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ABSTRACT
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Testing, Vaccinations, and NPIs*

In order to slow the spread of the CoViD-19 pandemic, governments around the world 

have enacted a wide set of policies limiting the transmission of the disease. Initially, these 

focused on non-pharmaceutical interventions; more recently, vaccinations and large-scale 

rapid testing have started to play a major role. The objective of this study is to explain the 

quantitative effects of these policies on determining the course of the pandemic, allowing 

for factors like seasonality or virus strains with different transmission profiles. To do so, the 

study develops an agent-based simulation model, which is estimated using data for the 

second and the third wave of the CoViD-19 pandemic in Germany. The paper finds that 

during a period where vaccination rates rose from 5% to 40%, rapid testing had the largest 

effect on reducing infection numbers. Frequent large-scale rapid testing should remain 

part of strategies to contain CoViD-19; it can substitute for many non-pharmaceutical 

interventions that come at a much larger cost to individuals, society, and the economy.
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Since early 2020, the CoViD-19 pandemic has presented an enormous challenge
to humanity on many dimensions. The development of highly effective vaccines
holds the promise of containment in the medium term. However, most countries
find themselves many months—and often years—away from reaching vaccination-
induced herd immunity (Swaminathan, 2021). In the meantime, it is of utmost im-
portance to employ an effective mix of strategies for containing the virus. The most
frequent initial response was a set of non-pharmaceutical interventions (NPIs) to re-
duce contacts between individuals. While this has allowed some countries to sustain
equilibria with very low infection numbers,π most have seen large fluctuations of in-
fection rates over time. Containment measures have become increasingly diverse
and now include rapid testing, more nuanced NPIs, and contact tracing. Neither
these policies’ effect nor the influence of seasonal patterns or of more infectious
virus strains are well understood in quantitative terms.

This paper develops a quantitative model incorporating these factors simultane-
ously. The framework allows to combine a wide variety of data and mechanisms in
a timely fashion, making it useful to predict the effects of various interventions. We
apply the model to Germany, where new infections fell by almost 80% during the
month of May 2021. Our analysis shows that, aside from seasonality, frequent and
large-scale rapid testing caused the bulk of this decrease, which is in line with prior
predictions (Mina and Andersen, 2021). We conclude that it should have a large role
for at least as long as vaccinations have not been offered to an entire population.

At the core of our agent-based model are physical contacts between heteroge-
neous agents (Figure 1a).≤ Each contact between an infectious individual and some-
body susceptible to the disease bears the risk of transmitting the virus. Contacts oc-
cur in up to four networks: Within the household, at work, at school, or in other
settings (leisure activities, grocery shopping, medical appointments, etc.). Some
contacts recur regularly, others occur at random. Empirical applications can take
the population and household structure from census data and the network-specific
frequencies of contacts from diary data measuring contacts before the pandemic
(e.g. Mossong, Hens, Jit, Beutels, Auranen, et al., 2008; Hoang, Coletti, Melegaro,
Wallinga, Grijalva, et al., 2019). Within each network, meeting frequencies depend
on age and geographical location (see Supplementary Material Section A.3).

The four contact networks are chosen so that the most common NPIs can be
modeled in great detail. NPIs affect the number of contacts or the risk of trans-
mitting the disease upon having physical contact. The effect of different NPIs will
generally vary across contact types. For example, a mandate to work from home will
reduce the number of work contacts to zero for a fraction of the working population.

1. See Contreras, Dehning, Mohr, Bauer, Spitzner, et al. (2021) for a theoretical equilibrium at
low case numbers which is sustained with test-trace-and-isolate policies.

2. A detailed comparison with other approaches is relegated to Supplementary Material B.1. The
model most closely related to ours is described in Hinch, Probert, Nurtay, Kendall, Wymatt, et al. (2020).
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Figure �. Model description

Note: Adescription of themodel can be found in Supplementary Material B. Figure �a shows the influence on an
agent’s contacts to other agents. Demographic characteristics set the baseline number of contacts in di�erent
networks. She may reduce the number of contacts due to NPIs, showing symptoms, or testing positively for
SARS-CoV-�. Infectionsmay occur when a susceptible agent meets an infectious agent; the probability depends
on the type of contact, on seasonality, and on NPIs. If infected, the infection progresses as depicted in Figure �b.
If rapid tests are available, agents’ demand is modeled as in Figure �c. All reasons trigger a test only for
a fraction of individuals depending on an individual compliance parameter; the thresholds for triggering test
demand di�er across reasons and they may depend on calendar time. Figure �d shows the model of translating
all infections in the simulated data to age-specific recorded infections. The model uses data on the aggregate
share of recorded cases, on the share of positive PCR tests triggered by symptoms, and on the false positive
rate of rapid tests. The lower part of the graph is relevant only for periods where rapid tests are available.

Schools and daycare can be closed entirely, operate at reduced capacity—including
an alternating schedule—, or implement mitigation measures like masking require-
ments or air filters (Lessler, Grabowski, Grantz, Badillo-Goicoechea, Metcalf, et al.,
2021). Curfews may reduce the number of contacts in non-work/non-school/non-
work settings. In any setting, measures like masking requirements would reduce
the probability of infection associated with a contact (Cheng, Ma, Witt, Rapp, Wild,
et al., 2021).

In the model, susceptibility to contracting the SARS-CoV-2 virus is dependent on
age. A possible infection progresses as shown in Figure 1b. We differentiate between
an initial period of infection without being infectious or showing symptoms, being
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infectious (presymptomatic or asymptomatic), showing symptoms, requiring inten-
sive care, and recovery or death (similar to Grimm, Mengel, and Schmidt, 2021).
The probabilities of transitioning between these states depend on age; their duration
is randomwithin intervals calibrated to medical literature (for a detailed description
see Section A.1). Conditional on the type of contact, infectiousness is independent
of age (Jones, Biele, Mühlemann, Veith, Schneider, et al., 2021).

The model includes several other features, which are crucial to describe the evo-
lution of the pandemic in 2020-2021. New virus strains with different profiles re-
garding infectiousness can be introduced. Agents may receive a vaccination. With a
probability of 75% (Hunter and Brainard, 2021), vaccinated agents become immune
and they do not transmit the virus (Levine-Tiefenbrun, Yelin, Katz, Herzel, Golan,
et al., 2021; Petter, Mor, Zuckerman, Oz-Levi, Younger, et al., 2021; Pritchard,
Matthews, Stoesser, Eyre, Gethings, et al., 2021).≥ During the vaccine roll-out, pri-
ority may depend on age and occupation.

We include two types of tests. Polymerase chain reaction (PCR) tests reveal
whether an individual is infected or not; there is no uncertainty to the result. PCR
tests require some days to be processed and there are aggregate capacity constraints
throughout. In contrast, rapid antigen tests yield immediate results; after a phase-
in period, all tests that are demanded will be performed. Specificity and sensitivity
of these tests is set according to data analyzed in Brümmer, Katzenschlager, Gaed-
dert, Erdmann, Schmitz, et al. (2021) and Smith, Gibson, Martinez, Ke, Mirza, et al.
(2021); sensitivity depends on the timing of the test relative to the onset of infec-
tiousness. Figure 1c shows our model for rapid test demand. Schools may require
staff and students to be tested regularly. Rapid tests may be offered by employers
to on-site workers. Individuals may demand tests for private reasons, which include
having plans to meet other people, showing symptoms of CoViD-19, and because
a household member tested positively for the virus. We endow each agent with an
individual compliance parameter. This parameter determines whether she takes up
rapid tests.�

Modelling a population of agents according to actual demographic characteris-
tics means that we can use a wide array of data to identify and estimate the model’s
many parameters.� Contact diaries yield pre-pandemic distributions of contacts for
different contact types and their assortativity by age group. Mobility data is used
to model the evolution of work contacts. School and daycare policies can be incor-

3. 75% is lower than what is usually reported for after the second dose of the Biontech/Pfizer vac-
cine, which is most commonly used in Germany. We choose it because our model neither includes booster
shots, nor does it allow vaccinated individuals who became immune to transmit the disease(Levine-
Tiefenbrun et al., 2021; Petter et al., 2021; Pritchard et al., 2021). If anything, these assumptions would
overstate the effect of vaccines for our study period. This would be different if a large fraction of vacci-
nated individuals had received a second dose already.

4. A positive test result (of either kind), as well as symptoms leads most individuals to reduce their
contacts; this is why tests impact the actual contacts in Figure 1.

5. See section A of the supplementary materials for an overview.
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porated directly from official directives. Administrative records on the number of
tests, vaccinations by age and region, and the prevalence of virus strains are gen-
erally available. Surveys may ask about test offers, propensities to take them up,
and past tests. Other studies’ estimates of the seasonality of infections can be incor-
porated directly. The remaining parameters—most notably, these include infection
probabilities by contact network and the effects of NPIs, see Supplementary Mate-
rial B.10—will be chosen numerically so that the model matches features of the
data (see McFadden, 1989, for the general method, also described in Supplemen-
tary Material B). In our application, we keep the number of free parameters low
in order to avoid overfitting. The data features to be matched include official case
numbers for each age group and region, deaths, and the share of the B.1.1.7 strain.

