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ABSTRACT

IZA DP No. 13211 MAY 2020

Health Shocks under Hospital Capacity 
Constraint: Evidence from Air Pollution in 
Sao Paulo, Brazil*

When a health shock hits a location, the healthcare infrastructure needs to be adjusted 

to meet the increased demand. This may be a challenge in developing countries because 

of limited hospital capacity. In this study, we examine the consequences of health shocks 

induced by air pollution in a megacity in the developing world: Sao Paulo, Brazil. Using daily 

data from 2015-2017, and an instrumental variable approach based on wind speed, we 

provide evidence that exposure to particulate matter (PM10) causes an increase in pediatric 

hospitalizations for respiratory diseases, which in turn leads to a decrease in hospital 

admissions for elective care – phimosis surgery and epilepsy-related procedures such as 

video-EEG (electroencephalograph) monitoring. Importantly, emergency procedures such 

as appendectomy and bone fracture repair are not affected. While strained Sao Paulo 

hospitals seem to absorb the increased demand induced by poor air quality, our results 

imply that the common practice of using health outcomes unrelated to pollution as 

“placebo tests” in studies on the effects of air pollution might be inadequate in settings 

with limited healthcare infrastructure. This is often the case in developing countries, where 

severe pollution is also ubiquitous, but also happens in deprived areas in the developed 

world.
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1 Introduction
�e coronavirus pandemic has made it clear that when a health shock hits a location, all avail-
able healthcare infrastructure needs to be adjusted to meet the increased demand. Many hos-
pitals have canceled or rescheduled elective and non-urgent procedures, for instance, to pre-
pare for the in�ux of patients with coronavirus. While pandemics are rare, health shocks
driven by air pollution are ubiquitous around the world, particularly in developing countries.
�ere is a preponderance of evidence that air pollution is harmful to health (e.g., Chay and
Greenstone, 2003; Currie and Neidell, 2005; Currie and Walker, 2011; Schlenker and Walker,
2016; Deschenes et al., 2017; Severnini, 2017; Deryugina et al., 2019). Short-term exposure has
been associated with increased respiratory illness and duration of symptoms, exacerbation of
asthma, and decline in lung function, among other outcomes (e.g., Pope et al., 1995). Devel-
oped countries seem to manage increased demand for health care relatively well in normal
times (e.g., Giuntella et al., 2018). However, because of limited healthcare infrastructure, it is
an open question whether developing countries such as Brazil can absorb increased demand
during health shocks, such as those caused by poor air quality.

Figure 1 shows hospital beds and physicians per 1,000 population for the main developed
and developing nations. �ese are two key measures of healthcare infrastructure. �e number
of physicians in Brazil seems to be adequate, since it is above the World Health Organization
(WHO) recommendation of one physician per 1,000 inhabitants, but is lower than in France and
Germany. Nevertheless, the number of hospital beds per 1,000 population is only larger than
in India. �us, response to pollution-driven health shocks may be challenging in developing
countries, because it may overwhelm the healthcare system, preventing hospitalizations for
other serious causes, and leading to the rescheduling of elective and non-urgent procedures. In
this study, we examine how a large metropolitan area in Brazil copes with increased healthcare
demand due to high levels of air pollution, under hospital capacity constraint.

In order to estimate the health e�ects of air pollution, we investigate how daily pediatric
hospitalizations for respiratory diseases respond to short-term exposure to PM10 – particulate
ma�er 10 micrometers or less in diameter – in the Sao Paulo Metropolitan Area (SPMA) over
the period 2015-2017. �e SPMA is among the ten largest metropolitan areas in the world,
and the main urban agglomeration in South America. Among large cities, the level of PM10 in
Sao Paulo is comparable to the levels in Mexico City and Istanbul, slightly less polluted than
Johannesburg, and much less polluted than Delhi and Beijing.1 However, the SPMA is more
polluted than the metropolitan areas of London, Los Angeles, and New York City, as Figure
2 reveals. Although we look at recent data, our se�ing is comparable to developed countries
decades ago, as well as China and India years ahead (Hanlon and Tian, 2015; Clay et al., 2016).
�e main sources of pollution in Sao Paulo are vehicle emissions, similar to urban areas in the
United States (Currie and Walker, 2011; Marcus, 2017; Anderson, 2019; He et al., 2019).

Because pollutants are obviously not randomly assigned to individuals, we need to address
the endogenous exposure to air pollution when identifying its e�ects on health outcomes (Cur-
rie et al., 2014; Dominici et al., 2014). To overcome such an endogeneity problem, we exploit
an instrument capable of dealing with non-stationary sources: wind speed. �is instrumental
variable approach is similar to Deryugina et al. (2019).2 �e idea is that wind speed dissi-

1To be precise, we are comparing levels for the whole metropolitan region of Sao Paulo with levels for Mexico
City, Istanbul, Johannesburg, Delhi and Beijing without taking into account their metropolitan area.

2�eir innovative approach exploiting changes in wind direction does not require understanding the detailed
layout of an area, or identifying the sources of air pollution. We show that our results are similar if we use both
wind speed and direction as instruments. Other studies leveraging wind-related variables to identify e�ects of air
pollution are Herrnstadt and Muehlegger (2015), Schlenker and Walker (2016), Barwick et al. (2018), Anderson
(2019), and Rangel and Vogl (2019).
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pates particle pollution, reducing PM10 concentration, but does not a�ect health directly.3
We classify respiratory diseases into asthma, pneumonia, and in�uenza, in order to check
whether the e�ects vary according to chronic versus infectious diseases. Usually, researchers
would look at hospitalization for conditions unrelated to pollution as placebo outcomes. In
our se�ing, those are phimosis surgery,4 epilepsy-related procedures such as video-EEG (elec-
troencephalograph) monitoring, appendectomy, and bone fracture repair; the �rst two are
considered elective care procedures, while the last two are urgent procedures. We argue that
in a context with hospital capacity constraint, hospitalizations for causes usually considered in
“placebo tests” should be seen as outcome variables when evaluating the health impacts of air
pollution. Because of strained hospitals, those procedures might be canceled or rescheduled,
therefore indirectly a�ected by the health shocks caused by air pollution.

When it comes to data, the Environmental Protection Agency of the State of Sao Paulo
(CETESB) tracks pollutants and meteorological variables hourly, using several monitors across
the SPMA.5 �is is the same data used by Salvo and Geiger (2014), Salvo and Wang (2017), and
He et al. (2019). �e health data are collected and organized by the the Brazilian Hospital Data
System (SIHSUS), which allow us to observe daily hospitalizations for respiratory diseases
and other causes by zip code of residence. We perform our estimation in two stages using
SPMA districts no further than 5 kilometers from any monitor as the unit of observation.6 We
link these districts to the nearest CETESB monitor, and calculate hospitalization rates per one
million children for each day due to the diseases mentioned before as dependent variables.
We focus our analysis on children up to �ve years old because they are more sensitive to air
pollution, and usually more exposed due to more outdoor activities than other age groups
(Currie et al., 2014). As it is well-known, air pollution exposure history for adults and the
elderly is di�cult to determine.7

Regarding our �ndings on the health shocks of air pollution, we �rst report that our �rst
stage results indicate that wind speed is strongly negatively correlated to PM10, suggesting
that the local air quality improves when heavy winds blow. Results for the second stage con-
�rm that PM10 is harmful for health, consistent with previous studies, and does create a health
shock in the SPMA. In fact, hospitalization rates for respiratory diseases rise when exposure
to air pollution increases for children aged one to �ve years. We also �nd suggestive evidence
that the length of hospital stay might be shorter, but the estimates are not statistically sig-
ni�cant. Hospital admissions for asthma and pneumonia for that age group follow a similar
pa�ern as for the overall hospitalization rate for respiratory diseases. On the other hand, ad-
missions for in�uenza may be driven by infants. We caution, though, that our instrument may
not be ideal for this last group because young children under one year of age may get less ex-
posed given that they stay indoors more o�en. OLS estimation disregarding the endogeneity
of exposure to air pollution seem to underestimate the parameters of interest in our context,
and robustness checks support our main �ndings on the health impacts of air pollution.8

3Although there is weak evidence that wind speed is positively associated with chronic obstructive pulmonary
disease (Ferrari et al., 2012), no biological mechanism has been proposed to explain such a correlation. To the
best of our knowledge, we are the �rst to provide a credible mechanism behind wind-speed e�ects on health.

4Unlike in the United States, phimosis surgery (circumcision) is not a common practice in Brazil.
5CETESB has been monitoring some air pollutants since 1972, but only for a few monitors. Consistent mea-

surement of pollutants started in 1981, but only a�er 2008 the monitoring network became denser.
6Results are qualitatively similar when we use the alternative radii of 3, 7, and 10 kilometers.
7Observe, however, that the percentage of the population ages 65 and above is usually much smaller in de-

veloping than in developed countries. For the countries mentioned in Figure 1, they are: Brazil 9%, China 11%,
France 20%, Germany 21%, India 6%, South Africa 5%, United Kingdom 18%, and United States 16%.

8Among our robustness checks, we �nd that the contemporaneous model of pollution exposure may hide
interesting pa�erns in parental behavior. Parents seem to delay visits to a doctor/hospital for children aged
one to �ve years su�ering the consequences of pollution exposure. In addition, because high ambient ozone
concentration is also a problem in the SPMA (Salvo and Geiger, 2014; CETESB, 2016; Salvo and Wang, 2017; Salvo
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Although strained, the SPMA healthcare system seems to absorb the increased demand
caused by air pollution relatively well, but generates indirect e�ects on hospitalization for
diseases unrelated to pollution. In Brazil, there is an universal, publicly-funded healthcare
system (Sistema Único de Saúde – SUS), but there is also a market for private health insurance,
clinics, and hospitals. Nevertheless, if a patient needs to be treated in a private establishment
and cannot pay for it, the federal government reimburses those providers at the SUS rate.
When air pollution increases in the SPMA, the public healthcare system appears to take in
most of the additional hospitalizations for respiratory diseases. Because of increased demand
due to pollution, the number of planned procedures such as phimosis surgery and video-EEG
monitoring decreases in public hospitals. A proportion of those cases appear to be taken in
by private hospitals, especially those with higher capacity, as measured by physicians and
hospital beds per 1,000 population. On average, for every four additional pollution-related
admissions in public hospitals, one elective care procedure was displaced. Since appendicitis
and bone fracture usually need urgent treatment, those cases do not seem to be sent away
by public hospitals, but some cases are treated by private hospitals. It is worth noting that
we are not evaluating the quality of care due to data limitations, and we are only examining
spillover e�ects on a limited number of diseases to make the analysis tractable, and still provide
evidence supporting the general concept.9

�is study makes two main contributions to the literature. First, it provides a unique look
at how developing countries cope with limited healthcare infrastructure, especially in times of
health shocks. Previous work examined the impacts of reduced supply of healthcare facilities
in the United States due to hospital and clinic closures, or violence against abortion clinics,
and found that constrained healthcare capacity led to treatment delays and worsened health
outcomes, particularly for time-sensitive conditions (Buchmueller et al., 2006; Jacobson and
Royer, 2011; Lu and Slusky, 2016; Carroll, 2019; Gujral and Basu, 2019). Healthcare demand
shocks such as the ones driven by immigration were also found to increase waiting times for
outpatient referrals in more deprived areas in the United Kingdom (Giuntella et al., 2018). In
the SPMA, public hospitals seem to have absorbed the increased demand in days of relatively
poor air quality by delaying elective and non-urgent care, or transferring patients to (publicly-
reimbursed) private hospitals. Given the ubiquity of high levels of air pollution and limited
healthcare infrastructure in the developing world, our �ndings are reassuring, but call for more
research in other contexts.

�e second contribution regards the implications of the indirect e�ects of air pollution on
the treatment of health conditions unrelated to pollution. We provide evidence that air pollu-
tion caused not only hospitalization for respiratory diseases, but also led to the reallocation of
elective and non-urgent care to other times, and from public to (publicly-reimbursed) private
hospitals. �erefore, the common practice of using health outcomes unrelated to pollution as
“placebo tests” in studies on the e�ects of air pollution might be inadequate in se�ings where
there is limited healthcare infrastructure.10 �is is o�en the case in developing countries,
where severe pollution is also ubiquitous, but also happens in deprived areas in the developed
world.
et al., 2017), we check the robustness of our results using a multi-pollutant model including PM10 and ambient
ozone, exploiting solar radiation as an additional instrumental variable. �e PM e�ects on hospitalization rates
in the multi-pollutant model are qualitatively similar to the ones in the single pollutant model, and we do not
�nd a signi�cant impact of exposure to ambient ozone. �is is an interesting result because previous work did
�nd an e�ect of exposure to ozone in a single-pollutant model (e.g., Neidell, 2009; More�i and Neidell, 2011).

