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Conventional wisdom suggests that marginal damages from particulate matter pollution 

are high in less-developed countries because they are highly polluted. Using administrative 

data on the universe of births and deaths, we explore birthweight and mortality effects 

of gestational particulate matter exposure in high-pollution yet high-income Hong Kong. 

The marginal effects of particulates on birthweight are large but we fail to detect an effect 

on neonatal mortality. We interpret our stark mortality results in a comparative analysis of 

pollution-mortality relationships across studies. We provide early evidence that marginal 

mortality damages from pollution are high in less-developed countries because they are less 

developed, not because they are more polluted.
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1 Introduction

Between 4 and 9 million premature deaths are attributed to pollution each year, twice as

many as those from war, all other forms of violence, HIV/AIDS, tuberculosis, and malaria

combined (Ladrigan et al., 2018). Particulate matter air pollution is associated with high

economic damages, having deleterious effects on infant mortality, life expectancy, physical

health, mental health, and health costs (Dockery et al., 1993; Pope et al., 2002; Chay and

Greenstone, 2003b; Pope and Dockery, 2006; Bishop et al., 2019; Deryugina et al., 2019).

Particulate matter has been shown to affect earnings, property values, criminal behavior,

labor productivity, and educational attainment (Chay and Greenstone, 2005; Graff Zivin

and Neidell, 2012; Chang et al., 2016; Ebenstein et al., 2016; Isen et al., 2017; Herrnstadt et

al., 2019; Colmer and Voorheis, 2020).

Conventional wisdom, and a growing literature, suggest that marginal health damages

from pollutants like particulate matter are high in developing countries.1 However, the mech-

anisms are not well understood. High marginal damages in developing countries could be

explained by higher levels of pollution if damage functions are convex. It is well-documented

that current particulate concentrations are many times higher in urban areas of India, China,

Pakistan, Ghana, etc. than in urban areas of North America and Europe (Currie and Vogl,

2013; Greenstone and Hanna, 2014; Pullabhotla, 2019; Bombardini and Li, 2020). Under this

logic, cost-effectively reducing marginal damages involves reducing pollution levels. Another

possibility is that high marginal damages in developing countries may be due to the lim-

ited ability of exposed populations to manage the consequences of pollution. Differences in

institutional and economic conditions could lead to different marginal pollution damages, re-

gardless of the shape of the damage function. Following this logic, efforts to reduce marginal

damages by directly reducing pollution may be less cost effective. Incremental investments

1See, for example, Bharadwaj and Eberhard (2008); Jayachandran (2009); Chen et al. (2013); Greenstone
and Hanna (2014); Arceo et al. (2016); Cesur et al. (2016); He et al. (2016); Barwick et al. (2018); Heft-Neal
et al. (2018); Chang et al. (2019); Heft-Neal et al. (2019); Pullabhotla (2019); Bombardini and Li (2020);
Fan et al. (2020); He et al. (2020); Adhvaryu et al. (Forthcoming).
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in population health and human capital, health care, and other infrastructure may be more

cost-effective.

Here, we inform the debate over the channels explaining lower marginal particulate matter

damages in developed countries by re-examining the relationship between gestational PM

exposure and infant health using administrative data on the universe of births and deaths in

high particulate pollution, high income Hong Kong between 2001 and 2014. Existing analyses

of marginal PM-health relationships come from high income, low particulate matter settings

(i.e. developed nations) or low income, high particulate matter settings (i.e. developing

nations). By contrast, Hong Kong offers the unusual combination of both high pollution and

high income. Hong Kong’s particulate matter levels are close to those in mainland China,

India, and Pakistan yet its per capita income levels compare to the United States. Hong

Kong’s population has excellent baseline health and universal access to free high-quality

health care. Life expectancy ranks in the top-10 worldwide.

We identify the effects of endogenous particulate matter exposure on birthweight, low

birthweight, and neonatal mortality by exploiting plausibly exogenous variation in thermal

inversions (Arceo et al., 2016; Chen et al., 2017, 2018). We find that higher gestational

particulate matter exposure is associated with significant reductions in birthweight and sig-

nificant increases in low birthweight. These marginal PM-birthweight effects are substantial;

a 10 µg/m3 increase in particulate matter is associated with the equivalent of the estimated

effects of smoking 15 cigarettes per day during pregnancy (Currie et al., 2009). Birthweight

outcomes are important indicators of health that have been shown to have persistent effects

on later life (Almond et al., 2005; Currie and Moretti, 2007; Almond et al., 2010; Bharadwaj

et al., 2013; Isen et al., 2017; Colmer and Voorheis, 2020). By contrast, we fail to detect

significant marginal effects of gestational PM on neonatal mortality. The marginal effects of

PM on neonatal mortality are noisily estimated but small both in absolute terms and relative

to the existing literature. We fail to reject the null hypothesis that there is no marginal effect

on neonatal mortality in Hong Kong in all specifications.
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One interpretation of our Hong Kong results is that the location’s wealth and health may

not strongly influence marginal PM-birthweight relationships but may play an important role

in mitigating marginal PM-mortality relationships. Hong Kong has excellent healthcare yet

marginal changes in particulate matter have large effects on birthweight. Since interventions

targeting child health are challenging prior to birth, birthweight effects may be less respon-

sive to health and other institutions. Hong Kong has high particulate matter concentrations

yet marginal changes in PM have small effects on neonatal mortality.2 When PM concentra-

tions change, Hong Kong’s wealth, health, and institutions may facilitate post-natal health

interventions that buffer against effects on neonatal mortality.

To explore this latter conjecture, we combine data from multiple internally valid studies

- including our own - to examine and contextualize marginal PM-mortality damage esti-

mates across the literature. This comparative exercise sacrifices precise identification in

order to inform unanswered broad economic questions (Akerlof, 2020). We standardize and

transparently quantify marginal PM-mortality effects across contexts. We focus on policy-

relevant absolute marginal PM-mortality effects. We directly examine macro-level correlates

of marginal PM-mortality damages. We find that marginal PM-mortality effects across lo-

cations are sharply decreasing in baseline health and decreasing in GDP per capita. By

contrast, we find that marginal mortality effects are largely unrelated to a location’s base-

line mean particulate matter concentrations. Although conventional wisdom suggests that

marginal particulate matter damages are high in less-developed countries because they are

highly polluted, we provide early evidence that marginal PM-mortality damages are high in

less-developed countries because they are less developed.

We make three contributions. First, we provide new evidence on the marginal damages

of particulate matter pollution in a unique context. The existing literature provides lim-

ited evidence on the marginal effects of pollution on birthweight and low birthweight in a

2An alternative interpretation is that the dose-response function is concave (Goodkind et al., 2014; Pope
et al., 2016). However, as described further elsewhere, neither our large birthweight effects in Hong Kong nor
the evidence from our cross-institutional comparative analysis are consistent with a concave dose-response
function.
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high-particulate setting, as related studies typically focus on the low-pollution settings of the

developed world for data availability reasons. Although an emerging literature does explore

the effects of pollution on neonatal mortality in high-particulate settings, most other studies

do so using data from low-income developing countries. Second, our comparative exercise al-

lows us to explore correlates of the marginal particulate-mortality relationship across diverse

settings. Existing studies take disparate approaches to quantifying estimates, make rela-

tively few cross-institutional comparisons and provide limited detail on how comparisons are

constructed, and frequently interpret results in relative percentage terms. Our standardized

approach focusing on absolute marginal PM-mortality effects addresses the concern that a

given percentage reduction in neonatal mortality means something different in countries with

vastly different baseline conditions. Third, the free, high quality healthcare system in Hong

Kong facilitates access to excellent data for an entire population. Free universal healthcare

offers particularly compelling data on vulnerable populations often undersampled in other

contexts.

Our paper is most closely related to recent work by Cheung et al. (2020). Cheung et

al. (2020) exploit transboundary pollution to examine the effects of pollution on mortality

across the age distribution in Hong Kong, with a focus on cardio-respiratory mortality.

Cheung et al. (2020) explain trends in the effects of air pollution over time in Hong Kong,

noting significant declines in marginal mortality damages after the SARS epidemic and in

neighborhoods that do not have a hospital with accident and emergency services. Our paper

differs in several ways. First, outcomes differ. We focus on birthweight, low birthweight,

and neonatal mortality. Infant health and mortality are of interest because policy makers

focus on protecting vulnerable populations and because infant outcomes have implications

for long-term health and human capital development (Currie, 2011). Second, identification

strategies differ. Our paper exploits thermal inversions for identification. Studying infants

also has advantages for identification since causal relationships between pollution exposure

and outcomes occur over short time horizons (Currie et al., 2009). Third, economic questions
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differ. Our broad aim is to develop insights for the economic question of explaining differences

in marginal pollution damages across economic circumstances.

2 Conceptual Framework

To fix ideas, following Hsiang et al. (2019) , we conceptualize marginal damages as a function

of exposure, e, and a vector of attributes, x.3 Attributes can be considered a measure of

an individual’s vulnerability to damages from pollution. Vulnerability is defined as the

rate at which exposure to pollution generates damages given economic and environmental

conditions. For example, population differences in access to health care, housing quality,

baseline health, education, etc. could all lead to differences in the translation of exposure,

e, into economic damages.