The main issue with official case numbers is that they will contain only a fraction
of all infections. We thus model official cases as depicted in Figure 1d. We take
aggregate estimates of the share of detected cases and use data on the share of PCR
tests administered to people with CoViD-19 symptoms. As the share of asymptomatic
individuals varies by age group, this gives us age-specific shares (see Figure C.8
for the share of known cases by age group over time in our model). Our estimates
suggest that—in the absence of rapid testing—the detection rate is 80% higher on
average for individuals above age 80 compared to school age children. Once rapid
test become available, confirmation of a positive result is another reason leading to
positive PCR tests.

The model is applied to the second and third wave of the CoViD-19 pandemic
in Germany, covering the period mid-September 2020 to the end of May 2021. Fig-
ure 2 describes the evolution of the pandemic and of its drivers. The black line in
Figure 2a shows officially recorded cases; the black line in Figure 2b the Oxford
Response Stringency Index (Hale, Atav, Hallas, Kira, Phillips, et al., 2020), which
tracks the tightness of non-pharmaceutical interventions. The index is shown for il-
lustration of the NPIs, we never use it directly. For legibility reasons, we transform
the index so that lower values represent higher levels of restrictions. A value of
zero means all measures incorporated in the index are turned on. The value 1 rep-
resents the situation in mid-September, with restrictions on gatherings and public
events, masking requirements, but open schools and workplaces. In the seven weeks
between mid September and early November, cases increased by a factor of 10. Re-
strictions were somewhat tightened in mid-October and again in early November.
New infections remained constant throughout November before rising again in De-
cember, prompting the most stringent lockdown to this date. Schools and daycare
centers were closed again, so were customer-facing businesses except for grocery
and drug stores. From the peak of the second wave just before Christmas until the
trough in mid-February, newly detected cases decreased by almost three quarters.
The third wave in the spring of 2021 is associated with the B.1.1.7 strain, which
became dominant in March (Figure 2c). In early March, some NPIs were being re-
laxed; e.g., hairdressers and home improvement stores were allowed to open again
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(a) Recorded cases: Empirical and simulated (b) Stringency of NPIs and infectious contacts

(c) Fraction of B.�.�.� strain (d) Tests and vaccinations

Figure �. Evolution of the pandemic, its drivers, and model fit, September ���� to May ����

Note: Data sources are described in Supplementary Material A. Age- and region-specific analogues to Figure �a
can be found in Supplementary Material C.�. For legibility reasons, all lines in Figure �b are rolling �-day
averages. The Oxford Response Stringency Index is scaled as � · (� � x/���), so that a value of � refers to the
situation at the start of our sample period and � means that all NPIs included in the index are turned on. The
other lines in Figure �b show the product of the e�ect of contact reductions, increased hygiene regulations,
and seasonality. See Appendix A.� for separate plots of the three factors by contact type.

to the public. There were many changes in details of regulations afterwards, but
they did not change the stringency index.

By this time, the set of policy instruments had become much more diverse.
Around the turn of the year, the first people were vaccinated with a focus on older
age groups and medical personnel (Figure 2d). By the end of May, just over 40% had
received at least one dose of a vaccine. Around the same time, rapid tests started to
replace regular PCR tests for staff in many medical and nursing facilities. These had
to be administered by medical doctors or in pharmacies. At-home tests approved
by authorities became available in mid-March, rapid test centers were opened, and
one test per person and week was made available free of charge. In several states,
customers were only allowed to enter certain stores with a recent negative rapid test
result. These developments are characteristic of many countries: The initial focus
on NPIs to slow the spread of the disease has been accompanied by vaccines and a
growing acceptance and use of rapid tests. At broadly similar points in time, novel
strains of the virus have started to pose additional challenges.

We draw simulated samples of agents from the population structure in Septem-
ber 2020 and use the model to predict recorded infection rates until the end of May
2021. See Supplementary Material B.9 for a detailed description of this procedure.
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The blue line in Figure 2a shows that our model’s predictions are very close to of-
ficially recorded cases in the aggregate. This is also true for infections by age and
geographical region, which are shown in the supplementary materials (Figures C.3
and C.4, respectively).

The effects of various mechanisms can be disentangled due to the distinct tem-
poral variation in the drivers of the pandemic. Next to the stringency index, the
three lines in Figure 2b summarize how contact reductions, increased hygiene reg-
ulations, and seasonality evolved since early September for each of the three broad
contact networks. For example, a value of 0.75 for the work multiplier means that
if the environment was the same as in September (levels of infection rates, no rapid
tests or vaccinations, only the wildtype virus present), infections at the workplace
would be reduced by 25%. The lines show the product of the effect of contact reduc-
tions, increased hygiene regulations, and seasonality. Two aspects are particularly
interesting. First, all lines broadly follow the stringency index and they would do
so even more if we left out seasonality and school vacations (roughly the last two
weeks of October, two weeks each around Christmas and Easter, and some days in
late May). Second, the most stringent regulations are associated with the period of
strong decreases in new infections between late December 2020 and mid-February
2021. The reversal of the trend is associated with the spread of the B.1.1.7 variant.
The steep drop in recorded cases during May 2021 is associated with at least weekly
rapid tests for 42% of the population, a vaccination rate that rose from 28% to 43%,
and seasonality further lowering the relative infectiousness of contacts

In order to better understand the contributions of rapid tests, vaccinations, and
seasonality on the evolution of infections in 2021, Figure 3 considers various sce-
narios. NPIs are always the same as in the baseline scenario. Figure 3a shows the
model fit (the blue line, same as in Figure 2a), a scenario without any of the three
factors (red line), and three scenarios turning each factor on individually. Figure 3b
does the same for total infections in the model. Figure 3c employs Shapley values
(Shapley, 2016) to decompose the difference in total infections between the scenario
without any of the three factors and our main specification.

Until mid-March, there is no visible difference between the different scenarios.
Seasonality hardly changes, and only few vaccinations and rapid tests were admin-
istered. Even thereafter, the effect of the vaccination campaign is surprisingly small
at first sight. Whether considering recorded or total infections with only one chan-
nel active, the final level is always the highest in case of the vaccination campaign
(orange lines). The Shapley value decomposition shows that vaccinations contribute
16% to the cumulative difference between scenarios. Reasons for this are the slow
start—it took until March 24th until 10% of the population had received their first
vaccination, the 20% mark was reached on April 19th—and the focus on older in-
dividuals. These groups contribute less to the spread of the disease than others due
to a lower number of contactsas they do not work, do not go to school and tend to
live in small households. By the end of our study period, when first-dose vaccination
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(a) Recorded cases: ���� scenarios (b) Total cases: ���� scenarios

(c) Decomposition of the di�erence between the sce-
nario without any of the three factors and the main
scenario in Figure �b.

(d)Decomposition of the di�erence between the sce-
nario without rapid tests and the main scenario in
Figure �b.

Figure �. The e�ect of di�erent interventions on recorded and actual infections

Note: The blue line in Figure �a is the same as in Figure �a and refers to our baseline scenario, so does the
blue line in Figure �b. The red lines refer to a situation where NPIs evolve as in the baseline scenario and the
B.�.�.� variant is introduced in the same way; vaccinations, rapid tests, and seasonality remain at their January
levels. The other scenarios turn these three factors on one-by-one. The decompositions in Figures �c and �d
are based on Shapley values, which are explained more thoroughly in Appendix B.��
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rates reached around 40% of the population, the numbers of new cases would have
started to decline. It is important to note that the initial focus of the campaign was
to prevent deaths and severe disease. Indeed, the case fatality was rate considerably
lower during the third wave when compared to the second (4.4% between October
and February and 1.4% between March and the end of May).

Seasonality has a large effect in slowing the spread of SARS-CoV-2. By May 31,
both observed and recorded cases would be reduced by a factor of four if only sea-
sonality mattered. However, in this period, cases would have kept on rising through-
out, just at a much lower pace (this is in line with results in Gaven�iak, Monrad,
Leech, Sharma, Mindermann, et al., 2021, which our seasonality measure is based
on). Nevertheless, we estimate seasonality to be a quantitatively important factor
determining the evolution of the pandemic, explaining most of the early changes
and 43% of the cumulative difference by the end of May.

A similar-sized effect—41% in the decompositions—comes from rapid testing.
Here, it is crucial to differentiate between recorded cases and actual cases. Addi-
tional testing means that additional infections will be recorded which would other-
wise remain undetected. Figure 3a shows that this effect is large. Until late April,
recorded cases are higher in the scenario with rapid testing alone when compared
to the setting where none of the three mechanisms are turned on. The effect on total
cases, however, is visible immediately in Figure 3b. Despite the fact that only 10%
of the population performed weekly rapid tests in March on average, new infections
on April 1 would be reduced by 53% relative to the scenario without vaccinations,
rapid tests, or seasonality.

So why is rapid testing so effective? In order to shed more light on this question,
Figure 3d decomposes the difference in the scenario without rapid tests only (purple
line in Figure 3b) and the main specification into the three channels for rapid tests.
Tests at schools have the smallest effect, which is largely explained by schools not
operating at full capacity during our period of study and the relatively small number
of students.� Almost 40% come from tests at the workplace. Despite the fact that
rapid tests for private reasons are phased in only late, they make up for more than
half of the total effect. The reason lies in the fact that a substantial share of these
tests is driven by an elevated probability to carry the virus, i.e., showing symptoms
of CoViD-19 or following up on a positive test of a household member. The latter
is essentially a form of contact tracing, which has been shown to be very effective
(Kretzschmar, Rozhnova, Bootsma, Boven, Wijgert, et al., 2020; Contreras et al.,
2021; Fetzer and Graeber, forthcoming).