9�is is related to the situation in the United States during this coronavirus pandemic, as discussed anecdotally
by the New York Times: h�ps://www.nytimes.com/2020/04/20/health/treatment-delays-coronavirus.html.

10Because the bias in placebo hospitalization regressions is negative in the presence of crowd-out, the results of
those tests would be skewed in favor of �nding no positive e�ects on outcomes unrelated to pollution. �erefore,
in that context, even a zero e�ect could actually be evidence of a faulty research design.
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�is paper also adds to the literature comparing the impacts of air pollution in developed
and developing countries. Air pollution e�ects may di�er in those two di�erent contexts be-
cause of a potential nonlinear dose-response function, or because of higher costs of avoidance
behavior and lower willingness to pay in poorer countries due to low income levels (Green-
stone and Jack, 2015; Arceo et al., 2016). Our estimates are on the same order of magnitude
as those found by He et al. (2019) regarding the e�ects of NOx from diesel exhaust on hos-
pitalizations for respiratory diseases in Sao Paulo, but not directly comparable to the other
health e�ects of air pollution estimated for developing countries (e.g., Jayachandran, 2009;
Cesur et al., 2017; Barwick et al., 2018; Rangel and Vogl, 2019). In addition, the paper con-
tributes by providing estimates from a multi-pollutant model including particulate ma�er and
ambient ozone, which has been considered challenging in the literature because of the usual
high correlation among pollutants (e.g., Bell et al., 2007; Dominici et al., 2010). Our results for
PM10 are robust to this co-variation, and we �nd no statistically signi�cant e�ect of ambient
ozone on hospitalization rates. From a policy point of view, the e�ects of these two pollutants
are important to be investigated together because they are the main focus of environmental
protection agencies around the world, among them CETESB and the U.S. EPA.

�is paper is organized as follows: Section 2 sets up the background, discussing the prob-
lem of air pollution in the SPMA, the operation of public healthcare system in Brazil, and
medical and epidemiological �ndings on the e�ects of pollutants on the human health. Section
3 presents the data sources, and some descriptive statistics. Section 4 explains the empirical
strategy. Section 5 reports the main results, and robustness checks. Lastly, Section 6 provides
some concluding remarks.

2 Background

2.1 Air pollution in Sao Paulo
�e Sao Paulo Metropolitan Area (SPMA) is the largest metropolitan area in Brazil, with over
21 million people, representing approximately 10% of the Brazilian population.11 It is among
the 10 largest metropolitan areas in the world, and consists of 39 municipalities, where the
country’s largest industrial zone is located. In Brazil, Sao Paulo is popularly known for its
tra�c congestion and gray skies. Similar to most large urban areas, the region is also charac-
terized by high building density, lack of green spaces, and poor air quality.

�e two main sources of air emissions in the SPMA are automobiles and manufacturing
(Braga et al., 2001).12 While vehicle emissions are predominant in Sao Paulo city, industrial
emissions dominate in the other municipalities of the metropolitan area. According to CETESB
(2016), more than 7 million vehicles – automobiles, trucks, buses, and motorcycles – circulated
in the region in 2015. Although the Sao Paulo vehicle �eet is not old (8.9 years, on average),
CETESB (2016) draws a�ention to their contribution to local air pollution, especially particu-
late ma�er and ambient ozone, which usually reach maximum values in the SPMA.

Given the sources of emissions, the main air pollutants in the SPMA are particulate ma�er
(PM), nitrogen oxides (NOx), carbon dioxide (CO2), and volatile organic compounds (VOCs).
Most of them are included in a group of pollutants whose “safe” thresholds for exposure are
frequently updated in the WHO air quality guidelines, because of new evidence of e�ects on
the human body even at low levels (WHO, 2016). �e high emissions of NOx and VOCs favor

11Sao Paulo is the largest city in Brazil, with a population of over 12 million. Despite the distinction between
the SPMA and Sao Paulo city, we will use the terms interchangeably.

12It is important to note that Brazil obtains 70% of its electricity from hydroelectric dams. �at is the reason
why electricity generation is not an important source of air pollution, despite other environmental problems
hydroelectric development generates (Miranda et al., 2012).
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ozone formation, which is an ambient pollutant not directly emi�ed, but rather formed by
Leontief-like chemical reactions involving those two precursors in the presence of sunlight
and warm temperatures (Orlando et al., 2010).

In the second half of the last century, the industrial activity in Sao Paulo was quite strong.
While the city was growing, many manufacturing establishments migrated to the metropolitan
area (Braga et al., 2001). Due to intense industrial activity and lack of environmental regula-
tion, air quality deteriorated. To put in perspective, a series of newspaper articles pointed
Cubatao – city in the state of Sao Paulo close to the SPMA – as the most polluted city in the
world in the 1970s and 1980s.13 Recently, industrial emissions have been under control as the
main economic activity shi�ed from manufacturing to the service sector. On the other hand,
the SPMA expanded with poor mass transit planning. Together with government incentives
for car purchases, this resulted in a large �eet of private automobiles (Braga et al., 2001; Jacobi
et al., 1997). According to CETESB (2016), almost all hydrocarbon and carbon monoxide emis-
sions come from vehicles, and about a half of particulate ma�er comes from mobile sources,
mainly associated with black carbon.14

Approximately 85% of the �eet in the SPMA consists of light-duty vehicles (LVDs) – cars,
light trucks, and sport-utility vehicles (SUVs) (CETESB, 2016). About 60% of LDVs are �ex-fuel
vehicles, that is, capable of running on either gasohol or ethanol.15 Although the la�er is a
biofuel, there is no consensus that �ex-fuel vehicles running on ethanol generate less pollu-
tion (Niven, 2005; Coelho et al., 2006).16 It does seem to reduce particulate ma�er emissions,
but it may lead to an increase in ambient ozone concentrations (Salvo and Wang, 2017). On
the other hand, ethanol consumption is strongly associated with the ethanol/gasoline relative
price, which varies with business cycles and government interventions.

In an e�ort to control vehicle emissions, the National Environmental Council (CONAMA)
established emission standards in 1986.17 Partly because of these programs, carbon monoxide
is no longer considered a serious concern in the SPMA. Another reason may be the agreement
reached by the government and automakers in 1992 to produce only vehicles with emissions-
reducing devices, such as electronic fuel injection and catalytic converters (Jacobi et al., 1997).
Today, the state of Sao Paulo has the Plan for Reduction of Emissions from Stationary Sources
(PREFE), created in 2014 to map emissions by subregions of the state. �e city of Sao Paulo
has also implemented the Vehicle Pollution Control Plan (PCPV) since 2011. Both programs
aim at maintaining emission levels within the CONAMA requirements. Meanwhile, the En-

13Since the 1990s, the air pollution in Cubatao has been under control, as relatively weak regulations were
imposed. Notwithstanding, particulate ma�er levels are usually close to the maximum established by the WHO,
which still considers the annual exposure to PM2.5 well above the “safe” level.

14According to U.S. Environmental Protection Agency (EPA), black carbon is the sooty black material emi�ed
from gas and diesel engines, coal-�red power plants, and other sources. It comprises a signi�cant portion of
particulate ma�er. Heavy-duty vehicles are the main sources of black carbon emissions in the SPMA.

15�is may be a result of the Brazilian Alcohol Program (Proalcool), a government program created in 1975 in
response to the 1970s oil shocks to stimulate the production of ethanol (Coelho et al., 2006).

16Note that we are not considering emissions from fuel production. For completeness, there are a few oil
re�neries in the SPMA, another source of air pollution. �e state of Sao Paulo is also the largest producer of
sugarcane in Brazil, the main input in ethanol production. �e state has su�ered from sugarcane burning during
the harvest season, but the �res are not close to the SPMA, and the harvesting technology has become cleaner in
the past decades.

17Two emissions control programs were introduced in May 1986 – PROCONVE for cars, trucks, buses and agri-
cultural machinery, and PROMOT for motorcycles. �ey imposed emission limits and technological requirements
for motor vehicles. In 1989, CONAMA created the National Program for Control of Air Pollution (PRONAR) in or-
der to implement limits for the emission of air pollutants more broadly. PROCONVE was considered a successful
proof of concept for the establishment of the National Program for the Control of Industrial Pollution (PRONA-
COP), National Air �ality Assessment Program, National Program for Inventory of Air Pollutants, and State Air
Pollution Control Programs. Since then, CONAMA has been updating the emission limits for stationary sources
of pollution, tightening the control by discriminating fuel sector limits, and requiring cleaner technologies.
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vironmental Company of the State of Sao Paulo (CETESB) has been in charge of measuring
the levels of pollutants in the air, leading an expansion in measurements throughout the state.
Most of the monitors, however, are located in the SPMA.

2.2 �e Brazilian healthcare system
In Brazil, public and private healthcare systems coexist. �e Uni�ed Healthcare System (Sis-
tema Único de Saúde – SUS) was established by the 1988 federal constitution to provide uni-
versal preventive and curative care to the overall population (Paim et al., 2011). Unlike the
American constitution, the Brazilian constitution expressly states in article 196 that “health is
a right of all and a duty of the State and shall be guaranteed by means of social and economic
policies.” Yet, private care is available for those who can pay for faster access and usually be�er
quality. �e private healthcare system includes for-pro�t and non-pro�t hospitals and clinics,
and a health insurance sector.

�e private system can be complementary or supplementary to the public system. As
complementary, purely private establishments provide services contracted by SUS, such as
hospital beds and speci�c procedures. Also, although purely private, philanthropic hospitals
allocate at least 60% of their hospitals beds to SUS and, in return, obtain exemption from federal
taxes. SUS reimburses private and philanthropic hospitals by procedure, usually at standard
fees below market prices, but they may agree to a higher negotiated price.18 As supplementary,
some private hospitals and clinics only provide services covered by health insurance plans or
out-of-pocket expenses.

Figure 3 displays hospital beds per 1,000 population by bed type for the four largest metropoli-
tan areas in Brazil. �e smaller the share of beds in public hospitals, the larger the share of
beds in philanthropic hospitals, suggesting that their relationship is more complementary than
supplementary. In all four locations, the share of beds in private hospitals is in the range of
a quarter to over a third. Zooming in the SPMA in Figure 4, we observe a substantial hetero-
geneity of hospital beds across municipalities. Only three municipalities have more than three
hospital beds per 1,000 population, which is comparable to the average in the United States.

Facing the challenge of providing good-quality health care to the entire population, SUS
has performed well in vaccination, and high-cost services and complex procedures such as
hemodialysis and transplants, which are also used by private insured people according to
Paim et al. (2011). SUS also manages the national HIV/AIDS prevention and control program,
and the Popular Pharmacy Program (Programa Farmácia Popular), which provides subsidized
medicines to treat the most common health conditions, such as diabetes, hypertension and
asthma. �e establishment of the Family Health Program (Programa Saúde da Famı́lia – PSF),
with the purpose of providing primary health care through regular visits to households in
order to reduce hospital demand, is also a SUS e�ort, which has resulted in reduction of child
mortality, complications from chronic diseases, and hospitalizations that could be treated with
ambulatory care (Macinko and Harris, 2015).19

Usually, the SUS system consists not only of hospitals, but also community health clinics
called Basic Health Units (Unidade Básica de Saúde – UBS), and Emergency Care Units (Unidade
de Pronto Atendimento – UPA), where regular appointments and emergencies of medium-high
complexity are handled, respectively. In the city of Sao Paulo, the system also includes Am-
bulatory Medical Assistance (Assistência Médica Ambulatorial – AMA), and Specialty Medical

18�e SUS reimbursement is similar to Medicare in the United States in that it is prospective, paying a preset
amount for given procedures or diagnoses. Reimbursement is based on average hospital costs, thus not designed
to cover the medical expenses of any given patient.

19SUS also manages other programs such as the More Physicians Program (Programa Mais Médicos), the Psy-
chosocial Care Network (Rede de Atenção Psicossocial), and the Emergency Care Service (Serviço de Atendimento
Móvel de Urgência – SAMU ).
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Ambulatory (Ambulatório Médico de Especialidades – AME) to meet the demand for outpatient
procedures of medium complexity, and avoid overwhelming hospitals with cases in which the
patient’s life is not at risk. �ere are no AMA and AME out of the city of Sao Paulo. �e Pre-
fecture of Sao Paulo claims that public facilities, especially the Basic Health Units, are be�er
distributed throughout the city than the private ones, although hospitals are concentrated in
the center of the city (IVP, 2011).

Back to Figure 3, the SPMA has slightly fewer hospital beds per 1,000 population than
the other large metropolitan areas. �us, the available healthcare infrastructure may not be
su�cient to meet Sao Paulo demands for healthcare assistance. It is possible, however, that the
reduced number of beds may re�ect improvements in the provision of primary care services,
which may either reduce the demand for healthcare assistance in general or the demand for
high complex services.

