals in the sample who cross the deductible by the end of year y+1.
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Figure 2: Healthcare consumption around turn of year
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Notes: The figure plots mean daily pseudo-censored healthcare spending (denoted by the blue dots)
for weekdays. Weekends were omitted from our analysis. T denotes the last day of year y that we
use for our analysis and t = 1 denotes the first day of year y+ 1 that we use. See Table A.1 in the
appendix for details. The red solid line denotes the local linear regression estimates (LLR). Details
of the regression discontinuity estimation are included in Section 4.1.

4 Empirical implementation

4.1 Estimation of discontinuity sizes

For each year-pair, we estimate the change in care consumption around the turn of the year using
separate local linear regressions before and after the turn of the year. We use a triangular kernel
and optimal bandwidths, as detailed in Calonico et al. (2014).14 The underlying estimation
equations are

cit = α0 + γ0 (t− (T +1))+ εit for year y and t ≤ T

cit = α1 + γ1 (t−1)+ εit for year y+1 and t ≥ 1,

where day-of-the-year t is the running variable (note that day t = T + 1 in year y is the same
as day t = 1 in year y+ 1 because the days in-between are omitted) and cit is our measure of
healthcare utilization. Our estimate of interest is α̂1− α̂0.

Figure 2 illustrates our approach for the year-pair {2010,2011}. The last day that we use for
our analysis, t = T in 2010, is Thursday 16 December. The first day, t = 1 in 2011, is Thursday
6 January. The days in-between lie in the donut hole and are omitted from our analysis because
non-emergency care is limited in availability on weekends and during the Christmas break. The
situation corresponds to the one described in Figure 1: the current price is 0 at the end of 2010,

14We also performed our empirical analysis using bandwidths of 20 days and found almost no difference.

14



and it is 1 at the beginning of 2011.15 In Section 6.4 we show that our results are robust to
different specifications of the donut hole.

The figure shows that the time trends are similar in both years and, in line with individuals
reacting to cost-sharing incentives, healthcare utilization is lower at the beginning of 2011.

There are two interesting aspects of our estimation procedure that we would like to highlight.
First, since we follow a balanced panel of individuals, covariates are, by construction, balanced
across both sides of the threshold we compare. Second, since we subtract predicted spending at
the end of year y from predicted spending at the beginning of year y+1, we remove any effect
of characteristics and influences that are invariant across these two dates, such as, for example,
the severity of the flu season.

4.2 Relating discontinuity sizes to dynamic incentives

We repeat the above for all year-pairs, {y,y+1}. Our main focus is on estimating the relation-
ship between the changes in expenditure around the turn of the year and P̄e

1,y+1. If patients are
forward-looking, then the the change should be bigger (in absolute terms) in year-pairs with
higher P̄e

1,y+1.
We use a weighted least-squares regression of the estimated discontinuity size around the

turn of the year on P̄e
1,y+1 to estimate our parameter of interest, γe. Specifically, our estimate of

γe is given by the slope coefficient of the weighted least-squares regression. The weights take
estimation error into account. The underlying assumptions for estimation and inference follow
from Hanushek (1973), as outlined in Appendix C.1.

This regression imposes a linear relationship between the estimated discontinuity size and
P̄e

1,y+1. To test for monotonicity without imposing parametric restrictions, we borrow a non-
parametric test for monotonicity from the finance literature, which is described in Patton and
Timmermann (2010). The test is based on the ranking of each coefficient w.r.t. P̄e

1,y+1: we test
whether the ordering in P̄e

1,y+1 is the same as the ordering of the size of the estimated changes.
The details of these tests are outlined in Appendix C.2.

To summarize, in our analysis, we proceed in two steps. In a first step, we form year-
pairs for comparable samples of individuals and estimate the change in healthcare consumption
around the turn of the year. An individual is in the sample for a given year-pair if she exceeds
the deductible limit between February and August in the first year of the year-pair and is among
the top 38 percent of the spenders (percentile matching). For this sample of individuals, we also
compute our measure of dynamic incentives patients face at the beginning of the second year,
P̄e

1,y+1, as the proportion of individuals in the sample that actually exceed the deductible limit in
year y+1. In a second step, we relate the estimated changes in healthcare consumption around
the turn of the year to P̄e

1,y+1.

15Some individuals exceed the deductible limit on the first days of the year so that current prices are not 1 for
all individuals. We show in Section 6.1 that this does not pose a threat for our analysis.
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Table 2: Discontinuity sizes

change in daily change in probability of any
expenditure (PC) around daily expenditure around

year-pair {y,y+1} turn of the year turn of the year

2008,2009 -0.737 -0.010
(0.1368) (0.0010)

2009,2010 -0.473 -0.005
(0.1252) (0.0011)

2010,2011 -0.827 -0.008
(0.1270) (0.0009)

2011,2012 -0.955 -0.011
(0.1242) (0.0010)

2012,2013 -1.345 -0.016
(0.1682) (0.0014)

2013,2014 -1.296 -0.013
(0.1345) (0.0013)

2014,2015 -1.577 -0.013
(0.1712) (0.0011)

Notes: Expenditures larger than 500 were coded as 500 (hence the abbreviation PC).
Changes are estimated using a donut hole regression discontinuity design (see Section 4.1).
Robust standard errors that are clustered at the individual and year-pair level are shown in
parentheses.

Our main assumption is that in the absence of changes in dynamic incentives changes in
mean healthcare utilization around the turn of the year would be the same across all year-pairs.
This assumption is formally stated in (2) in Section 2.3. Threats to our empirical strategy stem
from any possible reason other than the response to dynamic incentives that may explain a
negative relationship between the estimated changes in healthcare utilization around the turn of
the year and P̄e

1,y+1. We discuss such possible violations of our main identifying assumption in
Section 6.

5 Results

5.1 Baseline results

We present the results for the empirical framework laid out in Section 4 for two measures of
healthcare utilization: mean (pseudo-censored) expenditures and the probability of any claim
(extensive margin). We first present estimates for the changes in utilization around the turn of
the year, and then we relate these estimates to the respective expected end-of-year prices.

Table 2 reports the estimated changes in healthcare utilization at the turn of the year, for
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Table 3: Dependence of discontinuity sizes on dynamic incentives

daily expenditure any daily expenditure
effect of dynamic incentives (γe) -10.690 -0.094

(1.4177) (0.0230)
p-value nonparametric MR test 0.000 0.926
p-value nonparametric Up test 0.006 0.000
p-value nonparametric Down test 1.000 0.178

Notes: The effect of dynamic incentives was estimated by regressing the estimated discon-
tinuities reported in Table 2 on P̄e

1,y+1, using a weighted linear regression. The weights take
estimation errors into account, and they are computed following Hanushek (1973). See Ap-
pendix C.1 for details. The MR, Up and Down tests were conducted using 10,000 bootstrap
repetitions. See Appendix C for details.

both measures. For all year-pairs, healthcare utilization decreases at the turn of the year, and
these decreases are statistically significant at any conventional level. Decreases in healthcare
utilization tend to be stronger for later years. For example, for the year-pair {2008,2009} the
decrease in pseudo-censored daily expenditures is e0.47, and for the year-pair {2014,2015}
the decrease is e1.30. Correspondingly, the probability of any daily expenditure decreases by
0.5 percentage points for the the year-pair {2008,2009} and by 1.3 percentage points for the
year-pair {2014,2015}.

Figure 3 plots these estimated changes in healthcare consumption at the turn of the year
against P̄e

1,y+1. As we have seen in Table 1, P̄e
1,y+1 tends to be higher for later years in our

sample when the deductible is higher. For example, P̄e
1,2009 is 0.15, while P̄e

1,2015 is 0.22. Figure
3 reveals a decreasing relationship, providing evidence for forward-looking behavior. Table 3
reports our estimate of the dependence of the discontinuity size on dynamic incentives. Based
on a weighted linear regression we find that the slope is equal to -10.7 for daily expenditures,
and it is statistically significant at any conventional level. This coefficient is our estimate of γe.
Our results thus suggest that increasing P̄e

1,y+1 by 10 percentage points leads to a reduction in
mean (pseudo-censored) expenditures of around e1.07 and a reduction in the probability of any
claim of around 0.9 percentage points.

The bottom three rows of Table 3 show non-parametric tests for monotonicity. These tests
use the ordering of the estimated changes implied by the ordering of P̄e

1,y+1 and take the esti-
mation error resulting from estimating the discontinuities into account. We specified the test
statistic such that results aligning with forward-looking behavior produce p-values smaller than
a chosen level of significance for the MR test and the Up test only (see Appendix C.2 for de-
tails). The Down test should not be significant. For pseudo-censored expenditures, we see that
the MR test and the Up test are significant at conventional levels and the Down test is not, indi-
cating a monotonically decreasing relationship between mean expenditures and P̄e

1,y+1. For the
extensive margin, the MR test is not significant at conventional levels. However, the p-values

17



Figure 3: Dependence of discontinuity sizes on dynamic incentives

(a) Daily spending (pseudo-censored)
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(b) Prob. any daily expenditure

0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23
-0.02

-0.018

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

Notes: These figures plot the relationship between the estimated changes in healthcare consump-
tion around the turn of the year and the computed P̄e

1,y+1. See Tables 1 and 2 for exact numbers.
The vertical lines denote 95% confidence intervals. The solid line is the OLS regression line.
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from the Up and Down test suggest that this result could stem from limited power inherent in
the MR test (as discussed in Patton and Timmermann, 2010).