Two of the most contentious NPIs concern schools and mandates to work from
home. In many countries, schools switched to remote instruction during the first
wave, so did Germany. After the summer break, they were operating at full capac-

6. 18% of our population are in the education sector (pupils, teachers, etc.); 46% are workers
outside the education sector.
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(a) E�ects of di�erent schooling scenarios (b) E�ects of di�erent work scenarios

Figure �. E�ects of di�erent scenarios for policies regarding schools and workplaces.

Note: Blue lines in both figures refer to our baseline scenario; they are the same as in Figure �b. Interventions
start at Easter because there were no capacity constraints for rapid tests afterwards.

ity with increased hygiene measures, before being closed again from mid-December
onwards. Some states started opening them gradually in late February, but opera-
tion at normal capacity did not resume until the beginning of June. Figure 4a shows
the effects of different policies regarding school starting at Easter, at which point
rapid tests had become widely available. We estimate the realized scenario to have
essentially the same effect as a situation with closed schools. Under fully opened
schools with mandatory tests, total infections would have been 6% higher; this num-
ber rises to 20% without tests. These effect sizes are broadly in line with empirical
studies (e.g., Vlachos, Hertegård, and B. Svaleryd, 2021). To use another metric,
the effective weekly reproduction number differs by 0.018 and 0.052, respectively.
In light of the large negative effects school closures have on children and parents
(Luijten, Muilekom, Teela, Polderman, Terwee, et al., 2021; Melegari, Giallonardo,
Sacco, Marcucci, Orecchio, et al., 2021)—and in particular on those with low socio-
economic status—these results in conjunction with hindsight bias suggest that open-
ing schools combined with a testing strategy would have been beneficial. In other
situations, and particular when rapid test are not available at scale, trade-offs may
well be different.

Figure 4b shows that with a large fraction of workers receiving tests, testing
at the workplace has larger effects than mandating employees to work from home.
Whether the share of workers working at the usual workplace is reduced or increased
by ten percent changes infection rates by 2.5% or less in either direction. Making
testing mandatory twice a week—assuming independent compliance by employers
and workers of 95% each—would have reduced infections by 23%. Reducing rapid
tests offers by employers to the level of March would have increased infections by
13%.

Our analysis has shown that during the transition to high levels of vaccination
and possibly thereafter, large-scale rapid testing can substitute for some NPIs. This
comes at a fraction of the cost. A week of the fairly strict lockdown in early 2021 is
estimated to have cost around 20 Euros per capita (Wollmershäuser, 2021); retail
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prices for rapid tests were below one Euro in early June 2021. Despite these large
effects, the results on testing likely understate the benefits. Disadvantaged groups
are less likely to be reached by testing campaigns relying on voluntary participation
(e.g. Stillman and Tonin, 2021); at the same time, these groups have a higher risk
to contract CoViD-19 (Robert Koch Institut, 2021). Mandatory tests at school and
at the workplace will extend more into these groups. The same goes for individuals
who exhibit a low level of compliance with CoViD-19-related regulations. Compared
to vaccinations, rapid testing programmes allow a much quicker roll-out, making it
arguably the most effective tool to contain the pandemic in the short run.
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Appendix A: Data and Parameters

The model is described by a large number of parameters that govern the number
of contacts a person has, the likelihood of becoming infected on each contact, the
likelihood of developing light or strong symptoms or even dying from the disease as
well as the duration each stage of the disease takes.

Most of these parameters can be calibrated from existing datasets or the medical
literature or calibrated from surveys and empirical datasets.

A.� Medical Parameters

This section discusses the medical parameters used in the model, their sources and
how we arrived at the distributions used in the model.�See Figure 1b for a summary
of our disease progression model.

The first medical parameter we need is the length of the period between infec-
tion and the start of infectiousness, the so called latent period. We infer it from two
other measures that are more common in the medical literature: Firstly, the time
between infection and the onset of symptoms, the incubation period. Secondly, the
time between the start of infectiousness and the onset of symptoms. We assume that
the latency period is the same for symptomatic and asymptomatic individuals.

Once individuals become infectious a share of them goes on to develop symp-
toms while others remain asymptomatic. We rely on data by Davies, Klepac, Liu,
Prem, Jit, et al. (2020) for the age-dependent probability to develop symptoms. It
varies from 25% for children and young adults to nearly 70% for the elderly.

The incubation period is usually estimated to be two to twelve days. A meta
analysis by McAloon, Collins, Hunt, Barber, Byrne, et al. (2020) comes to the con-
clusion that “The incubation period distribution may be modeled with a lognormal
distribution with pooled µ and � parameters (95% CIs) of 1.63 (95% CI 1.51 to
1.75) and 0.50 (95% CI 0.46 to 0.55), respectively.” For simplicity we discretize this
distribution into four bins.

The European Centre for Disease Prevention and Control reports that people
become infectious between one and two days before symptoms start.�

Taking these estimates together, we arrive at a latent period of one to five days.
We assume that the duration of infectiousness is the same for both symptomatic

and asymptomatic individuals as evidence suggests little differences in the transmis-
sion rates between symptomatic and asymptomatic patients (Yin and Jin (2020))
and that the viral load between symptomatic and asymptomatic individuals are sim-
ilar (Zou, Ruan, Huang, Liang, Huang, et al. (2020), Byrne, McEvoy, Collins, Hunt,

7. Additional information can be found in the online documentation.
8. This is similar to He, Lau, Wu, Deng, Wang, et al. (2020) and in line with Peak, Kahn, Grad,

Childs, Li, et al. (2020).
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Casey, et al. (2020), Singanayagam, Patel, Charlett, Bernal, Saliba, et al. (2020)).
Our distribution of the duration of infectiousness is based on Byrne et al. (2020).
For symptomatic cases they arrive at zero to five days before symptom onset (see
their figure 2) and three to eight days of infectiousness afterwards.� Thus, we ar-
rive at 0 to 13 days as the range for infectiousness among individuals who become
symptomatic (see also figure 5).

We use the duration to recovery of mild and moderate cases reported by Bi,
Wu, Mei, Ye, Zou, et al. (2020, Figure S3, Panel 2) for the duration of symptoms
for non-ICU requiring symptomatic cases. We only disaggregate by age how likely
individuals are to require intensive care.π�

For the time from symptom onset until need for intensive care we rely on data
by the US CDC (Stokes, Zambrano, Anderson, Marder, Raz, et al. (2020)) and the
OpenABM-Project.

For those who will require intensive care we follow Chen, Qi, Liu, Ling, Qian,
et al. (2020) who estimate the time from symptom onset to ICU admission as 8.5± 4
days. This aligns well with numbers reported for the time from first symptoms to hos-
pitalization: Gaythorpe, Imai, Cuomo-Dannenburg, Baguelin, Bhatia, et al. (2020)
report a mean of 5.76 with a standard deviation of 4. This is also in line with the
duration estimates collected by the Robert-Koch-Institut. We assume that the time
between symptom onset and ICU takes 4, 6, 8 or 10 days with equal probabilities.
As we do not model nursing homes, do not focus on matching deaths and do not
use the number of individuals in intensive care to estimate our parameters, these
numbers are not important for our empirical results.

We take the survival probabilities and time to death and time until recovery
from intensive care from the OpenABM Project. They report time until death to
have a mean of 11.74 days and a standard deviation of 8.79 days. To match this
approximately we discretize that 41% of individuals who will die from Covid-19 do
so after one day in intensive care, 22% day after 12 days, 29% after 20 days and 7%
after 32 days. Again, we rescale this for every age group among those that will not
survive. For survivors the OpenABM Project reports a mean duration of 18.8 days
until recovery and a standard deviation of 12.21 days. We discretize this such that
of those who recover in intensive care, 22% do so after one day, 30% after 15 days,
28% after 25 days and 18% after 45 days.

A.� The Synthetic Population

We build a synthetic population based on the German microcensus (Forschungs-
datenzentren Der Statistischen Ämter Des Bundes Und Der Länder, 2018). We only

9. Viral loads may be detected much later but eight days seems to be the time after which most
people are culture negative, as also reported by Singanayagam et al. (2020).

10. The length of symptoms is not very important in our model given that individuals mostly stop
being infectious before their symptoms cease.
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use private households, i.e. exclude living arrangements such as nursing homes as
non-private households vary widely in size and it is very difficult to know which
contacts take place in such households.

We sample households to build our synthetic population of over one million
households keeping for each individual their age, gender, occupation and whether
they work on Saturdays and Sundays.

A.� Number of Contacts

We calibrate the parameters for the predicted numbers of contacts from contact
diaries of over 2000 individuals from Germany, Belgium, the Netherlands and Lux-
embourg (Mossong, Hens, Jit, Beutels, Auranen, et al., 2008). Each contact diary
contains all contacts an individual had throughout one day, including information
on the other person (such as age and gender) and information on the contact. Im-
portantly, for each contact individuals entered of which type the contact (school,
leisure, work etc.) was and how frequent the contact with the other person is.