The key feature of this framework is that exposure is only converted into economic

costs through a function that describes the vulnerability of an individual or population.

Consequently, higher marginal damages in developing countries – as observed in the existing

literature – may be attributable to higher e, different x’s, or some combination.

Even in a stylized model there are competing explanations for the same empirical obser-

vation. For illustration, we describe limiting cases. Differences in marginal damages may be

lower in developed countries because levels of pollution are different. If, for example, the dose

response function is convex with respect to exposure, e, then two populations facing different

levels of pollution will experience different marginal damages, even if they are identical with

regards to all other factors that could influence vulnerability, x:

∂2Damages

∂e2
=

∂2f(e, x)

∂e2
> 0

Alternatively, differences in marginal damages may arise from differences in the factors

that translate pollution exposure into marginal damages. For example, two populations may

3We do not claim new modeling contributions. This section simply serves to highlight potential mecha-
nisms influencing marginal pollution damages.
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be exposed to the same level of pollution but have differential access to high quality health

care, xj. Assuming that access to high quality health care mitigates the marginal damages

associated with pollution, populations with restricted access to health care will experience

greater marginal damages, holding all else constant.

∂2Damages

∂e∂xj
=

∂2f(e, xj)

∂e∂xj
< 0

3 Data

Administrative Birth and Death Records We obtain birth and death records between

January 1st 2001 and December 31st 2014 from the Census and Statistics department of Hong

Kong. The birth records data set provides detailed information on 942,687 births, including

data on birth characteristics (e.g., date of birth, sex, type of birth, hospital, etc.), parental

characteristics (e.g., mother’s and father’s age, occupation, education, etc.), as well as the

location of the mother’s residence at the Tertiary-Planning-Unit (TPU) level.4 We retain all

birth records from mothers who report Hong Kong as their residence. We retain observations

with complete information on sex, birthweight, exact date of birth, and location of birth.5

Our mortality records data set includes date of death, age of death, and cause of death.

In our final analysis sample, we focus on neonatal deaths, deaths that occur in the first 28

days. 90% of infant deaths in our sample occur in the first 15 days of life. Moreover, age

measured in days is not available beyond 28 days. For each neonatal death, we match the

death record to an individual birth record using the date of birth, date of death, age at death,

sex, and TPU of residence. A practical challenge is that our datasets do not provide common

unique identifiers across birth and death records. For cases in which there are multiple births

and deaths within a given date of birth, date of death, sex and TPU cell, we have to use

4In 2011 there were 289 TPUs in Hong Kong and 7.072 million residents, resulting in an average popu-
lation density of 24,470 people per TPU. The average area each TPU is 3.83km2, or roughly a circle with a
1.1km radius.

5Transient births represent roughly one-third of births. Most of these are babies born to parents from
mainland China. Only 0.05% of birth records are dropped due to missing data.
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probabilistic matching. For example, if there are 2 deaths matched to 2 birth cells then

a probability of 1 is assigned. However, if there is only 1 death matched to 2 birth cells

then a probability of 0.5 is assigned. Probabilistic matching is common when working with

administrative data when unique identifiers are not available (Wagner and Layne, 2014).6

Panel A of Table 1 presents descriptive statistics of our main outcome variables of interest.

We observe that the neonatal mortality rate is very low in Hong Kong (1.150 deaths/1,000

live births), around a quarter of that in the US during the same period. Average birthweight

(3,130g) is slightly lower than the US average, but similar to the birthweights of individuals

born of Asian or Chinese heritage in the US. 6.4% of the births in our sample are low

birthweight (< 2,500g).

In Panels (a), (b), and (c) of Figure 1 we see that there is some seasonality in our

birthweight and mortality outcomes. On average, children born in the summer are lower

birthweight, more likely to be classified as low birthweight, and less likely to survive the first

28 days. In our empirical specification, discussed below, we control for this seasonality using

TPU by month-of-year fixed effects.

In Panels (a), (b), and (c) of Figure 2 we plot outcomes of interest throughout the

sample, starting in January 2001 and ending in December 2014. We observe that average

birthweight/low birthweight are decreasing/increasing over time.7 We do not see an obvious

trend in the neonatal mortality rate. In our empirical specification, discussed below, we

control for aggregate and local trends using TPU by year fixed effects.

Pollution Data We collect hourly pollution concentrations for several criteria pollutants

from the Environmental Protection Department of Hong Kong. First, we assign daily pol-

lution levels to each TPU, interpolating the station-level data to population-weighted TPU-

centroids using inverse distance weighting applied to all pollution monitors within a 10km

654% of neonatal deaths are assigned a probability of 1. As long as any measurement error is orthogonal
to pollution exposure our estimate of the treatment effect will be unbiased and consistent. Our results are
not sensitive to dropping probabilistic deaths (Table B5).

7In appendix A we provide suggestive evidence that these trends are associated with increasing maternal
age and more frequent multiple births.
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buffer.8 Second, we construct individual level gestational exposure by mapping pollution at

the TPU-level to each individual birth based on mother’s TPU of residence and the child’s

date-of-birth. We define gestational exposure to be the average of the daily mean of pollution

exposure over the 270 days prior to the date-of-birth.9

In our main analysis, we focus on PM10 exposure due to very high particulate levels for

a high-income setting (Table 1).10 During our study period, average gestational exposure to

PM10 levels in Hong Kong was 54µg/m3/day. The minimum average gestational exposure

to PM10 in our sample was 30µg/m3/day and the maximum average gestational exposure

was 94µg/m3/day. For perspective, World Health Organization guidelines suggest that the

annual average of PM10 should not exceed 20µg/m3/day.

In Panel (d) of Figure 1 we see that there is some seasonality in PM10 exposure. Children

born in the summer are, on average, exposed to higher levels of PM10 during gestation. In

Panel (d) of Figure 2 we plot longer-run trends throughout the sample, starting in January

2001 and ending in December 2014. We observe that average gestational exposure to PM10

has fallen over time.

Weather Data We collect weather data from two sources. First, we observe daily data

on surface-level temperature, precipitation, humidity, and air pressure from Hong Kong Ob-

servatory weather monitors. Second, we collect data on atmospheric air temperatures from

the ERA-Interim Reanalysis archive. Reanalysis data combines observations from ground

stations and remote-sensing products with global climate models to provide a consistent best

estimate of atmospheric parameters over time and space (Auffhammer et al., 2013). The data

8If during gestation a mother lives further than 10km from a monitoring station, we do not construct
a measure of pollution exposure for that pregnancy. Results are robust to using alternative distance radii
(Table B8).

9It is possible that, during a mother’s gestation period, there are days without valid readings for some
pollutants. In our analysis sample 96% of births have valid readings for all days, and 99.83% of births have
valid readings for at least 266 days.

10PM10 includes all suspended solids and liquids that are 10 micrometers in diameter or less. The largest
sources of PM10 in Hong Kong are traffic and electricity generation. Although PM10 is consistently reported
over the sample period and facilitates comparisons with an existing literature, we later consider robustness
to PM2.5.
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are provided every 6 hours on a 0.12◦ × 0.12◦ geographic grid (13 × 13 km) at two fixed

atmospheric levels (111 and 766 meters). We aggregate reanalysis data to the daily level. We

construct measures of individual exposure to weather and thermal inversions using the same

procedures applied to pollution. Our final weather data contain measures of temperature,

precipitation, humidity, air pressure, and thermal inversion exposure. Descriptive statistics

are presented in Panel D of Table 1.

Final Sample Combining all data sources, we obtain a final analysis sample of 532,726

births between 2001 and 2014. The unit of observation is a birth. Each birth is matched to

weather exposure, individual mortality information, and gestational pollution exposure.11

4 Research Design

Our objective is to estimate the effect of gestational particulate matter exposure, Pijt, on

birthweight, the probability of low birthweight, and the probability of neonatal mortality

and for individual i born in location j at time t. For outcomes, Yijt,

Yijt = α + βPijt + ǫijt. (1)

To identify the marginal PM-mortality and marginal PM-birthweight effects, β, it must

be the case that particulate matter is orthogonal to ǫijt. The main threat to identification is

omitted variable bias. For example, exposure to PM10 and birth outcomes may be correlated

via changes over time across years and seasonal variation within years. Gestational PM10

exposure and birth outcomes (conditional on PM10 exposure) may be seasonal. Gestational

PM10 and birth outcomes (conditional on PM10 exposure) may be correlated with local

economic activity. Additionally, exposure to PM10 and birth outcomes may be correlated

with avoidance behavior. In the long run, people choose where to live and so exposure to

11Appendix C considers contemporaneous exposure.
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PM10 and birth outcomes may be associated with residential sorting. Opportunities to avoid

PM10 damages through investments in air purifiers and HEPA filters, or information about

PM10 damages, may be correlated with birth outcomes.