The variation in P̄e
1,y+1 comes from changes in deductibles. Therefore, we can relate these

changes to changes in the deductible. In the first row of Table 4 we present the effects of ae100
increase in the deductible. This increase leads to a 3.4 percentage point increase in P̄e

1,y+1,16

which implies a reduction of around e0.36 in mean (pseudo-censored) expenditures and a 0.32
percentage point reduction in the probability of making any claim. In percentage terms, these
reductions amount to around 3.0% of mean expenditures and 4.4% of the probability of any
claim on the first day of the year.17

5.2 Heterogeneity

Next, we examine whether and how responses to P̄e
1,y+1 differ for different groups in the popula-

tion, defined by gender, neighborhood income, and age. Previous studies such as Manning et al.
(1987), Brot-Goldberg et al. (2017) and Farbmacher et al. (2017) have examined heterogeneous
responses to cost-sharing incentives for different groups in the population. However, there is
still limited evidence on heterogeneous response specifically to dynamic incentives.

Responses to dynamic incentives can differ between groups as a result of two mechanisms
that may be at play at the same time. The first mechanism is that the size of the reaction is
related to healthcare needs, and that different groups in the population have different healthcare
needs. This is plausible, as for instance the possibilities to exert moral hazard may be wider
for older patients who are less healthy. The second mechanism is that different groups in the
population respond differently to dynamic incentives, even if the needs are the same. This could
be explained by different information and underlying utility parameters. For example, patients
might respond less strongly (or not at all) to dynamic incentives if they are not aware of them,
are myopic, or strongly discount the value of future states (a low β in the terms of our model).
They might also respond less strongly to dynamic incentives if they exert less moral hazard (a
low ω in the terms of our model).

In the following, we focus on the second mechanism. We examine how different groups
in the population respond to dynamic incentives while controlling for differences in expected
healthcare needs as measured by risk scores.18 For this, we split the sample, alternatively
according to gender, average income in the neighborhood below and above median, and ages
below 45 years and 45 years and older. For each subsample, we weigh observations according
to risk score quintiles such that the distribution of risk scores is the same as for the baseline

16This value was obtained by running a regression of P̄e
1,y+1 on the deductible amount across all years for our

sample.
17We use the estimated average spending on the first day of 2015 to calculate these percentage reductions.
18The risk score of an individual is given by her predicted annual expenditures divided by average annual ex-

penditures. The larger the riskscore, the more a person is predicted to spend, relative to the average. More details
on how this risk score was computed can be found in Hayen et al. (2019).
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sample.19

Column 1 of Table 4 shows our estimates of γe for different subgroups in the population.
We find that almost every subgroup exhibits forward-looking behavior. The estimates of γe are
significantly different from zero for all subgroups except for individuals that are below age 45.
Point estimates are similar for males and females, and for individuals living in high and low
income neighborhoods.

The results for any daily expenditure, shown in Column 2, show a similar pattern. Table
4 also shows the range of P̄e

1,y+1 across years, utilization at the beginning of the year for each
subgroup. These numbers are weighted by risk score quintiles.

In addition, we quantify the reduction in utilization (in percentage terms) on the first day of
a new year if the deductible were to be increased by e100; changes in P̄e

1,y+1 are shown in the
third-to-last column of Table 4, and changes in healthcare consumption (in percentage terms)
are presented in the last two columns of Table 4. An increase in the size of the deductible
by e100 leads to a -1.5% change in daily expenditures for individuals below age 45. For the
remaining groups, we find that an increase in the size of the deductible by e100 leads to a
percentage change in daily expenditures that ranges from -2.5% to -3.5%.

6 Discussion of main identifying assumption and robustness

Our main identifying assumption is that if there are no changes in incentives then changes in
healthcare utilization around the turn of the year should (in expectation) be constant across year-
pairs. This assumption is formally stated in (2) in Section 2.3, and it allows us to attribute the
negative relationship between the changes in healthcare consumption around the turn of the year
and P̄e

1,y+1 to dynamic incentives. Thus, threats to our empirical strategy stem from any other
possible reason that could explain such a negative relationship. In the following we discuss
three potential threats: 1) Current price changes, 2) changes of provider prices and insurance
coverage, and 3) strategic timing of medical care use. We find that these alternative explanations
cannot generate our results. We also show that our results are robust to different specifications
of the donut hole and the pseudo-censored outcome variable.

6.1 Current price changes

One concern could be that the negative relationship between the changes in healthcare con-
sumption around the turn of the year and P̄e

1,y+1 shown in Figure 3 can be explained by changes
in the average current price instead of changes in P̄e

1,y+1. Even though we look at days early
in January, it is possible that some individuals exceed the deductible already within the first
days of the year. Given that it requires more spending to cross the deductible (and thus have
a spot price of 0) in years with a higher deductible, it could be that P̄c

1,y+1 is higher in years

19For each weighted subsample we apply the same estimation approach as for the baseline sample.
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Figure 4: Current price changes
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Notes: This figure plots the relationship between the current price and P̄e
1,y+1. The solid line is the

OLS regression line.
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Table 5: Robustness

specification slope MR test Up test Down test

current price 0.005 (0.1131) 1.000 0.000 0.000
inflation corrected -10.171 (3.0301) 0.136 0.001 0.970
Thursday, 27 day donut -12.628 (2.7761) 0.484 0.000 0.650
Wednesday, 20 day donut -8.513 (1.3192) 0.001 0.151 1.000
Wednesday, 27 day donut -10.742 (2.2300) 0.000 0.049 1.000

Notes: The table reports our estimates for the dependence of the current price (first row) and
changes in health care consumption around the change of the year (remaining rows) on P̄e

1,y+1.
For the last 4 rows the reported slope coefficients are estimates of γe. The table also reports our
results from non-parametric tests of monotonicity. See Section 6.1 to 6.4 for details. The slope
coefficients were estimated by regressing the estimated discontinuities on P̄e

1,y+1. The MR, Up
and Down tests were conducted using 10,000 bootstrap repetitions. See Appendix C for details.

with a higher deductible. This would result in a positive correlation between P̄c
1,y+1 and P̄e

1,y+1.
In this case, we would falsely ascribe the effects of static incentives to the effects of dynamic
incentives.

We can test whether P̄e
1,y+1 and P̄c

1,y+1 are indeed positively correlated. For this, we compute
P̄c

1,y+1, the share of individuals who have not exceeded the deductible limit by t = 1 in year
y+ 1, for all year-pairs in our data and plot them against P̄e

1,y+1. Figure 4 shows that there is
little variation in P̄c

1,y+1 across years. The variation is not systematically related to P̄e
1,y+1 and the

slope coefficient of the corresponding regression line, shown in the first row of Table 5, is close
to 0 and not statistically significant. Thus, we conclude that our results cannot be attributed to
changes in current prices instead of expected end-of-year prices.

6.2 Changes of provider prices and insurance coverage

Our empirical strategy attributes differences in discontinuity sizes across year-pairs to differ-
ences in P̄e

1,y+1. However, there are other factors that also change at the beginning of the year.
For example, costs of claims and the contents of the basic health insurance package are ad-
justed at the beginning of the year. This could lead to differences in discontinuity sizes across
year-pairs that are not related to differences in P̄e

1,y+1.
In order to control for changes in expenditures due to changes in the cost of claims and

the basic package, we create an annual expenditure deflator using data for periods in each year
where the price of healthcare is 0. Recall that individuals were selected into our sample condi-
tional on having crossed the deductible by the end of August in the first year of the year-pair.
This implies that these individuals face a 0 price of healthcare from September to December in
that first year. We take the ratio of average pseudo-censored expenditures across these months,
for a given year, to the average pseudo-censored expenditures for a base year. This produces an
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Figure 5: Accounting for changes of provider prices and insurance coverage
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Notes: This figure plots the relationship between the estimated changes in healthcare consumption
around the turn of the year and the computed P̄e

1,y+1 after correcting for changes in provider prices and
the basic insurance package across years. We first deflated expenditures and then pseudo-censored
them at e500. The solid line is the OLS regression line.

expenditure deflator that accounts for differences in expenditures due to changes in the cost of
claims and the basic package, i.e., changes that are not influenced by changes in cost-sharing
incentives. The values for our expenditure deflator for each year are reported in the appendix in
Table A.2. We report the results from our empirical strategy after deflating expenditures in the
second row of Table 5, and depict the relationship between the estimated changes and P̄e

1,y+1 in
Figure 5. The resulting slope coefficient is almost identical to our baseline specification.

