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ABSTRACT
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Save Lives: Causal Impact of Diagnostic 
Efficiency on the COVID-19 Pandemic*

This paper examines the impact of diagnostic efficiency on the COVID-19 pandemic. Using 

an exogenous policy on diagnostic confirmation, we show that a one- day decrease in the 

time taken to confirm the first case in a city publicly led to 9.4% and 12.7% reductions 

in COVID-19 prevalence and mortality over the subsequent six months, respectively. The 

impact is larger for cities that are farther from the COVID-19 epicenter, are exposed to less 

migration, and have more responsive public health systems. Social distancing and a less 

burdened health system are likely the underlying mechanisms, while the latter also explains 

the more profound impact on reducing deaths than reducing infections.
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1 Introduction  
The coronavirus disease 2019 (COVID-19) pandemic has inflicted substantial death 

tolls across the globe. As of the end of September, 2020, over 30 million COVID-19 

cases had been confirmed in more than 210 countries and territories and upwards of 1 

million individuals had lost their lives to the disease.2 Many countries have taken 

unprecedented measures (e.g., city-wide lockdowns, travel restrictions) to contain the 

spread of COVID-19 (Aum, Lee, and Shin 2020; Briscese et al. 2020; S. Chen, Yang, 

et al. 2020; S. Chen, Zhang, et al. 2020). While these measures may have some 

mitigating effects on the transmission and impact of COVID-19, they also impose grave 

social and economic burdens on society (Adda 2016; Alvarez, Argente, and Lippi 2020; 

Acemoglu et al. 2020; Do et al. 2020).  

 

However, public health responses in the early phase of COVID-19, such as efficient 

diagnosis and isolation, could potentially have had a large impact on reducing disease 

transmission while preempting the need for more economically and socially harmful 

interventions.3 But to what extent “early” intervention policies help to contain the 

spread of COVID-19 remains unclear. 

 

One such policy, diagnostic efficiency—which we define as the time it takes for a 

particular city to diagnose and publicly announce its first COVID-19 case—is a key 

signal of a government’s awareness of the disease and willingness to disclose relevant 

information. A more efficient diagnostic process allows early behavioral and policy 

response to an outbreak, which may shorten the length of lockdown periods, leading to 

several notable advantages compared with long-term nationwide lockdown and travel 

restrictions. First, it can avert more infections and deaths. Modeling studies show that 

responding to an outbreak early could prevent more infections than otherwise (Berger, 

Herkenhoff, and Mongey 2020; Chudik, Pesaran, and Rebucci 2020; Eichenbaum, 

Rebelo, and Trabandt 2020; S. Chen, Chen, et al. 2020). Second, it can mitigate the 

negative social effects (e.g., massive protests) of long-term lockdowns and social 

 
2 COVID-19 data are provided by the Center for Systems Science and Engineering at Johns Hopkins University. 

More details and updated data can be found in https://coronavirus.jhu.edu/map.html. 
3 A wide range of nonpharmaceutical interventions in the early phase of COVID-19 include genome 

sequencing for the novel virus, prompt development of diagnostics, timely information disclosure of the number of 
infections and deaths, social distancing, contact tracing, massive testing, quarantine of suspected cases and close 
contacts, and isolation of cases. 
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distancing (Dyer 2020).4 Third, by enabling early announcement of a novel infectious 

disease with the potential to become an epidemic, early intervention against it, and its 

speedy termination, a more efficient diagnostic process can help reduce the heavy 

economic toll of long-term lockdowns (Aum, Lee, and Shin 2020; Acemoglu et al. 2020; 

Alvarez, Argente, and Lippi 2020). All these advantages suggest that a more efficient 

diagnostic process could be a highly cost-effective measure when facing an epidemic. 

 

Improved diagnostic efficiency helps limit infections and deaths through the following 

channels: First, it enables early voluntary or mandatory isolation of infected individuals 

from the community (Omar et al. 2020; S. Chen, Zhang, et al. 2020). Second, it informs 

the public of the disease, allowing local residents to initiate preventive measures against 

COVID-19 such as wearing masks, frequently washing hands, or social distancing 

(Chan and Yuen 2020; Cheng et al. 2020; Feng et al. 2020). Third, local authorities can 

implement outbreak-control interventions such as contact tracing, disease screening, 

and encouragement of mask wearing (Anderson et al. 2020; S. Chen, Yang, et al. 2020; 

Kraemer et al. 2020).5 Fourth, it can avoid the danger of overburdening health systems 

by reducing infections and rapidly expanding health system capacities, thus ensuring 

sufficient healthcare resources such as intensive care unit (ICU) beds and ventilators to 

save lives (Armocida et al. 2020; Cavallo, Donoho, and Forman 2020; Woolley 2020; 

S. Chen, Zhang, et al. 2020; Ji et al. 2020). Finally, important actors in other societal 

sectors (e.g., academic institutions, companies, and media outlets) can also take early 

action (Ranney, Griffeth, and Jha 2020; Simonov et al. 2020; Bavel et al. 2020).6 

 

Whether, to what extent, and how diagnostic efficiency affects the epidemic trend 

remain unknown. Improved diagnostic efficiency, on the one hand, could prevent 

 
4 Reportedly, people in many countries such as the United States, the United Kingdom, and Germany have 

protested against lockdown measures and social distancing rules (https://www.bbc.com/news/world-us-canada-
52359100, https://www.reuters.com/article/us-health-coronavirus-germany-protests/germans-stage-protests-
against-lockdown-measures-social-distancing-rules-idUSKBN22S0MS, https://www.abc.net.au/news/2020-05-
17/protests-against-coronavirus-lockdown-in-uk-and-europe-covid-19/12256802). 

5 The proportion of people in each country who say they wear a face mask when in public varies significantly 
across countries. For example, more than 80% of people wore a face mask in China from February 24, 2020, to July 
6, 2020. By contrast, less than 40%, 9%, and 7% of people wore a face mask during the same period in the United 
Kingdom, Norway, and Finland, respectively, during the same period. Countries like the United States and Italy saw 
fewer people wearing a face mask in the early period of the outbreak but the proportion increased gradually to 73% 
and 83% by July 6, 2020, respectively. More details on each country’s mask wearing over time can be found in 
https://yougov.co.uk/topics/international/articles-reports/2020/03/17/personal-measures-taken-avoid-covid-19.  

6 For example, academic institutions and universities can initiate scientific research to model the epidemic 
evolution and evaluate economic and social impact; companies can prepare by shifting production to items relevant 
to outbreak control, such as protective masks, surgical gloves, and nucleic acid testing kits; and media outlets can 
start assimilating knowledge of the new disease and interviewing experts to educate the population. 



4 

infections and avert deaths if governments and people implement epidemic-control 

strategies early. On the other hand, it may have little impact on the epidemic trend if 

government and society remain inert and fail to respond to the warnings of a public 

health emergency. Only a few studies have investigated how diagnostic efficiency 

affects the spread of epidemics using mathematical modeling approaches (e.g., 

susceptible-exposed-infected-recovered-type models) (Chowell et al. 2015; Nouvellet 

et al. 2015; Rong et al. 2020). Harris (2020) proposes a nonparametric statistical method 

to estimate the distribution of reporting delays of confirmed COVID-19 cases in New 

York. These studies focus mainly on early diagnosis of all cases, rather than early 

diagnosis of the first case. Early diagnosis of all cases indicates a massive and rapid 

testing strategy, while early diagnosis of the first case reflects prompt public 

information disclosure of a novel infectious disease with the potential to become an 

epidemic, regardless of further interventions such as a massive testing strategy, contact 

tracing, or social distancing. Moreover, these studies do not show to what extent early 

diagnosis is effective in mitigating epidemics if government and society are not 

responsive.7  

 

To our knowledge, this is the first empirical study to estimate the causal impact of 

diagnostic efficiency on epidemic spread. In this paper, we investigate whether and how 

diagnostic efficiency—measured by the time interval between the date when the first 

diagnosed patient first visited a doctor for COVID-19 care and the date when that first 

case was confirmed publicly—affected the spread of COVID-19 across 275 Chinese 

cities (Figure 1). Because factors such as patients’ clinical manifestations, doctors’ 

knowledge of COVID-19, adoption of different diagnostic technologies, and the regime 

for local health authorities’ disclosure of COVID-19 cases can affect diagnostic 

efficiency, we adopt an instrumental variable (IV) approach to address confounding 

issues. We implement the IV approach by taking advantage of a plausibly exogenous 

nationwide policy that increases the availability of better diagnostic technology and 

streamlines the process by which local authorities report infected cases. We also 

construct a novel dataset on the first confirmed cases across 275 Chinese cities. 