Simplifying the number of contacts, we arrive at the following distributions of
the numbers of contacts by contact type.

An exception where we do not rely on the data by Mossong et al. (2008) are
the household contacts. Since household are included in the the German microcen-
sus (Forschungsdatenzentren Der Statistischen Ämter Des Bundes Und Der Länder,
2018) on which we build our synthetic population we simply assume for the house-
hold contact model that individuals meet all other household members every day.
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(a) Number of Non Recur-
rent Other Contacts

(b) Number of Daily Recur-
rent Other Contacts

(c) Number of Weekly Re-
current Other Contacts

Figure A.�. Number of Contacts of the Other Contact Type

Note: Other contacts include all contacts that are not household members, school contacts or work contacts,
for example leisure contacts or contacts during grocery shopping. The planned number of contacts is reduced
by policies, seasonality and individual responses to events such as receiving a positive rapid test to the number
of actual contacts with transmission potential. In the model it is sampled every day which of the numbers of
non recurrent contacts a person is planned to have. Note that the contact diaries include such high values
that super spreading events are well possible in our model through non recurrent other models. We assume
that individuals in households with children or teachers or retired individuals have additional non recurrent
contacts during school vacations to cover things like family visits or travel during vacations. We estimate this
to be on average �.� additional contacts per vacation day. For the recurrent other contacts, individuals are
assigned to groups that are time constant and that meet daily or weekly. The share of individuals who attend
in a way that has transmission potential is reduced by policies, seasonality and individual responses to events
such as receiving a positive rapid test. For weekly contacts, individuals are assigned to up to four groups that
are time constant and that meet weekly. The day on which meetings take place varies between groups but
stays the same for each group.
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Figure A.�. Number of Non Recurrent Work Contacts

Note: In the model it is sampled every day which of these numbers of contacts a working person is planned
to have. Note that the contact diaries include such high values that super spreading events are well possible
in our model. The planned number of contacts is reduced by policies, seasonality and individual responses
to events such as receiving a positive rapid test to the number of actual contacts with transmission potential.
Work contacts only take place between working individuals.

Figure A.�. Number of Daily Recurrent Work Contacts

Note: Working individuals are assigned to groups that are time constant and that meet daily to match the
given distribution of daily work contacts. You can think of these as for example colleagues with which one
shares an o�ce space. The share of individuals who attend in a way that has transmission potential is reduced
by policies (such as a work from home mandate), seasonality and individual responses to events such as
receiving a positive rapid test. Work contacts only take place between working individuals.
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Figure A.�. Number of Weekly Recurrent Work Contacts

Note:Working individuals are assigned to up to �� groups that are time constant and meet weekly. Groups are
scheduled to meet on separate days of the work week. These contact models cover weekly team meetings etc.
The share of individuals that attend in a way that has transmission potential is reduced by policies, season-
ality and individual responses to events such as receiving a positive rapid test. Work contacts only take place
between working individuals.

Figure A.�. Number of Household Contacts

Note: Every individual meets all other household members every day. The German microcensus sampled full
households such that our synthetic population automatically fits population characteristics such as size and
age distribution.
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A.� Contacts by age

As mentioned in section B.5, the probability that two individuals are matched can
depend on background characteristics. In particular, we allow this probability to
depend on age and county of residence. While we do not have good data on geo-
graphical assortativity and just roughly calibrate it such that 80% of contacts are
within the same county, we can calibrate the assortative mixing by age from the
same data we use to calibrate the number of contacts.

Figure A.�. Distribution of Non Recurrent Other Contacts by Age Group

Note: The figure shows the distribution of non recurrent other contacts by age group. A row shows the share
of contacts a certain age group has with all other age groups. Higher values are colored in darker red tones.
The diagonal represents the share of contacts with individuals from the same age group.

Figure A.6 shows that assortativity by age is especially strong for children and
younger adults. For older people, the pattern becomes more dispersed around their
own age group, but within-age-group contacts are still the most common contacts.

Figure A.7 shows that assortativity by age is also important among work con-
tacts.

Our two other types of contacts, households and schools, get their assortativity
by construction. Schools are groups where the same children of the mostly same age
and county meet with teachers every day. Household composition follows directly
from the German microcensus data we use to construct our synthetic population.

A.� Policies and Seasonality

20



Figure A.�. Distribution of Random Work Contacts by Age Group

Note: The figure shows the distribution of non recurrent work contacts by age group. A row shows the share of
contacts a certain age group has with all other age groups. Higher values are colored in darker red tones. The
diagonal represents the share of contacts with individuals from the same age group. We only show age groups
that have a significant fraction of working individuals.

In our empirical application we distinguish four groups of contact types: house-
holds, education, work and other contacts. For households we assume that the indi-
viduals’ contacts in their households do not change over our estimation period. For
nurseries, preschools and schools we implement vacations as announced by the Ger-
man federal states as well as school closures, emergency care and A / B schooling
where only one half of students attends every other week or day. For the moment we
ignore that lack of childcare leads working parents to stay home. An approximation
of the share of contacts still taking place with the different school regulations can
be found in Figure A.8.

For our work modelsππ we use the reductions in work mobility reported in the
Google Mobility Data (Google, 2021) to calibrate our work policies. Reductions in
work contacts are not random but governed through a work contact priority where
the policy changes the threshold below which workers stay home. Figure A.9 shows
the share of workers that go to work in our model over time.

For both work and school contacts we assume that starting November with the
lockdown light in Germany, hygiene measures (such as masks, ventilation and hand

11. We distinguish non-recurrent work contacts, daily work contacts and weekly work contacts.
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Figure A.�. School Multiplier With and Without Vacations Factored In

Note: The dates on which schools have vacation are decided at the federal level. Vacations are directly im-
plemented in our model with no school contacts taking place on weekends and during vacations (by federal
state) just like the schooling mode (full operation, emergency care, rotating schemes with half class sizes etc.).
The figure is thus only an illustration that roughly shows the share of contacts taking place compared to pre-
pandemic level with and without vacations. The di�erence between the lines show when vacations take place
and to what degree. For example all states have fall vacations but the timing varies strongly between states.

washing) became more strict and more conscientiously observed, leading to a reduc-
tion of 33% in the number of contacts with the potential to transmit Covid-19.

For the last group of contacts, which cover things like leisure activities, gro-
cery shopping, etc., we have no reliable data by how much policies reduce them. In
addition, they are likely to be affected by social and psychological factors such as
pandemic fatigue and vacations. Because of this we estimate them like the infection
probabilities to fit the time series data. We use very few change points and tie them
to particular events such as policy announcements or particular holidays. Because
of the scarce data situation we cannot distinguish between a hygiene factor (such as
mask wearing) during meetings and physical distancing (such as virtual meetings
with friends).

Another potentially important factor for a contact to lead to an infection is the
seasonality (Carlson, Gomez, Bansal, and Ryan, 2020; Kühn, Abele, Mitra, Koslow,
Abedi, et al., 2020) There are two channels through which seasonality affects the
infectiousness of contacts. One has to do with the physical conditions like the tem-
perature and the humidity. The other has to do with where people meet. Especially
leisure contacts are more likely to take place outdoors and individuals are more
likely to have windows open when the weather is nicer. To capture both channels
we allow for other contacts to have a higher seasonality than our other contact mod-
els. Figure A.11 shows our seasonality factors.
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Figure A.�. Share of Workers with Work Contacts

Note: The figure shows the work mobility as reported by Google (����). We take this as a proxy of the share
of workers who are not in home o�ce, i.e. who still have physical work contacts. The figure interpolates over
weekends as we handle weekend e�ects through information on work on weekends in the German census
data we use. The figure shows the share aggregated over Germany as a whole. To capture the e�ect that local
policies, school vacations and public policies have on work contacts we use the data on the level of the federal
states to determine which workers go to work depending on the state they live in.

Figure A.��. Share of Pre-Pandemic Other Contacts Taking Place with Infection Potential

Note: All values are estimated. We try to use as little switching points as possible and tie them to political events
(such as lockdown announcements) unless changes are used to capture anticipation or pandemic fatigue (for
example we model an anticipation of the November lockdown and model lockdown fatigue in early March).
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Figure A.��. Seasonality by Type of Contact

Note: We model seasonality as a factor that reduces the probability of infection of all encounters. The factor
depends on the day and is calculated from a sinus shaped function with its maximum on January �st. Since
seasonality can a�ect the transmission both through physical conditions such as temperature and humidity as
well as through the numbers of contacts that take place outside we assume two seasonality factors. One for
other contacts which we expect to be strongly a�ected by fairer weather with a maximum reduction of ��� in
the infection probability. The other seasonality only makes contacts up to ��� less infectious and is applied
to household, work and school contacts.
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A.� Rapid Test Demand

In our model, there are five reasons why rapid tests are done:

(1) someone plans to have work contacts

(2) someone is an employee of an educational facility or a school pupil

(3) a household member has tested positive or developed symptoms

(4) someone has developed symptoms but has not received a PCR test

(5) someone plans to participate in a weekly non-work meeting

For work contacts, we know from the COSMO study (Betsch, Korn, Felgendreff,
Eitze, Schmid, et al. (2021), 20th/21st of April) that 60% of workers who receive
a test offer by their employer regularly use it. We assume this share to be time
constant.