6.3 Strategic timing of medical care use

Another threat to our empirical approach could be strategic timing of medical care use.20 Note,
however, that individuals in our estimation sample do not have an incentive to strategically delay
care since, for them, care at the beginning of year y+ 1 is always more expensive than at the
end of year y. Instead, they have an incentive for strategic frontloading of medical care. Thus,
they can benefit from shifting care from the beginning of year y+ 1 to the end of year y. This
incentive exists in all year-pairs {y,y+1}. If individuals engage in strategic frontloading, but

20For instance, Cabral (2016) finds evidence for strategic delay of medical care use in the context of dental care.
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by the same amount for all year-pairs, then this will not affect our empirical approach based
on comparing changes in care consumption around the turn of the year across year-pairs. If
individuals engage in more strategic frontloading at the end of years y when P̄e

1,y+1 is higher
then this would be an element of forward-looking behavior and part of the effect that we are
interested in. It would also be part of the effect we estimate. Conversely, myopic individuals
would not respond to P̄e

1,y+1, and they would also not engage in strategic frontloading of medical
care.

6.4 Robustness to changes in the donut hole

In our “donut hole” RD design we omit some days around the turn of the year due to holidays.
For example, for the year-pair {2008,2009} we compare expenditures on Thursday December
18 and Thursday January 8. In robustness checks we change the length of the donut hole, and
we compare averages across different weekdays. Specifically, we consider increasing the length
of the donut hole by one week, and look at Wednesdays instead of Thursdays. Rows 3 to 5 of
Table 5 show results for these different specifications of the donut hole. Our conclusions from
Section 5 are robust to these different specifications.

6.5 Additional robustness checks

We also implement our empirical strategy for individuals under 18 years of age. Given that they
do not face any cost-sharing, they should not exhibit the forward-looking behavior we document
for our baseline sample of adults. This is exactly what we find. In fact, in line with minors not
facing any cost-sharing, none of the estimated discontinuities are significantly different from
zero.

We also repeat our empirical analysis for weekly-level data (as opposed to daily-level data
in our baseline specification), a larger cut-off for pseudo-censored expenditures (e5000 instead
ofe500), and a specification where utilization is measured by the log of daily expenditures plus
one. We find that our conclusions do not change.

The results of these robustness checks are presented in Appendix D.

7 The effect of changes in deductibles on annual expendi-
tures

In the previous sections, we have examined the relationship between the expected end-of-year
price and daily care utilization around the turn of the year. In this section, we show how our
estimate of γe can be used to predict the effect of a change in the size of the deductible on
healthcare utilization at the annual level. Specifically, we quantify the euro amount saved, per
capita in a year, from an increase in the size of the deductible by e100—from e375 to e475.
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Recall that according to (1), care consumption is given by:

cit = κit− γ
c ·Pc

it − γ
e ·Pe

it .

This holds at the individual level at any time t within a year. We can take this as a starting point,
aggregate over individuals, and make the dependence on the year explicit. y is our baseline
year, 2015, with a e375 deductible. y′ is a hypothetical year in which everything is the same,
except that the size of the deductible is e475. We can write the resulting difference in average
expenditures as

c̄t,y′− c̄t,y =−
[

γ
c · (P̄c

t,y′− P̄c
t,y)+ γ

e · (P̄c
t,y′ · P̄

e
t,y′|Pc

it,y′>0− P̄c
t,y · P̄e

t,y|Pc
it,y>0)

]
, (3)

where P̄e
t,y|Pc

it,y>0 is the average expected end-of-year price in year y for individuals who have

a positive current price in year y at time t. P̄e
t,y′|Pc

it,y′>0 is defined analogously. Appendix A.4

derives equation (3) and establishes the link to the micro foundation of (1).
(3) shows that the effect of a change in the deductible consists of two parts. (P̄c

t,y′ − P̄c
t,y)

is the change in the fraction of the population of individuals for whom the current price is 1
in period t of the year, when the deductible is increased by e100. This is multiplied by the
effect of the current price on care consumption, γc. The product of the two is the change that is
due to the change in static incentives. The second part is the effect that is due to the change in
dynamic incentives. It arises for all individuals who have a positive current price. The fraction
of individuals for whom this is the case is given by P̄c

t,y and P̄c
t,y′ in year y and y′ respectively.

These fractions are multiplied with the average expected end-of-year price conditional on a
positive current price in each year. These quantities reflect the fact that when the deductible
increases by e100, both the expected end-of-year price and the fraction of individuals who face
this expected end-of-year price increases.

We can decompose the second part of (3) into two separate effects: (i) the effect due to
the change in the fraction of individuals who face dynamic incentives (prevalence effect) and
(ii) the effect due to the change in the expected end-of-year price (intensity effect) when the
deductible is increased by e100:

γ
e · (P̄c

t,y′ · P̄
e
t,y′|Pc

it,y′>0− P̄c
t,y · P̄e

t,y|Pc
it,y>0)

= γ
e ·
(

P̄e
t,y′|Pc

it,y′>0 · (P̄
c
t,y′− P̄c

t,y)+ P̄c
t,y · (P̄e

t,y′|Pc
it,y′>0− P̄e

t,y|Pc
it,y>0)

)
(4)

The first term in (4) relates to the prevalence effect, i.e., the increase in the share of indi-
viduals who face dynamic incentives when the deductible increases. This increased share of
individuals is given by (P̄c

t,y′− P̄c
t,y) and is multiplied by the average expected end-of-year price

in year y′. The second term relates to the intensity effect, i.e., the increase in the expected end-
of-year price for individuals who face dynamic incentives in year y. The share of individuals
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Table 6: Effect of increasing the deductible by e100 on annual expenditures

current price reaction to reaction to dynamic incentives total

effect static incentives prevalence effect intensity effect effect

90% 206.21 86.46 33.13 325.80
40% 91.65 86.46 33.13 211.24
20% 45.83 86.46 33.13 165.41
0% 0 86.46 33.13 119.59

Notes: This table presents annual spending reductions under an assumed current price effect.
The last row serves as a baseline: when the current price effect is assumed to be 0, the only
reduction in annual expenditures comes from changes in dynamic incentives.

who face dynamic incentives in year y is given by P̄c
t,y and this is multiplied by the change in

the average expected end-of-year price when the deductible is increased by e100.
For our prediction of annual expenditures, we use our estimate of γe. It measures the re-

sponse to dynamic incentives. We have not estimated γc. Based on the literature, our starting
point for the latter is that individuals reduce their expenditures by 40% if the current price in-
creases from 0 to 1, conditional on the expected end-of-year price. 40% is very close to the
estimates Brot-Goldberg et al. (2017) report for a sample of employees of a large firm in the
U.S. and the estimates of Hayen et al. (2019) for the same data as we use in this paper. We also
report results for a current price effect of 90%, 20%, and 0%, respectively.

We also need to predict prices. To that end, for each day t, we regress the share of individuals
who have crossed the deductible and the expected end-of-year price (conditional on not yet
having crossed) on the deductible amount in the corresponding year. Based on this, we predict
all 4 prices in (3). The estimation equation is

outcomet,y = θ0,t +θ1,tdeductibley +ηt,y,

where outcomet,y is either P̄c
t,y or P̄e

t,y|Pc
it,y>0. Here, we use the entire sample of individuals in our

data from 2008− 2015. We account for the fact that individuals with higher riskscores react
stronger to dynamic incentives by estimating γe separately for individuals above and below
the median riskscore. We estimate γe to be −17.41 and −2.36 for above and below median
riskscore groups respectively. We also account for the fact that these different groups may have
different values of P̄c

t,y and P̄e
t,y|Pc

it,y>0 by performing the underlying regressions for both groups

in our sample separately. Figure 6 shows our predictions of P̄c
t,y and P̄e

t,y|Pc
it,y>0, for each riskscore

group and deductible level. Aggregation over days in the year gives spending effects on yearly
healthcare expenditure.

Table 6 shows the results. Each row is for a different value of the current price effect. The
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Figure 6: Effects of increasing the deductible by e100 on static and dynamic incentives

(a) Fraction individuals with current price of 1

(b) Expected end-of-year price for those who still have a current price of 1

Notes: Figure (a) shows the share of individuals with a positive current price at time t, P̄c
t,y, for two

deductible levels,e375 ande475, across riskscore. Figure (b) depicts the predicted average expected
end-of-year price for individuals with a positive current price at time t, P̄e

t,y, for two deductible levels,
e375 and e475, across riskscore.
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first column shows the current price effect in percentage terms.21 The second column shows the
absolute effect on spending that is due to the change static incentives induced by increasing the
deductible by e100. This is entirely due to patients facing a price of care of 1 for a longer time.
The reduction in average annual expenditures that is due to current price changes is about e92
when we calculate it for our baseline value of the current price effect of 40%.