 

Our analysis exploits a plausibly exogenous policy launched by the central health 

 
7 Eichenbaum, Rebelo, and Trabandt (2020) suggest that testing without quarantining infected people can 

worsen the economic and health repercussions of an epidemic. 
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authority that improved the diagnostic efficiency of local health authorities in reporting 

their first confirmed local case. In general, for diseases that clinicians understand well 

(e.g., tuberculosis or human immunodeficiency virus), the time taken to diagnose any 

single case of that disease should be independent of the calendar date on which the 

diagnosed patient first sought care. However, for poorly understood emerging diseases 

for which knowledge and diagnostic technology are limited, the process of diagnosing 

the first case in any given location is often relatively complicated (relying on strict 

criteria) and lengthy. For example, evidence of a high degree of homology between the 

genetic sequence of a viral specimen collected from a patient and the genetic sequences 

of previously identified COVID-19 samples was required to confirm the first case of 

COVID-19 for localities with new transmission early in the epidemic. Moreover, local 

health authorities in China were not permitted to release information about first cases 

at the provincial level until the central health authority had verified their results.8 This 

top-down information disclosure regime reduces the risk of misdiagnosis at the 

beginning of local outbreaks, but also lengthens the time required to verify first cases 

for local authorities.9  

 

The diagnostic efficiency of confirming the first case significantly improved after 

January 18, when the central health authority released updated official guidance 

(Version 2) on diagnostic confirmation of the first case in each province experiencing 

new transmission outside of Hubei province, where COVID-19 was first reported in 

China (Figure 1).10 This updated guidance indicated that a positive result for COVID-

19 nucleic acid from real-time fluorescent polymerase chain reaction (PCR) (i.e., RT-

PCR, a nuclear-derived method for detecting the presence of specific genetic material 

in any pathogen, including a virus) could serve as an alternative means of confirmation 

to the established method of determining that the viral gene sequence of a specimen 

from the diagnosed patient was highly homologous to known coronaviruses. 11 

Introducing new diagnostic technology significantly shortened the time required to 

confirm the first infected case for other city-level health authorities, particularly after 

 
8 Similarly, city-level health authorities in China were not permitted to release information about first cases at 

the city level until the provincial health authority verified their results. 
9 An initial lack of point-of-care diagnostic kits further lengthened the overall duration.  
10 Further details on the updated official guidance are provided below.  
11  More details on the application of RT-PCR in detecting COVID-19 can be found in 

https://www.iaea.org/newscenter/news/how-is-the-covid-19-virus-detected-using-real-time-rt-pcr. 
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confirmation of the first provincial-level infected case. 12  Nevertheless, a trade-off 

exists between diagnostic efficiency and diagnostic accuracy.13 

 

Our paper constructs an IV model based on the time interval between January 19, when 

the updated official guidance (Version 2) on diagnostic confirmation of the first case 

outside of Hubei province went into effect, and the date when the first diagnosed patient 

in a locality first visited a doctor, or time interval (revised policy to first doctor visit) 

for short (Figure 1).14 The indicator builds on two developments: first, the first infected 

case outside Hubei province was not publicly confirmed until January 19, and second, 

the adoption of new diagnostic technology was limited to start because of a lack of 

point-of-care diagnostic kits—a situation that, however, improved over time.15  An 

important assumption here is that, conditional on importing infected cases from the 

COVID-19 epicenter, the relative timing of the first case first visiting a doctor—or the 

time interval—is quasi-random and independent of the outcomes of interest. This 

assumption is likely to be true given that the incubation period can last for as long as 

14 days following infection, meaning that the timing of the first visit to a doctor can 

vary significantly among the infected cases imported from the COVID-19 epicenter 

(World Health Organization 2020b).16 

 

We report the main findings as follows. First, the average time taken to publicly confirm 

the first case in location jurisdictions fell significantly following the launch of the policy 

that improved diagnostic efficiency for local health authorities. Specifically, an increase 
 

12 Confirming the first provincial-level infected case still required evidence that the viral gene sequence is 
highly homologous to known coronaviruses; the central health authority undertook this confirmation. 

13 A systematic review of the accuracy of COVID-19 tests reported false negative rates between 2% and 29%, 
based on negative RT-PCR tests that were positive on repeat testing (Watson, Whiting, and Brush 2020; Arevalo-
Rodriguez et al. 2020). Zhifeng, Feng, and Li (2020) also find that the initial nucleic acid positivity was not consistent 
with variations in lung computed tomography (CT). If the positivity of initial nucleic acid acts as the gold standard, 
the sensitivity of characteristic lung CT changes will be only 12%. If the characteristic lung CT changes are adopted 
as the gold standard, the sensitivity of the initial nucleic acid test will be 30.16%. 

14 The central health authority launched the policy on January 18, 2020, and all local health authorities adopted 
the new policy afterward. Moreover, according to the definition, if the first diagnosed patient first visited a doctor 
before (after) the new policy, then time interval (revised policy to first doctor visit) has a negative (positive) value.  

15 The former one suggests that launching the updated official guidance (Version 2) on diagnostic confirmation 
of the first case outside Hubei province provides a plausible source of exogenous variation in the timing of 
confirming the first case in a city publicly, while the latter one suggests that the gradual adoption of new diagnostic 
technology provides an alternative plausible source of exogenous variation in the timing of confirming publicly the 
first case in a city.    

16 Early epidemiological evidence shows that people with COVID-19 generally develop signs and symptoms 
on average 5–6 days after infection (mean incubation period 5–6 days, range 1–14 days). Later epidemiological 
evidence also suggests that the incubation period can be longer than 14 days (Li et al. 2020) and that some infected 
cases do not demonstrate any symptoms. We do not consider unreported cases in this paper due to data limitations. 
However, as China tests and counts all cases including asymptomatic cases (Long et al. 2020), we think this will 
have minor effect on our results. 
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of one standard deviation (4.5 days) in the value of time interval (revised policy to first 

doctor visit) led to a reduction of about 2 days on average in diagnostic efficiency. 

Second, using an instrumental variables approach, we find that a 1-day reduction in the 

time taken to confirm publicly the first case led to about 9.4% and 12.7% reductions in 

prevalence and mortality of COVID-19 on average over the subsequent six months, 

respectively, suggesting that improved diagnostic efficiency not only reduces infections 

but also saves lives and that the ordinary least squares (OLS) estimate (0% and 3% for 

prevalence and mortality of COVID-19, respectively) is underestimated. Third, the 

impact is more pronounced for cities farther from the COVID-19 epicenter (16% and 

26% for prevalence and mortality of COVID-19, respectively), those exposed to 

relatively less migration prior to disease transmission (19% and 25% for prevalence and 

mortality of COVID-19, respectively), those with more responsive public health 

systems (26% and 25% for prevalence and mortality of COVID-19, respectively) and 

those with higher capacity utilization of health systems (13% and 20% for prevalence 

and mortality of COVID-19, respectively). Moreover, we show that publicly confirming 

the first case dramatically reduces intra-city travel intensity (13%), travel intensity to 

other cities (28%), and travel intensity from other cities (37%) for three days after the 

public announcement, suggesting that social distancing, induced by early public 

confirmation, is a possible underlying mechanism. A less stressed health system can 

explain the greater reduction in deaths than in infections. Finally, we show that all the 

impacts persist over time. 

 

This paper fills a research gap on the causal impact of diagnostic efficiency on the 

spread of epidemics, complementing previous studies that use mathematical modeling 

approaches (Chowell et al. 2015; Nouvellet et al. 2015; Rong et al. 2020). This paper 

also joins a growing literature that empirically explores the relationship between 

different factors (e.g., climate and nonpharmaceutical interventions) and the spread of 

COVID-19 (Fang, Wang, and Yang 2020; S. Chen, Prettner, et al. 2020; Qiu, Chen, and 

Shi 2020; Pan et al. 2020). Until now, few empirical studies have explored the causal 

impact of such factors on COVID-19 spread. This paper also contributes to the literature 

that empirically examines the impact of information disclosure on public health 

outcomes (Jin and Leslie 2003; Ho, Ashwood, and Handan-Nader 2019; Jin and Leslie 

2019). Finally, our paper proposes a novel instrumental variable to cope with the 

endogeneity of diagnostic confirmation efficiency, which may be useful for exploring 
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other socioeconomic consequences of early public health interventions. 

 

2 Background  
COVID-19 was first reported in Wuhan, the capital city of Hubei Province, China, in 

December 2019 (Wang et al. 2020). China’s public health response to COVID-19 was 

significantly better than its response to severe acute respiratory syndrome (SARS), 

thanks to lessons learned during that crisis (Wilder-Smith, Chiew, and Lee 2020). 

Researchers from China obtained and released the genetic sequence of the virus that 

causes COVID-19 in early January (Wang et al. 2020). Nevertheless, early diagnostic 

confirmation of COVID-19 infections was initially undertaken very cautiously due to 

limited knowledge of the virus. 

 

The Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial 

Version) was first released on January 16, 2020.17 The “novel coronavirus pneumonia,” 

a name given by China in the early stage of the epidemic, was initially named “novel 

coronavirus (2019-nCoV)” internationally in January 2020 and then officially named 

“coronavirus disease 2019 (COVID-19)” on February 11, 2020, by the World Health 

Organization (WHO) (World Health Organization 2020a). China later revised the name 

to COVID-19 in accordance with the WHO.  

 

According to the official guidance, in addition to epidemiological history and clinical 

manifestations, confirming an infected case required testing that a high degree of 

homology existed between the genetic sequence of a viral specimen collected from a 

patient and the genetic sequences of previously identified COVID-19 samples. This 

strict criterion complicated and slowed the diagnostic confirmation process. The official 

guidance was revised on January 18, which updated the criteria for confirming infected 

cases.18  

 

The updated, less-stringent criteria indicated that a positive result for COVID-19 

 
17  The Health Commission of Hubei Province released this information at the official website: 

http://wjw.hubei.gov.cn/bmdt/ztzl/fkxxgzbdgrfyyq/jkkp/202003/t20200307_2174481.shtml. 
18 The official guidance on diagnostic confirmation was updated another five times on January 22, January 27, 

February 4, February 18, and most recently (Version 7) on March 3, 2020. Details of the Diagnosis and Treatment 
Protocol for Novel Coronavirus Pneumonia (Trial Version 7) can be found at https://www.chinalawtranslate.com/wp-
content/uploads/2020/03/Who-translation.pdf. 
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nucleic acid from fluorescent RT-PCR could serve to confirm an infected case instead 

of the established method of determining high homology between the viral gene 

sequence of a specimen from a diagnosed patient and known coronaviruses. To confirm 

the first case at the provincial level outside Hubei province, the comparison of genetic 

sequence, conducted by the central health authority, was still required after the local 

health authorities confirmed a positive result via RT-PCR. However, subsequent 

confirmations of first cases in other cities within the province did not require the central 

health authority’s verification. Thus, for all subsequent cities in any province where a 

case of COVID-19 had been previously confirmed, the overall efficiency of diagnostic 

confirmation should have improved after January 18, due to the introduction of the 

fluorescent RT-PCR kit for diagnostic confirmation.  