2.3 Air pollution and human health
In 2015, WHO organized a global consultation seeking expert opinion on the latest available
evidence on the health e�ects of several ambient air pollutants. �e goal was to contribute
to the rationale behind a future update of the WHO Air �ality Guidelines (AQGs) (WHO,
2016). �ere was a general agreement among experts that short-term e�ects have proved
quite signi�cant, but sometimes with mixed evidence, while the long-term e�ects seem to be
more robust. In addition, air pollution has been shown to a�ect health even at low levels. For
classical pollutants –NO2,O3, PM, and SO2 – the WHO argues that evidence of their e�ects
on health has become stronger a�er 2006. Most studies �nd impacts on the respiratory and
cardiovascular systems in the short and long term, and on lung function, lung carcinogenicity,
and mortality in the long term.

�e medical and economic literatures have reported more intensively on the impacts of
particulate ma�er, especially the �ner ones (e.g., Pope, 1989, 2000; Brauer, 2000; Braga et al.,
2001; Chay and Greenstone, 2003; Currie and Neidell, 2005; Currie and Walker, 2011; Dominici
et al., 2014; Schlenker and Walker, 2016; Deschenes et al., 2017; Deryugina et al., 2019). �ese
particles arise from combustion from mobile or stationary sources, very common in urban
centers. �ey can easily penetrate the tissues of the body, and increase blood coagulation,
which can cause heart a�ack and lung problems (Brauer, 2000; Braga et al., 2001). Furthermore,
constant exposure to high amounts of particulate ma�er in the air, more common in heavily
polluted cities, increases the chance of developing chronic obstruction of airways (Churg et al.,
2003). Braga et al. (2001) argue that many studies have found harmful health e�ects even when
pollution concentrations were bellow the national air quality guidelines in Brazil, reason why
the upper limit needs continuous update.

Besides a�ecting chronic obstructive pulmonary disease and allergic rhinitis hospitaliza-
tions, epidemiological and economic studies have linked air pollution to respiratory infectious
diseases, such as in�uenza and pneumonia, once pollutants reach natural defenses of the lung
(e.g., Kelly and Fussell, 2011; Clay et al., 2018, 2019). Moreover, Zeliko� et al. (2002) highlight
a worsening of pneumonia in individuals exposed to particulate ma�er, beyond undermining
pulmonary immune response, suggesting that pollutants can both facilitate and worsen infec-
tious diseases. �e risk and severity of respiratory tract viral infection have also been pointed
out by the toxicology literature (Saravia et al., 2013).

Air pollution does not a�ect all individuals equally. Children and the elderly are more
likely to su�er from poor air quality, because they have a more fragile immunological system.
Other vulnerable groups include people with chronic diseases, such as asthma, who may have
more acute episodes (Gouveia and Fletcher, 2000; Braga et al., 2001). In the long term, life
expectancy in more polluted locations is signi�cantly decreased (Pope, 2000). For children, we
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should also take into consideration that both short- and long-term outcomes can be a�ected
by pollution exposure (Currie et al., 2014; Isen et al., 2017).

Lastly, Kampa and Castanas (2008) survey studies that associate di�erent pollutants to dis-
eases, and conclude that all pollutants may impact the airways. Despite all e�orts to determine
the separate e�ects of each pollutant on health, WHO (2016) discuss the challenges of isolat-
ing these e�ects, because in most cases they are emi�ed simultaneously from the same source,
and/or di�erent sources emit similar pollutants. �e existence of confounding e�ects due to
high correlation between pollutants is also discussed by Bell et al. (2007) and Dominici et al.
(2010).

3 Data
We use administrative data on hospital admissions from the Brazilian Hospital Data System
(SIHSUS).20 We observe all publicly funded or reimbursed hospital admissions by individu-
als’ zip code of residence from January 2015 to December 2017. SIHSUS collects data on the
date of admission, duration of hospitalization, total expenditure, and cause as diagnosed by
a physician.21 We consider admissions for the following respiratory diseases: pneumonia;22

bronchitis; allergic rhinitis; asthma; pneumoconiosis due to inorganic dust; respiratory dis-
ease due to inhalation of chemical gases, fumes and vapors; respiratory failure; among others.
In 2016, 87% of total hospital admissions in Brazil were funded by the public system. �is per-
centage might be lower in Southern states where private markets are more prevalent (Paim
et al., 2011).

We restrict our sample to hospitalizations of children aged one to �ve years. Adults and
the elderly were not considered in the main analysis because we do not observe their pollution
exposure history.23 Adults might spend many hours at work and we do not observe their work
location, while the elderly usually spend many hours indoors. On the other hand, children
might spend more time engaged in outdoor activities and, therefore, might experience more
intense air pollution exposure. Furthermore, health problems in children may have long term
e�ects (Fletcher et al., 2010; Currie et al., 2014; Isen et al., 2017). We also exclude children under
one as they might be less exposed to external agents, such as pollution, virus, and bacteria,
because they spend more time indoors at home. In that sense, unexpected PM variation due
to wind speed may be less relevant for infants.

We focus the analysis on individuals living in the Sao Paulo Metropolitan Area (SPMA)
due to the availability of environmental data. �e Environmental Company of the State of Sao
Paulo (CETESB) collects hourly air pollution and weather variables using 30 monitors through-
out the SPMA. Not every pollutant is measured by every monitor. Our pollution variable is
particulate ma�er with less than 10 micrometers of diameter (PM10, in µg/m3), because it is
regularly collected by most of the monitors (24 monitors).24 PM10 levels are high in the SPMA
and highly correlated with PM2.5, as it contains PM2.5. PM2.5 data have too many missings
in our data. �e weather variables we use are relative humidity (in percentage), temperature
(in degrees Celsius), wind speed (in m/s), and global solar radiation (inW/m2).25

20As mentioned earlier, SUS is the Portuguese acronym for “Health Uni�ed System,” the Brazilian public health-
care system. SIHSUS is one of the several data systems of the Ministry of Health – named DATASUS – that provide
data on health outcomes in Brazil.

21Causes are classi�ed according to the International Statistical Classi�cation of Disease and Related Health
Problems – Tenth Revision (ICD-10).

22�e ICD code for pneumonia is “pneumonia by unspeci�ed microorganism,” which is the most recurrent
code for pneumonia.

23Nevertheless, we present estimates for all other age groups in the appendix.
24CETESB also collects data on SO2,NO,NO2,NOX,CO,O3, and a few volatile organic compounds (VOCs).
25Other meteorological variables collected are wind direction and air pressure. Later on, we perform robustness
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�e daily pollution and weather variables are the average of the day.26 We spatially inter-
polate meteorological variables to get complete weather information for all monitors that mea-
sure PM10, by using an inverse distance criterion.27 Due to evidence on the non-randomness of
monitor siting, we do not spatially interpolate pollution data (Muller and Ruud, 2018). Because
our data provider – CETESB – is an environmental inspection agency, and there are thresholds
established for pollution monitoring, our panel is unbalanced due to missing pollution data.

Lastly, we match individuals’ zip code of residence from the health data with the corre-
sponding district in the SPMA. Environmental data are assigned to a district from the nearest
monitor, limiting to a 5-kilometer radius. Figure 5 displays the location of the monitors, and
the districts within the 5km radius.28 Daily hospital admissions are expressed as hospitaliza-
tion rates per one million children, and the length of stay is measured in days.29 Our �nal
dataset includes data from 85 SPMA districts.

Figure 6 displays the daily mean and maximum level of PM10 by monitor. �e small num-
bers above the red line represent the number of days with average concentration above the
World Health Organization (WHO) guidelines between 2015 and 2017 (WHO, 2016). PM levels
draw a�ention because they are above the recommendation for almost all monitors.

Monitor location and district hospitalization rates for respiratory disease by quartile can
be seen in Appendix Figure A1.30 �e darker the district, the larger the hospitalization rate.
�e relationship between hospitalization rate and air pollution is not directly seen in the map,
although we can see that almost all western districts belong to higher quartiles. One of the
two biggest airports in the SPMA is located near monitor 5, and the other is between monitors
6 and 7. Note that the main sources of pollutants are vehicles. One can infer that by examining
Appendix Figure A2, which shows expressways and highways in the SPMA.

In general, the length of stay for pediatric hospitalizations due to respiratory diseases is rel-
atively short. Appendix Figure A3 presents the frequency of length of stay, measured in days.
For completeness, admissions for pneumonia represent 51.5% of all respiratory admissions.
Asthma, a respiratory chronic disease, represents 10.25% of that total. In�uenza hospitaliza-
tions are less common, 0.35% of all respiratory admissions, even considering the epidemic
of 2016. �e Brazilian government promotes in�uenza vaccination every year before winter
(June in the southern hemisphere), and children are among the priority group.31

4 Empirical Strategy
To credibly identify the causal e�ects of exposure to air pollution on pediatric hospitaliza-
tion, we must address several potential endogeneity issues. First, exposure to pollution is
obviously not randomly assigned across locations. Although there is some evidence that indi-
viduals might not observe and/or react to some air pollutants (e.g., Currie et al., 2015), there

checks using wind direction variable as well.
26We exclude all days with less than twelve hours of data. We �ll the missing hourly data by weighting the

�rst hour before and a�er by 1- |hi−hm|

ha−hb
, i = a, b, where ha is the hour a�er, hb is the hour before, and hm is

the hour missing data. For example, if we have no information for 3PM and 4PM, but we have for 2PM and 5PM,
we impute the value for 3PM by weighting the data for 2PM by 2

3
and 5PM by 1

3
. On the same way, we weight

2PM by 1
3

and 5PM by 2
3

to �ll the values of 4PM. For the missing days, we follow the same weighted scheme,
but replacing hours with days.

27Previous studies have used inverse distance for similar purposes (Neidell, 2004; Schlenker and Walker, 2016).
28We perform robustness checks for other radii in the results section.
29Population data by age group are taken from the 2010 Population Census, conducted by the Brazilian Institute

of Geography and Statistics (IBGE).
30�e charts only have monitors that measure the respective pollutant, while the map has all monitors.
31In�uenza vaccines are free of charge, and the entire population can be vaccinated a�er the priority group.

Notwithstanding, the government does not always reach the vaccination targets for the priority groups.
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is compelling evidence that individuals avoid outdoor activities during polluted days (Neidell,
2004, 2009; More�i and Neidell, 2011), and remediate the consequences of exposure (Desch-
enes et al., 2017). �us, disregarding defensive investments would induce downward bias in the
estimated impacts of air pollution on hospital admissions. Second, the level of economic activ-
ity across districts is not easily observed, but it is likely positively associated with air pollution
(Chay and Greenstone, 2003). Because there is strong evidence that health improves during
recessions (Ruhm, 2000), failing to control for the state of the economy in the district would
generate a upward bias on the air pollution e�ects on hospitalization. �ird, because exposure
to air pollution is not measured exactly where individuals live, but rather approximated by
measurements in the closest available monitors, we introduce an unavoidable measurement
error. To the extent that this is classical measurement error, there would be a�enuation bias
in the estimates of interest.32

To deal with these endogeneity issues, we propose an instrumental variable approach. Be-
cause vehicles are the main sources of air emissions in the SPMA,33 we need an instrument ca-
pable of dealing with non-stationary sources of pollution. In that sense, we exploit wind speed
as an instrument for air pollution à la Deryugina et al. (2019). Wind variables have been used
as an important source of plausibly exogenous variation in air pollution in other recent studies
(Allen et al., 2013; Herrnstadt and Muehlegger, 2015; Schlenker and Walker, 2016; Anderson,
2019). A key innovation of Deryugina et al. (2019) relative to previous quasi-experimental
designs exploiting wind variation is that their approach does not require understanding the
detailed layout of an area (e.g., locations of roads, rivers, and population centers) or identifying
the sources of air pollution. All we need to know in our context is that wind speed directly
in�uences the distribution and horizontal transport of air pollutants, and vertical dispersion in
a region (Seaman, 2000). Regarding the exclusion restriction, wind speed does not seem to af-
fect human health directly. As mentioned in the introduction, although there is weak evidence
that wind speed is positively associated with chronic obstructive pulmonary disease (Ferrari
et al., 2012), no biological mechanism has been proposed to explain such a correlation. To the
best of our knowledge, we are the �rst to provide a credible mechanism behind wind-speed
e�ects on human health.

To illustrate the impact of wind speed on particle pollution, Figure 7 displays daily wind
speed and PM10 measurements from August 26-31, 2016. Red areas correspond to highly
polluted districts on that day, while blue areas denote cleaner air. When wind speed increases
(represented by the “+” sign), as for August 27, air pollution is dissipated on that day and the
day a�er. Because pollution is fast-moving and also generated on a daily basis, mainly in the
downtown areas located at the center of the �gures, more wind is needed to clean the air when
it accumulates. �at is what happened on August 30-31.