Next, column 3 and 4 report the effect of dynamic incentives. We find that overall, health-
care expenditures decline by about e120 when the deductible size increases from e375 to
e475. Given that, on average, an individual has total annual expenditures that count towards
the deductible of around e2000 in 2015, this would imply increasing the deductible size by
e100 to e475 leads to a 6% reduction in per capita healthcare expenditures due to changes in
dynamic incentives.

The last column reports the total effect of dynamic and static incentives. For our baseline
value of the current price effect of 40% we find that the reduction in average annual expenditures
is e211, or 10.6%. Static incentives account for around half of the total reduction in annual
spending.

8 Conclusion

In this paper, we show that a standard feature of deductible contracts, namely that they reset
at the turn of the year, in combination with changes in deductible limits across years give rise
to a differences-in-regression-discontinuities design that allows us to estimate the impact of
dynamic incentives on healthcare utilization. Our micro-founded approach combines advan-
tages of a model-based, structural approach and a reduced-form approach exploiting a natural
experiment.

Using administrative data from the Netherlands, we find that individuals are forward-looking
and that the effect of dynamic incentives on healthcare expenditures is quantitatively important:
a e100 increase in the deductible reduces our measure of daily expenditures at the beginning
of the year, when individuals still have to pay for care themselves, by around 3.0% and reduces
the probability of having any claim by around 4.4%.

We also explore whether the the reaction to dynamic incentives differs across subgroups in
our sample, defined by age, gender, and neighborhood income. Policy makers may be concerned
if individuals with the same healthcare needs would react differently to dynamic incentives
because they belong to different groups. Controlling for differences in healthcare needs we find
that almost every subgroup exhibits forward-looking behavior. The only exception is the group
of individuals that are below age 45. For the remaining groups, we find that an increase in the

21The effects reported in the literature are all relative effects. To conduct the analysis we translate relative effects
into absolute effects. These are denoted by γc in (1). This is done by multiplying the respective relative effect by
the average spending of individuals who have crossed the deductible in 2015. The average is taken over individuals
and days after the deductible was hit and is e18.26. The absolute effects are e16.43 for 90%, e7.30 for 40%, and
e3.65 for 20%.
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size of the deductible by e100 leads to a percentage change in daily expenditures that ranges
from -2.5% to -3.5%.

Based on our model, we can use our estimates to predict the effect of dynamic incentives
on annual expenditures. At the annual level, dynamic incentives imply that an increase in the
deductible by e100 reduces annual healthcare expenditures (that count towards the deductible)
by 6%. For the Netherlands, in the year 2015, this is equivalent to a e2 billion reduction in
overall healthcare expenditures. This means that dynamic incentives have a first-order impact
on healthcare utilization.

In comparison, we predict that the response to static incentives reduces annual expenditures
by 4.6% if the deductible is increased by e100. This prediction is based on an estimate of the
effect of static incentives on healthcare expenditures from the literature. The relative size of the
two effects suggests that patients’ responses to dynamic incentives are an important part of the
overall effect of cost-sharing schemes on healthcare expenditures—much more so than what the
previous literature has suggested.
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A Micro foundation

In this appendix, we provide a micro foundation for our differences-in-regression-discontinuities
analysis and the counterfactual simulations. For this, we propose an empirical model that
predicts a reaction to both the current and the expected end-of year price and features quasi-
hyperbolic discounting (Appendix A.1). We derive the implied reduced-form equation for care
consumption at the individual level (Appendix A.2). Then, we show that our differences-in-
regression-discontinuities estimates have a particular structural interpretation (Appendix A.3).
Thereafter, we provide a micro-foundation for our counterfactual experiment that we conduct in
Section 7 of the paper (Appendix A.4). We also provide details on the relationship of our model
to various versions of the Keeler et al. (1977) model that have been used in the literature, with a
particular emphasis on the question what constitutes a good measure of dynamic incentives and
to what extent our measure is model-dependent (Appendix A.5). We end with a more general
discussion (Appendix A.6).

A.1 Model

The year is divided into periods t = 1, . . . ,T . In each period, patient i faces healthcare needs λit

that are i.i.d. draws from a time-specific distribution Fλ t .
The model and the ensuing analysis are tailored to our setting where cost sharing is imple-

mented using a standard deductible. At the beginning of each time period, i has a remaining
deductible Rit and learns about her healthcare needs. She then chooses how much care cit to
consume. The remaining deductible is Ri1 = D at the beginning of the year and evolves accord-
ing to Rit = max{0,Ri,t−1− ci,t−1}. Care consumption leads to out-of-pocket payments

C(cit ,Rit) = min{Rit ,cit}. (5)

It will be useful to define the out-of-pocket price for the last unit of care that is consumed in t

as
Pc

it ≡
∂C(cit ,Rit)

∂cit
.

Here, the superscript “c” stands for “current”.
Flow utility is quasi-linear in money and given by

u(cit ;λit ,Rit) = (cit−λit)−
1

2ω
(cit−λit)

2−C (cit ,Rit) . (6)

This quadratic functional form has been used by Einav et al. (2013) in a different context—patients
choosing which health insurance to buy—and can be seen as a quadratic approximation to any
utility function that is defined on the difference between healthcare consumption cit and health-
care needs λit and quasi-linear in money. One advantage of this specification is that the param-
eter ω is readily interpretable. To see this, it is useful to inspect the first order condition for an
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interior solution in the last period,22

1− 1
ω
· (ciT −λiT )−

∂C(ciT ,RiT )

∂ciT
= 0.

This implies that the optimal static consumption choice in the last period is

c∗iT = λiT +ω ·
(

1− ∂C(ciT ,RiT )

∂ciT

)
.

The last term in parentheses is the marginal out-of-pocket cost for the last unit of care that is
consumed in period T . In the case of a standard deductible that we study in this paper, this cost
is either 1 by the end of T the patient will have exceeded the deductible limit, or 0. So, care
consumption is given by

c∗iT = λiT +ω

for patients above the deductible limit and

c∗iT = λiT

for patients below the deductible limit. This means that ω is the additional care consumption
when individuals do not have to pay out-of-pocket for the last unit of care they consume.

In any earlier period t patients solve a dynamic decision problem when they choose cit . The
associated value function is

Vt(λit ,Rit) = max
cit

u(cit ;λit ,Rit)+βδ ·E
[
Ṽt+1(λi,t+1,Ri,t+1)

]
, (7)

with Ṽt(λit ,Rit) = max
cit

u(cit ;λit ,Rit)+δ ·E
[
Ṽt+1(λi,t+1,Ri,t+1)

]
. (8)

The distinction between Vt(λit ,Rit) and Ṽt(λit ,Rit) arises because of quasi-hyperbolic discount-
ing with naive individuals: if β < 1 then they are too optimistic and wrongly expect that from
the next period onward they will not suffer from present bias and only be exponential discoun-
ters.

The model outlined above is similar to the original theoretical model by Keeler et al. (1977).
However, there are two key conceptual differences. First, patients can’t save or borrow against
future income. As we discuss in Section A.5.1, this is the most straightforward and internally
consistent way to build a model in which patients react to the current price. The second concep-
tual difference is a generalization: patients are quasi-hyperbolic discounters. They discount all

22Keep in mind that the budget set is nonlinear. This means that the first order condition could hold at two values
for ciT . Also, notice that C (cit ,Rit) is not differentiable at cit = Rit . However, (5) implies that it will in general not
be optimal to choose the kink point. For this reason, we will abstract from this in the following for the ease of the
exposition (but would have pointed it out in the relevant places if it would have led to different conclusions). In the
context of Medicare Part D, as is well-understood, one would have to instead carefully take bunching at the kink
into account, as has been done for instance by Abaluck et al. (2018).
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future utilities by a factor β and, in addition, utility that is τ periods in the future by δ τ . Related
to the discounting, we assume that individuals are naive in the sense of O’Donoghue and Rabin
(1999), meaning that they do not foresee that their time preference will change in the future.

Our model is similar to the empirical models in Einav et al. (2015) and Abaluck et al. (2018).
Also, these models do not feature savings or borrowing. However, the former assumes β = 1
and the latter δ = 1. We provide additional formal results for β < 1 and general values of δ .

We now derive the optimal policy in the form of a reduced-form equation that relates today’s
healthcare consumption cit to the state variables λit and Rit , and to beliefs about the future.

These beliefs are directly related to the probability of crossing the deductible in future peri-
ods. It will be useful to define

qit(τ)≡ Pr(Riτ > 0,ciτ > Riτ |Rit ,cit), where τ > t.