 

3 Data Sources, Variables, and Summary Statistics  
To construct the outcome variable, we rely on two data sources. The first is the China 

Data Lab (Lab 2020), which provides the cumulative number of confirmed cases 

(infections and deaths) of COVID-19 in each city from January 15, 2020, to August 2, 

2020.19 According to the data, 297 cities in mainland China had reported at least one 

confirmed case by August 2, accounting for about 87% of all Chinese cities.20 The 

second source is the China City Statistical Yearbook 2019 (National Bureau of Statistics 

of China 2020), which provides the total number of registered residents in each city by 

the end of 2018.21 We include all cities that appear in both datasets and have at least 

one laboratory-confirmed infected case of COVID-19, except for the city of Wuhan. 

The final sample consists of 275 cities in the country’s 31 provinces and municipalities. 

We define the prevalence of COVID-19 as the ratio of cumulative laboratory-confirmed 

infected cases to the total registered population (in millions) in each city by August 2, 

2020, and define the mortality of COVID-19 as the ratio of cumulative confirmed 

deaths to the total registered population (in 100 millions) in each city by August 2, 2020. 

We use the logarithm of the prevalence and mortality of COVID-19 as outcome 

 
19  The dataset is a part of open resources for COVID-19, available in the Harvard Dataverse 

(https://dataverse.harvard.edu/dataverse/2019ncov). 
20 The constitution of China provides for three de jure levels of government. Currently, however, there are five 

practical (de facto) levels, consisting of local government (province, autonomous region, municipality, and special 
administrative region), prefecture, county, township, and village. In this paper, prefecture-level city and city are 
interchangeable for simplicity. Cities in this paper also include municipalities such as Beijing, Shanghai, Chongqing, 
and Tianjin.  

21 These are also the latest data on city-level characteristics available to us.  
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variables. 

 

For the diagnostic efficiency variable, we construct a novel dataset on the profile of the 

first laboratory-confirmed cases across all cities in mainland China. To construct this 

dataset, we manually collected official news and other official reports on diagnostic 

confirmation and confirmation of recovery or death for the first case in each city. This 

data collection lasted about three months from early February to early May 2020. The 

constructed dataset includes general information on the first infected case, such as the 

infected individual’s age, gender, travel history, timing of symptom onset, timing of 

first visiting a doctor, timing of diagnostic confirmation, and timing of recovery or death. 

Due to variations in individual responses to illness, the timing of symptom onset may 

differ from the timing of first visiting a doctor. Therefore, we use the time interval 

between the date of first visiting a doctor and the date of diagnostic confirmation to the 

public to measure diagnostic efficiency more precisely. Cities that spend fewer days 

confirming the first case to the public are more efficient in diagnostic confirmation.  

 

We also construct other city-level variables as follows. First, we construct an indicator 

of travel time between each city and Wuhan to control for the risk of importing infected 

cases from the COVID-19 epicenter.22 Second, we collected city-level data on gross 

regional product (GRP) per capita, industry structures (including percentage of 

secondary industry in GRP and percentage of tertiary industry in GRP), number of 

hospital beds per thousand people, and number of public health staff per thousand 

people from the China City Statistical Yearbook 2019 (National Bureau of Statistics of 

China 2020). These variables capture the risks of disease transmission and the capacity 

of local health systems. Third, we collect provincial-level data on the total number of 

patients and discharged patients from hospitals from January 2020 to April 2020, 

provided by the National Health Commission of the People’s Republic of China.23 We 

construct an indicator of healthcare utilization using the number of all discharged 

patients during the same period in 2019 as the benchmark. These variables, to some 

degree, can capture the capacity utilization of the health system. Fourth, we collected 

 
22 We construct a dataset containing the longitude and latitude information of each city and calculate the 

travel time of the shortest route in hours by car between each city and the city of Wuhan using the Open Source 
Routing Machine based on OpenStreetMap data. 

23  More details on the number of patients and discharged patients over time can be found in 
http://www.nhc.gov.cn/wjw/index.shtml. 



11 

official news on the launch date for the Level-1 Public Health Incident Alert, the top 

level of China’s public health alert system, for each province or municipality.24 We 

construct an indicator of the time interval between the date when the first infected case 

was publicly confirmed at the provincial level and the launch date of the Level-1 Public 

Health Incident Alert, or time interval (first case to public health alert) for short (Figure 
1), and use this indicator to capture how responsive local authorities are to COVID-19 

after confirming the first case. Different from the time interval (revised policy to first 

doctor visit) that can take both positive or nonpositive values, the time interval (first 

case to public health alert) can only take nonnegative values. More details on the 

differences can be found in Figure 1.  

 

Finally, we collected migration data from two sources. The first is the China Population 

Census Survey 2015 (National Bureau of Statistics of China 2018).25  We use the 

percentage of migrants in the population prior to COVID-19 emergence to capture 

migration intensity across cities. We also use the percentage of migrants from the 

COVID-19 epicenter prior to COVID-19 emergence to capture the risk of importing the 

disease through established migration networks. The second data source is the daily 

travel intensity (migration index) indicators from Baidu Migration, a travel map offered 

by China’s largest search engine, Baidu.26 The Baidu Migration data are based on real-

time location records for every smart phone using the company’s mapping app and thus 

can precisely reflect population movements between and within cities.27 The Baidu 

Migration Data provide three travel intensity indicators: travel intensity within cities 

(within-city migration index), travel intensity to other cities (out-migration index), and 

travel intensity from other cities (in-migration index). These indicators are consistent 

across cities and across time. The Baidu Migration data have been used in other studies 

(Fang, Wang, and Yang 2020; Z.-L. Chen, Zhang, et al. 2020).  

 

Table 1 reports summary statistics for the main variables. The average diagnostic 

 
24 Given the large adverse socioeconomic impacts of launching the Level-1 Public Health Incident Alert, local 

authorities do not adopt the response until the first local case is confirmed. Even after confirming the first local case, 
some local authorities launch the Level-1 Public Health Incident Alert earlier than other local authorities. In other 
words, the exact timing of adoption is at local authorities’ discretion to some extent. 

25 These are also the latest Population (Mini-) Census data available to us.  
26 Baidu Migration uses Baidu Maps Location Based Service (LBS) Open platform and Baidu Tianyan to 

calculate and analyze the LBS data and provides a visual presentation to show the trajectory and characteristics of 
population migration (http://qianxi.baidu.com/). 

27 Baidu has been the dominant search engine in China because all Google search sites have been banned in 
mainland China since 2010. 
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efficiency, or the average time to confirm the first case publicly in each city is about 3 

days, and the maximum and minimum values are 24 days and 0 days, respectively. 

Additionally, the average time interval (revised policy to first doctor visit), or the time 

interval between the date when the local government adopted the updated official 

guidance (Version 2) on diagnostic confirmation and the date when the first locally 

diagnosed patient first visited a doctor is 2.5, and the maximum and minimum values 

are 19 and -18, respectively. Figures A1–A7 descriptively graph the number of total 

confirmed infections and deaths over time, the geographical distribution of the 

prevalence and mortality of COVID-19 across cities, the distribution of diagnostic 

efficiency, the distribution of time interval (revised policy to first doctor visit), and city-

level travel intensity (migration indexes) on average over time, respectively.  

[Table 1] [Figures A1–A7] 

 

4 Empirical Approach  
We estimate regressions of the form  

!! = #" + ##%! + &!' + (! 	 (1) 
where -  is the city index, !!  is the logarithm of the prevalence or mortality of 

COVID-19 in city -, %! is the time taken to confirm the first case publicly in city -, 

and &! is a vector of city characteristics. The city characteristics include the travel 

time from city - to the COVID-19 epicenter, the percentage of migrants from the 

COVID-19 epicenter in the population prior to COVID-19’s emergence in city -, GRP 

per capita, the composition of industry structures, the number of hospital beds per 

thousand people, the number of public health staff per thousand people, the capacity 

utilization of health systems, the time interval (first case to public health alert) at the 

provincial level, and provincial-level fixed effects. 28  (!  is the error term. The 

parameter of interest is ##, which captures the impact of diagnostic efficiency on the 

prevalence or mortality of COVID-19 locally. 

 

As explained previously, diagnostic efficiency is associated with several factors that 

affect the outcomes of interest, such as the risk of importing infected cases from the 

COVID-19 epicenter and the local health authorities’ capacity to detect and control the 

 
28 When controlling for the provincial-level fixed effects, the variables of the time interval (first case to public 

health alert) and the capacity utilization of health systems are omitted. 
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disease. For example, the risk of importing infected cases from the COVID-19 epicenter 

is positively associated with the prevalence or mortality of COVID-19 locally, and if 

the risk of importing infected cases from the COVID-19 epicenter is also positively 

associated with the time taken to confirm the first case publicly, omitting this variable 

will bias the OLS estimate upward. Also possible is that local authorities pursue 

different strategies to prevent disease transmission (e.g., some local authorities may be 

less efficient in information disclosure but more efficient in adopting rigorous measures 

such as area quarantines to control the disease). Omitting the variable will bias the OLS 

estimate downward.  

 

Our empirical strategy takes several steps to overcome these challenges. First, we 

control for the travel time between each city and the COVID-19 epicenter, which 

captures the risk of importing infected cases through trade and migration. We also 

control for the percentage of migrants from the COVID-19 epicenter in the local 

population to capture the risk of importing COVID-19 through established migration 

networks. Second, we control for the GRP per capita to capture the local health 

authorities’ capacity to detect and control the disease because cities with higher GRP 

per capita have more healthcare and other resources. The GRP per capita may also 

capture the risk of importing infected cases through more intensive economic 

interactions with other regions. We also control for differences in industry structures to 

allow for other potential interactions within and across regions that may affect disease 

transmission locally. Third, we control for the number of hospital beds per thousand 

people and the number of public health staff per thousand people to capture the city’s 

health system capacity. Fourth, we control for the capacity utilization of health systems 

at the provincial level to capture the crowdedness of health systems. Fifth, we control 

for the time interval (first case to public health alert) to capture local authorities’ 

responsiveness in containing disease transmission. Finally, we control for other time-

invariant factors at the provincial level through provincial-level fixed effects.  