We perform the estimation in two stages. First, we regress particulate ma�er on wind
speed and controls. Second, we regress hospitalization rates on the ��ed particular ma�er
from the �rst stage, correcting the second stage standard errors. To improve the empirical
model, taking advantage of pollutant persistence on time, as illustrated in Figure 7, we run an
over-identi�ed model with the wind speed on the day of hospital admission and its �rst lag as
instruments. �e regression models also include weather variables and �xed e�ects, according
to the following equations:

PMit = α+ β1WSit + β2WSit−1 + Xitπ+ µi + θt + νit, (1st stage)

Hospit = γ+ δPM
∧

it + Xitφ+ ηi + λt + εit, (2nd stage)
32�is may be the case here because it is likely that the true exposure to air pollution faced by an individual

is not correlated to the measurement error derived from the inverse distance approach used in our analysis. In
fact, the pollution monitors seem to be distributed evenly across the SPMA, as shown in Figure 5.

33�ere are many roads in the region that can be heavily congested in peak times (see Appendix Figure A2).
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where i denotes districts, and t calendar dates from 2015 to 2017. PM is the level of PM10,
and WS is wind speed. Hosp mainly represents the hospital admissions rate for children
aged one to �ve years. X represents time-varying controls, including a quadratic function of
temperature, humidity, and their interaction. µi and ηi represent district �xed e�ects, while
θt and λt represent time �xed e�ects to correct for potential seasonality and aggregate shocks
(day-of-week, month-of-year, and year �xed e�ects). ν and ε are idiosyncratic terms.

District �xed e�ects control for time-invariant characteristics of districts, such as socioeco-
nomic status, topography, and other geographical features of the area. Furthermore, any urban
spatial structure that may a�ect wind speed and pollution concentration, such as skyscrapers,
is controlled by district �xed e�ects. In this sense, we explore variation within districts to
estimate air pollution e�ects on pediatric hospitalizations.

As health outcomes, we use primarily pediatric hospitalization rates for all respiratory
diseases per million children aged one to �ve years, but also consider length of stay. We also
estimate the e�ects on speci�c respiratory diseases such as asthma, pneumonia, and in�uenza
to investigate heterogeneous e�ects on chronic versus infectious diseases (bacterial, as pneu-
monia; and viral, as most in�uenza cases). To assess the potential for hospital admissions
driven by air pollution to crowd out hospitalizations for causes unrelated to pollution, we also
consider phimosis surgery, epilepsy-related procedures such as video-EEG (electroencephalo-
graph) monitoring, appendectomy, and bone fracture repair; the �rst two are considered elec-
tive care procedures, while the last two are urgent procedures.

Since we include month-of-year and year �xed e�ects, the in�uenza epidemic of 2016 may
also be controlled if we consider a homogeneous incidence across the SPMA.34 In regards to
vaccination campaigns, a possible occurrence of herd immunity is a limitation for estimating
impacts of air pollution on in�uenza-related hospital admissions, but probably not on hospi-
talization for all respiratory diseases due to the low in�uenza incidence. �ere is also free-
of-charge vaccine for bacterial pneumonia in Brazil, but it is not recommended for children
under 2 years old. As this vaccine does not protect for all types of pneumonia, and it is not
completely e�ective, we believe it is not a major concern for our identi�cation strategy.

We now describe an augmented model used to assess the e�ects of the baseline hospi-
tal capacity on the PM-hospitalization relationship for non-respiratory causes. �e idea is to
evaluate the potential for the availability of healthcare infrastructure to reduce the crowd-out
e�ect of air pollution on hospitalizations for causes unrelated to pollution. �e second stage
equation is augmented by adding an interaction of the PM variable with a baseline measure
of hospital capacity. �ere are now two (unreported) �rst stage equations: one for PM, and
another for the interaction term. �e additional instruments are the original instruments –
contemporaneous wind speed and its �rst lag – interacted with the baseline measure of hos-
pital capacity. �e second stage becomes

Hospit = γ+δ1PM
∧

it+δ2(PMit × 1[HCap]i)
∧

+Xitφ+ηi+λt+εit. (HCap 2nd stage)

�is second stage equation is identical to main one, except for the addition of the inter-
action variable between PM and the hospital capacity modi�er 1[HCap]i. We explore the
heterogeneity in the PM e�ects by three district-level hospital capacity indicators – pediatric
hospital beds, general hospital beds, and family doctors – all in 2014, the year before our pe-
riod of analysis. Each capacity is calculated as a rate per total district population. 1[HCap]i is
a dummy variable indicating that the capacity rate is above the median across the districts in
the Sao Paulo Metropolitan Area. We understand the cross-section variation in the modi�ers
is not experimental, so it is natural to question whether the estimated interaction coe�cients

34�e in�uenza season in southern states in Brazil also happens in the winter months, which are June and July
in the southern hemisphere (Alonso et al., 2007).
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are likely to be unbiased. Because the modi�ers are baseline infrastructure measures, they are
captured by the district �xed e�ects. �us, a number of unobserved time-constant determi-
nants of hospitalization and hospital capacity are controlled for, as discussed above.

�e coe�cient associated with PM should now be interpreted as the impact of PM on
admissions in hospitals with the measure of capacity below the median, and the coe�cient of
the interaction as the di�erential e�ect on admissions in hospitals with that measure above
the median. If pollution-related hospitalizations crowd out hospital admissions for elective
care, for instance, then the PM coe�cient δ1 will be negative. If this PM impact is partially
o�set by the availability of hospital beds and doctors, the coe�cient on the interaction term
δ2 will be positive.

5 Results
In this section, we present the main results followed by a heterogeneity analysis of the air
pollution e�ects and robustness checks. All regressions are weighted by district population,
and all estimated coe�cients are reported along with standard errors two-way clustered at the
district and calendar date levels.

5.1 PM e�ects on pediatric hospitalizations for respiratory diseases
Table 1 reports �rst stage results. PM10 is regressed on instrumental variables – contem-
poraneous and lagged wind speed – district and time �xed e�ects, and the other covariates
described in the previous section. First stage regressions examine whether wind speed is cor-
related with PM10, holding the other variables constant. A valid �rst stage is necessary for
identi�cation. As expected, the estimated coe�cients of wind speed on the same day and one
day before hospital admission are both negative and statistically signi�cant. Because wind
carries pollution, the stronger the wind blows, the more particulate ma�er is taken away, the
cleaner the air. Not surprisingly, however, wind speed on the day before admission has a lower
impact on the contemporaneous levels of air pollution when compared to its impact on the
same day, as shown in the �rst column. �e Kleibergen-Paap rk Wald F-statistics of the joint
signi�cance of instruments is over 84, indicating strong instruments.35 With respect to the
results for the linear probability model in the second column, the coe�cients are on the same
order of magnitude. Wind speed both on the day of admission and the day before seem to con-
tribute similarly to the accumulation of local air pollutants, and consequently to the probability
of crossing the PM10 threshold recommended by the WHO guidelines. �e Kleibergen-Paap
rk Wald F-statistics of the joint signi�cance of instruments still indicates relatively strong in-
struments, but it is less than a third of the corresponding statistic in the regression in the �rst
column using PM10 levels. We focus our analysis on the speci�cation in levels.

Table 2 presents the second stage estimates of the PM10 e�ects on hospitalization rates
and length of stay. Because each unit of PM10 in the regressions represents 10µg/m3 in this
speci�cation, all marginal e�ects should be interpreted as arising from a variation of 10µg/m3

in PM10 levels. �e comparison between OLS and 2SLS estimates indicates the direction of
the bias. Despite a few positive and signi�cant OLS results, OLS estimates are much lower
than 2SLS estimates, revealing a negative bias likely due to a�enuation bias (e.g., pollution
assigned to districts based on measurements in nearby monitors) and/or omi�ed variable bias
(e.g, avoidance behavior, as children might have their outdoor activities interrupted in the
most polluted days).

35In the robustness checks, we also include indicator variables for quadrants of wind direction. Results are
discussed later on, but wind speed estimates are robust to the inclusion of wind direction.
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We �nd signi�cant impact of exposure to particulate ma�er on hospital admissions for all
respiratory diseases, and asthma and pneumonia, in particular. As explained in the background
section, exposure to a more polluted environment leads to a decline in children’s immunity,
favoring and/or worsening bacterial infection. Similarly, for chronic diseases such as asthma,
exposure to poor air quality may increase the probability of children experiencing asthma
a�acks.

We do not �nd any signi�cant e�ects of PM on the duration of hospitalization. �is null
e�ect on length of stay might indicate that respiratory diseases are not as severe as other
diseases that cause pediatric hospitalizations. It is worth noting that hospital admissions for
milder conditions may be underestimated, because we cannot control for the fact that individ-
uals may not visit hospitals when the disease symptoms are not so strong, or if they believe it
will take too long to see a doctor.36

Our results indicate that a 10µg/m3 increase in PM10 causes an increase in pediatric hos-
pitalization rates for all respiratory diseases by 4.83 per million children aged one to �ve years.
Given that the average hospitalization rate in that category is 67.63 per million children, that
e�ect represents an increase of 7.1 percent. If we consider the number of children aged one
to �ve years in the whole SPMA, the number of hospital admissions rises by approximately
6.4 children a day. If we do the same exercise for asthma and pneumonia, we �nd about 1.5
additional pediatric admissions for asthma a day, and 3.12 for pneumonia.

Back to the number of 6.4 additional children hospitalized for respiratory diseases per day,
if we consider the average public cost of one day of hospitalization of $61.58 (2016 USD),37

additional expenditure would be $394.11 per day. Considering that the median hospitalization
in our data lasts 4 days, for each 6.4 children, the additional hospitalization costs are $1,576.45
per day. In a year, the government expenditure would increase by $575,403.52. �is value
would still be a lower bound estimate of the additional government spending in the SPMA,
since we do not consider other health costs related to air pollution, and the average public
expenditure does not re�ect market prices in Brazil.38 Nevertheless, this value represents 4.5%
of all 2016 public expenditures with hospitalizations of children aged one to �ve years in the
city of Sao Paulo, and approximately 12.5% of expenditures with hospital admissions due to
respiratory diseases for this age group.

�ere is a preponderance of evidence in the economic literature that air pollution is harmful
to health, but only a limited number of studies have examined the impacts of exposure to
particulate ma�er on pediatric hospitalization rates. Most studies have looked at e�ects on
infant mortality (e.g., Chay and Greenstone, 2003; Currie and Neidell, 2005; Jayachandran,
2009; Clay et al., 2016; Arceo et al., 2016). Neidell (2004) does look at asthma admissions for
children, but �nds no e�ect of PM. Although we investigate a di�erent pollutant, we �nd
a close proportion for asthma admissions as in Schlenker and Walker (2016). While those
authors �nd e�ects representing 21% of average daily rates for all ages, we �nd 23.4% for
children, considering an increase of one standard deviation in pollution. Also, Neidell (2004)
and Jayachandran (2009) highlight stronger air pollution e�ects on infants from families of low
socioeconomic status. We cannot examine the heterogeneity of e�ects according to di�erent
income levels due to data limitations,39 but our data refer to admissions in public hospitals or
in publicly-reimbursed philanthropic and private hospitals, therefore the focus is indirectly on
hospital admissions of the lower-income population.

Finally, we investigate a potential nonlinearity of the impacts of air pollution by estimat-
36Second stage results are also robust to the inclusion of wind direction variables as additional instruments.
37We convert the R$214.88 – the average in January 2016 (DATASUS) – in U.S. dollars using the average

exchange rate of US$1 = R$3.4895.
38�e costs used in our calculation are based on SUS reimbursements, which are far bellow market prices.
39We have no socioeconomic data at the level of the patients, only at the neighborhood level.
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ing the PM e�ects on respiratory diseases in highly polluted days – pollution above the WHO
recommended level of 50µg/m3 for a 24-hour mean. Table 3 shows that when a day is above
the WHO guidelines, there are about 44 additional pediatric hospitalizations per million chil-
dren aged 1-5 per day for all respiratory diseases, 11 for asthma, and 22 for pneumonia. �ese
e�ects are much stronger than the ones reported in Table 2, given that the average daily PM10
is about 30µg/m3. Although only suggestive, this is a surprising result because Pope et al.
(2015) �nd that most recent evidence indicates that the concentration-response function be-
tween PM2.5 air pollution and mortality risk may be supralinear (concave) across wide ranges
of exposure.