In words, this is the probability of exceeding the cost sharing limit in period τ , which refers to
the joint event that the remaining deductible at the beginning of period τ is positive and that
care consumption in period τ exceeds the remaining deductible. This probability is conditional
on information available in t, so it is from the perspective of period t. In particular, we condition
on the deductible at the beginning of period t and spending in t. This implies a value for the
remaining deductible at the end of period t, which is the key state variable here. Notice that,
in line with rational expectations over future healthcare needs and behavior in the future, this
probability qit(τ) can be estimated from data.

With this probability qit(τ), a consumer who is spending one additional unit of money out-
of-pocket in t will spend one unit of money less in τ . As utility is quasi-linear in money, the
utility cost of this additional unit of care will then be 1− βδ τ−t . 1 is the cost in the current
period when utility is quasi-linear in money and βδ τ−t are the discounted savings in τ . These
discounted savings refer to the chance that higher expenditures in period t might lead to lower
expenditures in period τ . If it is uncertain when the individual will exceed the deductible, then
the patient has to form expectations about this. The expected utility cost of one additional
unit of care, will then be Pit = 1−β ·∑T

τ=t+1 δ τ−tqit(τ). Pit depends on individual preference
parameters β and δ , and it involves beliefs, as it depends on future realization of healthcare
needs. It is the correct measure of dynamic incentives in this context.

Furthermore, Pit = 0 whenever Pc
it = 0. The expected utility cost of one additional unit of

care consumption is zero whenever a patient has already exceeded the deductible limit before
the end of year t. Therefore, we can write Pit as

Pit =

0 if Pc
it = 0

1−β ·∑T
τ=t+1 δ τ−tqit(τ) if Pc

it = 1.
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A.2 Reduced-form equation for care consumption

We now derive a reduced-form equation for care consumption at the individual level. We sum-
marize our result in the following proposition. The proof resembles the proof by Ellis (1986),
as discussed in Appendix A.5 below, and the one by Abaluck et al. (2018) who however impose
δ = 1.

Proposition 1. In the model described in Appendix A.1, optimal care consumption is given by

cit = λit +ω · (1−Pit), (9)

where the relevant price is given by

Pit =

0 if Pc
it = 0

1−β ·∑T
τ=t+1 δ τ−tqit(τ) if Pc

it = 1.
(10)

Proof of Proposition 1. The first order condition for the maximization problem in (7) is

∂u(cit ;λit ,Rit)

∂cit
+βδ ·

∂E
[
Ṽt+1(λi,t+1,Ri,t+1)

]
∂Ri,t+1

·
∂R1,t+1

∂cit
= 0. (11)

First consider the case when Rit = 0. In this case, patients solve a static problem, and the
second term on the left hand side of (11) is zero. Hence, the first order condition in any period
for which Rit = 0 is given by the derivative of the flow utility in (6) with respect to cit , evaluated
at Rit = 0, being equal to zero,

1− 1
ω
· (cit−λit) = 0,

which implies cit = λit +ω for Rit = 0. By (10) we have that Pit = 0. So, (9) holds for all t

whenever Rit = 0.
Next consider the case Rit > 0. Our goal is to show that

∂E
[
Ṽs(λi,s,Ris)

]
∂Ris

=−
T

∑
τ=s

δ
τ−sqit(τ), (12)

for any t < s≤ T . If (12) holds for s = t +1 then it can be shown that the first order condition
in (11) implies that equation (9) in the proposition is true.

We show that (12) holds by induction. First, we show that it holds for s = T . In that period,
patients reach the cost sharing limit with probability qit(T ) from the perspective of period t. For
patients who reach the cost-sharing limit in period T , a remaining deductible that is higher by
one unit means that they spend that one unit more out-of-pocket. By the envelope theorem, the
derivative of (8) with respect to the remaining deductible in T is

∂E
[
ṼT (λi,T ,RiT )

]
∂RiT

= (−1) ·qit(T )+0 · (1−qit(T )).
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So, (12) holds for s = T .
It remains to show that (12) holds for s whenever it holds for s+1. By the envelope theorem,

we have that the derivative of (8) with respect to Ris is

∂E
[
Ṽs(λis,Ris)

]
∂Ris

=
∂u(cis;λis,Ris)

∂Ris
+δ ·

∂E
[
Ṽs+1(λi,s+1,Ri,s+1)

]
∂Ri,s+1

=−∂C (cis,Ris)

∂Ris
+δ ·

∂E
[
Ṽs+1(λi,s+1,Ri,s+1)

]
∂Ri,s+1

.

We have that

−∂C (cis,Ris)

∂Ris
=

−1 with probability qit(s)

0 with probability 1−qit(s).

Using this and substituting in (12) gives

∂E
[
Ṽs(λis,Ris)

]
∂Ris

= (−1) ·qit(s)+δ ·
T

∑
τ=s+1

δ
τ−(s+1) · (−1) ·qit(τ) =−

T

∑
τ=s

δ
τ−sqit(τ).

This completes the proof.

Before we discuss how equation (9) in the proposition relates to our analysis we write it as

cit = λit +ω ·

[
1−Pc

it ·

(
1−β ·

T

∑
τ=t+1

δ
τ−tqit(τ)

)]

= λit +ω ·

[
1−Pc

it ·

(
1−β ·

(
T

∑
τ=t+1

δ
τ−tqit(τ)−1+1

))]

= λit +ω ·

[
1−Pc

it ·

(
1−β ·1−β ·

(
T

∑
τ=t+1

δ
τ−tqit(τ)−1

))]

= λit +ω ·

[
1−

(
(1−β ) ·Pc

it +β ·Pc
it ·

(
1−

T

∑
τ=t+1

δ
τ−tqit(τ)

))]

where the first equality follows from substituting in the expression for Pit , the second from
adding and subtracting 1 from the expression in the innermost set of parentheses, the third and
fourth from rearranging terms.

As a next step, we show that this way to write the optimal policy relates care consumption
cit to the current price Pc

it and the expected end-of-year price Pe
it . To show this, we assume

δ = 1. In the main text, we have defined the expected end of year price as the probability that
the patient will have to pay for the last unit of care in the year. Formally, we can write
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Pe
it = Pc

it ·

(
1−

T

∑
τ=t+1

qit(τ)

)
.

If Pc
it = 0, then the expected end-of-year price is 0; if Pc

it = 1, then the expected end of year
price is 1 minus the probability to hit the deductible limit in any future period. So, we have

cit = λit +ω · [1− ((1−β ) ·Pc
it +β ·Pe

it)] . (13)

This way to re-write the optimal policy is useful because it forms a basis for a regression of
care consumption on the current and the expected end-of-year price. Such a regression has been
carried out for instance by Brot-Goldberg et al. (2017). Furthermore, this equation is equivalent
to the first equation in the main text

cit = κit− γ
c ·Pc

it − γ
e ·Pe

it .

where κit ≡ λit +ω , the parameter on the current price is γc ≡ ω · (1−β ) and the parameter on
the expected end-of-year price is γe ≡ ω ·β .23 The relative importance of γc and γe depends
on the parameter for hyperbolic discounting β . If there is no hyperbolic discounting (β = 1),
then patients will exclusively respond to the expected end of year price Pe

it . This is the case
considered in the original paper by Keeler et al. (1977). If there is hyperbolic discounting (β <
1) then patients will respond to both Pe

it and Pc
it .

Finally, observe that the relative size of the coefficients on the current and expected end-of-
year price is informative about the extent to which individuals discount all future periods, as
summarized by β . In particular, we have that

γc

γe =
1−β

β
.

or
β =

1
1+ γc/γe .

This means that if γc and γe are identified, then also β is identified.

A.3 Interpretation of differences-in-regression-discontinuities estimates

In the main part of the paper, we relate changes in care consumption at the turn of the year
to the expected end-of-year price. Here we provide a micro foundation. We do so under the
assumption that δ = 1. This allows us to follow the literature and measure changes in dynamic
incentives by changes in the expected end-of-year price. In Appendix A.5 we further discuss the
assumption that δ = 1, and we show that even if we depart from this assumption Pe

it is closely
related to the correct measure of dynamic incentives.

23This result for δ = 1 is not new. Abaluck et al. (2018, p.110) provide a similar expression.
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Denote averages taken over individuals in a given period t of year y by a bar indexed by t

and y. Using this notation, we have that the average current price in t = 1 of year y+1 is P̄c
1,y+1

and the expected end-of-year price at the beginning of the year is P̄e
1,y+1.24

Based on (13) we can write average care consumption in t = 1 of year y+1 as

c̄1,y+1 = λ̄1,y+1 +ω ·
[
1−
(
(1−β ) · P̄c

1,y+1 +β · P̄e
1,y+1

)]
.

For each year-pair we use a sample of individuals whose price is zero by the end of year y.
In terms of our model average care consumption in the last period of year y is thus

c̄T,y = λ̄T,y +ω.