 

That other unobservable variables (e.g., local authorities’ intervention strategies at 

different stages) may be both correlated with the diagnostic efficiency of confirming 

the first case and predictive of the outcomes of interest remains a concern. Therefore, 

we also construct an instrumental variable based on the launch of a national policy on 

diagnosis to cope with potential endogeneity problems. Infected people who visited a 
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doctor for the first time after January 18, 2020, experienced more efficient diagnostic 

confirmation on average, largely due to the introduction of improved diagnostic 

technology, than those who first visited a doctor prior to that date.29  In addition, 

following confirmation of the first provincial-level COVID-19 case (which required 

verification from the central health authority), subsequent confirmations of first cases 

in other cities within the province did not require central health authority verification. 

As a result, improvements in both diagnostic technology and the process of information 

disclosure contributed to improved diagnostic efficiency for local health authorities.  

 

The identifying assumption is that, conditional on the risk of importing the disease from 

the COVID-19 epicenter, the time interval (revised policy to first doctor visit) is 

exogenous to any other correlates of the outcomes of interest. This assumption is 

motivated by the argument that the relative timing of the first infected person’s first 

visit to a doctor depends on quasi-random characteristics when the incubation period 

lasts for up to 14 days. We further relax this assumption by focusing on cities with 

smaller windows of relative timing (e.g., 4–7 days) of the first case’s first visit to a 

doctor.  

 

5 Results  
In this section we start by showing the estimated impacts of diagnostic efficiency on 

COVID-19 prevalence and mortality. Then we show the heterogeneous impacts of 

diagnostic efficiency across cities. We also explore likely underlying mechanisms. 

Finally, we conduct several robustness checks.  

 

5.1 OLS Estimates  
We begin by reporting the OLS estimates for the associations between diagnostic 

efficiency and prevalence of COVID-19 infections (Table 2) and the associations 

between diagnostic efficiency and COVID-19 mortality (Table 3). The unadjusted 

estimates (i.e., without controlling for other variables) show that, on average, a 1-day 

reduction in the time to confirm the first infected case publicly is associated with 15% 

[(.$."& − 1)∙ 100%] (95% confidence interval [CI]: 11%−21%) and 22% [(.$.#$ −
 

29 Physicians would also be more primed to look for COVID-19 thanks to the introduction of improved 
diagnostic technology.  
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1) ∙ 100%]  (95% CI: 14%–31%) lower prevalence of COVID-19 infections and 

COVID-19 mortality, respectively. 

 

Columns (2)−(7) in Tables 2-3 further report the adjusted OLS estimates by adding 

additional covariates. In the preferred multivariable regression after controlling for 

provincial-level fixed effects [i.e., column (7)], we find that the association between 

diagnostic efficiency and COVID-19 prevalence or mortality decreases to 0.00 (95% 

CI: -0.03–0.04) or 0.03 (95% CI: -0.03–0.09), respectively. As a result, the OLS 

estimates show insignificant association between diagnostic efficiency and COVID-19 

infections or deaths.  

 

As for other variables, the coefficients of the travel time variable for prevalence and 

mortality of COVID-19 are -0.62 and -0.27, respectively, suggesting that a 1% increase 

in the travel time from the city to the COVID-19 epicenter is on average associated with 

0.62% lower COVID-19 prevalence and 0.27% lower COVID-19 mortality, 

respectively. We also find that the percentage of migrants from the COVID-19 epicenter 

in the population is positively associated with COVID-19 prevalence and mortality. 

Both results suggest that population mobility is an important factor in the prevalence 

and mortality of COVID-19. Moreover, the positive association between GRP per 

capita and COVID-19 infections and deaths suggests that more developed cities having 

more intensive economic interactions with other regions could offset their possibly 

advantageous capacity in detecting and containing COVID-19. Tables 2-3 provide 

more details on the coefficients of other covariates. 

[Tables 2-3] 

 

5.2 IV Estimates 

The OLS estimate may still be biased when unobserved variables (e.g., various 

intervention strategies at different stages) are correlated with the time to confirm the 

first case publicly and predictive of outcomes of interest. To address this concern, we 

resort to an instrumental variable approach using the time interval (revised policy to 

first doctor visit). 

 

The first-stage results show that the time interval (revised policy to first doctor visit) is 
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negatively associated with the time taken to confirm the first case publicly. The 

coefficient of our instrumental variable is -0.51 (95% CI: -0.58 – -0.45) and is 

statistically significant at the conventional level. Specifically, a one standard deviation 

(4.5 days) increase in the time interval (revised policy to first doctor visit) leads to about 

2 fewer days to confirm the first case locally. The F-stat for the weak identification test 

is 237, suggesting that our instrumental variable does not suffer from weak 

identification problems. 

 

The IV estimate shows that, on average, a 1-day reduction in the time to confirm the 

first infected case publicly leads to about 9.4% [(.$.$' − 1) ∙ 100%] (95% CI: 5%–15%) 

lower local prevalence of COVID-19 infections and 12.7% [(.$."# − 1)] ∙ 100%] (95% 

CI: 4%–22%) lower local COVID-19 mortality, suggesting that the OLS estimate is 

seriously underestimated. One explanation is that local authorities that delay confirming 

the presence of COVID-19 will take more rigorous actions (e.g., longer duration of 

lockdown) to contain disease transmission afterward, and omitting this variable biases 

the OLS estimate downward. The results of the Durbin–Wu–Hausman test reject the 

null hypothesis that the OLS estimators are consistent and efficient (Nakamura and 

Nakamura 1981; Baum, Schaffer, and Stillman 2007) (see more details in Tables 2-3). 

 

5.3 Heterogeneous Effects 
Improved efficiency of diagnostic confirmation significantly reduces the prevalence 

and mortality of COVID-19. In this subsection, we further explore whether the impacts 

of diagnostic efficiency are heterogeneous across cities. First, we examine whether 

early detection matters more when there is more time to act (e.g., farther from the 

COVID-19 epicenter, exposed to less migration)? Second, we examine whether early 

detection matters more when public health systems are more responsive? Third, we 

examine whether early detection matters more in the presence of more crowded health 

systems.  

 

5.3.1 Distance from the COVID-19 epicenter  

First, we compare the impact of improved diagnostic efficiency in cities that are closer 

to the COVID-19 epicenter with that of cities farther from the COVID-19 epicenter 

based on the travel time variable. Using the IV approach, we find that a 1-day reduction 
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in the time to confirm the first case publicly leads to about 17% (95% CI: 3%–32%) 

lower local prevalence of COVID-19 infections and 26% (95% CI: 1%–58%) lower 

local COVID-19 mortality in cities farther away from the COVID-19 epicenter (above 

the median value of the travel time distribution); in comparison, the same reduction in 

the time to confirm the first case publicly leads to substantially smaller (6% [95% CI: 

2%–11%] and 7% [95% CI: 0%–15%], respectively) reductions in local prevalence and 

mortality of COVID-19, respectively, in cities closer to the COVID-19 epicenter 

(Tables 4-5).  

 

5.3.2 Migration intensity prior to the pandemic 

Second, we compare the impact of improved diagnostic efficiency in cities exposed to 

more migration (prior to the emergence of COVID-19) with that of cities exposed to 

less migration. Using the same approach, we find that a 1-day reduction in the time to 

confirm the first infected case publicly leads to about 19% (95% CI: 5%–35%) lower 

local prevalence of COVID-19 infections and 25% (95% CI: -2%–58%) lower local 

COVID-19 mortality in cities with relatively less migration (below the median value of 

the migration intensity distribution), whereas the same reduction leads to only 5% (95% 

CI: 1%–11%) and 5% (95% CI: -2%–12%) lower local prevalence and mortality of 

COVID-19, respectively, in cities with more migration (Tables 4-5).  

 

5.3.3 Responsiveness of public health systems 

Third, we compare the impact of improved diagnostic efficiency in cities with more 

responsive public health systems with that of cities with less responsive public health 

systems. To capture the responsiveness of local public health systems, we use the time 

interval (first case to public health alert). Using the same empirical approach, we find 

that a 1-day reduction in the time to confirm the first infected case publicly leads to 

about 26% (95% CI: 12%–42%) and 25% (95% CI: 3%–52%) lower local prevalence 

and mortality of COVID-19, respectively, in cities with more responsive public health 

systems [below the median value of the time interval (first case to public health alert) 

distribution], whereas the same reduction leads to only 3% (95% CI: -2%–8%) and 6% 

(95% CI: -2%–15%) lower local prevalence and mortality of COVID-19, respectively, 

in cities with less responsive public health systems (Tables 4-5) 
 
5.3.4 Capacity utilization of health systems  
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Finally, we compare the impact of improved diagnostic efficiency in cities with higher-

capacity utilization of health systems with that in cities with lower-capacity utilization 

of health systems. To capture the capacity utilization of health systems, we use the ratio 

of the total number of patients from January 2020 to April 2020 to the total number of 

patients during the same period in 2019. Using the same empirical approach, we find 

that a 1-day reduction in the time to confirm the first infected case publicly leads to 

about 13% (95% CI: 3%–23%) lower prevalence of COVID-19 and 20% (95% CI: 

4%–38%) lower mortality of COVID-19 in cities with higher-capacity utilization of 

health systems (above the median value of the capacity utilization of health systems 

distribution), whereas the same reduction leads to 9% (95% CI: 3%–15%) and 11% (95% 

CI: 0%–22%) lower local prevalence and mortality in cities with lower-capacity 

utilization of health systems (Tables 4-5).  
 
In sum, we find significant heterogeneous impact of improved diagnostic efficiency 

across cities. Specifically, the impact is more pronounced in cities that are farther from 

the COVID-19 epicenter (17% and 26% for prevalence and mortality of COVID-19, 

respectively), exposed to relatively less migration prior to disease transmission (19% 

and 25% for prevalence and mortality of COVID-19, respectively), with relatively more 

responsive public health systems following confirmation of the first case (26% and 25% 

for prevalence and mortality of COVID-19, respectively), and with relatively higher 

capacity utilization of health systems (13% and 20% for prevalence and mortality of 

COVID-19, respectively). Therefore, these findings suggest that early detection matters 

more when there is more time to act, when public health systems are more responsive, 

and when public health systems are more crowded. See more details in Tables 4-5. 