In addition, there are some surveys that allow us to trace the expansion of em-
ployers who offer tests to their employees. Mid march, 20% of employers offered
tests to their employees (DIHK, 2021). In the second half of March, 23% of employ-
ees reported being offered weekly rapid tests by their employer (Ahlers, Lübker,
and Jung, 2021). This share increased to 60% until the first days of April Fernsehen
(2021).

Until mid April 70% of workers were expected to receive a weekly test offer
(ÄrzteZeitung, 2021). However, according to surveys conducted in mid April (Betsch
et al., 2021), less than two thirds of individuals with work contacts receive a test
offer. Starting on April 19th employers were required by law to provide two weekly
tests to their employees (Bundesanzeiger, 2021). We assume that compliance is
incomplete and only 80% of employers actually offer tests.

We assume that employees in educational facilities start getting tested in 2021
and that by March 1st 30% of them are tested weekly. The share increases to 90% for
the week before Easter. At that time both Bavaria (Bayrischer Rundfunk, 2021) and
Baden-Württemberg (Ministerium für Kultus, Jugend und Sport Baden Württem-
berg, 2021) were offering tests to teachers and North-Rhine Westphaliaπ≤ Deutsche
Presse Agentur (2021) and Lower Saxony (Sueddeutsche Zeitung, 2021b) were al-
ready testing students and tests for students and teachers were alreadymandatory in
Saxony (Sueddeutsche Zeitung, 2021a). After Easter we assume that 95% of teach-
ers get tested twice per week.

Tests for students started laterπ≥ (Ministerium für Kultus, Jugend und Sport
Baden Württemberg, 2021) so we assume that they only start in February and only
10% of students get tested by March 1st. Relying on the same sources as above we
approximate that by the week before Easter this share had increased to 40%.π�

12. https://www.land.nrw/de/pressemitteilung/umfassende-informationen-fuer-die-schulen-zu-corona-selbsttests-fuer-schuelerinnen
13. https://www.land.nrw/de/pressemitteilung/umfassende-informationen-fuer-die-schulen-zu-corona-selbsttests-fuer-schuelerinnen
14. https://www.land.nrw/de/pressemitteilung/umfassende-informationen-fuer-die-schulen-zu-corona-selbsttests-fuer-schuelerinnen,
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After Easter the share of students receiving twice weekly tests is set to 75%. This
as based on tests becoming mandatory becoming mandatory in Bavaria after Easter
breakπ� and on the 19th in Baden-Württembergπ�.

To limit our degrees of freedom, we only have one parameter that governs how
many individuals do a rapid test because of any of the private demand reasons (own
symptoms but no PCR test, planned weekly leisure meeting or a symptomatic or
positively tested household member).

We assume that there is no private rapid test demand until March when both
the citizens’ tests and rapid tests for lay people started to become available π� and
other access to rapid tests was very limited.

According to the COSMO study≤� 63% would have been willing to take a test
in the round of 23rd of February 2021 when an acquaintance would have tested
positive. Since this is only asking for willingness not actual behavior and the demand
when meeting with friends is very likely lower, we take this as the upper bound of
private rapid test demand which is reached on May 4th. To cover that many people
are likely to have sought and done their first rapid test before the Easter holidays to
meet friends or family, we let the share of individuals doing rapid tests in that time
increase more rapidly than before and after. By end of March 25% of individuals
would do a rapid test due to a private reason.

All shares of individuals who would take a rapid test if the conditions were met
can be seen in Figure A.12.

15. Bavariaπ�, in North-Rhine Westphalia on April 12thπ�, https://bit.ly/2QHilX3
18. https://bit.ly/3vuetaD, https://bit.ly/3vuetaD
19. https://bit.ly/3ehmGcj, https://bit.ly/3xJCIn8
20. https://bit.ly/2QSFAgR
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Figure A.��. Share of Individuals Doing a Rapid Test.

Note: Rapid test demand can be triggered by individuals planning to have education contacts, work contacts,
developing symptoms without access to a PCR test, having a household member with a positive test or symp-
toms. In each case whether a rapid test is done depends on how long it has been since the individual’s last
rapid test and her individual compliance parameters. As an example, take a worker in May. In that time workers
are encouraged to test themselves twice weekly but there is no general requirement to test themselves. If the
worker has not done a test within the last four days in our model she will demand a test if her (time-constant)
compliance parameter belongs to the upper ��� in the population.

Figure A.��. Share of Individuals With Rapid Tests

Note: The figure compares the share of individuals who have ever done a rapid test or done a rapid test within
the last week in our simulations to the shares reported in the COVID-�� Snapshot Monitoring Survey. The left
panel compares the share of individuals who have ever done a rapid test. The right panel compares the share
of individuals who have done a rapid test within the last seven days in our simulation compared to the share
reporting to have done at least weekly rapid tests in the last four weeks in the COSMO survey. Overall our
calibration of rapid tests are slightly conservative. The overall share is below that in the study. We fit the share
of weekly tests quite exactly. However, the study only covers adults while our share also includes children who
are tested very regularly when attending school.
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Appendix B: Detailed Model Description

B.� Literature Review

We build on two strands of literature: Recent extensions of the epidemiological SEIR
model and agent-based simulation models.

The traditional SEIR model is not fine-grained enough to model nuanced poli-
cies. This has motivated a large number of researchers to extend the standard model
to allow for more heterogeneity and flexibility. Examples are Grimm, Mengel, and
Schmidt (2020), Donsimoni, Glawion, Plachter, and Wälde (2020) and Acemoglu,
Chernozhukov, Werning, and Whinston (2020) who develop multi group SEIR mod-
els to analyze the effects of targeted lockdowns and Berger, Herkenhoff, and Mon-
gey (2020) who extend the SEIR model to analyze testing and conditional quaran-
tines. For amore comprehensive review see Avery, Bossert, Clark, Ellison, and Ellison
(2020). Others have used the results of a standard SEIR model as input for economic
models that estimate the cost of policies (e.g. Dorn, Khailaie, Stöckli, Binder, Lange,
et al. (2020)).

While the popularity of the SEIR model is mainly due to its simplicity, the exten-
sions are quite complex. It is unlikely that there will be a SEIR model that combines
all proposed extensions. Moreover, the extensions do not address other key issues:
The main parameter of the SEIR model, the basic reproduction number (R0), is not
policy-invariant. It is a composite of the number of contacts each person has and the
infection probability of the contacts. In fact, policy simulations are done by setting
R0 to a different value but it is hard to translate a real policy into the value of R0 it
will induce. In other words, SEIR models are not suited for evaluating the effect of
policies which have never been experienced before.

Another commonly used model class in epidemiology are agent-based simula-
tion models. In these models individuals are simulated as moving particles. Infec-
tions take place when two particles come closer than a certain contact radius (e.g.
Silva, Batista, Lima, Alves, Guimarães, et al. (2020) and Cuevas (2020)). While the
simulation approach makes it easy to incorporate heterogeneity in disease progres-
sion, it is hard to incorporate heterogeneity in meeting patterns. Moreover, policies
are modeled as changes in the contact radius or momentum equation of the parti-
cles. The translation from real policies to corresponding model parameters is a hard
task.

Hinch, Probert, Nurtay, Kendall, Wymatt, et al. (2020) is a recent extension
of the prototypical agent-based simulation model that replaces moving particles by
contact networks for households, work and random contacts. This model is similar
in spirit to ours but focuses on contact tracing rather than social distancing policies.

The above assessment of epidemiological models is not meant as a critique. We
are aware that these models were not designed to predict the effect of fine-grained
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social distancing policies in real time and are very well suited to their purpose. We
invite epidemiologists to provide feedback and collaborate to improve our model.

B.� Summary

To predict and quantify the effects of a wide variety of fine-grained social distancing
policies, vaccinations and rapid testing, we propose a different model structure. Our
model inherits many features from prototypical agent-based simulation models but
replaces the contacts betweenmoving particles by contacts between individuals who
work, go to school, live in a household and enjoy leisure activities.

The structure of the model is depicted in Figure 1a.
We distinguish between eight types of contact models which are all listed in

Figure 1a: households, recurrent and random work contacts, recurrent and random
leisure contacts, and nursery, preschool, and school contacts.

The number of contacts is translated into infections by a matching algorithm.
There are different matching algorithms for recurrent contacts (e.g. classmates, fam-
ily members) and non-recurrent contacts (e.g. clients, contacts in supermarkets).
All types of contacts can be assortative with respect to geographic and demographic
characteristics.

The infection probabilities of contacts vary with contact type, age of the sus-
ceptible person, and the virus strain of the infected person. Moreover, they follow
a seasonal pattern. The strength of the seasonality effect is higher for contacts that
are easy to be moved to an outside location in summer (such as leisure contacts)
and smaller for contacts that take place inside even in summer (e.g. work contacts).

Once a person is infected, the disease progresses in a fairly standard way which
is depicted in Figure 1b. Asymptomatic cases and cases with mild symptoms are
infectious for some time and recover eventually. Cases with severe symptoms addi-
tionally require hospitalization and lead to either recovery or death.

After rapid tests become available, people who work or go to school can receive
rapid tests there. Moreover, people can decide to make a rapid test if they develop
symptoms, have many planned contacts or observe cases in their contact network.
People who have a positive rapid test demand a confirmatory PCR test with a cer-
tain probability. Moreover, PCR tests can be demanded because of symptoms or
randomly.