As discussed in Section (2), our identifying assumption in (2) is that the change in medical
needs around the turn of the year is the same for all year-pairs. This assumption can also be
expressed in terms of average medical needs λ̄t,y instead of κ̄t,y. Then we have for all year-pairs
{y,y+1} and {y+1,y+2}

(λ̄1,y+2− λ̄T,y+1) = (λ̄1,y+1− λ̄T,y)

We discuss the plausibility of this assumption in Section 6. Under this assumption, the
change in the discontinuity from year-pair {y,y+1} to, year-pair {y+1,y+2} is

(c̄1,y+2− c̄T,y+1)− (c̄1,y+1− c̄T,y) =−ω ·
[
(1−β ) · (P̄c

1,y+2− P̄c
1,y+1)+β · (P̄e

1,y+2− P̄e
1,y+1)

]
.

(14)
At the beginning of the year, the current price is one because the deductible resets at the turn of
the year. At the end of the first period, it can be zero if an individual experiences a health shock
in the first period and consumes more care than the deductible limit. However, in Section 6.1
we show that the difference P̄c

1,y+2− P̄c
1,y+1 does not significantly vary across years. Thus, our

estimate for γe in (1) is an estimate of ω ·β .

A.4 Micro-foundation for counterfactuals

In Section 7 we show how we can use an estimate of ω ·β to make a counterfactual prediction
of healthcare expenditures for a different value of the deductible. We also show how one can
use prior knowledge of the current price effect to say how much of the change in healthcare
expenditures is driven by the current price effect and how much is driven by the reaction to
dynamic incentives. In this section, we provide a micro foundation for this.

24Here we do not make a formal distinction between expectations and averages. In our analysis, we interpret
estimates that are based on sample averages and are interested in the effect of a change in the deductible on average
expenditures.
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Maintaining the assumption that δ = 1, it follows from (9) and (10) that

c̄t,y = λ̄t,y +(1− P̄c
t,y) ·ω + P̄c

t,y ·ω ·
[
1−
(

1−β · (1− P̄e
t,y|Pc

it,y>0)
)]

= λ̄t,y− P̄c
t,y ·ω ·

(
1−β · (1− P̄e

t,y|Pc
it,y>0)

)
,

where P̄e
t,y|Pc

it,y>0 is the average expected end-of-year price from the perspective of period t,
where the average is taken over individuals with a positive current price in period t of year y;
analogously for y′. Now consider the case in which the only difference between year y and year
y′ is the size of the deductible. The difference in the expenditure between those two years is

c̄t,y′− c̄t,y =−
[

P̄c
t,y′ ·ω ·

(
1−β · (1− P̄e

t,y′|Pc
it,y′>0)

)
− P̄c

t,y ·ω ·
(

1−β · (1− P̄e
t,y|Pc

it,y>0)
)]

=−
[
(P̄c

t,y′− P̄c
t,y) ·ω · (1−β )+ω ·β · (P̄c

t,y′ · P̄
e
t,y′|Pc

it,y′>0− P̄c
t,y · P̄e

t,y|Pc
it,y>0)

]
This can also be written in a way that corresponds to the exposition in Section 7. For this

let y′ be the year with the higher deductible and denote by P̄e
t,y|Pc

it,y′>0 the average expected end-

of-year price in period t of year y (alternatively y′) for individuals who have a positive current
price in period t of year y′. Using

P̄c
t,y′ · P̄

e
t,y|Pc

it,y′>0 = P̄c
t,y · P̄e

t,y|Pc
it,y>0,

we have

c̄t,y′− c̄t,y =−
[
(P̄c

t,y′− P̄c
t,y) ·ω · (1−β )+ P̄c

t,y′ · (P̄
e
t,y′|Pc

it,y′>0− P̄e
t,y|Pc

it,y′>0) ·ω ·β
]
.

We can see that the effect consists of two parts. (P̄c
t,y′ − P̄c

t,y) is the change in the fraction of
the population of individuals for whom the current price is 1. This is multiplied by the effect
of the current price on care consumption, ω · (1−β ), and together gives the change that is due
to the change in static incentives. The second part is the effect that is due to the change of
dynamic incentives. It arises for all individuals who have a positive current price in year y′,
i.e. the fraction P̄c

t,y′ , and is given by the change in the end-of-year price for those individuals
times the reaction to the end-of-year price, ω ·β .

A.5 Relevant measure of dynamic incentives across models

A.5.1 The model by Keeler et al. (1977) and the result by Ellis (1986)

We first describe a version of the Keeler et al. (1977)-Ellis (1986) model that is comparable to
ours. The main generalization in our model is that patients are quasi-hyperbolic β −δ discoun-
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ters.
Flow utility is additive in healthcare consumption and other consumption yit . Instead of (6),

we now have
u(cit ,yit ;λit) = (cit−λit)−

1
2ω

(cit−λit)
2 +uc(yit). (15)

Notice that the costs of healthcare spending, unlike in (6), are not included in (15). These
costs, instead, enter the optimization problem through the evolution of wealth across periods:

Wt+1 =Wt− yt−C (cit ,Rit)

Allowing for quasi-hyperbolic discounters and interest, r, on wealth, we have the following
Bellman equation:

Vit (λit ,Wit) = max
cit ,yit

u(cit ,yit ;λit)+βδ ·E
[
Ṽt+1(λi,t+1,Wi,t+1)

]
with Ṽt(λit ,Wit) = max

cit ,yit
u(cit ,yit ;λit)+δ ·E

[
Ṽt+1(λi,t+1,Wi,t+1)

]
(16)

such that

Wit+1 = (1+ r)(Wit− yt−C (cit ,Rit))

Rit+1 = max(Rit− cit ,0)

VT+1 =V (λiT+1)+V (WiT+1)

The main difference between (7) and (16) is that the costs of healthcare do not affect flow
utility and only affects future values through its effect on Wit+1. An important related assump-
tion, given by the terminal condition on VT+1, is that there are no wealth effects in this formu-
lation: the marginal utility of wealth in period T +1 is assumed to be equal to 1. With this, one
can show that instead of (11) the first order condition is25

u(cit ,yit ;λit)

∂cit
−β ·δ (T+1)−t · (1+ r)(T+1)−t ·

(
1−

T

∑
τ=1

qit(τ)

)
= 0. (17)

From this we get that optimal care consumption is given by

cit = λit +ω

(
1−βδ

(T+1)−t (1+ r)(T+1)−t ·

(
1−

T

∑
τ=1

qit(τ)

))
.

The following proposition summarizes the above.

Proposition 2 (Relevant price in Ellis (1986) with discounting and interest). Assume the model

25In a separate note, Klein et al. (2019), we derive this result using a more general version of the original setup
and the same notation as in Ellis (1986). This note is not meant for publication, but available upon request from
the authors.
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setup in A.1, with the exception that: (i) patients are endowed with wealth and can freely save

and borrow; (ii) utility is not quasi-linear in money, but given by (15); (iii) money earns interest

at rate r. Assume that

0 < βδ (T+1)−t (1+ r)(T+1)−t < ∞. Then, optimal care consumption is

cit = λit +ω · (1−PKNPE
it ) (18)

and the relevant price is given by

PKNPE
it ≡ βδ

(T+1)−t (1+ r)(T+1)−t ·

(
1−

T

∑
τ=1

qit(τ)

)
. (19)

Here, “KNPE” abbreviates the names of the authors of Keeler et al. (1977) and Ellis (1986).
The original result is often cited for showing that the expected end-of-year price is the only
relevant price a patient should act on. Proposition 2 shows that this continues to hold under
quasi-hyperbolic discounting with interest.

A.5.2 Using the expected end-of-year price as a measure of dynamic incentives

Putting Proposition 1 and 2 side-by-side reveals that in the general case, the relevant price differs
across models. It is

Pit =

0 if Pc
it = 0

1−β ·∑T
τ=t+1 δ τ−tqit(τ) if Pc

it = 1.

in our model and

PKNPE
it = βδ

(T+1)−t (1+ r)(T+1)−t ·

(
1−

T

∑
τ=1

qit(τ)

)

in the model by Keeler et al. (1977) and Ellis (1986) with quasi-hyperbolic discounting. This is
not surprising, as one can in general not summarize complex dynamic incentives using a scalar
measure. Also not surprisingly, there is no difference between the two models once patients
exhaust the cost sharing limit. Then, the relevant price is zero.

In either of the two models a patient pays an effective price that is given by out-of-pocket
costs minus a “bonus”. The bonus reflects that spending an additional euro today reduces the
remaining deductible for all remaining periods by a euro: as a result of higher spending today,
the patient might have to pay less in the future. In fact, the patient will only have to pay less in
the future if she crosses the deductible in the future; the probability of such an event occurring
at time τ , from the perspective of time t, is given by qit (τ). Thus, a consumer who spends
one additional unit of money out-of-pocket in t will spend one unit of money less in τ with
probability qit (τ).