[Tables 4-5] 

 

5.4 Potential Mechanisms  
In this subsection, we further explore likely underlying mechanisms through which 

improved diagnostic efficiency reduces COVID-19 infections and deaths. 

 

5.4.1 Social distancing  

The heterogeneous impacts across cities suggest that reduced travel propensity, or social 

distancing, may be a possible mechanism through which improved diagnostic 

efficiency reduces COVID-19 infections and deaths. To further confirm the social 
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distancing mechanism, we study the causal impact of confirming the first case publicly 

on travel intensity within and between cities in a difference-in-differences framework. 

We use high-frequency daily data on intra-city travel intensity, travel intensity to other 

cities, and travel intensity from other cities between January 1, 2020, and March 15, 

2020, from the Baidu Migration data, combined with the exact date of diagnostic 

confirmation for the first infected case locally. The model specification is as follows:  
6() = 7*8( + 9*8) + :	8(,),)!"#$%	'($) + ;()	 (<) 

where 6() is the travel intensity indicator (within-city migration index, out-migration 

index, or in-migration index) in city = on day >, 8( is the vector of city fixed effects, 

8)  is the vector of time fixed effects, and 8(,),)!"#$%	'($)  is an indicator for an 

observation after confirming the first case publicly in city =. The error term is ;(), 7 

and 9 are vectors of coefficients to be estimated, and : is the coefficient of interest.30 

We use the estimator proposed by de Chaisemartin and D’Haultfoeuille (2020), which 

accounts for the heterogeneous impacts across cities and over time, to estimate the 

causal impact. 

 

Both intra-city and inter-city travel intensity decreased dramatically after confirming 

the first case publicly (Figure 2). For example, using travel intensity indicators during 

the same period in 2019 as the benchmark, we find that publicly confirming the first 

(symptomatic) infected case led to 13%, 28%, and 37% reductions on average in intra-

city travel intensity, travel intensity to other cities, and travel intensity from other cities, 

respectively, 3 days after confirmation. These findings suggest that travel propensity is 

very responsive to the diagnostic confirmation of the first case locally. We do not find 

similar patterns using travel intensity indicators in 2019 in a placebo analysis (Figure 

A8). These findings suggest that social distancing, induced by confirming the first 

infected case publicly at an earlier point in time, is a possible mechanism through which 

improved diagnostic efficiency contains disease transmission.  

[Figure 2] [Figure A8] 

 

5.4.2 Avoiding overstressed health systems 
Social distancing alone cannot explain that the impact of diagnostic efficiency is more 

 
30  Assuming that trends in the outcome would have been similar in cities affected by the diagnostic 

confirmation of the first case to trends in unaffected cities had the diagnostic confirmation of the first case not 
occurred, the estimate !" captures the effect of confirming the first case publicly. 
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pronounced in reducing deaths (12.7%) than infections (9.4%). As such, the impact of 

diagnostic efficiency on deaths not only comes from fewer COVID-19 infections, but 

also from other possible pathways. One important and plausible pathway is a less 

overstressed health system, because it can reduce treatment delays, deliver better 

healthcare service, ensure sufficient healthcare resources (e.g., ICU beds, ventilators, 

etc.), and provide better protection of vulnerable groups (e.g., older population and 

people with chronic diseases, as they are more likely to die than young and healthy 

populations), all contributing to a higher survival probability (Armocida et al. 2020; 

Cavallo, Donoho, and Forman 2020; Woolley 2020; S. Chen, Zhang, et al. 2020; Ji et 

al. 2020). Indeed, we find that, when health systems tend to be overwhelmed, the impact 

of diagnostic efficiency on COVID-19 mortality increases by 82%—from 11% in cities 

with lower-capacity utilization of health systems to 20% in cities with higher-capacity 

utilization of health systems. Meanwhile, the impact of diagnostic efficiency on 

prevalence of COVID-19 infections only increases by 44%—from 9% in cities with 

lower-capacity utilization of health systems to 13% in cities with higher-capacity 

utilization of health systems (Table 4-5). These findings suggest that the impact of 

diagnostic efficiency on deaths also comes from reducing stress on health systems.31 

[Tables 4-5]  

 

5.5 Impact of Improved Diagnostic Efficiency over Time 
Finally, we explore how the impact of improved diagnostic efficiency evolves over time. 

One possibility is that the role of diagnostic efficiency will weaken as local authorities 

take more rigorous measures over time (e.g., city-wide lockdowns) to contain disease 

transmission. To assess this possibility, we estimate the impact of improved diagnostic 

efficiency on the daily prevalence and mortality of COVID-19 from January 25 to 

August 2, 2020. We find that, in general, the impacts of improved diagnostic efficiency 

on prevalence and mortality of COVID-19 increase over time (Figures 3-4), which is 

consistent with our previous findings that improved diagnostic efficiency is 

complementary with other mobility-restriction policies in containing disease 

transmission. All this evidence suggests that diagnostic efficiency leads to persistent 

differences in the spread of COVID-19 across cities.  

 
31 An alternative explanation could be that not all infections are detected and that the actual reduction in 

infections is higher than the one registered. Nevertheless, the fact that all deaths come from detected infections 
reduces this concern to some extent. 
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[Figures 3-4] 
 

5.6 Robustness Checks  
We conduct several robustness checks. First, we further relax our main assumption by 

focusing on cities with similar dates of the first case’s first visit to a doctor. To conduct 

the analysis, we choose different cutoffs, ranging from 4 to 7 days around the date when 

the local government adopts the updated official guidance (Version 2) on diagnostic 

confirmation of the first case outside Hubei province. Table A1 shows the main results 

for the impact of diagnostic efficiency on the prevalence of COVID-19 infections. We 

find that using alternative cutoffs does not reject our central findings. Specifically, using 

a cutoff of 4 days, we find that the coefficient of interest is 0.12 (95% CI: 0.02–0.23), 

which is close to that found in the benchmark model (i.e., 0.09 [95% CI: 0.04–0.13]). 

Following the same approaches, Table A2 shows the main results for the impact of 

diagnostic efficiency on COVID-19 mortality. Specifically, using a cutoff of 4 days, we 

find that the coefficient of interest is 0.05 (95% CI: -0.15–0.25), which is smaller than 

that found in the benchmark model (i.e., 0.12 [95% CI: 0.04–0.20]) and is not 

statistically significant at the conventional level. The insignificant result suggests a 

bias-variance trade-off when selecting cut-offs. In particular, many cities with COVID-

19 infections did not experience any COVID-19 deaths during our sample period, which 

may make the problem worse.  

 

Second, the diagnostic confirmation process for the first infected case at the provincial 

level differs slightly from that of the first cases in other cities of the same province. We 

re-estimate the impact by dropping those cities that confirm the first infected case at the 

provincial level and find that the coefficients of interest are 0.10 (95% CI: 0.03–0.16) 

and 0.13 (95% CI: 0.02–0.23) for the prevalence and mortality of COVID-19, 

respectively. 

 

Third, the diagnostic confirmation process for the first infected case inside Hubei 

province may differ from that outside Hubei province. We re-estimate the impact by 

dropping all cities in Hubei province and find that the coefficients of interest are 0.10 

(95% CI: 0.05–0.16) and 0.13 (95% CI: 0.03–0.23) for the prevalence and mortality of 

COVID-19, respectively. 
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Finally, the first infected case may be imported from other regions rather than from the 

COVID-19 epicenter.32 We re-estimate the impact by keeping those cities that are 

known to have imported the first case from the COVID-19 epicenter and find that the 

coefficients of interest are 0.08 (95% CI: 0.03–0.13) and 0.10 (95% CI: 0.01–0.19) for 

the prevalence and mortality of COVID-19, respectively.  

[Tables A1-A2] 

 

6 Conclusion  
To the best of our knowledge, this is the first study to investigate the causal impact of 

diagnostic efficiency on infectious disease epidemics. We take advantage of a plausible 

exogenous policy, combined with a novel dataset on the profile of the first infected 

cases of COVID-19 across 275 Chinese cities during January and February 2020. We 

show that improved diagnostic efficiency is very effective in containing disease 

transmission and saving lives: a 1-day reduction in the time taken to confirm the first 

case publicly leads to 9.4% and 12.7% reductions on average in the prevalence and 

mortality of COVID-19, respectively, over the ensuing six months. This study also 

shows that disclosing information earlier is effective in reducing travel propensity and 

that delaying information disclosure can be costly by making local people less prepared 

for COVID-19.  

 

Implementing subsequent epidemic-control measures can boost the effectiveness of 

diagnostic efficiency in reducing infections and averting deaths. In fact, our findings 

show that less responsive public health systems would offset the benefits of improved 

diagnostic efficiency in containing disease transmission and saving lives. These 

findings shed light on the high prevalence of COVID-19 infections and high death rates 

in some countries (e.g., the United States) that diagnosed and publicly announced their 

first case in a timely fashion, but did not respond to the pandemic immediately. Social 

or cultural differences (e.g., collectivism versus individualism) that affect governmental 

and societal responses to the pandemic might mediate the effect of information 

disclosure in different countries. For instance, South Asian countries such as China and 

 
32 According to our data, about 95% of the first infected cases of other cities were imported from Wuhan city, 

the COVID-19 epicenter. 
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South Korea mandatorily isolated all COVID-19 patients, even the mildly ill, in 

facilities to prevent intra-family and community infections, while Western countries 

such as the United States and the United Kingdom recommended mild COVID-19 

patients to stay at home and did not strictly enforce those recommendations (S. Chen, 

Zhang, et al. 2020; Thompson 2020; Parodi and Liu 2020).  