One approach to address omitted variable bias is to control for covariates and/or fixed

effects. We estimate the relationship between birth outcomes and PM10 exposure using the

following specification,

Yijmt = α + βPijmt + γXijmt + δjt + φjm + ǫijmt. (2)

δjt is a vector of TPU-by-year fixed effects that control for time-invariant characteristics

at the local level as well as annual shocks that are common across everyone within a TPU

such as changes in economic conditions. TPU-by-year fixed effects address location-specific

equilibrium endogenous exposure due to residential sorting or defensive expenditures on the

basis of longer-term pollution averages or year-on-year changes in pollution over time. We

also include TPU-by-month-of-year, φjm, fixed effects that control for TPU-specific season-

ality in births, deaths, and disease transmission that may also be correlated with PM10

exposure. Xijmt is a vector of controls that includes gestational surface weather conditions,

parental characteristics, and birth characteristics.

An Instrumental Variables Approach The approach in equation 2 addresses several

threats to identification but cannot fully address other concerns, such as measurement error

and some forms of short-run individual-level avoidance behavior.12 We employ an instru-

mental variable strategy. Our instrumental variable approach exploits a meteorological phe-

nomenon known as a thermal inversion, which arises when a mass of hot air settles above

a mass of cooler air. This instrument has been popularized in recent papers (Arceo et al.,

2016; Hicks et al., 2016; Chen et al., 2017, 2018). Under normal conditions air temperature

12It is likely that the population is at least loosely aware of pollution levels (Moretti and Neidell, 2011;
Chang et al., 2018; Zhang and Mu, 2018; Barwick et al., 2019). In Appendix D we provide evidence that a
10 µg/m3 increase in PM10 on the day of professional football (soccer) matches in Hong Kong is associated
with a 17-20% reduction in attendance.
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in the troposphere (the lowest region of the atmosphere) falls with altitude at a rate of 6.5◦C

per 1,000 meters. Under these conditions emissions are released into the atmosphere, then

naturally rise and dissipate. However, in the case of a thermal inversion air temperature

in the troposphere can rise with altitude. Under these circumstances a ceiling effect can

trap pollution at the ground level. It is only after the sun’s energy eventually equates the

non-standard arrangement of hot and cold air masses that the thermal inversion dissipates

and the concentrated pollutants are able to rise out of the lower atmosphere as normal.

To construct our instrument for a given day and location, we codify an onset of a thermal

inversion if the difference in average daily temperature between the two atmospheric levels

measured in the reanalysis data is negative, i.e, temp111m− temp766m < 0. We then calculate

the number of thermal inversions during the 270 days of gestation.

Exogeneity Thermal inversions are not caused by pollution or economic factors. They are

more likely to occur on clear nights when the ground and the air in touch with the ground

are cooled faster than the air layers above (Arceo et al., 2016). As such, they are more

frequent in winter – confirmed in our setting – as cold ground temperatures cause the air

that is close to the ground to remain at a lower temperature than the air above ground. We

control for a vector of season fixed effects (month-of-year × TPU in our main specification),

so we address the seasonality of thermal inversions. Conditional on seasonality controls, the

incidence of thermal inversions is plausibly exogenous.

Relevance Other studies have shown that thermal inversions have substantial effects on

particulate matter, which tends to be released during morning hours when inversions typi-

cally occur (Kukkonen et al., 2005; Malek et al., 2006; Arceo et al., 2016). In the context of

Hong Kong, Lee and Hills (2003) study seven serious pollution episodes between 1996 and

2002, finding that daily average PM10 levels exceeding 150µg/m3 were all associated with

the existence of thermal inversions.

We directly test the relevance of thermal inversions as a driver of pollution in Hong
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Kong. We regress gestational exposure, Pijmt, on the instrument. We control for a vector

of individual level controls, including gestational exposure to surface weather conditions, a

vector of TPU-by-year fixed effects, and TPU-by-month-of-year fixed effects:

Pijmt = α + δInversionijmt + γXijmt + δjt + φjm + νijmt (3)

Consistent with previous studies, we find that there is a strong correlation between the

incidence of thermal inversions and gestational exposure to PM10. A one standard deviation

increase in exposure to thermal inversions during gestation (an additional 2.3 inversions) is

associated with a 0.506 µg/m3 increase in average gestational particulate matter exposure

(Table B1). For context, the extreme case where an individual was exposed to a thermal

inversion every day would more than double gestational exposure to particulate matter

relative to the mean.13

Exclusion Restriction An assumption for identification is that thermal inversions af-

fect health outcomes through pollution. It is not possible to test this assumption directly.

However, we argue that it is plausible. Thermal inversions do not present a direct health

risk. Consequently, after controlling for seasonality and surface-level weather conditions

that could be correlated with thermal inversions, pollution, and health, we argue that the

exclusion restriction is likely satisfied.

An issue is that thermal inversions could directly affect short-run avoidance behavior like

staying indoors, running air purifiers, or wearing masks. One possibility is that individuals

are aware of inversions and their consequences for particulate pollution. The existing liter-

ature argues that most people are unaware when thermal inversions occur and even fewer

are aware that thermal inversions concentrate particulates (Arceo et al., 2016; Hicks et al.,

13Thermal inversions are unlikely to have large effects on secondary pollutants such as Ozone. Ozone
requires time to form from the mixture of primary pollutants and so may only appear later in the day
when it is likely that inversions have already dissipated (Jacobson, 2002). Arceo et al. (2016) argue that
inversions may directly inhibit the formation of these pollutants as the chemical reactions required to form
them require warmth and sunlight. We do find statistically significant relationships between inversions and
carbon monoxide, consistent with the literature (Table B1).
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2016; Chen et al., 2017, 2018).14

Another possibility is that thermal inversions are forecastable and that the average indi-

vidual responds to forecast communication with avoidance behaviors. Although technology

has improved over the past few years, thermal inversions have been historically very chal-

lenging to forecast at the local level. This is especially true in hilly and mountainous terrain

like the Hong Kong landscape (Steyn et al., 2013; Chan and Hon, 2016).

A third possibility is that short-run avoidance behavior is induced by real-time obser-

vations of particulate pollution levels. Surveys suggest people are visually insensitive to

changes in particulate matter at relatively high concentrations (Hyslop, 2009). Although

mobile apps that provide real-time pollution levels and pollution alerts are now widely avail-

able in Hong Kong, they were uncommon for the bulk of our sample period. When the Hong

Kong Environmental Protection Department offered a free mobile app in late 2013, the app

was met with considerable skepticism (Kao, 2013).

Taken as a whole, although we believe it is unlikely that individuals fully observe instrument-

induced changes in pollution, we acknowledge that we cannot rule out the possibility. In

the case where inversion-induced changes in particulate concentrations are salient, our IV

estimate is the short-run behavior adjusted effect of pollution on health. In the case where

individuals are not able to fully observe instrument-induced changes in pollution, the IV

addresses short-run avoidance behavior and may be interpreted as the biological effects of

pollution on health.15

14During an October 2017 seminar presentation of this paper at Hong Kong University of Science and
Technology (HKUST), we conducted an informal poll of seminar participants (economists, social scientists,
and environmental scientists). We asked whether they: 1) knew about thermal inversions (even by a different
name), 2) knew thermal inversions were common during Hong Kong winters, and/or 3) knew that thermal
inversions had large effects on local pollution levels. Only one participant expressed full awareness of these
issues. While clearly this sample is not representative of the population and the poll was crudely implemented,
it suggests that even highly educated individuals living in Hong Kong are not necessarily aware of thermal
inversions or their consequences.

15Behavior adjusted estimates may be more relevant for some policy purposes and biological estimates
may be more relevant for other policy purposes (Graff Zivin and Neidell, 2013; Beatty and Shimshack, 2014).
Although behavior adjusted estimates will not reflect the full costs of avoidance behavior for benefit-cost
analysis, those effects may be more appropriately estimated separately, in the spirit of Zhang and Mu (2018)
for air pollution and Graff Zivin et al. (2011) for water pollution.
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Multiple Pollutants We assume that thermal inversions in Hong Kong affect infant

health through particulate matter rather than through other pollutants like carbon monox-

ide (CO), ozone (O3), sulfur dioxide (SO2), and nitrogen dioxide (NO2). We believe this is

a reasonable assumption. In Hong Kong, PM concentrations are high yet concentrations of

many other pollutants are low, even for high-income settings.16 PM10, O3, CO, SO2, and

NO2 are not strongly correlated, conditional on fixed effects. Our first-stage results indicate

that thermal inversions in Hong Kong are a stronger instrument for PM10 than for other

pollutants, as measured by F-statistics or standardized marginal effects (Table B1).

Our results are robust to estimating reduced form relationships between infant health

outcomes and thermal inversions (Table B2). Using estimates from these reduced form

relationships, we find that the increase in thermal inversions necessary to generate a 1 µg/m3

increase in PM10 generates marginal PM-birthweight and marginal PM-mortality estimates

that are statistically indistinguishable from the main marginal results discussed in the next

section. Our second-stage results are also robust to including, or omitting, controls for

ozone, carbon monoxide, sulfur dioxide, and nitrogen dioxide (Table B3). Although it seems

reasonable to us to assume that inversions affect infant health in Hong Kong through PM

we can’t rule out the influence of other pollutants. At a minimum our approach is sufficient

to identify the effects of air pollution, broadly defined, on birthweight and mortality (Chay

and Greenstone, 2003b; Currie and Neidell, 2005; Arceo et al., 2016; Knittel et al., 2016;

Deryugina et al., 2019).