In our model, spending one euro less in period τ , means not incurring a disutility of 1 euro
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in period τ with probability qit (τ). This disutility arises because costs are modeled into flow
utility. From the perspective of period t this reduction in disutility in period τ is worth (in
expectation) βδ τ−tqit (τ). The value of the bonus, in period t, of spending an additional unit is
then just the summation of expected disutility reductions over all remaining τs in the year:

bit ≡ β ·
T

∑
τ=t+1

δ
τ−tqit(τ).

In the model by Keeler et al. (1977) and Ellis (1986), the inclusion of wealth (with no wealth
effects) means that spending money today only affects how much wealth the individual carries
over to the next period. The only relevant question, thus, is whether or not the patient will have
to pay for the last unit of care within a year. So, the bonus is given by the probability that this
is the case, times 1. The value of the bonus, from the perspective of t, is thus

bKNPE
it ≡ βδ

(T+1)−t (1+ r)(T+1)−t ·
T

∑
τ=t+1

qit(τ).

The bonus is the same in both models when δ = 1 and r = 0, and the difference between the
two is small for the realistic case in which δ is close to 1 and r is small.

When the bonus is the same, then the expected end-of-year price P̄e is also the same. In our
analysis, we relate variation in care consumption to variation in P̄e

it for a given period t. Those
changes in P̄e

it are in turn directly related to changes in the true dynamic incentive, bit or bKNPE
it .

There is no difference between those when δ = 1 and r = 0. Also, in both models, according
to (9) and (18), the coefficient we would estimate if we would regress healthcare consumption
on P̄e

it is β ·ω , so a reduced-form parameter that measures the reaction to changes in dynamic
incentives would have the same meaning in both models.

This remains to hold approximately if δ 6= 1, as long as δ is not too far away from 1 and r

is small. To show this, we set r = 0 and calculate the average value of the relevant part of the
value of the bonus in out model, ∑

T
τ=t+1 δ τ−tqit(τ), for January of each year (so for t = 1) and

using the value of qit(τ) from our data, and plot it against the relevant part of the value of the
bonus in the generalized Keeler et al. (1977)-Ellis (1986) model, δ−1 ·δ (T+1)−t ·∑T

τ=t+1 qit(τ).
We do so for various values of δ . Here, we add the factor δ−1 to make the timing comparable:
in our model individuals receive the last at most 11 periods in the future, while in the model
with savings they formally receive it 12 periods in the future. The factor δ−1 thus makes the
two models more comparable. We use δ = 1 for reference, δ = 0.996 that corresponds to a 5
percent yearly discount rate, and δ = 0.992 that corresponds to a 10 percent yearly discount
rate.

Figure A.1 shows the result. There are 7 years in our data, which means that for each
value of δ we obtain 7 data points. We can see that for each of the 3 values of δ , the values
of the bonus from both models are co-monotonic. This means that the ordering is preserved.
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Figure A.1: Value of bonus for different models and different values of δ
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Moreover, we can see that even for a yearly discount rate of 10 percent, the two values are
very close. A regression reveals that a one unit increase in the value of the bonus in our model
predicts a 0.894 unit increase in the value of the bonus for the Ellis (1986) model.

A.6 Discussion

In this appendix we have provided a micro foundation for the differences-in-regression-discontinuities
analysis we have conducted in the main part of the paper. This shows that our estimate of γe has
the interpretation of a myopia parameter β times a moral hazard parameter ω . We then show
how, based on this, one can perform a counterfactual simulation without solving a structural
model.

We have also shown that if we are interested in measuring dynamic incentives, then we will
not necessarily have to take a stance on which particular model we prefer. As long as we use a
model with quasi-hyperbolic discounting and assume that δ is close to 1 and r is close to zero,
our results show that the expected end-of-year “future” price that is also used in the literature
based on referencing the particular model by Keeler et al. (1977) is a good measure of dynamic
incentives.

Finally, our analysis reveals that a key difference between our model and the original model
with wealth by Keeler et al. (1977) is that in our model patients do react to static incentives,
with a weight of (1−β ), while in the model with wealth this is not the case. This difference
is not essential for the purpose of measuring the extent to which individuals react to dynamic
incentives, but it is a desirable model property as it is more in line with the empirical finding in
Keeler and Rolph (1988) and Brot-Goldberg et al. (2017) that patients react to static incentives
even conditional on the expected end-of-year price P̄e

it . The counterfactual analysis we conduct
in Section 7 provides a motivation to prefer the model that we describe in the beginning of
this Appendix, as it can be used to study the empirically relevant current price effects within
the same model framework. Otherwise, we would predict that patients do not react at all to
cost-sharing when they are close to being fully myopic, i.e. for small β that are however strictly
positive.26

Finally, we show that prior knowledge on the current price effect—which is interesting in
many applied contexts, but not the focus of this paper—can be used to separately identify moral
hazard effects ω and the myopia parameter β .

B Additional tables and figures

This appendix contains additional tables and figures referred to in the text.

26In the model with savings, the current price does actually matter when patients are fully myopic, but only then.
But this means that the limit of cit as a function of β , for β → 0 is not the same as cit when β is exactly zero.
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Table A.1: Dates used in analysis

year-pair Date Before ToY Date After ToY

2008−2009 18th December 2008 8th January 2009
2009−2010 17th December 2009 7th January 2010
2010−2011 16th December 2010 6th January 2011
2011−2012 15th December 2011 12th January 2012
2012−2013 20th December 2012 10th January 2013
2013−2014 19th December 2013 9th January 2014
2014−2015 18th December 2014 8th January 2015

Note: ToY refers to turn of year. The relevant holidays before the turn of the
year is the 24th of December, while the relevant holiday after the turn of the year
is the 1st of January.

Table A.2: Expenditure deflator values

Year Deflator

2008 .665
2009 .719
2010 .739
2011 .776
2012 .831
2013 .908
2014 .925
2015 1

Notes: Deflator values obtained from mean expenditures (only weekdays) from
the 37th week of the year to the end of the year, when individuals in our sample
face no price of care.
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Figure A.2: RD figures for different years
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Notes: The figure plots mean daily pseudo-censored healthcare spending (denoted by the
blue dots) across days for different years as shown in the x-axis. T denotes the last day of
year y and t = 1 denotes the first day of year y+ 1 we use in our estimation of the change
in spending due to contracts resetting. The red solid line denotes the local linear regression
used for the main analysis. See Section 4.1 for details. Weekends are omitted from our
analysis.
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Figure A.3: RD figures for different years
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Notes: The figure plots mean daily pseudo-censored healthcare spending (denoted by the
blue dots) across days for different years as shown in the x-axis. T denotes the last day of
year y and t = 1 denotes the first day of year y+ 1 we use in our estimation of the change
in spending due to contracts resetting. The red solid line denotes the local linear regression
used for the main analysis. See Section 4.1 for details. Weekends are omitted from our
analysis.

Online Appendix 16



Figure A.4: Results by gender
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Figure A.5: Results by income group
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Figure A.6: Results by age

(a) Age below 45 years

0.355 0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

(b) Age 45 years and older

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Online Appendix 17



C Inference

C.1 Relating discontinuity sizes to changes in dynamic incentives

Our parametric test proceeds in two steps: estimating the discontinuities around the turn of the
year and then relating them to the expected end-of-year price. The measurement error in the
first step needs to be taken into account when calculating the standard errors in the second step.
Following Hanushek (1973), the regression equation for the second step is given by:

∆̂y = α +β P̄e
1,y +(νy +uy) (20)

where ∆̂y is the estimated change in care consumption for year-pair {y−1,y}, uy is the sampling
error that arises from using the estimates ∆̂y as the dependent variable and νy is the error term
for the regression equation that uses ∆y as the dependent variable. We assume νy and uy are
independent, νy is homoskedastic with Var (νy) = σ2, Var (uy) = e2

y and Cov
(
uy,uy′

)
= 0 ∀

y 6= y′.
√

e2
y corresponds to the standard error of the estimated discontinuity ∆̂y. Let εy = νy+uy.

It can be shown that the variance-covariance matrix of εy is given by:

E
[
εε
′]= σ

2
Ω =


1+ e2

1
σ2 0 0

0 . . . 0

0 0 1+ e2
Y

σ2

σ
2

Hanushek (1973) then shows that σ2 can be estimated from the OLS residuals in (20).27

This variance-covariance matrix structure implies a weighted least-squares regression with weights,
wy, given by:

wy =
1√

σ2 + e2
y

C.2 Non-parametric monotonicity tests

We use the MR and Up/Down tests that have been proposed in Patton and Timmermann (2010)
as non-parametric tests for monotonicity. Patton and Timmermann (2010) argue that these
test statistics can provide strong evidence for an economic theory. It was also the only non-
parametric test of monotonicity we could find that made use of the estimated coefficients rather
than just their ranking.