 

The study has several limitations. First, the number of publicly confirmed cases may be 

smaller than the number of infected cases (e.g., due to inadequate testing, asymptomatic 

patients, and incomplete information disclosure). This may have particularly been the 

case during the beginning of the COVID-19 pandemic. However, this concern is 

reduced to some extent since early February, because at that time, China launched the 

COVID-19 policy of leaving no patient unattended or untreated—including 

asymptomatic patients, and started implementing universal testing campaigns to 

support this policy (The State Council of the People's Republic of China 2020; Pan et 

al. 2020; S. Chen, Zhang, et al. 2020). In addition, our finding that the impact of 

improved diagnostic efficiency persists and even increases slightly over time further 

reduces this concern. Second, because we cannot distinguish the role of new diagnostic 

technology adoption from that of improved information disclosure in improving 

diagnostic efficiency, our findings regarding what determines diagnostic efficiency 

should be interpreted with some caution. Third, our paper does not quantify the relative 

importance of different mechanisms such as facility-based isolation of mild COVID-19 

cases in Fangcang shelter hospitals, encouragement of mask wearing, and contact 

tracing, which would require structural modeling and be beyond the scope of this paper.  

 

Overall, this study shows that improved diagnostic efficiency is effective in reducing 

COVID-19 infections and saving lives. Our study supports allocating resources to 

improve diagnostic technologies; to strengthen the ability of public health emergency 

response systems to test for, diagnose, and announce cases of infection; and generally 

to act early when facing a new disease that could potentially become an outbreak. 
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(a) 

 
(b) 

Figure 1 Timeline of first diagnosed patient’s first visit to a doctor, diagnostic 
confirmation to the public, and launch of the Level-1 public health alert 

Note: (a) The local government adopted the updated official guidance on diagnostic confirmation of 
COVID-19 after the first diagnosed patient first visited a doctor. (b) The local government adopted the 
updated official guidance on diagnostic confirmation of COVID-19 before the first diagnosed patient 
first visited a doctor. The vertical solid line refers to the date when the central health authority released 
the updated official guidance (Version 2) on diagnostic confirmation of the first case outside of Hubei 
province at the national level on January 18, 2020. The vertical dashed line refers to the date when the 
local government adopted the updated official guidance (Version 2) on diagnostic confirmation of the 
first case outside of Hubei province. Diagnostic efficiency = the time interval between the date when the 
first diagnosed patient first visited a doctor and the date when that first case was confirmed publicly. Time 
interval (revised policy to first doctor visit) = the time interval between the date when a local government 
adopted the updated official guidance (Version 2) on diagnostic confirmation of the first case outside of 
Hubei province and the date when the first diagnosed patient first visited a doctor, which is also used to 
construct the instrumental variable adopted in the paper. Time interval (first case to public health alert) 
= time interval between the date when the first infected case was publicly confirmed at the provincial 
level and the launch date of the Level-1 Public Health Incident Alert.  
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 (a)  

 
 (b)  

 
(c)  

Figure 2 Impact of public confirmation of the first case on intra-city and inter-city 
travel intensity 

 
Note: All daily travel intensity data come from Baidu Migration data between January 1, 2020, and March 
15, 2020. (a) Impact of public confirmation of the first case on intra-city travel intensity. Within-city 
migration index = travel intensity within cities. (b) Impact of public confirmation of the first case on 
travel intensity to other cities. Out-migration index = travel intensity to other cities. These indicators are 
consistent across cities and across time. (c) Impact of public confirmation of the first case on travel 
intensity from other cities. In-migration index = travel intensity from other cities. These indicators are 
consistent across cities and across time. 
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Figure 3 Impact of diagnostic efficiency on the prevalence of COVID-19 infections 

over time 
Note: Following the same IV approach, we estimate the impact of diagnostic efficiency by day from 
January 25 to August 2, 2020. Diagnostic efficiency = the time interval between the date of first visiting 
a doctor and the date of diagnostic confirmation to the public. 
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Figure 4 Impact of diagnostic efficiency on COVID-19 mortality over time 

Note: Following the same IV approach, we estimate the impact of diagnostic efficiency by day from 
January 25 to August 2, 2020. Diagnostic efficiency = the time interval between the date of first visiting 
a doctor and the date of diagnostic confirmation to the public.  
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Table 1 Summary statistics 
Variables N Mean Median Std. Dev. min max 
Prevalence of COVID-19 (infections per million people) 275 27.30 6.19 102.65 0.41 1255.86 
Mortality of COVID-19 (deaths per 100 million people) 275 68.38 0.00 406.30 0.00 5315.32 
Diagnostic efficiency (day) 275 3.20 2.00 3.01 0.00 24.00 
Time interval (revised policy to first doctor visit) 275 2.51 3.00 4.54 -18.00 19.00 
Logarithm of travel time to the COVID-19 epicenter 275 2.32 2.40 0.63 -0.06 3.67 
Percentage of migrants in the population (2015) 274 24.34 21.91 12.11 4.75 84.15 
Percentage of migrants from the COVID-19 epicenter (2015) 274 0.03 0.00 0.09 0.00 0.84 
Logarithm of GRP per capita (2018) 274 10.87 10.82 0.52 9.45 12.15 
Percentage of secondary industry in GRP (2018) 275 42.64 43.67 9.38 15.75 63.31 
Percentage of tertiary industry in GRP (2018) 275 46.49 45.34 8.41 29.48 80.98 
Logarithm of hospital beds per thousand people (2018) 274 1.50 1.48 0.35 0.58 2.57 
Logarithm of public health staff per thousand people (2018) 274 0.88 0.83 0.38 0.09 2.13 
Utilization of health systems (total patients) (%) (2020) 275 75.22 75.55 9.39 50.11 129.98 
Utilization of health systems (discharged patients) (%) (2020) 275 80.45 78.75 14.61 49.87 144.07 
Time interval (first case to public health alert) 265 2.56 2.00 0.81 0.00 4.00 

Note: Diagnostic efficiency = the time interval between the date when the first diagnosed patient first visited a doctor and the date when that first case was confirmed publicly. 
Time interval (revised policy to first doctor visit) = the time interval between the date when a local government adopted the updated official guidance (Version 2) on diagnostic 
confirmation of the first case outside of Hubei province and the date when the first diagnosed patient first visited a doctor, which is also used to construct the instrumental 
variable adopted in the paper. Time interval (first case to public health alert) = time interval between the date when the first infected case was publicly confirmed at the 
provincial level and the launch date of the Level-1 Public Health Incident Alert. The prevalence and mortality of COVID-19 are as of August 2, 2020.  
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Table 2 Impact of diagnostic efficiency on prevalence of COVID-19 infections 
Variables 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
OLS OLS OLS OLS OLS OLS OLS IV First Stage 

Diagnostic efficiency (days) 0.14*** 0.03 0.03 0.03 0.01 0.00 0.00 0.09***  
 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)  
Logarithm of travel time to the COVID-19 epicenter  -0.61*** -0.61*** -0.79*** -1.00*** -0.79*** -0.62*** -0.62*** 0.57 
  (0.10) (0.10) (0.11) (0.11) (0.12) (0.22) (0.22) (0.60) 
Percentage of migrants from the COVID-19 epicenter (2015)  6.37*** 5.71*** 5.04*** 4.15*** 4.32*** 2.44*** 1.46* 5.62*** 
  (0.77) (0.74) (0.74) (0.73) (1.19) (0.80) (0.80) (2.12) 
Logarithm of GRP per capita (2018)   0.64*** 0.96*** 0.51*** 0.58*** 0.58*** 0.63*** -0.76 
   (0.11) (0.16) (0.18) (0.18) (0.21) (0.20) (0.57) 
Percentage of secondary industry in GRP (2018)    -0.04*** -0.02** -0.02* -0.01 -0.01 0.01 
    (0.01) (0.01) (0.01) (0.01) (0.01) (0.03) 
Percentage of tertiary industry in GRP (2018)    -0.02 -0.01 -0.01 -0.00 -0.00 -0.06 
    (0.01) (0.01) (0.01) (0.01) (0.01) (0.04) 
Logarithm of hospital beds per thousand people (2018)     0.96*** 0.93*** 0.96*** 0.89*** 0.13 
     (0.26) (0.26) (0.32) (0.31) (0.86) 
Logarithm of public health staff per thousand people (2018)     0.00 -0.15 -0.28 -0.37 0.25 
     (0.33) (0.32) (0.34) (0.34) (0.93) 
Utilization of health systems (total patients) (%) (2020)     -0.01 -0.00    
     (0.01) (0.01)    
Utilization of health systems (discharged patients) (%) (2020)     -0.01** -0.01*    
     (0.01) (0.00)    
Time interval (first case to public health alert)      0.06    
      (0.07)    
Time interval (revised policy to first doctor visit)         -0.51*** 
         (0.03) 
Observations 275 274 273 273 272 262 272 272 272 
R-squared 0.11 0.44 0.50 0.53 0.60 0.44 0.73 0.71 0.64 
F-stat 34.56 71.23 67.96 50.13 39.42 17.66 16.98 15.63 11.12 
Weak identification test (Cragg-Donald Wald F statistic) .z .z .z .z .z .z .z 237.05 .z 
Endogeneity test of endogenous regressors (p-value) .z .z .z .z .z .z .z 0.00 .z 
Province dummies No No No No No No Yes Yes Yes 

Note: This table reports the estimated impact of diagnostic efficiency on prevalence of COVID-19 infections (the logarithm of COVID-19 prevalence). Columns 1–7 report 
OLS estimates. Columns 8 and 9 report IV estimates and first-stage results, respectively. Standard errors are in parentheses. * p<0.1, ** p<0.05, *** p<0.01. 
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Table 3 Impact of diagnostic efficiency on mortality of COVID-19  
Variables 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
OLS OLS OLS OLS OLS OLS OLS IV First Stage 