Estimation Details Our preferred specification is equation 4,

Yijmt = α + βP̂ijmt + γXijmt + δjt + φjm + εijmt (4)

where P̂ijmt is the two-stage least squares prediction of gestational exposure to PM10 for

individual i, in TPU j, born in month m of year t. We control for TPU-by-year fixed effects

16An exception is Nitrogen dioxide, which also exceeds the WHO standard.
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and TPU-by-month-of-year fixed effects, as well as a vector of individual-level controls such

as gestational exposure to surface weather conditions, parental characteristics, and birth

characteristics.

Across all specifications, standard errors are two-way clustered at the TPU-level to ac-

count for serial correlation over time and at the date-of-birth level to account for spatial

dependence in pollution exposure across all births on a given day.17

5 Results

We present key results in Table 2. Columns (1) and (2) report the effects of gestational PM10

exposure on birthweight for OLS and IV specifications. Columns (3) and (4) present the

effects of gestational PM10 exposure on the likelihood of low birthweight (<2,500g) for OLS

and IV specifications. Columns (5) and (6) present estimates for the effects of gestational

PM10 exposure on the likelihood of neonatal death for OLS and IV specifications.

Birthweight We find large effects of gestational PM10 exposure on birthweight in a high-

PM context. Using our preferred specification from an instrumental variables approach,

we estimate that a 10 µg/m3 increase in PM10 is associated with a 70 gram reduction

in birthweight (Table 2, column (2)).18 This effect is equivalent to Currie et al. (2009)’s

estimated effects of smoking 15 cigarettes per day during gestation. This effect is an order of

magnitude larger than estimates in low-PM settings (Chay and Greenstone, 2003b; Currie

et al., 2009).

Low Birthweight Consistent with our estimates on continuous measures of birthweight,

we estimate large effects of gestational PM10 exposure on the likelihood of low birthweight

(LBW). Using our preferred IV specification, we estimate that a 10 µg/m3 increase in PM10

17Standard errors are similar if use one-way clustering by TPU, or by date-of-birth.
18In specifications without instruments we fail to reject a null of no relationship between gestational PM10

exposure and birthweight (Table 2, column (1)).
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is associated with a 3.6 percentage point increase in the likelihood of low birthweight (Table

2, column (4)). Again, the effect is very large relative to the existing literature in high-

income, low-particulate matter settings. We know of no other well-identified estimates of

the PM-LBW relationship in other high-particulate matter contexts.

Neonatal Mortality We find limited effects of gestational PM10 exposure on neonatal

mortality in Hong Kong, despite high levels of PM10. Using our preferred IV specification,

point estimates suggest that a 10 µg/m3 increase in PM10 is associated with 0.02 additional

deaths per 1,000 births. This marginal impact is among the smallest in the literature, in-

cluding those from high income settings like the US and high pollution settings like mainland

China (Chay and Greenstone, 2003a,b; Knittel et al., 2016; Bombardini and Li, 2020; Tanaka,

2015; Chen et al., 2013; He et al., 2016; Fan et al., 2020).

Although our PM-mortality point estimates are small and we fail to reject the null of no

marginal effects, our preferred IV estimate is noisy. Our 95% confidence interval doesn’t rule

out practically meaningful increases in neonatal mortality. We note: (1) neonatal deaths are

a rare event in Hong Kong; (2) we estimate more precise null effects on cause-specific neonatal

mortality, like respiratory and cardiovascular deaths (Table B4); (3) dropping probabilistic

deaths reduces standard errors by 30% (Table B5); (4) we reject a null using the same data

for the effects of PM10 on birthweight (a continuous measure) and LBW (a binary measure).

Failure to reject a null hypothesis can be particularly informative in settings with large

datasets and in contexts where existing published results reject the null (Abadie, 2020).

More importantly, we note that even our upper confidence limits are small relative to the

bulk of the existing literature in high-PM settings.19

19For example, our upper confidence limit is similar in magnitude to the central estimate of PM10 on
neonatal mortality in Mexico (Arceo et al., 2016) and smaller than the implied central estimates for West
Africa and sub-Saharan Africa (Heft-Neal et al., 2019; Adhvaryu et al., Forthcoming). See Appendix E for
further discussion.
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Additional Results and Robustness Tests In Appendix B we provide supporting evi-

dence. As noted previously, our results are robust to estimating reduced form relationships

between thermal inversions and infant health (Table B2) or estimating relationships between

PM and infant health controlling for other pollutants (Table B3). Results are also robust

to alternative measures of particulate matter like PM2.5 and average daily maximum PM10

exposure during gestation (Table B6 and Table B7). We confirm that our results are not

driven by a specific choice of distance radii (Table B8).

Table B9 presents IV estimates for the effects of gestational particulate matter exposure

by trimester. IV estimation by trimester generates small first stage F-statistics, suggesting

a ‘many weak’ instruments problem. Nevertheless, combining trimester-specific estimates

produces results similar to preferred main estimates. Reduced form relationships between

infant health by trimester and thermal inversions suggest large relationships between birth-

weight / low birthweight and particulate exposure in the second and third trimesters (Table

B10). In all approaches, we estimate small and significantly insignificant trimester-specific

effects on neonatal mortality.

We do not find any effect of contemporaneous exposure to particulate matter on neonatal

mortality (Table C1). We caution that we do not have a strong instrument largely due to

limited opportunity for post-natal exposure. 50% of neonatal deaths occur within 2 days.

90% of neonatal deaths occur within 2 weeks.

Heterogeneity We explore several margins of heterogeneity. Table B11 explores hetero-

geneity by sex. We continue to find significant and large average effects of gestational PM

exposure on birthweight and low birthweight. Coefficient magnitudes suggest girls experi-

ence somewhat lower marginal damages than boys. However, we find no statistical difference

in marginal damages between girls and boys. We find no effects of gestational PM exposure

on neonatal mortality for either girls or boys.

Tables B12 and B13 explore heterogeneity by education and employment. In both cases,
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we continue to find significant and large average effects of gestational PM exposure on birth-

weight and low birthweight. The magnitude of the coefficients in Table B12 suggest that

children born to at least one parent with college experience have somewhat smaller marginal

birthweight damages than children with parents that have no college experience. The mag-

nitude of the coefficients in Table B13 suggest that children born into households where

at least one parent is working experience somewhat smaller marginal birthweight damages

than households where no parent is working. However, we find no statistical difference in

marginal damages by education or employment status.

We note caution for interpreting heterogeneity results. First, interaction terms involving

socio-demographics should not be interpreted as causal. Any given socio-economic indicator

may be correlated with other factors and so coefficients represent sub-population differences

rather than causal differences. Second, although interaction point estimates are relatively

small, effects may be underpowered statistically. Back of the envelope calculations suggest

we would need to have uncovered large interaction magnitudes for them to be statistically

significant.

Conditional on the above caveats, heterogeneity results suggest two lessons. First, lim-

ited detected heterogeneity is generally consistent with free access to health care moderating

PM-birthweight disparities across socio-economic status within Hong Kong. Second, lim-

ited detected heterogeneity may suggest that pollution information or short-run avoidance

behaviors are unlikely to be first-order channels driving our main results. After instrument-

ing, we detect similar marginal damages for educated vs. uneducated households and for

economically active households vs. households without a working parent. The health in-

formation and environmental avoidance behavior literatures emphasize that these channels

are typically associated with statistical relationships between marginal damages and proxies

for education and/or socio-economic status (Grossman, 1972; Ippolito and Mathios, 1990;

Neidell, 2004; Shimshack and Ward, 2010; Graff Zivin et al., 2011).
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6 Discussion

In Hong Kong, marginal changes in particulate matter exposure are associated with large

changes in birthweight but small changes in neonatal mortality. These findings contrast

sharply with existing evidence from high-PM, low-income settings and low-PM, high-income

settings.

Our large birthweight results are consistent with convex dose response relationships be-

tween gestational PM10 and birthweight, where marginal damages are increasing in exposure.

Hong Kong has high PM levels and birthweight is highly responsive to changes in PM. Our

birthweight results are also consistent with marginal PM-birthweight damages that are not

particularly moderated by the economic and policy environment. Hong Kong has high per

capita income, has free access to excellent health care, and its baseline health indicators are

among the best in the world. Yet, we find very large effects of particulate matter on both

continuous and discrete birthweight outcomes.

In contrast, our small neonatal mortality results are consistent with marginal damages

that are moderated by the economic and policy environment, regardless of the shape of the

dose-response function. Hong Kong’s free access to high-quality health care, good economic

conditions, and other factors that come with economic development may overwhelm typical

drivers of marginal PM-mortality relationships. Despite high particulate matter levels in

Hong Kong, the marginal effects of PM on neonatal mortality are small.

A natural question is why the economic and policy environment might matter less for

birthweight and more for neonatal mortality. One explanation is that anticipating problems

and intervening is challenging when the baby is still in the womb. As such, birthweight effects

may be less responsive to health and other institutions. By contrast, neonatal mortality in

a post-birth environment may be more easily averted through healthcare and technology.