5.2 PM (indirect) e�ects on the healthcare system
In Brazil, it is widely known that the public healthcare system has excess demand. One relevant
question we ask is: what are the e�ects of a pollution-driven health shock on hospital demand?
To answer this question, we propose two exercises. First, we run our main analysis separately
for public hospitals and (publicly-reimbursed) private hospitals.40 Results are reported in Table
4. Second, and most importantly, we examine potential impacts on hospital admissions for
causes unrelated to air pollution. We keep the focus on children, because hospital beds for
children are separated from all other age groups. If the number of hospital beds is not high
enough to meet demand, what is supposed to be a placebo test becomes an outcome variable
of interest. Results are reported in Table 5.

Table 4 suggests that our main estimates are driven by the response of the public healthcare
system, since public hospitals seem to be absorbing admissions for all the respiratory diseases
examined in this study. �erefore, public hospitals may be dealing with all the additional de-
mand due to air pollution. It is important to acknowledge that although increasingly strained,
public health services in Sao Paulo are still a reference for the whole country. For the record,
almost 35% of hospital beds in the SPMA are in public hospitals, and more than 55% of total
beds are publicly funded.41 When it comes to pediatric beds, 61% of them are public.

Another feature that may be underlying our results is that some hospitals are specialized
in speci�c procedures, which would explain the fact that we do not have a sample of pediatric
hospital admissions in private hospitals large enough to carry out the analysis. Moreover, we
are only able to estimate the e�ects for a few respiratory diseases. Investigation of the e�ects
on other diseases would be required to rule out any other negative externality.

�at said, we now examine the e�ects on pediatric hospitalization for the following other
causes: phimosis surgery,42 epilepsy-related procedures such as video-EEG (electroencephalo-
graph) monitoring, appendectomy, and bone fracture repair. �e results reported in Table 5
show negative and statistically signi�cant impacts of PM exposure on hospital admissions for
elective care procedures, such as phimosis and epilepsy, but only in public hospitals. On av-
erage, for every four additional admissions for respiratory diseases in public hospitals, one
elective care procedure was displaced. Admissions for appendectomy and bone fracture re-
pair, however, do not appear to be a�ected by higher levels of PM, probably due to their urgent
nature. Nonetheless, we also �nd a positive e�ect of PM on appendectomy in private hospi-
tals of about the same magnitude (but opposite signs) as the corresponding e�ects in public
hospitals. �is suggests that the public system needs to utilize beds out of its system to meet

40�e public healthcare system owns hospitals, but also uses hospital beds in philanthropic health centers.
Government only pays for those beds if they are used. As mentioned earlier, a private hospital must allocate
at least 60% of its beds for public use to be exempt from federal taxes. For completeness, public and private
hospitals/health centers were classi�ed according to National Classi�cation Commission – CONCLA.

41Around 35% of hospital beds in private health centers are publicly funded, and around 60% in philanthropic
hospitals (DATASUS in 2016).

42Again, unlike in the United States, phimosis surgery (circumcision) is not a common practice in Brazil.
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the increased demand caused by poor air quality. As explained in the background section, the
public healthcare system prioritizes beds in public hospitals, but does use beds in the private
system when necessary.

Regarding the heterogeneity of the PM impacts by hospital capacity, Tables 6 and 7 report
larger negative e�ects in capacity constrained hospitals, i.e., those whose infrastructure indi-
cators are below the median. In those tables, the coe�cients associated with PM should be
interpreted as the impact of PM on admissions in hospitals with the measure of infrastructure
below the median, and the coe�cients of the interactions as the di�erential e�ects on admis-
sions in hospitals with those measures above the median. For example, the negative impact
of PM on epilepsy-related procedures in Panel A of Table 6 is partially o�set when the num-
ber of pediatric beds is above the median in the SPMA. Notice that the reduction in phimosis
surgeries in public hospitals is partially compensated by an increase in publicly-reimbursed
private hospitals with excess capacity, as shown in Table 7.

We also analyze the e�ects of pollution on childbirth deliveries, as they may also com-
pete with pediatric beds. Appendix Table A1, in line with the results we �nd for other non-
respiratory diseases, shows that planned Cesarean surgeries (C-sections) are negatively im-
pacted by poor air quality, while natural birth deliveries are not, as they may be considered
urgent. In unreported regressions, available upon request, we also �nd that duration of hos-
pitalization is not impacted in public hospitals, as it seems that the adjustment is made in
admissions for elective care procedures. However, we observe a small negative e�ect on dura-
tion of hospitalizations caused by natural births, as these procedures are normally less risky,
and delivers more mature babies than C-sections.

To sum up, the health shocks triggered by highly-polluted days in the SPMA do seem to
a�ect the operations of both the public and the private healthcare systems. Public hospitals
appear to absorb the excess demand induced by air pollution, but elective care procedures
may have to be rescheduled or transferred to private and philanthropic hospitals. In any case,
hospitalization for causes unrelated to air pollution are also indirectly a�ected by it. �ese
�ndings suggest that “placebo tests” usually reported in studies examining the impacts of
air pollution should be interpreted with caution. Because the bias in placebo hospitalization
regressions is negative in the presence of crowd-out, the results of those tests would be skewed
in favor of �nding no positive e�ects on outcomes unrelated to pollution. �erefore, in that
context, even a zero e�ect could actually be evidence of a faulty research design. However,
if the location under investigation does su�er from hospital capacity constraint, it is likely
that researchers will �nd impacts on medical procedures unrelated to air pollution, especially
those considered elective care.43

5.3 Robustness Checks
Air pollution dissipation and cumulative exposure

Our �rst robustness check examines the lagged e�ect of wind speed on air pollution, and
the cumulative e�ect of pollution on pediatric hospital admissions. In practice, we add three
other lags of wind speed in our �rst stage, and three lags of PM10 in the second stage. �e �rst
stage now includes contemporaneous wind speed (WSt), as well as four lags: WSt−1,WSt−2,
WSt−3, and WSt−4. Results are reported in Table 8, and reveal that contemporaneous wind
speed and its immediate lag are the ones that ma�er for PM10 concentration at any point in
time. In fact, the cumulative e�ects reported at the bo�om of the table – the sum of all wind
speed coe�cients – are almost identical to the sum of the coe�cients of the contemporaneous

43Again, this is related to the situation in the United States during this coronavirus pandemic, as discussed
anecdotally by the New York Times: www.nytimes.com/2020/04/20/health/treatment-delays-coronavirus.html.
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variable and its �rst lag. In other words, particulate ma�er seems to dissipate in just a few days.
Notice that we also end up checking whether wind speed days ahead correlate to previous
PM10 levels. Once we control for contemporaneous wind, there does not appear to be any
meaningful correlation between future wind and contemporaneous pollution.

�e second stage results are reported in Table 9. �ey reveal an interesting pa�ern of
behavioral responses: parents seem to delay a hospital visit when their children seem to be
a�ected by exposure to air pollution. One may assume that the exact day of admission may
vary with parental concerns about a child’s health. Parents may take a child to the hospital as
soon as the �rst symptoms appear, or may delay it for a few days if they believe it would not
be a serious problem. Delays would underestimate the results of the contemporaneous model,
since pollution seems to a�ect future hospitalization. On the other hand, exposure to consec-
utive days of poor air quality may have a larger e�ect on hospitalization in the �rst few days
of a given period, because children with a more fragile health must be taken to the hospital
sooner or later. In this case, parents would be anticipating a hospital visit that would occur
anyway; hence, the contemporaneous model would overestimate the true impact of air pollu-
tion. In other words, if parents delay a hospital visit, we should expect positive coe�cients for
lagged pollution, but if they anticipate it, then those coe�cients should be negative. �is tem-
poral displacement is also discussed by Schlenker and Walker (2016). Looking at the second
stage results, the sum of all PM10 coe�cients is double or triple the magnitude of the contem-
poraneous coe�cient for all the respiratory diseases considered in our analysis. �e positive
and signi�cant coe�cients of lagged pollution suggest that parents do delay hospital visits, so
contemporaneous model estimates may be underestimated. No statistically signi�cant e�ect
is observed for the length of hospital stay.

A multi-pollutant model: particulate matter and ambient ozone

We also run a multi-pollutant model considering the impacts of exposure to both PM10 and
ambient ozone on pediatric hospitalizations. Solar radiation is used as the additional instru-
ment to obtain ceteris paribus plausibly exogenous variation for each pollutant. Multi-pollutant
models are still a challenge in the literature due to the di�culty in isolating the e�ects of each
pollutant (Bell et al., 2007; Dominici et al., 2010). �e correlation among air pollutants is usu-
ally high. Nevertheless, PM and O3 are frequently pointed as the main problem in terms of
air pollution in the SPMA, and the correlation between PM and ambient ozone in our sample
is only approximately 0.17. BecauseO3 is a secondary pollutant (not directly emi�ed), and its
formation requires a combination of NOx and VOCs in the presence of sunlight, we leverage
solar radiation as an additional instrument to separately identify the impact of each pollutant.

When including an additional endogenous variable in an econometric model, we need
not only as many instruments as endogenous regressors, but also one instrument particularly
strong for one and not so strong for other to isolate causal e�ects for both endogenous vari-
ables. �is instrument would be responsible for capturing plausibly exogenous variation of an
endogenous variable without varying the others in any substantial way. In that sense, we keep
wind speed, contemporaneous and lagged, and add solar radiation in the instruments list. �e
�rst and second stage equations become:

Pollit = α+ β1WSit + β2WSit−1 + β3SRit + Xitπ+ µi + θt + νit, (1st stages)
Pollit ≡ PMit, O3it,

Hospit = γ+ δ1PM
∧

it + δ2O3
∧

it + Xitφ+ ηi + λt + εit. (2nd stage)

Using solar radiation as instrument for ambient requires a few considerations. First, be-
cause ozone is destroyed during the night, only contemporaneous solar radiation should mat-
ter for ambient ozone concentrations that children are exposed to when engaging in outdoor
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activities. Second, part of the solar radiation is re�ected by clouds, so controls related to cloud
coverage are crucial. We do not observe cloud coverage per se, but our main speci�cation
already includes relative humidity, which may be a good proxy for it. �ird, some geoengi-
neering studies show that solar radiation might be a�ected by air pollutants, either through
absorption or re�ection (e.g., Proctor et al., 2018). Considering that technically the purpose
of �rst stage is to capture a correlation rather than a causal relationship, we recognize the
limitation, but still proceed with the analysis. As a ma�er of fact, the �rst stage estimates
that we discuss below show no correlation between PM10 and solar radiation. Lastly, solar
radiation should a�ect pediatric hospitalizations for respiratory diseases only via exposure to
ambient ozone. Although some studies have found a correlation between solar radiation and
chronic pulmonary diseases and infectious diseases (e.g., Moan et al., 2009; Ferrari et al., 2012),
we believe those associations are not causal due to the usual endogeneity issues. In this study,
we are actually providing a mechanism behind those correlations.44

Table 10 reports the �rst stage results. It turns out that solar radiation is poorly correlated
with PM10, but strongly associated with ambient ozone concentration. �e wind speed asso-
ciation with PM remains the same as in previous regressions, but the wind speed correlation
with ambient ozone is curious. Ozone formation depends on Leontief-like chemical reactions
between NOx and VOCs (see Appendix Figure A4). Some studies indicate that ozone formation
in the SPMA is primarily VOC-limited, with only a few NOx-limited places in the peripheral
area (e.g., Martins and Andrade, 2008; Salvo and Wang, 2017). Since almost all monitors in our
sample are located in the central area of the city, it is likely that theO3 formation is primarily
VOC-limited in our se�ing. When this is the case, it is possible that levels of ozone temporar-
ily increase when NOx concentration decreases, as discussed by Martins and Andrade (2008)
and Silva Junior et al. (2009). It is the so-called “weekend e�ect.” In the end, contemporaneous
wind speed might spread air pollution across the metropolitan area, and make the levels of
NOx and VOCs more homogeneous. �is might induce a reduction in NOx and an increase in
VOCs around the monitors, resulting in enhanced O3 formation. Because ozone is destroyed
during the night, wind speed one day before has no e�ect on contemporaneous ozone forma-
tion, but might still reduce the baseline concentrations of ozone precursors in the next day.

Results for the second stage can be seen in Table 11. Notice that the numbers of districts and
observations change because the analysis is restricted to monitors that measure both pollu-
tants. Notwithstanding, comparing the OLS and 2SLS estimates for PM10, we observe the same
pa�ern as in the single-pollutant model previously discussed. For O3, 2SLS coe�cients are
larger for all diseases, except for in�uenza, but none of them are statistically or economically
signi�cant. In addition, there does not seem to be any considerable changes in the magnitude
of the 2SLS PM10 estimates relative to the single-pollutant speci�cation, which can be inter-
preted as a robustness of our main results. �is is a surprising �nding. Previous studies using
a single-pollutant model for ambient ozone have provided evidence of substantial costs due
to ozone-induced hospital admissions for asthma and other respiratory diseases (e.g., Neidell,
2009; More�i and Neidell, 2011). Furthermore, recent studies using a multi-pollutant model
with PM2.5 and O3 have found an increase in mortality among the Medicare population in the
United States (Di et al., 2017). Our study highlights the need to use a multi-pollutant approach,
and cautions that extrapolations of the estimated impacts of air pollution to di�erent countries
and age groups may be unwise.