This rich model of PCR and rapid tests leads to a share of detected cases that
varies over time and across age groups. It also allows to quantify the effect of changes
in testing policies on the dynamic of infections.

People who have symptoms, received a positive test, or had a risk contact can
reduce their number of contacts across all contact types endogenously. The extent
to which this is done is calibrated from survey data.

The model makes it very simple to translate policies into model quantities. For
example, school closures imply the complete suspension of school contacts. A strict
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lockdown implies shutting down work contacts of all people who are not employed
in a systemically relevant sector. It is also possible to havemore sophisticated policies
that condition the number of contacts on observable characteristics, risk contacts or
health states.

An important feature of the model is that the number of contacts an individual
has of each contact type can be calibrated from publicly available data (Mossong
et al., 2008). This in turn allows us to estimate policy-invariant infection probabili-
ties from time series of infection and death rates using the method of simulated mo-
ments (McFadden, 1989). Since the infection probabilities are time-invariant, data
collected since the beginning of the pandemic can be used for estimation. Moreover,
since we model the testing strategies that were in place at each point in time, we
can correct the estimates for the fact that not all infections are observed.

The model has a very modular structure and can easily be extended to distin-
guish more contact types, add more stages to the disease progression, implement
new policies or test demand models. The main bottleneck is not complexity or com-
putational cost but the availability of data to calibrate the additional model features.

B.� Modeling Numbers of Contacts

Consider a hypothetical population of 1,000 individuals in which 50 were infected
with a novel infectious disease. From this alone, it is impossible to say whether only
those 50 people had contact with an infectious person and the disease has an infec-
tion probability of 1 per contact or whether everyone met an infectious person but
the disease has an infection probability of only 5 percent per contact. SEIR models
do not distinguish contact frequency from the infectiousness of each contact and
combine the two in one parameter that is not invariant to social distancing policies.

To model social distancing policies, we need to disentangle the effects of the
number of contacts of each individual and the effect of policy-invariant infection
probabilities specific to each contact type. Since not all contacts are equally infec-
tious, we distinguish different contact types.

The number and type of contacts in our model can be easily extended. Each type
of contacts is described by a function that maps individual characteristics, health
states and the date into a number of planned contacts for each individual. This
allows to model a wide range of contact types.

In our empirical application we distinguish the following contact types that are
depicted in Figure 1a and can be further grouped in the categories household, work,
education and others.

types of contacts:

• Households: Each household member meets all other household members every
day.
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• Recurrent work contacts, capturing contacts with coworkers, repeating clients
and superiors. Some of these recurrent contacts take place on every workday,
others just once per week.

• Random work contacts: Working adults have contacts with randomly drawn
other people, which are assortative in geographical location and age.

• Schools: Each student meets all of his classmates every day. Class sizes are
calibrated to be representative for Germany and students have the same age.
Schools are closed on weekends and during vacations, which vary by states.
School classes also meet six teachers everyday and some of the teachers meet
each other.

• Preschools: Children who are at least three years old and younger than six may
attend preschool. Each group of nine children interacts with the same two adults
every day. The children in each group are of the same age. The remaining me-
chanics are similar to schools.

• Nurseries: Children younger than three years may attend a nursery and interact
with one adult. The age of the children varies within groups. The remaining
mechanics are similar to schools.

• Random other contacts: Contacts with randomly drawn other people, which
are assortative with respect to geographic location and and age group. This con-
tact type reflects contacts during leisure activities, grocery shopping, medical
appointments, etc..

• Recurrent other contacts representing contacts with friends neighbors or family
members who do not live in the same household. Some of these contacts happen
daily, others only once per week.

The number of random and recurrent contacts at the workplace, during leisure
activities and at home is calibrated with data provided by Mossong et al. (2008). For
details see Section B.3. In particular, we sample the number of contacts or group
sizes from empirical distributions that sometimes depend on age. It would also be
possible to use economic or other behavioral models to predict the number of con-
tacts.

B.� Reducing Numbers of Contacts via NPIs

Our model makes it very easy to model a wide range of NPIs, either in isolation or
simultaneously. This is important for two reasons: Firstly, it allows to predict and
quantify the effect of novel NPIs. Secondly, it allows to model the actually imple-
mented policy environment in great detail, which is necessary to use use the full
time series of infections and fatality rates to estimate the model parameters.≤π

21. See Avery et al. (2020) for an explanation why it can be harmful to use too long time series to
estimate simple SEIR type models.
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Instead of thinking of policies as completely replacing how many contacts peo-
ple have, it is often more helpful to think of them as adjusting the pre-pandemic
number of contacts. Therefore, we implement policies as a step that happens after
the number of contacts is calculated but before individuals are matched.

On an abstract level, a policy is a functions that modifies the number of contacts
of one contact type. This function can be random or deterministic. For example,
school closures simply set all school contacts to zero. A work from home mandate
leads to a share of workers staying home every day whereas those who cannot work
from home are unaffected. Hygiene measures at work randomly reduce the number
of infectious contacts for all workers who still go to work.

Policies can also interact. For example, school vacations are temporally reducing
school contacts to zero while at the same time increasing other contacts to account
for increased leisure activities and family visits during this time. This is important to
reproduce the finding that school vacations do not reduce infection numbers even
though schools lead to infections when open (Isphording, Lipfert, and Pestel, 2021).

The most complex policies are typically found in the education sector. Since the
beginning of 2021 schools have switched back and fourth between full closures,
split class approaches with alternating schedules for some or all age groups and
reopening while maintaining hygiene measures. On top of that there are different
policies for allowing young students whose parents work full time to attend school
even on days where they normally would not. For details on how we calibrate these
policies see Section A.5.

Importantly, policies can depend on the health states of participating individuals.
This allows to quarantine entire school classes if one student tested positive or to
implement official or private contact tracing.

For some policies the exact effect on each contact type is not easy to determine.
If this refers to a policy has been active during the estimation period, it is possible
to estimate such parameters by fitting the model to time series data of infection
rates. This is only possible if the policy was not active during the whole estimation
period and thus the infection probabilities can be identified separately. We do this
to account for hygiene measures at school and in the workplace that have been in
effect since November 2020.

Not all things that reduce contacts compared to the pre-pandemic level are
driven by NPIs. Therefore, we also model endogenous contact reductions that can
depend on the health state of individuals, known risk contacts or the local incidence
of infections. Examples are strong contact reductions for symptomatic individuals or
those who have a positive PCR or rapid tests or contact reductions when a houshold
member tested positive. The extent to which contacts are reduced can be calibrated
from surveys. For an application of our model showcasing private contact tracing
in the context of the Christmas holidays see Gabler, Raabe, Röhrl, and Gaudecker
(2020).
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B.� Matching Individuals

The empirical data described above only allows to estimate the number of contacts
each person has. In order to simulate transmissions of Covid-19, the numbers of
contacts has to be translated into actual meetings between people. This is achieved
by a matching algorithm:

As described in section B.3, some contact types are recurrent (i.e. the same
people meet regularly), others are non-recurrent (i.e. it would only be by accident
that two people meet twice). The matching process is different for recurrent and
non recurrent contact models.

Recurrent contacts are described by two components: 1) A set of time invariant
groups, such as school classes. The groups can be sampled from empirical data or
created by randomly matching simulated individuals into groups. 2) A deterministic
or random function that takes the value 0 (non-participating) and 1 (participating)
and can depend on the weekday, date and health state. This can be used to model
vacations, weekends or symptomatic people who stay home (see section B.4 for
details).

The matching process for recurrent contacts is then extremely simple: On each
simulated day, every person who does not stay home meets all other group members
who do not stay home. The assumption that all group members have contacts with
all other group members is not fully realistic, but a good approximation to reality,
especially in light of the suspected role of aerosol transmission for Covid-19 (An-
derson, Turnham, Griffin, and Clarke, 2020; Morawska, Tang, Bahnfleth, Bluyssen,
Boerstra, et al., 2020). Alternatively, the infection probability of recurrent contact
types can be interpreted as being the product of a true infection probability and the
probability that an actual contact takes place.

The matching in non-recurrent contact models is more difficult and imple-
mented in a two stage sampling procedure to allow for assortative matching. Cur-
rently most contact models are assortative with respect to age (it is more likely to
meet people from the same age group) and county (it is more likely to meet people
from the same county) but in principle any set of discrete variables can be used.
This set of variables that influence matching probabilities introduce a discrete parti-
tion of the population into groups. The first stage of the two stage sampling process
samples on the group level. The second stage on the individual level.

The algorithm works as follows: First we randomly draw a contact type and in-
dividual. For each contact of the drawn contact type that person has, we first draw
the group of the other person (first stage). Next, we calculate the probability to be
drawn for each member of the group, based on the number of remaining contacts,
i.e. people who have more remaining contacts are drawn with a higher probability.
The probabilities have to be re-calculated each time because with each matched con-
tact, the number of remaining contacts changes. We then draw the other individual,
determine whether an infection takes place and if so update the health state of the
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newly infected person. Finally, we reduce the number of remaining contacts of the
two matched individuals by one.