Evidence from the clinical literature suggests that neonatal mortality is highly correlated

with the quality of health care provision (through neonatal care units, obstetrics, and delivery

room care) (Richardson et al., 1998; Horbar et al., 2001; Noble, 2003; te Pas, 2017; WHO,
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2019). Modern medical practice in high-income settings aggressively targets interventions

towards at-risk newborns, and technology options to reduce neonatal deaths have expanded

dramatically in recent decades (Almond et al., 2010).20

Cross-Institutional Comparisons To contextualize our results, and to explore whether

macro-level wealth, health, and institutions are more generally associated with smaller

marginal pollution-mortality damages, we combine our stark neonatal mortality results with

estimates from published studies. We perform cross-institutional comparisons and explore

cross-institutional correlates of PM-mortality damages.21 Absent a credible cross-country

identification strategy, the goal of the exercise is to use micro-level evidence from institu-

tions explored in the literature to illuminate broader macro-level economic phenomena (Oster

et al., 2016; Meager, 2019).

The closely related literature establishes important empirical regularities and patterns,

but its widely varying approaches to quantification make systematic cross-institutional com-

parisons challenging. For our comparisons, we focus on papers that allow us to identify:

(1) a source of exogenous variation for identification; (2) measurable changes in particulate

matter air pollution; and (3) outcomes definable by infant or neonatal deaths per 1000 live

births. Studies must also provide sufficient detail to put analysis in context. This requires

summary statistics like mean pollution and mean neonatal and/or infant mortality rates.

To be more precise, we first consider the set of studies that exploit exogenous sources of

variation for identification. We omit studies from the broader related literature that aim to

document descriptive associations between air pollution and health outcomes. We then focus

on papers that allow us to identify the effects of marginal changes in particulate matter air

pollution. We consider studies defining exposure measures with total suspended particulates

(TSP), particulate matter less than 10 microns (PM10), and particulate matter less than

20We do not observe antepartum mortality. It is possible that our neonatal mortality effects are influenced
by selection from antepartum mortality. This has limited implications for any of this paper’s conclusions.

21This exercise is hard to replicate and interpret for PM-birthweight relationships because there are few
internally valid estimates of marginal PM-birthweight effects, and nearly all come from high-income, low-PM
settings. This reiterates a contribution of this study, providing birthweight estimates in a high-PM setting.
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2.5 microns (PM2.5). We convert TSP and PM2.5 exposure measures into units of PM10

using a PM10 to TSP ratio of 0.55 and a PM2.5 to PM10 ratio of 0.70. We do not explore

studies exploring treatments defined by other pollutants like sulfur dioxide or nitrogen dioxide

(Leuchinger, 2014; Barrows et al., 2019). We do not examine studies exploring the impacts

of exogenous shocks (like wildfires) that cannot be readily converted into measurable changes

in particulate matter without ad hoc assumptions (Jayachandran, 2009).

We next consider the subset of papers with outcomes definable in terms of neonatal or in-

fant mortality per 1000 births. Where only estimates of the relationship between particulate

matter and infant mortality are available, we assume a constant treatment effect and convert

the effect on infant mortality to a neonatal mortality estimate by multiplying the estimate by

the context-specific (i.e. paper-specific) ratio of neonatal mortality rates to infant mortality

rates. We do not examine papers from the distinguished literature exploring the effects of

pollution on adult mortality (Dockery et al., 1993; Chay et al., 2003; Pope et al., 2002; He

et al., 2016; Deryugina et al., 2019; He et al., 2020; Cheung et al., 2020; Fan et al., 2020)

We do not consider studies that focus on mortality for other age groups (Janke et al., 2009;

Cheung et al., 2020). We also do not explore papers that make standardized comparisons

unusually difficult, like those with results expressed as risk ratios across percentile bins.

Using our criteria, we standardize 14 estimates from the literature to represent the

marginal effect of a nine month change in PM10 on neonatal mortality. We also convert

relative marginal PM-mortality effects to absolute marginal PM-mortality effects, since a

given percentage reduction in neonatal mortality means something different in settings with

vastly different baseline conditions. Details on our final sample of comparison estimates are

available in Appendix E . Chay and Greenstone (2003a), Chay and Greenstone (2003b), and

Knittel et al. (2016) investigate the effects of TSP and PM10 on neonatal and infant deaths

in the United States. Chen et al. (2013), Tanaka (2015), and Bombardini and Li (2020)

explore the effect of TSP and PM10 on infant and neonatal mortality in mainland China.

Arceo et al. (2016), Cesur et al. (2016), and Pullabhotla (2019) investigate the effects of
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PM10 on neonatal and infant deaths in Mexico, Turkey, and India. Heft-Neal et al. (2018),

Heft-Neal et al. (2019), and Adhvaryu et al. (Forthcoming) estimate the impacts of PM2.5 on

neonatal and infant mortality for multiple countries in sub-Saharan Africa and West Africa.

Our study explores the effect of PM10 on neonatal mortality in Hong Kong.

We acknowledge that we have surely not captured every possible study. We also admit

that, regardless of the number of studies, our comparative interpretation exercise sacrifices

precise identification. Nevertheless, this interpretation exercise grapples directly with issues

of external validity and helps to inform broader economic questions like the macro-level cor-

relates of marginal pollution damages highlighted in the conceptual framework (and Hsiang

et al. (2019)).

Figure 1 summarizes the results of our comparative exercise. We find that marginal PM-

mortality damages are sharply decreasing in baseline health across institutions, as measured

by baseline neonatal mortality rates. We find that marginal PM-mortality damages are

decreasing in GDP per capita across institutions. By contrast, we find only a weak relation-

ship between average particulate matter concentrations and marginal mortality damages.

In light of our conceptual framework, these comparative results suggest that vulnerability

to particulate matter exposure may be more important than particulate matter exposure

itself in explaining differences in marginal mortality damages across countries. To be clear,

we do not assert that baseline particulate matter exposure does not matter but rather that

marginal mortality damages may be linear in exposure.

Implications Taken as a whole, our birthweight and neonatal mortality analyses suggest

that cost effectively improving environmental health entails investments in both pollution

abatement and economic development. Our marginal particulate matter-birthweight results

suggest that economic development alone is not sufficient. Reducing health effects such

as low birthweight, which has been shown to have long-run economic consequences, may

require investments in pollution abatement irrespective of a population’s wealth and health.
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However, our marginal PM-mortality results suggest that pollution abatement alone may

not represent cost-effective policy either. A population’s wealth and health appears to play

an important role in reducing marginal mortality damages from particulate matter exposure.

Conventional wisdom suggests that marginal pollution damages are high in less-developed

countries because they are highly polluted. We provide early evidence that marginal particu-

late matter damages are high in less-developed countries because they are more polluted and

because they are less developed. We do not intend to be the final word on these issues, and

we hope to inform further research. Nevertheless, with respect to birthweight, we provide

suggestive evidence that marginal pollution damages are high in less developed countries

because they are highly polluted. With respect to neonatal mortality, we provide suggestive

evidence that marginal pollution damages are high in less-developed countries because they

are less developed.
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Tables and Figures

Table 1: Descriptive Statistics

(1) (2) (3)
Mean Std. Dev. Observations

Panel A: Outcome Variables

Neonatal Death (× 1,000) 1.150 29.113 532,726

Birthweight (grams) 3,130 482 532,726

LBW (<2,500g) 0.064 0.246 532,726

Panel B: Pollution Variables

PM10 (µg/m3) 54.307 8.636 532,726

Carbon Monoxide (ppm) 0.849 0.187 532,726

Ozone (µg/m3) 33.068 5.661 532,726

Sulfur Dioxide (µg/m3) 16.842 5.5.424 532,726

Nitrogen Dioxide (µg/m3) 69.786 11.716 532,726

Panel C: Instrumental Variables

Thermal Inversions 1.8 2.295 532,726

Panel D:Weather Variables 532,726

Avg. Daily Max Temperature (◦C) 25.637 1.673 532,726

Avg. Daily Min Temperature (◦C) 20.017 1.698 532,726

Avg. Daily Rainfall (mm) 5.619 2.090 532,726

Pressure (hPa) 1,012.819 1.810 532,726

Average Humidity (%) 79.028 3.870 532,726

Notes: Outcome variables are measured at birth (birthweight, LBW) or up to the
first 28 days after birth (neonatal mortality). All other variables are measured at the
individual level during the 270 days of gestation. The implied neonatal mortality rate
in Hong Kong is very low. It is the lowest NMR in the world during between 2001
and 2014 (author’s caluclations). PM10 levels are very high. The World Health Orga-
nization standard for annual average PM10 concentrations is 20 µg/m3. By contrast,
Carbon Monoxide (CO), Ozone (O3), and Sulfur Dioxide (SO2) concentrations are low
in Hong Kong, both in absolute terms and relative to other high income-countries. In
the United States the National Ambient Air Quality Standard (NAAQS) for CO is an
annual mean of 9ppm. In Hong Kong, average gestational exposure during our study
period was 0.9ppm. The WHO standard for Ozone is an annual mean of 100µg/m3.
In Hong Kong, average gestational exposure during our study period was 33µg/m3.
The WHO standard for SO2 is an annual mean of 20µg/m3. The WHO standard for
NO2 is an annual mean of 40µg/m3. Hong Kong’s climate is sub-tropical. There is
less seasonal variability in weather conditions than in other high-income settings.
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Table 2: The Effect of Gestational PM10 Exposure on Birthweight, LBW, and Neonatal
Mortality in Hong Kong