Wind direction, distance cuto�s, and age groups

As mentioned earlier, we carry out a robustness check leveraging plausibly exogenous varia-
tion arising from wind direction. Following Deryugina et al. (2019), we add three quadrants

44If anything, exposure to sunlight has been shown to protect against in�uenza (Slusky and Zeckhauser, 2018).
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of wind direction as instruments in the �rst stage. Appendix Table A2 reports �rst stage re-
sults, and reveals that we do have variation in PM10 coming from changes in wind direction,
consistent with and Deryugina et al. (2019). Nevertheless, the coe�cients on those three quad-
rants are only marginally signi�cant, leading to a reduction in the Kleibergen-Paap rk Wald
F-statistic of the joint signi�cance of instruments from about 84 to 40. �at is the reason
why we only use wind speed in the primary speci�cation. Regarding second stage results,
Appendix Table A3 shows that they are somewhat similar to our main �ndings.

We also check the sensitivity of our results with respect to choosing other radii when as-
signing air pollution data to SPMA districts. In Appendix Table A4, we report the second stage
results considering the following cuto�s for the distance between district centroids and mon-
itors: 3, 7, and 10km (5km is what we use in our preferred speci�cation). �e signi�cance of
2SLS estimates is only slightly di�erent, and not surprisingly PM10 impacts on hospital ad-
missions reduces as the distance cuto� increases. It is likely that the pollution and weather
variables assigned to the furthest districts do not represent the actual measures in those lo-
cations. �is evidence corroborates the pa�ern reported in Figure 6, and suggests that PM10
levels do vary considerably across districts in the metropolitan area.

Finally, we investigate the e�ects of PM on hospitalization for respiratory diseases for other
age groups (Appendix Table A5). For babies younger than one year old, hospital admissions by
in�uenza are the only signi�cantly a�ected by poor air quality. Pollution exposure for infants
is di�cult to determine, since they spend most of the time indoors. No signi�cant e�ects are
found for other age groups, probably because of the di�culty to assess the history of pollution
exposure for older children and adults. For these groups, exposure at school/work represents
an important unobserved confounder of the pollution exposure measure used in the analysis
(Currie et al., 2014).

6 Concluding Remarks
Because air pollution a�ects the health of vulnerable population groups, such as children, they
may create nontrivial health shocks. �ese shocks may in turn generate excess demand for
hospitals, potentially a�ecting the treatment of other conditions not related to pollution. In
this study, we examined the impact of PM10 on pediatric hospitalizations in the Sao Paulo
Metropolitan Area (SPMA) from 2015-2017. We dealt with the endogeneity of air pollution
exposure arising from avoidance behavior and a�enuation bias, for instance, using wind speed
as an instrumental variable for particle pollution. Our results showed that exposure to PM10
caused a large increase in pediatric hospitalization for respiratory diseases in the short term.
In particular, we found an increase in hospital admissions for acute episodes of asthma and
pneumonia.

An important follow-up result was related to the capacity constraints of the healthcare
system in developing countries, such as Brazil. We found that in order to absorb the excess
demand for hospital beds due to pollution-related hospitalization, the Brazilian public health-
care system may have had to postpone elective care procedures during highly-polluted days,
or transfer patients to the publicly-reimbursed private system. In fact, we observed a reduc-
tion in admissions in public hospitals due to phimosis surgery and epilepsy-related procedures
such as video-EEG (electroencephalograph) monitoring. At the same time, there was a slight
increase in the number of those procedures in private and philanthropic hospitals. �erefore,
it appears that the healthcare system absorbed the additional demand without imposing large
costs to the SPMA society. Because hospitals were strained, but healthcare infrastructure in
Brazil is still much be�er than other developing countries such as India, research in other
contexts is warranted. In any case, these results highlight the shortcomings of using health
outcomes unrelated to air pollution as “placebo tests” in studies examining the consequences
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of exposure to pollution.
In light of our �ndings, policymakers in developing countries should weigh the costs of

maintaining a healthcare system ready to meet potentially avoidable hospital demands, or
imposing stricter air quality standards. It is important to mention, however, that our results
consider only hospitalization costs. In a full cost-bene�t analysis, additional costs may have to
be considered, such as those related to ambulatory care visits, and prescription drugs, which
were not part of our analysis due to data limitation. Recall that medications for chronic dis-
eases such as asthma can be acquired either free-of-charge or at a subsidized price through the
Popular Pharmacy Program. In addition, analysis on patient satisfaction regarding the quality
of the public health care service should be taken into account.

Another limitation of our analysis is that we do not have information for out-of-pocket
and insured hospitalizations. As a consequence, the wealthier portion of the population may
not be represented in our �ndings. Despite this limitation, we believe that the air pollution
impacts on the low income population are the key ones for policymaking. Lastly, because we
only had georeferenced data for hospitalization, not mortality, we were not able to examine
the air pollution e�ects on infant deaths within the SPMA. �erefore, our �ndings should be
interpreted as a lower bound of the e�ects of particulate ma�er in Sao Paulo.
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Figures

Figure 1: Hospital beds and physicians per 1,000 population

Notes: �is �gure displays the number of hospital beds and physicians per 1,000 population for a group of de-
veloping and developed countries. Reported values are averages for 2010-2012 (or available data between these
years). For South Africa, the value is for 2005 (the last available). Source: World Health Organization.

Figure 2: Average PM10 concentration in large cities around the world

Notes: �is �gure displays the annual average of PM10 (in µg/m3) for a group of large cities around the world.
New York and Los Angeles refer to the metropolitan area. Reported values are for 2014 (Sao Paulo Metropoli-
tan Area – SPMA, Los Angeles, New York, Mexico City), 2013 (Beijing and London), 2012 (Istanbul), and 2011
(Johannesburg). Source: World Health Organization.
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Figure 3: Hospital beds per 1,000 population by bed type and MSA in Brazil

Notes: �is �gure displays the number of hospital beds per 1,000 population for the four largest metropolitan
areas in Brazil. �e hospital beds are classi�ed into public, purely private, and philanthropic. Source: DATASUS.

Figure 4: Hospital beds per 1,000 population in Sao Paulo

Notes: �is �gure displays the number of hospital beds per 1,000 population across municipalities in the Sao
Paulo metropolitan area (SPMA). �e le� map shows hospital beds in public hospitals, and the right map show
the total number of hospital beds, including purely private, and philanthropic hospitals.
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Figure 5: Pollution monitors and districts within 5km from a monitor in Sao Paulo

Notes: �is �gure displays the location of pollution monitors in the Sao Paulo Metropolitan Area (SPMA) (red
dots), and the districts within 5km from any monitor (gray polygons).
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Figure 6: Average and maximum PM10 concentration, and number of days above WHO guide-
lines in the SPMA

Notes: �is �gure displays the annual average of PM10 concentration (dark gray) and maximum daily averages
(light gray) for each pollution monitor in the Sao Paulo Metropolitan Area (SPMA). �e red horizontal lines
indicate the values recommended by the WHO’s guidelines: the dashed line represents the daily maximum for
PM10 (maximum for short-term exposure), and the solid line the maximum annual average (maximum for long-
term exposure). �e numbers above the dashed line indicate the total number of days above the maximum
recommended by the WHO by monitor, from 2015-2017.
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Figure 7: Impact of wind speed on PM10 in Sao Paulo – First stage illustration

Notes: �is �gure illustrates the mechanism behind the �rst stage estimation. It represents daily PM10 and wind
speed measurements from August 26-31, 2016, in the Sao Paulo Metropolitan Area (SPMA). Red areas correspond
to highly polluted districts on a particular day, while blue areas denote cleaner air. �e “+” sign represents
increases in wind speed. As the winds blow stronger, as for example on August 27, air pollution is dissipated on
that day and the day a�er.
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Tables

Table 1: Impacts of wind speed on PM10 and PM above WHO’s guidelines
– First stage

PMt 1[PMt > 50µg/m
3]

WSt - 0.68*** - 0.06***
(0.056) (0.012)

WSt−1 - 0.21*** - 0.05***
(0.050) (0.011)

Dep. var. mean 2.99 0.10
Kleibergen-Paap rk Wald F-statistic 84.39 24.83
Number of districts 85 85
Number of days 1.095 1.095
Observations 89.492 89.492

Notes: �is table reports the �rst stage results for PMt (in 10µg/m3) and 1[PMt >

50µg/m3], a dummy variable indicating whether the PM10 level is above the WHO
guidelines for short-term exposure. We use districts whose centroid is within 5km from
a pollution monitor. Each column reports coe�cients from a di�erent regression. We
include district, day-of-week, month-of-year, and year �xed e�ects. We also add tem-
perature and humidity in quadratic form as controls. Standard errors in parentheses are
two-way clustered by district and calendar date. *** p<0.01, ** p<0.05, * p<0.1.
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Table 2: PM impacts on hospitalization – Children 1-5 years old

Hospitalization rate – Respiratory Days
All Asthma Pneumonia In�uenza Respiratory

Panel A: OLS estimates
PMt 0.82* 0.10 0.22 0.04** 0.03

(0.480) (0.117) (0.271) (0.019) (0.033)
Panel B: IV estimates
PMt 4.83*** 1.14*** 2.36** 0.08 - 0.03

(1.420) (0.425) (1.036) (0.052) (0.053)
Dep. var. mean 67.63 7.30 35.54 0.22 2.96
Number of districts 85 85 85 85 85
Number of days 1.095 1.095 1.095 1.095 1.095
Observations 89.492 89.492 89.492 89.492 89.492

Notes: �is table reports the PM10 impacts on hospitalization rates and length of stay for children
between 1 and 5 years old. Hospitalization rate is measured as the number of hospital admissions per
one million children, and length of stay is measured in days. Each column in each panel reports co-
e�cients from a di�erent regression. We use districts whose centroid is within 5km from a pollution
monitor. We include district, day-of-week, month-of-year, and year �xed e�ects. We also add temper-
ature and humidity in quadratic form as controls. Standard errors in parentheses are two-way clus-
tered by district and calendar date. *** p<0.01, ** p<0.05, * p<0.1.
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Table 3: PM impacts on hospitalization – Children 1-5 years old, PM above WHO’s
guidelines

Hospitalization rate – Respiratory Days
All Asthma Pneumonia In�uenza Respiratory

Panel A: OLS estimates
1[PMt > 50µg/m

3] 3.81* 0.62 1.38 0.07 0.11
(2.005) (0.430) (1.351) (0.065) (0.089)

Panel B: IV estimates
1[PMt > 50µg/m

3] 43.92*** 11.06*** 21.65** 0.67 - 0.18
(12.442) (3.852) (8.819) (0.416) (0.492)

Dep. var. mean 67.63 7.30 35.54 0.22 2.96
Number of districts 85 85 85 85 85
Number of days 1.095 1.095 1.095 1.095 1.095
Observations 89.492 89.492 89.492 89.492 89.492

Notes: �is table reports the PM10 impacts on hospitalization rates and length of stay for children
between 1 and 5 years old. Hospitalization rate is measured as the number of hospital admissions per
one million children, and length of stay is measured in days. 1[(PMt > 50µg/m

3)] is a dummy vari-
able that indicates whether the PM10 level is above the WHO’s guidelines for short-term exposure.
1[(PMt > 50µg/m

3)] sample mean is 0.096. Each column in each panel reports coe�cients from a
di�erent regression. We include district, day-of-week, month-of-year, and year �xed e�ects. We also
add temperature and humidity in quadratic form as controls. Standard errors in parentheses are two-
way clustered by district and calendar date. *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: PM impacts on hospitalization – Children 1-5 years old, public vs. private system

Hospitalization rate – Respiratory Days

All Asthma Pneumonia In�uenza Respiratory

Panel A: Public Health System (SUS)

PMt 4.55*** 0.99** 2.35** 0.08* 0.02
(1.346) (0.408) (0.998) (0.044) (0.067)

Panel B: Private Health System (publicly reimbursed)

PMt 0.29 0.15 0.01 0.00 - 0.14
(0.263) (0.089) (0.152) (0.023) (0.102)

Dep. var. mean (public) 62.57 6.63 34.21 0.18 2.83
Dep. var. mean (private) 5.06 0.67 1.32 0.04 0.34
Number of districts 85 85 85 85 85
Number of days 1.095 1.095 1.095 1.095 1.095
Observations 89.492 89.492 89.492 89.492 89.492