The recalculation of matching probabilities in the second stage is computation-
ally intensive because it requires summing up all remaining contacts in that group.
Using a two stage sampling process where the first stage probabilities remain con-
stant over time makes the matching computationally much more tractable because
the number of computations only increases quadratically in the size of the second
group and not quadratically in the size of the entire simulated population.

B.� Course of the Disease

The disease progression in the model is fairly standard. It is depicted in Figure 1b
and the values and source of the relevant parameters are describes in Section A.1.

First, infected individuals will become infectious after one to five days. Over-
all, about one third of people remain asymptomatic. The rest develop symptoms
about one to two days after they become infectious. Modeling asymptomatic and
pre-symptomatic cases is important because those people do not reduce their con-
tacts nor do they have an elevated probability to demand a test. Thus they can
potentially infect many other people (Donsimoni et al., 2020). The probability to
develop symptoms with Covid-19 is highly age dependent with 75% of children not
developing clinical symptoms (Davies et al., 2020).

A small share of symptomatic people will develop strong symptoms that require
intensive care. The exact share and time span is age-dependent. An age-dependent
share of intensive care unit (ICU) patients will die after spending up to 32 days in
intensive care. Moreover, if the ICU capacity was reached, all patients who require
intensive care but do not receive it die.

It would be easy to make the course of disease even more fine-grained. For ex-
ample, we could model people who require hospitalization but not intensive care.
So far we opted against that because only the intensive care capacities are feared to
become a bottleneck in Germany.

We allow the progression of the disease to be stochastic in two ways: Firstly,
state changes only occur with a certain probability (e.g. only a fraction of infected
individuals develops symptoms). Secondly, the number of periods for which an in-
dividual remains in a state is drawn randomly. The parameters that govern these
processes are taken from the literature ≤≤.

B.� Testing

Having a realistic model of PCR and rapid tests is crucial for two reasons: Firstly, only
via a testingmodel the simulated infections from themodel can bemade comparable

22. Detailed information on the calibration of the disease parameters is available as part of our
online documentation.
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to official case numbers. Secondly, individuals with undetected or not yet detected
infections are an important driver of the pandemic.

In principle, our modeling approach is flexible enough to incorporate mecha-
nistic test demand, allocation and processing models. However, there is not enough
data available to calibrate such a mechanistic model.

Therefore, we aim for a simpler model of PCR and rapid tests that can be cali-
brated with available data on test demand and availability and – nevertheless – can
produce a share of undetected cases that varies over time and across age groups and
agrees with other estimates over the time periods where they are available.

PCR tests are modeled since the beginning of the simulation and determine
whether a infections is officially recorded. Rapid tests are only added at the begin-
ning of 2021. Positive rapid tests do not enter official case numbers directly, but
most people with a positive rapid tests demand a confirmatory PCR test. However,
positive rapid tests can have a strong effect on the infection dynamics because they
trigger contact reductions and additional rapid tests.

During 2020 people can demand PCR tests either because they have symptoms
or randomly. The probability that a PCR test is performed in each of the two situ-
ations depends on the number of new infections and the number of available tests.
Thus, it varies strongly over time and is unknown.

To distribute the correct number of PCR tests among symptomatic and asymp-
tomatic infections without knowing explicit test demand probabilities, we use the
following approach: First, we calculate the total number of positive PCR tests by
multiplying the number of newly infected individuals with an estimate of the share
of detected cases from the Dunkelzifferradar project. ≤≥ Next, we determine how
many of these tests should go to symptomatic and asymptomatic individuals from
data by the Robert Koch Institut. Then, we sample the individuals to which those
tests are allocated from the pools of symptomatic and asyptomatic infected but not
yet tested individuals.

Sampling uniformly from the pool of symptomatic individuals ensures that age
groups who are more likely to develop symptoms are also more likely to receive tests.
Thus, the share of detected cases is much higher for the elderly than for children in
time periods where many tests are done because of symptoms which is in line with
the estimates from the literature.

At the beginning of 2021, two challenges arise: Firstly, the externally estimated
share of detected cases from the Dunkelzifferradar can no longer be used because it
is based on case fatality rates which drastically change due to vaccinations. Secondly,
rapid tests become available at a large scale.

We solve the first challenge by assuming that the share of detected cases would
have remained at the level it reached before Christmas if rapid tests had not become

23. The Dunkelzifferradar project publishes daily estimates of the dark figure of infections under
https://covid19.dunkelzifferradar.de/
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available. While this is only an approximation to reality, changes in the share of
detected cases that would have happened without rapid tests are very likely to be
small compared to the changes caused by rapid tests.

The second challenge is solved by mechanistic rapid test demand models for
the workplace, schools and by private individuals. The calibration of these models
is described in Section A.6. Figure 2d shows that the number of performed rapid
tests in the model fits the empirical data well (where empirical data is available).

In contrast to PCR tests, rapid tests are not perfect and can be falsely positive
or falsely negative. While the specificity of rapid tests is constant over time, their
sensitivity strongly depends on whether the tested individual is already infectious
and if so for how long he has been infectious. Before the onset of infectiousness the
sensitivity is very low (35%). On the first day of infectiousness it is much higher
(88%) but still lower than during the remaining infectious period (92%). After in-
fectiousness stops, the sensitivity drops to 50 %.

Modeling the diagnostic gap before and at the beginning of infectiousness is
very important to address concerns that rapid tests are too unreliable to serve as
screening devices.

We do not distinguish between self administered rapid tests and those that are
administered by medical personnel. While there were concerns that self adminis-
tered tests are less reliable, a recent study has found no basis for this concern.

While rapid tests do not directly enter official case numbers, many positively
tested individuals confirm their rapid test result with a PCR test.. Importantly, those
PCR tests are made in addition to the tests that would have been done otherwise.
Section C.2 discusses the effect of rapid tests on the share of detected cases.

B.� Seasonality

It is widely acknowledged that the transmission of SARS-CoV-2 is subject to seasonal
influences. Infectiousness is increased in winter when most contacts take place in-
side and the immune system is weakened by low levels of vitamin D, dry air and large
temperature swings. For a detailed overview of possible drivers see Kronfeld-Schor,
Stevenson, Nickbakhsh, Schernhammer, Dopico, et al. (2021).

We follow Kühn et al. (2020) and Gaven�iak, Monrad, Leech, Sharma, Minder-
mann, et al. (2021) in modeling seasonality in the transmission of SARS-CoV-2 as a
multiplicative factor on infection probabilities. The factor follows a sine curve that
reaches its maximum at January first and its minimum on June 30.

For simplicity we normalize the factor to reach one at its maximum. Thus the
formula of the seasonality factor is given by:

sk(t) = 1 + 0.5ksin
Å
⇡

Å
1
2
+

t
182.5

ãã
� 0.5k (B.1)

Where k is difference in the seasonality factor between peak infectiousness and
lowest infectiousness.
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The subscript k is needed because the strength of the seasonality effect differs
across contact types: Work, household and school contacts are likely to take place in-
side even in summer. Thus they are only subject to seasonality due to factors that in-
fluence the immune system. Other contacts (for example meeting friends and while
doing leisure activities) are mostly happening outside in the summer. Therefore,
transmission via those contacts should have a stronger seasonal pattern.

We calibrate kappastrong to 0.42 and kappaweak to 0.21. This is in line with
Gaven�iak et al. (2021) and Kühn et al. (2020).

B.� Initial Conditions

Consider a situation where you want to start a simulation with the beginning set
amidst the pandemic. It means that several thousands of individuals should already
have recovered from the disease, be infectious, symptomatic or in intensive care
at the start of your simulation. Additionally, the sample of infectious people who
will determine the course of the pandemic in the following periods is likely not
representative of the whole population because of differences in behavior (number
of contacts, assortativity), past policies (school closures), etc.. The distribution of
courses of diseases in the population at the begin of the simulation is called initial
conditions.

To come up with realistic initial conditions, we match reported infections from
official data to simulated individuals by available characteristics like age and geo-
graphic information. The matching must be done for each day of a longer time frame
like a month to have individuals with possible health states. Then, health statuses
evolve until the begin of the simulation period without simulating infections by con-
tacts. We also correct reported infections for a reporting lag and scale them up to
arrive at the true number of infections.

B.�� Estimated Parameters

We estimate parameters that cannot be calibrated outside of the model with the
method of simulated moments (McFadden, 1989) by minimizing the distance be-
tween simulated and observed infection rates and fatality rates (disaggregated by
region and age groups). Since our model includes a lot of randomness, we average
simulated infection rates over several model runs.

We fit our model to data for Germany from October 2020 until June 2021. We
do not use earlier periods for three reasons. Firstly, in the beginning PCR tests were
highly limited and therefore it would be difficult to find good initial conditions for
our simulations. In addition during the summer the case numbers were extremely
low. This could lead to the epidemic going extinct in our simulation. Additionally,
our model does not include international travel or other imports of cases. These
would be important but difficult to model during the summer months.
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To avoid over-fitting and simplify the numerical optimization problem, we only
allow for five different infection probabilities: 1) for contacts in schools 2) contacts
in preschools and nurseries. 3) for work contacts. 4) for households. 5) for other
contacts.