(1) (2) (3) (4) (5) (6)
Birthweight Birthweight Low Birthweight Low Birthweight Neonatal Neonatal

(g) (g) (<2,500g) (<2,500g) Mortality Mortality

Gestational PM10 Exposure -0.00794 -7.001∗∗ -0.000102 0.00360∗∗ -0.0462 0.00299
(0.554) (3.237) (0.000215) (0.00145) (0.0298) (0.186)

Dependent Variable Mean 3,130 3,130 0.064 0.064 1.150 1.150

TPU × Year FE Yes Yes Yes Yes Yes Yes

Weather Controls Yes Yes Yes Yes Yes Yes

TPU × Month of Year FE Yes Yes Yes Yes Yes Yes

Individual Controls Yes Yes Yes Yes Yes Yes

Specification OLS IV OLS IV OLS IV

First Stage F-Stat – 59.838 – 59.838 – 59.838

Observations 532,726 532,726 532,726 532,726 532,726 532,726

Notes: This Table presents estimates of the relationship between gestational PM10 exposure and our outcomes of interest:
birthweight; low birthweight; neonatal mortality. Columns (1), (3), and (5) present OLS estimates. Columns (2), (4), and
(6) present 2SLS estimates. Weather controls: Avg. gestational max temperature, avg. gestational min temperature, avg.
gestational daily rainfall, avg. gestational humidity, avg. gestational surface pressure. Individual controls, (included as dummy
variables): Mother’s age, Sex of the Baby, Type of Birth (Single, Twin, Triplet), Number of Previous Births. Pollution controls
in columns (1), (3), and (5): prenatal avg. Carbon Monoxide exposure, prenatal avg. Ozone exposure, prenatal avg. Sulfur
Dioxide exposure, and prenatal avg. Nitrogen Dioxide exposure.. Standard errors are two-way clustered at the TPU and
date-of-birth level.
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Figure 1: Within-Year Variation in Pollution, Thermal Inversions, Birthweight, and Neonatal
Mortality.

(a) Birthweight (b) Low Birthweight (c) Neonatal Mortality

(d) PM10 (e) Thermal Inversions

Notes: These figures plot: (a) average birthweight, (b) low birthweight/1,000 live births, (c) the average neonatal mortality
rate/1,000 live births, (d) average PM10 exposure during gestation, and (e) average thermal inversion exposure during gestation
by month of birth.
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Figure 2: Full Sample Time-Series Variation in Pollution, Thermal Inversions, Birthweight,
and Neonatal Mortality.

(a) Birthweight (b) Low Birthweight (c) Neonatal Mortality

(d) PM10 (e) Thermal Inversions

Notes: These figures plot: (a) average birthweight, (b) low birthweight/1,000 live births, (c) the average neonatal mortality
rate/1,000 live births, (d) average PM10 exposure during gestation, and (e) average thermal inversion exposure during gestation
for each month of our sample period (2001-2014).
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Figure 3: The Relationship between Marginal Neonatal Mortality Damages and GDP per
Capita, Baseline Health (NMR), and Baseline PM10 Exposure

(a) Neonatal Mortality Rate (b) GDP per Capita (c) PM10 Exposure

Notes: These results explore the broader relevance of our neonatal mortality results. The data points used in these figures are
based on 14 estimates from the literature, including our own analysis of the relationship between gestational PM10 exposure
and neonatal mortality in Hong Kong. Further details on how comparable estimates were constructed can be found in Appendix
E. The figures plot the relationship between the marginal neonatal mortality damages associated with 9-month PM10 exposure
and three population characteristics. These are: (a) the Neonatal Mortality Rate (a proxy for baseline health); (b) GDP per
Capita; (c) average PM10 concentrations. In panels (a) we see that there is a positive association between marginal mortality
damages and the neonatal mortality rate of a given population – marginal damages are lower in populations with better health.
In panel (b) we see that marginal mortality damages are negatively associated with GDP per capita – higher income locations
are estimated to have lower marginal mortality damages. In panel (c) we see that there is a weak negative association between
marginal mortality damages and baseline particulate matter concentrations – higher pollution locations are not associated with
higher marginal damages.
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A Additional Descriptive Statistics

In Figures 2a and 2b we document that average birthweight is decreasing over time and the
number of low birthweights (LBW) are increasing over time. In this appendix we present
additional descriptive result to provide more insight into these intriguing descriptive facts.

The medical literature suggests that secular trends in birthweight are driven by many
factors including demographic composition, maternal age, multiple births, and environmental
and health conditions. Declines in birthweight and increases in LBW similar to those that
we document for Hong Kong have been observed in other high-income settings such as Japan
and Norway (Daltveit et al. 1999; Hokama and Binns 2009). Daltveit et al. (1999) suggests
that increasing LBW in Norway was attributable to obstetric procedures like induction
or Caesarian procedures that affect gestational age and obstetric procedures like assisted
fertilization that increase the incidence of multiple births.

We explored whether descriptive statistics might support similar explanations in our
context. Figure A1a documents that average maternal age is sharply increasing for much of
our sample period. In 2001, average maternal age was approximately 31. In 2014, average
maternal age exceeded 32. Figure A1b documents that multiple births also trend upwards
over time. In 2001, the average number of twins per 1000 births was approximately 20. In
2014, the average number of twins per 1000 births exceeded 30.

Although this evidence does definitively establish the causal mechanism driving the sec-
ular trends in birthweight/low birthweight, our descriptive evidence is consistent with mech-
anisms highlighted in the epidemiology literature.

Figure A1: Full Sample Time-Series Variation in Mother’s Age and the Number of Twins
per 1,000 live births.

(a) Mother’s Age (b) Twins/1,000 live births

Notes: These figures plot: (a) the average age of the Mother and (b) the number of twins/1,000 live births for each month of
our sample period (2001-2014).
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B Additional Results and Robustness Tests

Table B1: The First Stage Relationships between Gestational Exposure to Thermal Inver-
sions and Gestational Pollution Exposure in Hong Kong

(1) (2) (3) (4) (5)
PM10 CO O3 SO2 NO2

Gestational Exposure to Thermal Inversions 0.220∗∗∗ 0.00301∗∗∗ -0.0332∗ 0.0288∗∗ 0.0465∗∗

(0.0284) (0.000678) (0.0201) (0.0131) (0.0191)

First Stage F-Stat 59.838 19.672 2.735 4.795 5.897

Fixed Efffects TPU × Year and Month × TPU

Weather Controls Yes Yes Yes Yes Yes

Individual Controls Yes Yes Yes Yes Yes

Dependent Variable Mean 54.307 0.849 33.069 16.842 11.761
Observations 532,726 532,726 532,726 532,726 532,726

Notes: This Table presents first-stage estimates of the relationship between gestational exposure to thermal
inversions and gestational exposure to: PM10; Carbon Monoxide (CO); Ozone (O3); Sulfur Dioxide (SO2);
Nitrogen Dioxide (NO2). Gestational exposure to thermal inversions is defined as the number of thermal
inversions that occur during the 270 days of gestation. Weather controls: Avg. gestational max temperature,
avg. gestational min temperature, avg. gestational daily rainfall, avg. gestational humidity, avg. gestational
surface pressure. Individual controls, (included as dummy variables): Mother’s age, Sex of the Baby, Type
of Birth (Single, Twin, Triplet), Number of Previous Births. Standard errors are two-way clustered at the
TPU and date-of-birth level.
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Table B2: The Reduced Form Effect of Gestational Exposure to Thermal Inversions on
Birthweight, LBW, and Neonatal Mortality in Hong Kong

(1) (2) (3)
Birthweight Low Birthweight Neonatal

(g) (<2,500g) Mortality

Gestational Exposure -1.540∗∗ 0.000793∗∗ 0.000657
to Thermal Inversions (0.674) (0.000305) (0.0410)

Dependent Variable Mean 3,130 0.064 1.150

TPU × Year FE Yes Yes Yes

Weather Controls Yes Yes Yes

TPU × Month FE Yes Yes Yes

Individual Controls Yes Yes Yes

Observations 532,726 532,726 532,726

Notes: This Table presents estimates of the reduced form relationship be-
tween our outcomes of interest and gestational thermal inversion exposure
. We find that an increase in the number of thermal inversions sufficient to
deliver a 1 µg/m3 increase in average gestational PM10 results in almost iden-
tical coefficient estimates to those provided by our 2SLS coefficients. Weather
controls: Avg. gestational max temperature, avg. gestational min tempera-
ture, avg. gestational daily rainfall, avg. gestational humidity, avg. gesta-
tional surface pressure. Individual controls, (included as dummy variables):
Mother’s age, Sex of the Baby, Type of Birth (Single, Twin, Triplet), Number
of Previous Births. Standard errors are two-way clustered at the TPU and
date-of-birth level.
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Table B3: The Effect of Gestational PM10 Exposure on Birthweight, LBW, and Neonatal
Mortality in Hong Kong (including Pollution Controls)