Notes: �is table reports the second stage results for children between 1 and 5 years old, considering the hospitaliza-
tion rate and length of stay in public and private healthcare systems. Hospitalization rate is measured as the number
of hospital admissions per one million children, and length of stay is measured in days. Each column in each panel
reports coe�cients from a di�erent regression. We use districts whose centroid is within 5km from a pollution mon-
itor. We include district, day-of-week, month-of-year, and year �xed e�ects. We also add temperature and humidity
in quadratic form as controls. Standard errors in parentheses are two-way clustered by district and calendar date. ***
p<0.01, ** p<0.05, * p<0.1.
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Table 5: PM impacts on hospitalization – Children 1-5 years old, other diseases, public vs. private

Hospitalization rate
Elective care Urgent care

Phimosis Epilepsy Appendicitis Bone Fracture
Panel A: Public Health System
PMt - 0.84* - 0.28** - 0.06 0.00

(0.490) (0.127) (0.088) (0.097)

Panel B: Private Health System (publicly reimbursed)
PMt 0.06 0.06 0.05** - 0.02

(0.049) (0.055) (0.023) (0.033)

Dep. var. mean (public) 7.60 2.32 0.82 0.94
Dep. var. mean (private) 0.22 0.28 0.07 0.11
Number of districts 85 85 85 85
Number of days 1.095 1.095 1.095 1.095
Observations 89.492 89.492 89.492 89.492

Notes: �is table reports the PM10 impacts on the hospitalization rate for other diseases. Hospitalization rate is mea-
sured as the number of hospital admissions per one million children. �e results are split into hospital admissions that
occurred in public and private hospitals (but reimbursed by the government). �e non-respiratory causes of hospital-
ization considered in this table are phimosis surgery, epilepsy-related procedures such as video-EEG (electroencephalo-
graph) monitoring, appendectomy, and bone fracture repair; the �rst two are considered elective care procedures, while
the last two are urgent procedures. Each column in each panel reports coe�cients from a di�erent regression. We use
districts whose centroid is within 5km from a pollution monitor. We include district, day-of-week, month-of-year, and
year �xed e�ects. We also add temperature and humidity in quadratic form as controls. Standard errors in parentheses
are two-way clustered by district and calendar date. *** p<0.01, ** p<0.05, * p<0.1.
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Table 6: PM impacts on hospitalization – Children 1-5 years, public beds

Hospitalization rate
Elective care Urgent care

Phimosis Epilepsy Appendicitis Bone Fracture
Panel A: Pediatric Beds
PMt - 1.56* - 0.87*** 0.07 - 0.02

(0.913) (0.198) (0.186) (0.179)
PMt ∗ 1[high pediatric beds] 0.47 0.39*** - 0.09 0.02

(0.449) (0.139) (0.101) (0.115)
Panel B: All Beds
PMt - 1.56 - 0.53** 0.08 0.12

(0.958) (0.233) (0.189) (0.176)
PMt ∗ 1[high general beds] 0.47 0.17 - 0.09 - 0.08

(0.443) (0.156) (0.105) (0.116)
Panel C: Family Doctors
PMt - 1.33 - 0.59** 0.13 0.05

(1.028) (0.224) (0.205) (0.191)
PMt ∗ 1[high family doctors] 0.31 0.20 - 0.12 - 0.03

(0.478) (0.148) (0.109) (0.116)
Dep. var. mean 7.60 2.32 0.82 0.94
Number of districts 85 85 85 85
Number of days 1.095 1.095 1.095 1.095
Observations 89.492 89.492 89.492 89.492

Notes: �is table reports the PM10 impacts on hospitalization rate for other diseases in public hospitals.
Hospitalization rate is measured as the number of hospital admissions per one million children. �e non-
respiratory causes of hospitalization considered in this table are phimosis surgery, epilepsy-related proce-
dures such as video-EEG (electroencephalograph) monitoring, appendectomy, and bone fracture repair;
the �rst two are considered elective care procedures, while the last two are urgent procedures. We explore
the heterogeneity of the results by hospital capacity indicators for beds and doctors by district in 2014, the
year before our period of analysis. Each capacity rate is calculated per total district population. 1[high] is
a dummy variable indicating that the capacity measure is above the median. Each column in each panel
reports coe�cients from a di�erent regression. We use districts whose centroid is within 5km from a
pollution monitor. �e Kleibergen-Paap rk Wald F-statistics of the �rst stages are 88.27 (Panels A, B, and
C for the �rst-stage results for PMt), 83.36 (Panel A, �rst stage results for PMt ∗ 1[high pediatric beds]),
84.75 (Panel B, �rst stage results for PMt ∗ 1[high general beds]), and 91.45 (Panel C, �rst stage results
for PMt ∗ 1[high family doctors]). We include district, day-of-week, month-of-year, and year �xed ef-
fects. We also add temperature and humidity in quadratic form as controls. Standard errors in parenthe-
ses are two-way clustered by district and calendar date. *** p<0.01, ** p<0.05, * p<0.1.
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Table 7: PM impacts on hospitalization – Children 1-5 years old, publicly-funded beds
in private hospitals

Hospitalization rate
Elective care Urgent care

Phimosis Epilepsy Appendicitis Bone Fracture
Panel A: Pediatric Beds
PMt 0.02 0.17 0.06 - 0.00

(0.076) (0.118) (0.036) (0.064)
PMt ∗ 1[high pediatric beds] 0.02 - 0.07 - 0.00 - 0.01

(0.058) (0.066) (0.026) (0.044)
Panel B: All Beds
PMt - 0.11 0.22* 0.03 - 0.06

(0.082) (0.123) (0.043) (0.070)
PMt ∗ 1[high general beds] 0.11** - 0.10 0.01 0.03

(0.052) (0.070) (0.027) (0.045)
Panel C: Family Doctors
PMt - 0.13 0.19 0.04 - 0.03

(0.079) (0.125) (0.045) (0.069)
PMt ∗ 1[high family doctors] 0.12** - 0.08 0.01 0.01

(0.055) (0.069) (0.027) (0.043)
Dep. var. mean 0.22 0.28 0.07 0.11
Number of districts 85 85 85 85
Number of days 1.095 1.095 1.095 1.095
Observations 89.492 89.492 89.492 89.492

Notes: �is table reports the PM10 impacts on hospitalization rate for other diseases in private hos-
pitals, but publicly funded by the Brazilian Healthcare System. Hospitalization rate is measured as the
number of hospital admissions per one million children. �e non-respiratory causes of hospitalization
considered in this table are phimosis surgery, epilepsy-related procedures such as video-EEG (electroen-
cephalograph) monitoring, appendectomy, and bone fracture repair; the �rst two are considered elective
care procedures, while the last two are urgent procedures. We explore the heterogeneity of the results by
hospital capacity indicators for beds and doctors by district in 2014, the year before our period of analysis.
Each capacity rate is calculated per total district population. 1[high] is a dummy variable indicating that
the capacity measure is above the median. Each column in each panel reports coe�cients from a di�erent
regression. We use districts whose centroid is within 5km from a pollution monitor. �e Kleibergen-Paap
rk Wald F-statistics of the �rst stages are 88.27 (Panels A, B, and C for the �rst-stage results for PMt),
83.36 (Panel A, �rst stage results for PMt ∗ 1[high pediatric beds]), 84.75 (Panel B, �rst stage results for
PMt ∗ 1[high general beds]), and 91.45 (Panel C, �rst stage results for PMt ∗ 1[high family doctors]).
We include district, day-of-week, month-of-year, and year �xed e�ects. We also add temperature and
humidity in quadratic form as controls. Standard errors in parentheses are two-way clustered by district
and calendar date. *** p<0.01, ** p<0.05, * p<0.1.
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Table 8: Impacts of wind speed on PM10 – First stage with 4 lags of speed

PMt PMt−1 PMt−2 PMt−3

WSt - 0.68*** - 0.02 0.00 0.08*
(0.056) (0.044) (0.044) (0.043)

WSt−1 - 0.22*** - 0.67*** - 0.01 - 0.03
(0.053) (0.064) (0.048) (0.044)

WSt−2 0.01 - 0.24*** - 0.68*** - 0.00
(0.049) (0.052) (0.065) (0.048)

WSt−3 0.04 0.01 - 0.24*** - 0.68***
(0.050) (0.048) (0.052) (0.065)

WSt−4 0.04 0.06 0.03 - 0.24***
(0.046) (0.045) (0.046) (0.051)

Cumulative e�ects - 0.811*** - 0.853*** - 0.887*** - 0.874***
(0.090) (0.085) (0.083) (0.079)

Dep. var. mean (in 10µg/m3) 2.99 2.99 2.99 2.99
Kleibergen-Paap rk Wald F-statistic 35.34 35.52 35.26 35.51
Number of districts 85 85 85 85
Number of days 1.092 1.092 1.092 1.092
Observations 89.245 89.245 89.245 89.237

Notes: �is table reports alternative �rst stage results. We include 4 lags of wind speed, and
vary the time dimension of the dependent variable. Each column reports coe�cients from a
di�erent regression. Cumulative e�ects are the sum of all wind speed coe�cients. We use
districts whose centroid is within 5km from a pollution monitor. We include district, day-
of-week, month-of-year, and year �xed e�ects. We also add temperature and humidity in
quadratic form as controls. Standard errors in parentheses are two-way clustered by district
and calendar date. *** p<0.01, ** p<0.05, * p<0.1.
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Table 9: PM impacts on hospitalization – Children 1-5 years, with 3 lags of PM

Hospitalization rate – Respiratory Days
All Asthma Pneumonia In�uenza Respiratory

PMt 4.63*** 0.79* 2.41** 0.12* - 0.01
(1.716) (0.450) (1.182) (0.068) (0.072)

PMt−1 2.88 1.22*** 1.67 - 0.01 0.00
(1.991) (0.446) (1.333) (0.072) (0.124)

PMt−2 - 1.22 - 0.54 - 1.17 0.02 0.01
(1.968) (0.512) (1.214) (0.069) (0.085)

PMt−3 5.06*** 1.07*** 3.65*** 0.14** 0.12
(1.578) (0.374) (0.982) (0.055) (0.075)

Cumulative e�ects 11.35*** 2.54*** 6.56*** 0.26*** 0.13
(2.397) (0.673) (1.598) (0.084) (0.098)

Dep. var. mean 67.72 7.30 35.58 0.23 2.97
Joint F-statistic (1st stage) 20.24 20.24 20.24 20.24 20.24
Number of districts 85 85 85 85 85
Number of days 1.092 1.092 1.092 1.092 1.092
Observations 89.237 89.237 89.237 89.237 89.237

Notes: �is table reports alternative second stage results for children between 1 and 5 years old, consid-
ering the hospitalization rate and length of stay. �e new feature is the inclusion of 3 lags of exposure to
PM10. Hospitalization rate is measured as the number of hospital admissions per one million children,
and length of stay is measured in days. Each column reports coe�cients from a di�erent regression. Cu-
mulative e�ects are the sum of all PM coe�cients. We use districts whose centroid is within 5km from a
pollution monitor. We include district, day-of-week, month-of-year, and year �xed e�ects. We also add
temperature and humidity in quadratic form as controls. Standard errors in parentheses are two-way
clustered by district and calendar date. *** p<0.01, ** p<0.05, * p<0.1.
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Table 10: Impacts of wind speed and solar radiation on
PM10 and ozone – First stage, multi-pollutant model

PMt O3t
WSt - 0.66*** 2.25***

(0.062) (0.583)
WSt−1 - 0.21*** - 1.20**

(0.048) (0.494)
SRt - 0.00 0.06***

(0.001) (0.007)
Dep. var. mean 2.91 37.08
Kleibergen-Paap rk Wald F-statistic 52.50 32.05
Number of districts 61 61
Number of days 1.095 1.095
Observations 63.160 63.160

Notes: �is table reports the �rst stage results for the multi-
pollutant model. We include contemporaneous solar radiation to-
gether with wind speed as instruments for PM10 and ambient
ozone. PM10 average (in 10µg/m3): 2.91. O3 average (in µg/m3):
37.08. Each column reports coe�cients from a di�erent regression.
We use districts whose centroid is within 5km from a pollution
monitor. We include district, day-of-week, month-of-year, and year
�xed e�ects. We also add temperature and humidity in quadratic
form as controls. Standard errors in parentheses are two-way clus-
tered by district and calendar date. *** p<0.01, ** p<0.05, * p<0.1.
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Table 11: PM and ozone impacts on hospitalization – Children 1-5 years old

Hospitalization rate – Respiratory Days
All Asthma Pneumonia In�uenza Respiratory