Consider our 7 estimates of changes in expenditures around the turn of the year, ∆̂y, ordered
with respect to the expected end-of-year price, with the smallest expected end-of-year price
first and denote them by ∆̃1, . . . , ∆̃7. Economic theory posits that years with a higher expected

27The formula (and its derivation) used to estimate σ2 is detailed in Hanushek (1973, pg. 67).
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end-of-year price should exhibit a larger decrease in percentage spending. This implies:

∆̃1 > ∆̃2 > ... > ∆̃7. (21)

Let di denote the difference between consecutive ranks i and i+ 1 in (21). Consider the mini-
mum of all di’s. If this minimum is larger than 0, it must be the case that every other consecutive
difference is larger than 0. This provides the basis for the MR test statistic:

JT = min
i
{di} (22)

with the corresponding hypothesis as:

H0 :d = 0

H1 :d ≥ 0

where d is a vector containing all the di’s from above.28

Since the asymptotic distribution of JT does not have a closed form solution, we have to
obtain p-values via bootstrapping. This is done, for each bootstrap repetition, by drawing from
the distribution of the estimated coefficients, ordering them with respect to the expected end-of-
year price, and then computing Jb

T , where Jb
T is the value of the MR test statistic for bootstrap

repetition b. To impose the null hypothesis, we then subtract the quantity in (22), JT , from Jb
T .

The p-value is given by the following:

1
B

B

∑
b=1

1
{(

Jb
T − JT

)
> JT

}
A problem with this MR test is that it can lack power, as shown in Monte Carlo simulations

done in Patton and Timmermann (2010). For our specific application, this lack of power stems
from 2 reasons:

1. There is a cardinality in the ranking that is not taken into account. For example, the
change in expected end-of-year price from 2012 to 2013 is rather large, but the test statis-
tic treats all of these changes the same.

2. The magnitude of the change in coefficients is not taken into account. For example, the
estimated coefficients changes by quite a large amount from 2012 to 2013.

To diagnose whether the test statistic fails to reject the null of no monotonic relationship due to
a lack of power, Patton and Timmermann (2010) propose the Up and Down test statistic, given
by the following:

28Although we use only the difference between consecutive ranks in our application, this approach is valid
for any difference implied by theory. Patton and Timmermann (2010) report very little gains from including all
possible combinations of differences implied by theory in the testing procedure.
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JU p =
N

∑
i=1
|di|{di > 0} (23)

JDown =
N

∑
i=1
|di|{di < 0} (24)

Intuitively, the test statistic in (22) checks if there are significant changes in line with the theory,
taking into account the magnitude of these changes, whereas (24) checks the opposite. This
addresses the 2nd power concern for the MR test we mentioned above. We obtain p-values for
both (22) and (24) using the same bootstrap procedure mentioned for the MR test.

D Additional robustness checks

D.1 Placebo test

In the Netherlands only individuals above the age of 18 (inclusive) are subject to cost-sharing
in the form of deductibles, while the price of care for individuals below the age of 18 is always
zero. Individuals below the age of 18, thus, provide a simple placebo test for our empirical
methodology—since they do not face any price of care for all the years in consideration, their
changes in healthcare utilization should not exhibit an increasing relationship with P̄e

1,y+1.29 It is
important to mention that dental care was removed from estimating the changes from resetting
contracts since it is not covered in the basic package for our main sample.

Figure A.7 depicts the relationship between the estimated coefficients and P̄e
1,y+1, while

Table A.3 reports the tests for monotonicity.
All four tests, for both measures of healthcare utilization, suggest a lack of forward-looking

behavior in this particular subgroup.

D.2 Weekly data

We also run our empirical approach on weekly level data. We create this weekly level data set
through the following steps:

1. We create the daily level final data set, with all the relevant dates for the donut hole.

2. We start counting 7 days from the day before the turn of the year (our T in the RD). This
is one week for days before the turn of the year.

3. We start counting 7 days from the day after the turn of the year (our T + 1 in the RD).
This is one week for days after the turn of the year.

29Since these individuals do not face the deductible, we compute their P̄e
1,y+1 as the 1 minus the proportion of

total individuals that would have crossed the actual deductible in year y+1.
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Figure A.7: Relationship between discontinuity sizes and dynamic incentives (placebo)

(a) Daily mean spending (pseudo-censored)
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Notes: These figures plot the relationship between the estimated changes due to resetting contracts
and the computed P̄e

1,y+1 for the placebo sample (individuals aged below 18). The solid line is the
OLS regression line.
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Table A.3: Dependence of discontinuity sizes on dynamic incentives (placebo)

daily expenditure any daily expenditure
effect of dynamic incentives (γe) 1.215 -0.002

(2.3187) (0.0105)
p-value nonparametric MR test 0.219 0.180
p-value nonparametric Up test 0.737 0.739
p-value nonparametric Down test 0.511 0.620

Notes: The effect of dynamic incentives was estimated by regressing the estimated discon-
tinuities on P̄e

1,y+1. The “Slope” test refers to a two-sided t-test on the slope coefficient of a
weighted regression of the estimated changes reported in Table 2 and the computed P̄e

1,y+1. The
MR, Up and Down tests were conducted using 10,000 bootstrap repetitions. See Appendix C
for details.

Table A.4: Dependence of discontinuity sizes on dynamic incentives (weekly)

daily expenditure any daily expenditure
effect of dynamic incentives (γe) -52.027 -0.250

(7.8074) (0.1084)
p-value nonparametric MR test 0.099 0.987
p-value nonparametric Up test 0.004 0.000
p-value nonparametric Down test 0.981 0.029

Notes: The effect of dynamic incentives was estimated by regressing the estimated discon-
tinuities on P̄e

1,y+1. The “Slope” test refers to a two-sided t-test on the slope coefficient of a
weighted regression of the estimated changes reported in Table 2 and the computed P̄e

1,y+1. The
MR, Up and Down tests were conducted using 10,000 bootstrap repetitions. See Appendix C
for details.

4. We sum expenditures within these 7 days, NOT taking into account weekend expendi-
tures.

The results are reported in Figure A.8 and Table A.4.

D.3 Pseudo-censored cutoff

In our baseline specification, we pseudo-censored expenditures at e500. In this section, we
report results from pseudo-censoring expenditures at e5000. The results are reported in Figure
A.9 and Table 5 respectively.

D.4 Log specification

In this specification, we use the logged expenditure (plus 1) dependent variable for healthcare
utilization in place of pseudo-censored expenditures. These results are reported in Figure A.10
and in the third row of Table 5. Our approach is robust to such alternative specifications.
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Figure A.8: Relationship between discontinuity sizes and P̄e
1,y+1 (weekly data)

(a) Weekly mean spending (pseudo-censored)
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Notes: These figures plot the relationship between the estimated changes due to resetting contracts
and the computed P̄e

1,y+1 for the baseline sample, where claims were aggregated at the weekly
level. The solid line is the OLS regression line.
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Figure A.9: Relationship between jump and P̄e
1,y+1 (PC at 5000)
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Notes: These figures plot the relationship between the estimated changes due to resetting contracts
and the computed P̄e

1,y+1 for the baseline sample as defined in Section ??. The dependent variable
here is pseudo-censored at 5000, i.e., any expenditure above 5000 was coded to be equal to 5000.
The solid line is the OLS regression line.
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Figure A.10: Relationship between discontinuity size and P̄e
1,y+1 (ln(exp+1))
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Notes: These figures plot the relationship between the estimated changes due to resetting contracts
and the computed P̄e

1,y+1 for the baseline sample as defined in Section ??. The dependent variable
here is logged expenditure plus 1. The solid line is the OLS regression line.

Online Appendix 25



Figure A.11: Removing last year-pair
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Notes: These figures plot the relationship between the estimated changes due to resetting contracts
and the computed P̄e

1,y+1 for the baseline sample as defined in Section 3.2. We omit the estimated
discontinuity size from the last year-pair. The solid line is the OLS regression line.

D.5 Removing last year-pair

In footnote 7, we mentioned that the data were collected for a project in which a new payment
model for GPs was evaluated. This pilot began in July 2014 and could thus affect our estimated
discontinuity size for the year-pair {2014,2015}. To ensure that this one year-pair is not the
sole driver of our findings, we apply our empirical approach on all year-pairs other than the
year-pair {2014,2015}. The results are shown in Figure A.11 and in the last row of Table 5.
We see that our conclusions barely change.
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Table A.5: Dependence of discontinuity sizes on dynamic incentives

specification γe MR test Up test Down test

log dependent variable -0.414 (0.0737) 0.658 0.000 0.688
PC at 5000 -13.072 (4.7448) 0.032 0.264 0.958
last year-pair removed -9.698 (1.5325) 0.000 0.009 0.998

Notes: The table reports our estimates for γe and our results from non-parametric tests
of monotonicity across different specifications. See Section 6.1 to 6.4 for details. The
effect of dynamic incentives, γe, was estimated by regressing the estimated disconti-
nuities on P̄e

1,y+1. The MR, Up and Down tests were conducted using 10,000 bootstrap
repetitions. See Appendix C for details.
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