(1) (2) (3)
Birthweight Low Birthweight Neonatal

(g) (<2,500g) Mortality

Gestational PM10 Exposure -7.920∗∗ 0.00410∗∗ 0.0112
(3.678) (0.00164) (0.207)

Dependent Variable Mean 3,130 0.064 1.150

TPU × Year FE Yes Yes Yes

Weather Controls Yes Yes Yes

TPU × Month FE Yes Yes Yes

Individual Controls Yes Yes Yes

First Stage F-Stat 67.774 67.774 67.774

Observations 532,726 532,726 532,726

Notes: This Table presents estimates from an analysis that explores the robust-
ness of our results to controlling for other criteria pollutants (Carbon Monoxide,
Ozone, Sulfur Dioxide, and Nitrogen Dioxide). We find that our estimates are
largely unchanged. Pollution controls: prenatal avg. Carbon Monoxide expo-
sure, prenatal avg. Ozone exposure, prenatal avg. Sulfur Dioxide exposure, and
prenatal avg. Nitrogen Dioxide exposure. Weather controls: Avg. gestational
max temperature, avg. gestational min temperature, avg. gestational daily
rainfall, avg. gestational humidity, avg. gestational surface pressure. Individ-
ual controls, (included as dummy variables): Mother’s age, Sex of the Baby,
Type of Birth (Single, Twin, Triplet), Number of Previous Births. Standard
errors are two-way clustered at the TPU and date-of-birth level.
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Table B4: The Effect of Gestational PM10 Exposure on Neonatal Mortality in Hong Kong,
by Cause of Death

(1) (2) (3)
Neonatal Mortality Neonatal Mortality Neonatal Mortality

(Respiratory) (Cardiovascular) (Other)

Gestational PM10 Exposure 0.0545 -0.00837 -0.0444
(0.0608) (0.0481) (0.164)

Dependent Variable Mean 0.176 0.162 0.813

Fixed Effects TPU × Year, TPU × Month
Controls Weather Controls and Individual Controls

First Stage F-Stat 59.622 59.625 59.822

Observations 531,807 531,806 532,447

Notes: This Table presents estimates of the relationship between gestational PM10 exposure and
neonatal mortality, by cause of death. We explore respiratory deaths, cardiovascular deaths, and
deaths from all other causes. We fail to reject the null hypothesis for all categories. Weather
controls: Avg. gestational max temperature, avg. gestational min temperature, avg. gestational
daily rainfall, avg. gestational humidity, avg. gestational surface pressure. Individual controls,
(included as dummy variables): Mother’s age, Sex of the Baby, Type of Birth (Single, Twin, Triplet),
Number of Previous Births. Standard errors are two-way clustered at the TPU and date-of-birth
level.
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Table B5: The Effect of Gestational PM10 Exposure on Birthweight, LBW, and Neonatal
Mortality in Hong Kong (No Probabilistic Deaths)

(1) (2) (3)
Birthweight Low Birthweight Neonatal

(g) (<2,500g) Mortality

Gestational PM10 Exposure -6.995∗∗ 0.00360∗∗ 0.0130
(3.221) (0.00146) (0.129)

Dependent Variable Mean 3,131 0.064 0.622

Fixed Effects TPU × Year, TPU × Month
Controls Weather Controls and Individual Controls

First Stage F-Stat 59.662 59.662 59.662
Observations 531,999 531,999 531,999

Notes: This Table presents estimates of the relationship between gestational
PM10 exposure and our outcomes of interest, after dropping probabilistic deaths
from the sample. Weather controls: Avg. gestational max temperature, avg.
gestational min temperature, avg. gestational daily rainfall, avg. gestational
humidity, avg. gestational surface pressure. Individual controls, (included as
dummy variables): Mother’s age, Sex of the Baby, Type of Birth (Single, Twin,
Triplet), Number of Previous Births. Standard errors are two-way clustered at
the TPU and date-of-birth level.
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Table B6: The Effect of Gestational Average Daily Maximum PM10 Exposure on Birth-
weight, LBW, and Neonatal Mortality in Hong Kong

(1) (2) (3)
Birthweight Low Birthweight Neonatal

(g) (<2,500g) Mortality

Gestational Max PM10 Exposure -5.905∗∗ 0.00304∗∗ 0.00252
(2.723) (0.00123) (0.157)

Dependent Variable Mean 3,130 0.064 1.150

TPU × Year FE Yes Yes Yes

Weather Controls Yes Yes Yes

TPU × Month FE Yes Yes Yes

Individual Controls Yes Yes Yes

First Stage F-Stat 54.861 54.861 54.861

Observations 532,719 532,719 532,719

Notes: This Table presents estimates from an analysis of whether our results are
affected by a different measure of gestational pollution exposure (the average of daily
maximum PM10 concentrations measured over the gestational period.). We estimate
similar effects. Weather controls: Avg. gestational max temperature, avg. gesta-
tional min temperature, avg. gestational daily rainfall, avg. gestational humidity,
avg. gestational surface pressure. Individual controls, (included as dummy variables):
Mother’s age, Sex of the Baby, Type of Birth (Single, Twin, Triplet), Number of Pre-
vious Births. Standard errors are two-way clustered at the TPU and date-of-birth
level.

7



Table B7: The Effect of Gestational PM2.5 Exposure on Birthweight, LBW, and Neonatal
Mortality in Hong Kong

(1) (2) (3)
Birthweight Low Birthweight Neonatal

(g) (<2,500g) Mortality

Gestational PM2.5 Exposure -6.535∗∗ 0.00304∗∗ 0.0212
(2.571) (0.00123) (0.169)

Dependent Variable Mean 3,130 0.064 1.150

TPU × Year FE Yes Yes Yes

Weather Controls Yes Yes Yes

TPU × Month FE Yes Yes Yes

Individual Controls Yes Yes Yes

First Stage F-Stat 71.828 71.828 71.828

Observations 502,812 502,812 502,812

Notes: This Table presents estimates exploring the robustness of our results
to using PM2.5 concentrations, instead of PM10. This results in a different
sample because PM2.5 is not as well monitored over our sample period. Our re-
sults remain robust. Weather controls: Avg. gestational max temperature, avg.
gestational min temperature, avg. gestational daily rainfall, avg. gestational
humidity, avg. gestational surface pressure. Individual controls, (included as
dummy variables): Mother’s age, Sex of the Baby, Type of Birth (Single, Twin,
Triplet), Number of Previous Births. Standard errors are two-way clustered at
the TPU and date-of-birth level.
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Table B8: The Effect of Gestational PM10 Exposure on Birthweight, LBW, and Neonatal
Mortality in Hong Kong (Different Maximum Distance-to-Monitor Restrictions)

(1) (2) (3)
Birthweight Low Birthweight Neonatal

(g) (<2,500g) Mortality

Panel A: 10km
Gestational PM10 Exposure -7.001∗∗ 0.00360∗∗ 0.00299

(3.237) (0.00145) (0.186)

First Stage F-Stat 59.838 59.838 59.838

Observations 532,726 532,726 532,726

Panel B: 8km
Gestational PM10 Exposure -8.292∗∗ 0.00290∗ 0.00790

(3.766) (0.00168) (0.215)

First Stage F-Stat 44.730 44.730 44.730

Observations 432,071 432,071 432,071

Panel C: 12km
-7.039∗∗ 0.00393∗∗ -0.0272
(3.100) (0.00152) (0.176)

First Stage F-Stat 62.712 62.712 62.712

Observations 556,211 556,211 556,211

TPU × Year FE Yes Yes Yes

Weather Controls Yes Yes Yes

TPU × Month FE Yes Yes Yes

Individual Controls Yes Yes Yes

Notes: This Table presents estimates from an analysis that explores how robust
our results are to adjusting the maximum distance to pollution monitors. Our
main results (restricting the maximum distance to 10km) are presented in Panel
A. Panel B restricts the maximum distance to 8km. Panel C expands the
maximum distance to 12km. Our results remain robust across the different
samples. Weather controls: Avg. gestational max temperature, avg. gestational
min temperature, avg. gestational daily rainfall, avg. gestational humidity, avg.
gestational surface pressure. Individual controls, (included as dummy variables):
Mother’s age, Sex of the Baby, Type of Birth (Single, Twin, Triplet), Number
of Previous Births. Standard errors are two-way clustered at the TPU and
date-of-birth level.
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Table B9: The Effect of Gestational PM10 Exposure on Birthweight, LBW, and Neonatal
Mortality in Hong Kong (Trimester-specific effects)

(1) (2) (3)
Birthweight Low Birthweight Neonatal

(g) (<2,500g) Mortality

First Trimester PM10 Exposure -2.672 0.000883 -0.219
(5.332) (0.00253) (0.323)

Second Trimester PM10 Exposure -5.942 0.00182 -0.200
(7.097) (0.00330) (0.427)

Third Trimester PM10 Exposure -1.996 0.00149 0.0329
(2.564) (0.00111) (0.148)

H0: T1 + T2 + T3 = 0 -10.610 0.004 -0.386
(10.456) (0.0049) (0.624)