Panel A: OLS estimates
PMt 0.82 0.07 0.31 0.06** 0.03

(0.585) (0.136) (0.321) (0.022) (0.027)
O3t - 0.07 - 0.01 - 0.02 0.00 - 0.00

(0.047) (0.012) (0.037) (0.003) (0.003)
Panel B: IV estimates
PMt 4.38*** 1.10** 2.28* 0.06 - 0.05

(1.582) (0.508) (1.201) (0.056) (0.060)
O3t 0.10 0.02 0.01 - 0.01 - 0.00

(0.236) (0.063) (0.160) (0.009) (0.009)
Dep. var. mean 70.95 7.35 38.20 0.22 2.98
Number of districts 61 61 61 61 61
Number of days 1.095 1.095 1.095 1.095 1.095
Observations 63.160 63.160 63.160 63.160 63.160

Notes: �is table reports the second stage results of the multi-pollutant model. We consider the im-
pacts of both PM10 and ambient ozone on hospitalization rates and length of stay for children between
1 and 5 years old. Hospitalization rate is measured as the number of hospital admissions per one mil-
lion children, and length of stay is measured in days. Each column in each panel reports coe�cients
from a di�erent regression. We use districts whose centroid is within 5km from a pollution monitor.
We include district, day-of-week, month-of-year, and year �xed e�ects. We also add temperature and
humidity in quadratic form as controls. Standard errors in parentheses are two-way clustered by dis-
trict and calendar date. *** p<0.01, ** p<0.05, * p<0.1.
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Appendix Figures

Figure A1: Pediatric hospitalization rate and pollution monitors in Sao Paulo

Notes: �is map displays a representation of average pediatric hospitalization rates from 2015-2017 by quartile in
the Sao Paulo Metropolitan Area (SPMA). Hospitalization rate is measured as the number of hospital admissions
per one million children 1-5 years old. Darker gray shades indicate higher rates. �e red numbers correspond to
the pollution monitors enumerated in Figures 6 and A5.
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Figure A2: Expressways and highways in Sao Paulo

Notes: �is map displays expressways and highways (blue lines) together with pollution monitors (red dots) and
the districts within 5km from any monitor (gray area) in the Sao Paulo Metropolitan Area (SPMA).

Figure A3: Duration of pediatric hospitalizations in Sao Paulo

Notes: �is �gure displays the histogram for duration of pediatric hospitalizations, measured in days, in the Sao
Paulo Metropolitan Area (SPMA). Hospitalization rate is measured as the number of hospital admissions per one
million children 1-5 years old.
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Figure A4: Ozone formation – Illustration

Notes: �is �gure illustrates the Leontief-like production function of ozone. Each quadrant displays the concen-
tration of NOx (y-axis) and VOCs (x-axis) – measured in parts per million (ppm) – for a season of the year. �e
gray lines represent the O3 isopleths for several VOCs and NOx concentrations. �e gray circles represent the
average O3 concentration for each season of the SPMA. Source: Orlando et al. (2010).

44



Figure A5: Average and maximum ambient ozone concentration, and number of days above
WHO guidelines in the SPMA

Notes: �is �gure displays the annual 8-hour average of ambient ozone concentration (dark gray), as well as
the annual maximum 8-hour average (light gray), and the number of days with ozone concentration above the
daily maximum recommended by the WHO (numbers above red line), by monitor in the Sao Paulo Metropolitan
Area (SPMA), from 2015-2017. �e red line represents the maximum daily 8-hour average of ambient ozone
concentration that the WHO’s guidelines recommend for relatively “safe” exposure. We use ozone measurements
from 9AM to 5PM to construct the daily 8-hour average for this �gure.
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Appendix Tables

Table A1: PM impacts on childbirth hospitalization – Public vs. private health system

Public System Private System
Natural birth C-section Natural birth C-section

Panel A: Average
PMt - 0.00 - 0.13** 0.01 0.02

(0.154) (0.065) (0.079) (0.037)
Panel B: Pediatric Beds
PMt - 0.01 - 0.17 0.08 0.13

(0.309) (0.109) (0.155) (0.094)
PMt ∗ 1[high pediatric beds] 0.00 0.03 - 0.05 - 0.08

(0.189) (0.067) (0.078) (0.047)
Panel C: All Beds
PMt - 0.18 - 0.25** 0.11 0.15

(0.333) (0.113) (0.162) (0.112)
PMt ∗ 1[high general beds] 0.11 0.07 - 0.07 - 0.08

(0.194) (0.062) (0.086) (0.055)
Panel D: Family Doctors
PMt - 0.07 - 0.22* 0.17 0.16

(0.341) (0.117) (0.161) (0.118)
PMt ∗ 1[high family doctors] 0.05 0.06 - 0.10 - 0.09

(0.195) (0.063) (0.085) (0.057)
Dep. var. mean 16.01 1.98 3.09 0.58
Number of districts 85 85 85 85
Number of days 1.095 1.095 1.095 1.095
Observations 89.492 89.492 89.492 89.492

Notes: �is table reports the PM10 impacts on C-section and natural birth hospitalization rate, by pub-
lic hospitals and publicly-funded beds in private hospitals. We consider the pregnancy of women aged
18 to 65 years to calculate the hospitalization rate related to childbirth. We explore the heterogeneity of
the results by hospital capacity indicators for beds and doctors by district in 2014, the year before our
period of analysis. Each capacity rate is calculated per total district population. 1[high] is a dummy vari-
able indicating that the capacity measure is above the median. Each column in each panel reports coe�-
cients from a di�erent regression. We use districts whose centroid is within 5km from a pollution mon-
itor. We include district, day-of-week, month-of-year, and year �xed e�ects. We also add temperature
and humidity in quadratic form as controls. �e Kleibergen-Paap rk Wald F-statistics of the �rst stages
are 88.27 (Panels A, B, C and D for the �rst-stage results for PMt), 83.36 (Panel B, �rst stage results for
PMt ∗ 1[high pediatric beds]), 84.75 (Panel C, �rst stage results for PMt ∗ 1[high general beds]), and
91.45 (Panel D, �rst stage results for PMt ∗ 1[high family doctors]). Standard errors in parentheses are
two-way clustered by district and calendar date. *** p<0.01, ** p<0.05, * p<0.1.
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Table A2: Impacts of wind speed and wind direction on PM10 – First stage

Main – PMt on WS PMt on WS & WD
WSt - 0.681*** - 0.680***

(0.056) (0.057)
WSt−1 - 0.211*** - 0.212***

(0.050) (0.049)
1[Wind Directiont – 1st quadrant] 0.012

(0.100)
1[Wind Directiont – 2nd quadrant] 0.148**

(0.072)
1[Wind Directiont – 3rd quadrant] 0.109*

(0.056)

Dep. var. mean (in 10µg/m3) 2.99 2.99
Kleibergen-Paap rk Wald F-statistic 84.39 39.84
Number of districts 85 85
Number of days 1.095 1.095
Observations 89.492 89.492

Notes: �is table reports the main �rst stage estimates, and results from an alternative speci�cation
using wind speed and wind direction as instruments. Following Deryugina et al. (2019), wind direc-
tion is represented by three dummy variables informing the quadrant of the direction. Each column
reports coe�cients from a di�erent regression. We use districts whose centroid is within 5km from
a pollution monitor. We include district, day-of-week, month-of-year, and year �xed e�ects. We
also add temperature and humidity in quadratic form as controls. Standard errors in parentheses
are two-way clustered by district and calendar date. *** p<0.01, ** p<0.05, * p<0.1.
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Table A3: PM impacts on hospitalization – Children 1-5 years old, IV estimates

Hospitalization rate - Respiratory Days
All Asthma Pneumonia In�uenza Respiratory

Panel A: Wind Speed
PMt 4.83*** 1.14*** 2.36** 0.08 - 0.03

(1.420) (0.425) (1.036) (0.052) (0.053)
Panel B: Wind Speed & Direction
PMt 5.22*** 1.16*** 2.60** 0.10* - 0.01

(1.435) (0.419) (1.062) (0.054) (0.058)
Dep. var. mean 67.63 7.30 35.54 0.22 2.96
Number of districts 85 85 85 85 85
Number of days 1.095 1.095 1.095 1.095 1.095
Observations 89.492 89.492 89.492 89.492 89.492

Notes: �is table reproduces the IV estimates of Table 2, and compares them with IV estimates a�er including
wind direction (dummy variables for quadrants) as additional instruments. Hospitalization rate is measured as the
number of hospital admissions per one million children 1-5 years old, and length of stay is measured in days. Each
column in each panel reports coe�cients from a di�erent regression. We use districts whose centroid is within
5km from a pollution monitor. We include district, day-of-week, month-of-year, and year �xed e�ects. We also add
temperature and humidity in quadratic form as controls. Standard errors in parentheses are two-way clustered by
district and calendar date. *** p<0.01, ** p<0.05, * p<0.1.
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Table A4: PM impacts on hospitalization – Children 1-5 years old, alternative sam-
ples varying the distance of districts to pollution monitors

Hospitalization rate – Respiratory Days
All Asthma Pneumonia In�uenza Respiratory

Panel A: 3 km
PMt 6.24*** 1.13** 3.23*** 0.09 - 0.06

(1.368) (0.487) (1.051) (0.081) (0.071)
Dep. var. mean 64.93 6.91 33.96 0.23 2.74
Number of districts 48 48 48 48 48
Panel B: 5 km
PMt 4.83*** 1.14*** 2.36** 0.08 - 0.03

(1.420) (0.425) (1.036) (0.052) (0.053)
Dep. var. mean 67.63 7.30 35.54 0.22 2.96
Number of districts 85 85 85 85 85
Panel C: 7 km
PMt 3.62** 0.98*** 2.13** 0.08* - 0.05

(1.541) (0.368) (0.994) (0.043) (0.046)
Dep. var. mean 67.04 7.14 35.19 0.22 2.97
Number of districts 106 106 106 106 106
Panel D: 10 km
PMt 2.55 0.83** 1.69* 0.10** - 0.06

(1.552) (0.331) (0.930) (0.044) (0.043)
Dep. var. mean 66.32 6.85 35.03 0.24 2.90
Number of districts 126 126 126 126 126
Number of days 1.095 1.095 1.095 1.095 1.095

Notes: �is table reproduces the IV estimates of Table 2, whose sample uses only districts within
5km from a pollution monitor (Panel B), and compares them with IV estimates arising from alter-
native samples varying the distance from the district centroid to the nearest pollution monitor – 3,
7, and 10km. Hospitalization rate is measured as the number of hospital admissions per one million
children 1-5 years old, and length of stay is measured in days. Each column in each panel reports
coe�cients from a di�erent regression. We include district, day-of-week, month-of-year, and year
�xed e�ects. We also add temperature and humidity in quadratic form as controls. Standard errors
in parentheses are two-way clustered by district and calendar date. *** p<0.01, ** p<0.05, * p<0.1.

49



Table A5: PM impacts on hospitalization – All age groups

Hospitalization rate – Respiratory Days
All Asthma Pneumonia In�uenza Days

Panel A: Ages 0-1
PMt 1.70 0.06 0.48 0.15* 0.07

(1.120) (0.147) (0.568) (0.079) (0.057)

Dep. var mean 13.21 0.29 5.30 0.12 0.31
Panel B: Ages 1-5
PMt 4.83*** 1.14*** 2.36** 0.08 - 0.03

(1.420) (0.425) (1.036) (0.052) (0.053)

Dep. var. mean 67.63 7.30 35.54 0.22 2.96
Panel C: Ages 5-17
PMt 0.35 0.10 0.31 0.01 0.04

(0.332) (0.089) (0.191) (0.014) (0.164)

Dep. var. mean 13.24 1.85 6.21 0.05 2.16
Panel D: Ages 18-65
PMt - 0.05 - 0.02* - 0.02 0.00 0.04

(0.077) (0.014) (0.053) (0.006) (0.104)

Dep. var. mean 4.90 0.13 2.40 0.03 3.72
Panel E: Ages 66 +
PMt 0.38 - 0.07 0.18 - 0.00 - 0.05

(0.680) (0.058) (0.485) (0.019) (0.081)

Dep. var. mean 29.64 0.32 19.26 0.07 3.61
Number of districts 85 85 85 85 85
Number of days 1.095 1.095 1.095 1.095 1.095
Observations 89.492 89.492 89.492 89.492 89.492

Notes: �is table reports the second stage results for all age groups. Hospitalization rate
is measured as the number of hospital admissions per one million individuals in each age
group, and length of stay is measured in days. Each column in each panel reports coe�-
cients from a di�erent regression. We use districts whose centroid is within 5km from a pol-
lution monitor. We include district, day-of-week, month-of-year, and year �xed e�ects. We
also add temperature and humidity in quadratic form as controls. Standard errors in paren-
theses are two-way clustered by district and calendar date. *** p<0.01, ** p<0.05, * p<0.1.
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