Diagnostic efficiency (days) 0.20*** 0.05 0.05 0.05 0.03 0.02 0.03 0.12***  
 (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04)  
Logarithm of travel time to the COVID-19 epicenter  -0.35** -0.34** -0.58*** -0.75*** -0.15 -0.27 -0.28 0.57 
  (0.16) (0.16) (0.18) (0.19) (0.20) (0.39) (0.37) (0.60) 
Percentage of migrants from the COVID-19 epicenter (2015)  10.06*** 9.98*** 9.02*** 7.53*** 4.67** 2.81** 1.78 5.62*** 
  (1.20) (1.22) (1.24) (1.28) (1.98) (1.42) (1.37) (2.12) 
Logarithm of GRP per capita (2018)   0.09 0.68** 0.25 0.49* 0.95** 1.00*** -0.76 
   (0.18) (0.27) (0.31) (0.29) (0.37) (0.35) (0.57) 
Percentage of secondary industry in GRP (2018)    -0.06*** -0.04* -0.04** -0.03 -0.03* 0.01 
    (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) 
Percentage of tertiary industry in GRP (2018)    -0.05** -0.03 -0.02 -0.01 -0.01 -0.06 
    (0.02) (0.02) (0.02) (0.03) (0.02) (0.04) 
Logarithm of hospital beds per thousand people (2018)     0.42 0.28 0.18 0.11 0.13 
     (0.46) (0.43) (0.57) (0.54) (0.86) 
Logarithm of public health staff per thousand people (2018)     0.23 0.08 -0.18 -0.28 0.25 
     (0.57) (0.53) (0.61) (0.58) (0.93) 
Utilization of health systems (total patients) (%) (2020)     -0.02* 0.01    
     (0.01) (0.01)    
Utilization of health systems (discharged patients) (%) (2020)     -0.02* -0.02**    
     (0.01) (0.01)    
Time interval (first case to public health alert)      0.36***    
      (0.12)    
Time interval (revised policy to first doctor visit)         -0.51*** 
         (0.03) 
Observations 275 274 273 273 272 262 272 272 272 
R-squared 0.10 0.34 0.34 0.37 0.42 0.19 0.60 0.58 0.64 
F-stat 30.42 47.27 35.19 26.07 18.96 5.40 9.07 8.91 11.12 
Weak identification test (Cragg-Donald Wald F statistic) .z .z .z .z .z .z .z 237.05 .z 
Province dummies No No No No No No Yes Yes Yes 

Note: This table reports the estimated impact of diagnostic efficiency on mortality of COVID-19 (the logarithm of COVID-19 mortality). Columns 1–7 report OLS estimates. 
Columns 8 and 9 report IV estimates and first-stage results, respectively. Standard errors are in parentheses. * p<0.1, ** p<0.05, *** p<0.01. 
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Table 4 Heterogeneous impacts of diagnostic efficiency on prevalence of COVID-19 infections 

Variables 

(1) (2) (3) (4) (5) (6) (7) (8) 
Short 

distance 
to the 

COVID-
19 

epicenter 

Long 
distance 

to the 
COVID-

19 
epicenter 

More 
migration 

Less 
migration 

Less 
responsive 

public 
health 

system after 
confirmation 

More 
responsive 

public 
health 

system after 
confirmation 

Lower 
capacity 

utilization 
of health 
systems  

Higher 
capacity 

utilization 
of health 
systems 

Diagnostic efficiency (days) 0.06*** 0.16** 0.05** 0.17*** 0.03 0.23*** 0.09*** 0.12*** 
 (0.02) (0.06) (0.02) (0.06) (0.02) (0.06) (0.03) (0.05) 
Logarithm of travel time to the COVID-19 epicenter -0.72*** -0.23 -0.28 -0.85*** -0.82*** -0.90** -0.60** -0.73** 
 (0.23) (0.60) (0.34) (0.30) (0.28) (0.40) (0.29) (0.32) 
Percentage of migrants from the COVID-19 epicenter (2015) -0.08 1.32 1.95** 4.32 1.37 0.64 0.92 5.69** 
 (0.87) (1.60) (0.98) (2.92) (0.85) (2.79) (0.93) (2.62) 
Logarithm of GRP per capita (2018) 1.07*** 0.60* 0.76** 0.50 1.03*** 0.47 0.76*** 0.46 
 (0.30) (0.31) (0.31) (0.31) (0.30) (0.32) (0.27) (0.31) 
Percentage of secondary industry in GRP (2018) -0.04 -0.01 -0.02 0.00 -0.04* -0.01 -0.02 0.01 
 (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 
Percentage of tertiary industry in GRP (2018) -0.03 0.01 -0.01 0.02 -0.04 0.01 -0.01 0.02 
 (0.03) (0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02) 
Logarithm of hospital beds per thousand people (2018) -0.10 1.60*** 0.30 0.97** 1.07** 0.61 1.42*** 0.10 
 (0.41) (0.46) (0.50) (0.43) (0.45) (0.47) (0.45) (0.44) 
Logarithm of public health staff per thousand people (2018) -0.11 -0.88* 0.22 -1.02** -0.33 -0.27 -0.56 -0.19 
 (0.46) (0.49) (0.48) (0.50) (0.47) (0.54) (0.51) (0.45) 
Observations 136 136 136 136 132 140 134 138 
R-squared 0.81 0.57 0.77 0.65 0.81 0.38 0.78 0.49 
F-stat 18.82 5.58 9.06 7.81 21.14 5.15 18.78 5.49 
Weak identification test (Cragg-Donald Wald F statistic) 384.80 35.40 320.83 34.37 247.60 42.46 136.97 79.57 
Province dummies Yes Yes Yes Yes Yes Yes Yes Yes 

Note: This table reports the heterogeneous impacts of diagnostic efficiency on prevalence of COVID-19 infections (the logarithm of COVID-19 prevalence) using the IV 
approach. Columns 1–2 report the impacts of diagnostic efficiency by distance from the COVID-19 epicenter. Columns 3–4 report the impacts of diagnostic efficiency by 
migration intensity prior to the pandemic. Columns 5–6 report the impacts of diagnostic efficiency by responsiveness of public health systems. Columns 7–8 report the impacts 
of diagnostic efficiency by capacity utilization of health systems. Diagnostic efficiency = the time interval between the date of first visiting a doctor and the date of diagnostic 
confirmation to the public. Standard errors are in parentheses. *** p<.01, ** p<.05, * p<.1. 
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Table 5 Heterogeneous impacts of diagnostic efficiency on mortality of COVID-19 

Variables 

(1) (2) (3) (4) (5) (6) (7) (8) 
 Short 

distance 
to the 

COVID-
19  

epicenter 

 Long 
distance 

to the 
COVID-

19  
epicenter 

 More  
migration 

 Less  
migration 

 Less 
responsive 

 public 
health 

system after 
confirmation 

 More 
responsive 

 public 
health 

system after 
confirmation 

Lower 
capacity 

utilization 
of health 
systems  

Higher 
capacity 

utilization 
of health 
systems 

Diagnostic efficiency (days) 0.07* 0.23** 0.05 0.22* 0.06 0.22** 0.10** 0.18** 
 (0.04) (0.11) (0.03) (0.12) (0.04) (0.10) (0.05) (0.07) 
Logarithm of travel time to the COVID-19 epicenter -0.42 -1.06 -0.37 -0.55 -0.34 -0.85 -0.62 -0.08 
 (0.42) (1.07) (0.50) (0.58) (0.48) (0.65) (0.55) (0.51) 
Percentage of migrants from the COVID-19 epicenter (2015) 0.18 3.08 2.51* 8.02 1.13 6.08 1.29 6.69 
 (1.59) (2.86) (1.45) (5.70) (1.46) (4.54) (1.74) (4.12) 
Logarithm of GRP per capita (2018) 0.74 1.23** 0.89* 1.40** 1.11** 1.20** 1.12** 0.74 
 (0.55) (0.56) (0.46) (0.61) (0.51) (0.52) (0.51) (0.49) 
Percentage of secondary industry in GRP (2018) -0.01 -0.05* -0.09*** -0.02 -0.07* -0.03 -0.06** 0.01 
 (0.05) (0.03) (0.03) (0.03) (0.04) (0.03) (0.03) (0.03) 
Percentage of tertiary industry in GRP (2018) 0.03 -0.02 -0.08** 0.02 -0.06 -0.00 -0.02 0.02 
 (0.05) (0.03) (0.04) (0.04) (0.05) (0.03) (0.03) (0.04) 
Logarithm of hospital beds per thousand people (2018) 0.03 -0.02 -0.15 0.74 -0.41 0.47 0.28 -0.06 
 (0.74) (0.82) (0.74) (0.84) (0.77) (0.77) (0.84) (0.69) 
Logarithm of public health staff per thousand people (2018) -0.33 -0.46 0.68 -1.53 0.77 -1.16 -0.52 -0.32 
 (0.84) (0.88) (0.71) (0.97) (0.80) (0.87) (0.95) (0.71) 
Observations 136 136 136 136 132 140 134 138 
R-squared 0.76 0.22 0.77 0.41 0.73 0.12 0.65 0.36 
F-stat 13.82 1.59 8.96 2.98 13.66 1.54 9.65 3.13 
Weak identification test (Cragg-Donald Wald F statistic) 384.80 35.40 320.83 34.37 247.60 42.46 136.97 79.57 
Province dummies Yes Yes Yes Yes Yes Yes Yes Yes 

Note: This table reports the heterogeneous impacts of diagnostic efficiency on mortality of COVID-19 (the logarithm of COVID-19 mortality) using the IV approach. Columns 
1–2 report the impacts of diagnostic efficiency by distance from the COVID-19 epicenter. Columns 3–4 report the impacts of diagnostic efficiency by migration intensity prior 
to the pandemic. Columns 5–6 report the impacts of diagnostic efficiency by responsiveness of public health systems. Columns 7–8 report the impacts of diagnostic efficiency 
by capacity utilization of health systems. Diagnostic efficiency = the time interval between the date of first visiting a doctor and the date of diagnostic confirmation to the public. 
Standard errors are in parentheses. *** p<.01, ** p<.05, * p<.1. 
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Appendix  

  

Figure A1 Total confirmed cases of COVID-19 infections over time in China 
Note: All dates are in 2020 
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Figure A2 Total confirmed COVID-19 deaths over time in China 
Note: On April 17, China added 1,290 COVID-19 deaths to Wuhan’s previous tally. According to the 
media reports, official said the new numbers are the result of a detailed investigation, and the revised 
figures now include deaths that occurred at home in the beginning of the outbreak, as well as deaths that 
were inaccurately reported by hospitals (https://www.livescience.com/wuhan-coronavirus-death-
toll-revised.html, https://edition.cnn.com/2020/04/17/asia/china-wuhan-coronavirus-death-toll-
intl-hnk/index.html). All dates are in 2020.
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Figure A3 Geographical distribution of the prevalence of COVID-19 infections 
across cities  