We also estimate a parameter that reflects the effect of hygiene measures after
November 2020 at work and in educational facilities. This parameter reduces infec-
tiousness of contacts by one third. In total those are 10 parameters. The breakpoints
the contact reduction changes are not determined from data but from announce-
ments of policy changes. Moreover, we constrain the estimated contact reduction
to follow the shape of the stringency index. The resulting contact reduction can be
seen in Figure A.10

Finally we estimate one parameter that governs the introduction of the B.1.1.7
virus variant in January 2021. This parameter implies that at the end of January
roughly one case per 100 000 individuals per day is imported. After January we do
not model imported cases of B.1.1.7 anymore because they are negligible compared
to the endogenous growth of that virus variant.

B.�� Shapley Values

We decompose the effects of different NPIs and seasonality on the infection rates
with Shapley values. Shapley values (Shapley, 2016) are a concept in game theory
to divide payoffs between a coalition of players. It allows to assign a single value
to the contribution of an NPI or seasonality which takes into account substitutional
and complementary effects with other factors.

More formally, define a coalitional game with N players and a super-additive
function ⌫which maps subsets of N to the real numbers. The function ⌫ is also called
the characteristic function and assigns a value to a coalition. Then, the Shapley value
� for player i is

�i(⌫) =
1
|N|!
X

S✓N\{i}
|S|!(|N| � |S| � 1)!(⌫(S [ {i}) � ⌫(S))

The last term (⌫(S[ {i})� ⌫(S)) is the marginal contribution of player i minus
the coalition without player i. Then, compute the sum of marginal contributions
over all subsets S of N which do not include player i. Each marginal contribution
has to be multiplied by all combinations of other players in S which precede i and
all possible combinations of remaining players which follow player i in the coalition.
To arrive at the Shapley value for player i, divide the sum by the total number of
combinations.

The Shapley value has some properties.

Efficiency The sum of Shapley values is equal to the value of a coalition formed by
all players.
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Symmetry The Shapley does not depend on the label of a player but only on its
position in the characteristic function.

Linearity The Shapley value depends linearly on the values from the characteristic
function ⌫.

Dummy Axiom The Shapley value of a player who contributes nothing to any coali-
tion is 0.

To produce Figure 3c and Figure 3d, we calculate the Shapley values of each
factor in the comparison on the cumulative number of saved infections between the
main scenario and the scenario without any of the factors for every day. Then, we
divide up the saved infections on a particular day according to the Shapley values
for the same day which yields the daily saved infections for each factor.

Appendix C: Additional Results

C.� Simulated vs. Empirical Data

This compares simulated data from our model with empirical data from Germany.
We look at observed infections, fatality rates, the spread of the B117 mutation, vacci-
nations and rapid test demands. Where available we do not only look at aggregated
statistics but also analyze the model fit for age groups and federal states.

Figure C.�. Fit Over the Full Simulation Time Frame with Single Simulation Runs

Note: The figure shows the weekly incidence rates per ���,��� people for the reported simulated infections
rates. The mean infection rate is the thick blue line. Single simulation runs are plotted in lighter and thinner
lines. The o�cial case numbers as reported by the Robert-Koch-Institut are plotted in black. The fit is overall
very good. The higher the mean incidence and the stronger the growth the more variance there is between
simulation runs. We averaged over �� simulation runs.
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Figure C.�. Development of the Total Infections Over the Full Simulation Time Frame with Single
Simulation Runs

Note: The figure shows the true weekly incidence rates per ���,��� people, including undetected cases. The
mean infection rate is the thick blue line. Single simulation runs are plotted in lighter and thinner lines. The
higher the mean incidence and the stronger the growth the more variance there is between simulation runs.
We averaged over �� simulation runs.
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Figure C.�. Simulated and Empirical Infections by Age Group

Note: The figure shows the weekly incidence rates per ���,��� people for the reported versus the simulated
infections rates for di�erent age groups. The age group of individuals above �� needs to be interpreted with
caution because our synthetic population only includes private households, i.e. nursing homes are not repre-
sented in our model. They accounted for many cases and deaths in the winter of ���� and many �� to ���
year olds live in these facilities. However, the o�cial data does not contain information on whether cases were
nursing home inhabitants or not. We averaged over �� simulation runs.
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Figure C.�. Simulated and Empirical Infections by Federal State

Note: The figure shows the weekly incidence rates per ���,��� people for the reported versus the simulated
infections rates for di�erent federal states. We averaged over �� simulation runs.
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Figure C.�. Share of Vaccinated Individuals

Note: The figure shows the rate of individuals that are vaccinated in our synthetic population versus in the
general German population. Note that we excluded the vaccinations that were given to nursing homes, ap-
proximately the first percent of the German population that were vaccinated. Overall, our model covers a time
frame that goes from zero vaccinated individuals to a state where over ��� of the population are vaccinated.
Our vaccinations work imperfectly but we do not model di�erent vaccines nor do we distinguish between first
and second shot.
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Figure C.�. E�ective Replication Number Rt in the Model and as Reported by the Robert-Koch-
Institute

Note: The figure shows the e�ective replication number (Rt) as reported by the RKI and as calculated in our
model. The Rt gives the average number of new infections caused by one infected individual. The Rt in our
model broadly follows the Rt reported by the RKI. Two trends stand out. Firstly, the RKI’s Rt drops faster in
November. This could be due to a change in the testing policy that focused tests on the elderly when the
second wave hit Germany and led to a decline in the overall share of detected cases. The second di�erence is
from mid February to mid March where the RKI’s reported Rt increased more rapidly than that in our model.
Here the opposite e�ect can be expected. During this time rapid tests increased strongly leading to more cases
being detected. In the short term this leads an Rt estimation that is based on detected cases to overestimate
the replication number.

Figure C.�. Share of B.�.�.� in the Model and as Reported by the Robert-Koch-Institute

Note: The figure shows the share of B.�.�.� as reported by the RKI and as calculated in our model. We only
introduce a few cases over the cause of January. From then B.�.�.� takes over endogenously through its in-
creased infectiousness. We model no other features of B.�.�.�. At most we introduce �.�� cases per ���,���
inhabitants.
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C.� Share of Cases that are Detected

Figure C.�. Share of Detected Cases by Age Group

Note: The figure shows the share of cases that is reported as an o�cial case via PCR confirmation. We use the
overall share of known cases that was estimated through the case fatality ratio by the Dunkelzi�erradar for all
of ���� and then assume it to be constant as vaccinations of the elderly strongly a�ect the case fatality rate
which the project does not account for. To get from an overall share of detected cases to the share of cases
that is detected in each age group we use that asymptomatic cases are much less likely to be detected. As our
model covers age specific asymptomatic rates this endogenously leads to group specific share known cases
that verify that infections in younger age groups are under-detected. Starting in ���� in addition to the overall
numbers of detected cases through symptoms and the share known cases, cases are also detected through
confirmation of positive rapid tests. This leads to an increase in the share of known cases for all age groups
but in particular for the younger age groups that are covered extensively with rapid tests through the rapid
test requirement for participating in school.

It’s noteworthy that the share of detected cases increases rapidly in May for the
five to fourteen year olds. This is a direct result of the mandatory tests in school.

C.� Rapid Tests
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(a) Share of the Population Demanding a Rapid
Test in an Education Setting

(b) Share of the Population Demanding a Rapid
Test due to Work

(c) Share of the Population Demanding a Rapid
Test for Private Reasons

Figure C.�. Rapid Test Demand by Reason

Note: Rapid tests in the education setting are demanded by teachers (nursery, preschool and school) as well
as school pupils. After Easter the required frequency of tests is increased from once per week to twice per
week. Work rapid tests are demanded by individuals that still have work contacts, i.e. do not work from home.
The share of employers o�ering rapid tests increases over the time frame and the frequency of testing is also
increased. Tests are demanded by individuals for one of three private reasons: having developed symptoms
without access to a PCR test, having a household member that has tested positive or developed symptoms or
having planned weekly meeting with friends.
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(a) Share of Rapid Tests in the Educational Set-
ting Demanded by Infected Individuals

(b) Share of Work Rapid Tests Demanded by In-
fected Individuals

(c) Share of Private Rapid Tests Demanded by
Infected Individuals

Figure C.��. Share of Rapid Tests Demanded by Infected Individuals by Reason

Note: Rapid tests in the education setting are demanded by teachers (nursery, preschool and school) as well
as school pupils. After Easter the required frequency of tests is increased from once per week to twice per
week. Work rapid tests are demanded by individuals that still have work contacts, i.e. do not work from home.
The share of employers o�ering rapid tests increases over the time frame and the frequency of testing is also
increased. Tests are demanded by individuals for one of three private reasons: having developed symptoms
without access to a PCR test, having a household member that has tested positive or developed symptoms or
having planned weekly meeting with friends. Private rapid tests have a much higher share of infected individ-
uals because they are mostly triggered by events that make an infection likely. Remember however, that one
reason is that a household member has a positive rapid test. This means that work and education rapid tests
which have a low rate of infected individuals trigger more targeted rapid tests through the household demand.
They also have a much higher volume of tests. As can be seen in the decomposition (Figure �d every category
of tests is important for the overall e�ect. It appears that the combination of wide testing to find infection
chains plus targeted tests to break those chains taking together is important.
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C.� Scenarios

Figure C.��. The E�ect of Policies on Observed and Unobserved Cases

Note: . . .

Figure C.��. The E�ect of Di�erent School Scenarios on Observed and Unobserved Cases
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