Note: As of August 2, 2020. Source: China Data Lab 
(http://dataverse.harvard.edu/dataverse/2019ncov); China City Statistical Yearbook 2019 (National 

Bureau of Statistics of China 2020) 
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Figure A4 Geographical distribution of COVID-19 mortality across cities  
Note: As of August 2, 2020. Source: China Data Lab 

(http://dataverse.harvard.edu/dataverse/2019ncov); China City Statistical Yearbook 2019 (National 
Bureau of Statistics of China 2020) 
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Figure A5 Density of diagnostic efficiency distribution 
Note: The dashed line represents the median value of diagnostic efficiency in the sample. Sample size = 
275. Diagnostic efficiency = the time interval between the date of first visiting a doctor and the date of 
diagnostic confirmation to the public. 
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Figure A6 Density of time interval (revised policy to first doctor visit) distribution 

Note: The dashed line represents the median value of time interval (revised policy to first doctor visit) in 
the sample. Sample size = 275. Time interval (revised policy to first doctor visit) = the time interval 
between the date when the local government adopted the updated official guidance (Version 2) on 
diagnostic confirmation for the first case outside Hubei province and the first diagnosed patient’s date of 
first visiting a doctor. 
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Figure A7 City-level travel intensity (migration indexes) on average from January 01, 

2020, to March 15, 2020 
Note: All daily migration indexes comes from Baidu Migration data between January 1, 2020, and March 
15, 2020. Within-city migration index = travel intensity within cities. Out-migration index = travel 
intensity to other cities. In-migration index = travel intensity from other cities. These indicators are 
consistent across cities and across time. 
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(a)  

 
(b) 

 
(c) 

Figure A8. Placebo analysis of the impact of public confirmation of the first case on 
intra-city and inter-city travel intensity using Baidu Migration data in 2019 

 
Note: All daily travel intensity data come from Baidu Migration data between January 1, 2019, and March 
15, 2019. (a) Placebo analysis of the impact of public confirmation of the first case on intra-city travel 
intensity using Baidu Migration data in 2019. Within-city migration index = travel intensity within cities. 
These indicators are consistent across cities and across time. (b) Placebo analysis of the impact of public 
confirmation of the first case on travel intensity to other cities using Baidu Migration data in 2019. Out-
migration index = travel intensity to other cities. These indicators are consistent across cities and across 
time. (c) Placebo analysis of the impact of public confirmation of the first case on travel intensity from 
other cities using Baidu Migration data in 2019. In-migration index = travel intensity from other cities. 
These indicators are consistent across cities and across time. 
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Table A1 Robustness checks of the impacts of diagnostic efficiency on prevalence of COVID-19 infections 

Variables 

(1) (2) (3) (4) (5) (6) (7) 
 Time interval 
(revised policy 
to first doctor 

visit) 
[-7,7] 

 Time 
interval 
(revised 
policy to 

first doctor 
visit) [-6,6] 

 Time 
interval 
(revised 
policy to 

first doctor 
visit)  
[-5,5] 

 Time 
interval 
(revised 
policy to 

first doctor 
visit)  
[-4,4] 

 Drop 
first case 

at the 
provincial 

level 

 Drop 
cities of 
Hubei 

province 

 Keep cities that 
imported the first 

case from the 
COVID-19 
epicenter 

Diagnostic efficiency (days) 0.12** 0.09** 0.11** 0.12** 0.10*** 0.10*** 0.08*** 
 (0.05) (0.04) (0.05) (0.06) (0.03) (0.03) (0.03) 
Logarithm of travel time to the COVID-19 epicenter -0.68*** -0.63*** -0.67*** -0.76*** -0.71*** -0.80*** -0.80*** 
 (0.23) (0.22) (0.22) (0.23) (0.23) (0.25) (0.23) 
Percentage of migrants from the COVID-19 epicenter (2015) 1.33 1.39 1.10 0.83 1.45 3.15*** 3.27*** 
 (0.89) (0.85) (0.85) (0.88) (0.94) (1.19) (1.13) 
Logarithm of GRP per capita (2018) 0.64*** 0.73*** 0.81*** 0.70*** 0.51** 0.62*** 0.57*** 
 (0.21) (0.20) (0.21) (0.23) (0.22) (0.21) (0.21) 
Percentage of secondary industry in GRP (2018) -0.02 -0.02 -0.03* -0.02 -0.00 -0.01 -0.02 
 (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01) 
Percentage of tertiary industry in GRP (2018) -0.01 -0.01 -0.01 -0.01 0.01 -0.00 -0.01 
 (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01) 
Logarithm of hospital beds per thousand people (2018) 0.82** 0.76** 0.86*** 0.68* 1.01*** 0.89*** 0.71** 
 (0.32) (0.31) (0.32) (0.35) (0.33) (0.32) (0.32) 
Logarithm of public health staff per thousand people (2018) -0.28 -0.33 -0.39 -0.14 -0.33 -0.48 -0.13 
 (0.35) (0.33) (0.34) (0.39) (0.36) (0.34) (0.35) 
Observations 237 230 210 182 246 262 240 
R-squared 0.68 0.70 0.72 0.73 0.70 0.55 0.65 
F-stat 11.72 12.74 13.02 11.59 14.74 8.32 11.01 
Weak identification test (Cragg-Donald Wald F statistic) 101.39 136.75 122.00 87.02 127.85 169.46 247.44 
Province dummies Yes Yes Yes Yes Yes Yes Yes 

Note: This table reports robustness checks of the impacts of diagnostic efficiency on prevalence of COVID-19 infections (the logarithm of COVID-19 prevalence) using the 
IV approach. Columns 1–4 report main results by focusing on cities exposed to similar dates of the first case’s first visit to a doctor with different cutoffs. Column 5 reports 
main results by dropping those cities that confirm the first infected case at the provincial level. Column 6 reports main results by dropping cities of Hubei province. Column 7 
reports main results by keeping those cities that are known to have imported the first COVID-19 case. Diagnostic efficiency = the time interval between the date of first 
visiting a doctor and the date of diagnostic confirmation to the public. Standard errors are in parentheses. *** p<.01, ** p<.05, * p<.1. 



49 

Table A2 Robustness checks on the impacts of diagnostic efficiency on COVID-19 mortality  

Variables 

(1) (2) (3) (4) (5) (6) (7) 
 Time 
interval 
(revised 
policy to 

first doctor 
visit) 
[-7,7] 

 Time 
interval 
(revised 
policy to 

first doctor 
visit) [-6,6] 

 Time 
interval 
(revised 
policy to 

first doctor 
visit)  
[-5,5] 

 Time 
interval 
(revised 
policy to 

first doctor 
visit)  
[-4,4] 

 Drop first 
case at the 
provincial 

level 

 Drop 
cities of 
Hubei 

province 

 Keep cities that 
imported the first 

case from the 
COVID-19 
epicenter 

Diagnostic efficiency (days) 0.11 0.10 0.05 0.05 0.13** 0.13** 0.10** 
 (0.08) (0.08) (0.09) (0.10) (0.05) (0.05) (0.05) 
Logarithm of travel time to the COVID-19 epicenter -0.37 -0.34 -0.29 -0.14 -0.26 -0.33 -0.58 
 (0.40) (0.41) (0.40) (0.43) (0.38) (0.42) (0.42) 
Percentage of migrants from the COVID-19 epicenter (2015) 1.50 1.48 1.54 1.55 1.39 4.14** 4.99** 
 (1.55) (1.57) (1.55) (1.62) (1.52) (2.06) (2.01) 
Logarithm of GRP per capita (2018) 1.07*** 1.15*** 1.14*** 1.20*** 0.66* 0.94*** 0.82** 
 (0.36) (0.38) (0.38) (0.43) (0.36) (0.36) (0.37) 
Percentage of secondary industry in GRP (2018) -0.05** -0.05** -0.04 -0.05 -0.02 -0.03 -0.04 
 (0.02) (0.02) (0.03) (0.03) (0.02) (0.02) (0.02) 
Percentage of tertiary industry in GRP (2018) -0.03 -0.03 -0.02 -0.02 -0.00 -0.01 -0.02 
 (0.03) (0.03) (0.03) (0.04) (0.02) (0.02) (0.03) 
Logarithm of hospital beds per thousand people (2018) 0.28 0.21 0.04 -0.10 0.25 0.06 0.16 
 (0.56) (0.58) (0.58) (0.65) (0.53) (0.55) (0.57) 
Logarithm of public health staff per thousand people (2018) -0.25 -0.29 -0.15 -0.20 -0.37 -0.34 -0.22 
 (0.60) (0.62) (0.62) (0.71) (0.58) (0.59) (0.62) 
Observations 237 230 210 182 246 262 240 
R-squared 0.56 0.55 0.60 0.61 0.62 0.30 0.46 
F-stat 6.74 6.56 7.14 6.25 10.31 2.97 4.96 
Weak identification test (Cragg-Donald Wald F statistic) 101.39 136.75 122.00 87.02 127.85 169.46 247.44 
Province dummies Yes Yes Yes Yes Yes Yes Yes 

Note: This table reports robustness checks of the impacts of diagnostic efficiency on COVID-19 mortality (the logarithm of COVID-19 mortality) using the IV approach. 
Columns 1–4 report main results by focusing on cities exposed to similar dates of the first case’s first visit to a doctor with different cutoffs. Column 5 reports main results by 
dropping those cities that confirm the first infected case at the provincial level. Column 6 reports main results by dropping cities of Hubei province. Column 7 reports main 
results by keeping those cities that are known to have imported the first COVID-19 case. Diagnostic efficiency = the time interval between the date of first visiting a doctor and 
the date of diagnostic confirmation to the public. Standard errors are in parentheses. *** p<.01, ** p<.05, * p<.1.  