Dependent Variable Mean 3,130 0.064 1.150

TPU × Year FE Yes Yes Yes

Weather Controls Yes Yes Yes

TPU × Month FE Yes Yes Yes

Individual Controls Yes Yes Yes

First Stage F-Stat 1.059 1.059 1.059

Observations 532,525 532,525 532,525

Notes: This Table presents estimates from an analysis of trimester-specific PM10

exposure on birth weight and neonatal mortality. Trimester-specific weather controls:
Avg. trimester max temperature, avg. trimester min temperature, avg. trimester
daily rainfall, avg. trimester humidity, avg. trimester surface pressure. Individual
controls, (included as dummy variables): Mother’s age, Sex of the Baby, Type of
Birth (Single, Twin, Triplet), Number of Previous Births. Standard errors are two-
way clustered at the TPU and date-of-birth level.
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Table B10: The Effect of Thermal Inversion Exposure on Birthweight, LBW, and Neonatal
Mortality in Hong Kong (Trimester-specific effects)

(1) (2) (3)
Birthweight Low Birthweight Neonatal

(g) (<2,500g) Mortality

First Trimester Thermal Inversion Exposure -1.534∗ 0.000574 -0.0121
(0.872) (0.000422) (0.0529)

Second Trimester Thermal Inversion Exposure -2.287∗∗ 0.00130∗∗∗ -0.0432
(0.956) (0.000460) (0.0551)

Third Trimester Thermal Inversion Exposure -2.280∗∗∗ 0.000960∗∗ 0.0283
(0.839) (0.000396) (0.0590)

Dependent Variable Mean 3,130 0.064 1.150

TPU × Year FE Yes Yes Yes

Weather Controls Yes Yes Yes

TPU × Month FE Yes Yes Yes

Individual Controls Yes Yes Yes

Observations 532,525 532,525 532,525

Notes: This Table presents estimates from an analysis of trimester-specific thermal inversion expo-
sure on birth weight and neonatal mortality. Trimester-specific weather controls: Avg. trimester
max temperature, avg. trimester min temperature, avg. trimester daily rainfall, avg. trimester
humidity, avg. trimester surface pressure. Individual controls, (included as dummy variables):
Mother’s age, Sex of the Baby, Type of Birth (Single, Twin, Triplet), Number of Previous Births.
Standard errors are two-way clustered at the TPU and date-of-birth level.
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Table B11: The Effect of Gestational PM10 Exposure on Birthweight, LBW, and Neonatal
Mortality in Hong Kong (by Sex)

(1) (2) (3)
Birthweight Low Birthweight Neonatal

(g) (<2,500g) Mortality

Gestational PM10 Exposure -7.300∗∗ 0.00372∗∗ 0.00368
(3.246) (0.00148) (0.187)

PM10 Exposure × Female 0.597 -0.000231 -0.00139
(0.719) (0.000397) (0.0510)

H0: PM10 + PM10 × Female = 0 -6.703** 0.0035** 0.0023
(3.268) (0.0015) (0.189)

Dependent Variable Mean 3,130 0.064 1.150

TPU × Year FE Yes Yes Yes

Weather Controls Yes Yes Yes

TPU × Month FE Yes Yes Yes

Individual Controls Yes Yes Yes

First Stage F-Stat 29.914 29.914 29.914

Observations 532,726 532,726 532,726

Notes: This Table presents explores heterogeneity in the effects of gestational PM10

exposure by sex. Weather controls: Avg. max temperature, avg. min temperature,
avg. daily rainfall, avg. humidity, avg. surface pressure. Individual controls, (included
as dummy variables): Mother’s age, Sex of the Baby, Type of Birth (Single, Twin,
Triplet), Number of Previous Births. Standard errors are two-way clustered at the
TPU and date-of-birth level.
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Table B12: The Effect of Gestational PM10 Exposure on Birthweight, LBW, and Neonatal
Mortality in Hong Kong (Educational Heterogeneity)

(1) (2) (3)
Birthweight Low Birthweight Neonatal

(g) (<2,500g) Mortality

Gestational PM10 Exposure -6.575∗∗ 0.00340∗∗ 0.0228
(3.227) (0.00144) (0.188)

PM10 Exposure × No College -1.106 0.000462 -0.0536
(0.826) (0.000424) (0.0502)

H0: PM10 + PM10 × No College = 0 -7.680** 0.0038** -0.030
(3.330) (0.0015) (0.186)

Dependent Variable Mean 3,130 0.064 1.150

TPU × Year FE Yes Yes Yes

Weather Controls Yes Yes Yes

TPU × Month FE Yes Yes Yes

Individual Controls Yes Yes Yes

First Stage F-Stat 29.992 29.992 29.992

Observations 532,726 532,726 532,726

Notes: This Table presents explores heterogeneity in the effects of gestational PM10

exposure by education. We define a binary variable to be equal to one if neither parent
is economically active. Weather controls: Avg. max temperature, avg. min temperature,
avg. daily rainfall, avg. humidity, avg. surface pressure. Individual controls, (included as
dummy variables): Mother’s age, Sex of the Baby, Type of Birth (Single, Twin, Triplet),
Number of Previous Births. Standard errors are two-way clustered at the TPU and date-
of-birth level.
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Table B13: The Effect of Gestational PM10 Exposure on Birthweight, LBW, and Neonatal
Mortality in Hong Kong (Economic Activity Heterogeneity)

(1) (2) (3)
Birthweight Low Birthweight Neonatal

(g) (<2,500g) Mortality

Gestational PM10 Exposure -6.851∗∗ 0.00354∗∗ 0.0228
(3.262) (0.00145) (0.188)

PM10 Exposure × Not Economically Active -3.629 0.00178 -0.0544
(3.709) (0.00167) (0.163)

H0: PM10 + PM10 × Not Economically Active = 0 -10.480** 0.0053** -0.0049
(4.410) (0.0021) (0.230)

Dependent Variable Mean 3,130 0.064 1.150

TPU × Year FE Yes Yes Yes

Weather Controls Yes Yes Yes

TPU × Month FE Yes Yes Yes

Individual Controls Yes Yes Yes

First Stage F-Stat 29.992 29.992 29.992

Observations 532,726 532,726 532,726

Notes: This Table presents explores heterogeneity in the effects of gestational PM10 exposure by ed-
ucation. We define a binary variable to be equal to one if neither parent has at least some college
experience. Weather controls: Avg. max temperature, avg. min temperature, avg. daily rainfall, avg.
humidity, avg. surface pressure. Individual controls, (included as dummy variables): Mother’s age, Sex
of the Baby, Type of Birth (Single, Twin, Triplet), Number of Previous Births. Standard errors are
two-way clustered at the TPU and date-of-birth level.
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C Contemporaneous Exposure

In Table C1 we explore the relationship between post-gestational PM10 exposure and neona-
tal mortality. We measure exposure as the average daily PM10 exposure from the date of
birth until death, or until 28 days after birth. We do this given that the existing literature
has highlighted the relevance of contemporaneous exposure for infant mortality (Currie and
Neidell, 2005; Arceo et al., 2016; Knittel et al., 2016). We find no effects of pollution on
neonatal mortality. A caveat to this exercise is that we have to depend on a fixed effect
approach because the first stages of our IV strategy are not relevant over this short time
period (a maximum of 28 days).

Across a broad range of fixed effect specifications we find no meaningful relationship
between PM10 and neonatal mortality. Conditional on a neonatal death occurring the median
age of death is 2 days old.22 Consequently, there does not appear to be sufficient opportunity
for post-natal exposure to have a meaningful effect on neonatal mortality in this context.
For this reason, as well as to estimate the effects of comparable measure of exposure for both
neonatal mortality and birthweight, our main analysis focuses on pre-natal exposure.

Figure C1: Age of Death in Days

Notes: The histogram presents the age of death, conditional on death in the first 28 days. The long dashed
line represents the median (2 days). The medium dashed line represents the mean (4.55 days). The short
dashed line represents the 90th percentile (13 days).

22The distribution of age at death is presented in Figure C1.
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Table C1: The Association Between Contemporanoeus PM10 Exposure and Neonatal Mor-
tality in Hong Kong

(1) (2)
Neonatal Neonatal
Mortality Mortality

PM10 Exposure -0.0119∗ -0.0124∗

(0.00708) (0.00723)

Dependent Variable Mean 1.150 1.150

TPU × Year FE Yes Yes

Weather Controls Yes Yes

TPU × Month FE Yes Yes

Individual Controls Yes Yes

Prenatal Pollution Controls No Yes

Observations 528,440 528,440

Notes: This Table presents estimates from an analysis
of the relationship between post-natal average PM10 ex-
posure (up to the first 28 days) and neonatal mortality.
The results are estimated using OLS. The first stage of
our instrumental variable approach is not relevant when
exploring contemporaneous exposure to PM10. Weather
controls: In column 1 we include avg. max temperature,
avg. min temperature, avg. daily rainfall, avg. humid-
ity, avg. surface pressure between birth and death or
birth and 28 days. In column 2 we include the same
controls as column 1 but also include weather controls
for the prenatal period. Individual controls, (included
as dummy variables): Mother’s age, Sex of the Baby,
Type of Birth (Single, Twin, Triplet), Number of Previ-
ous Births. Standard errors are two-way clustered at the
TPU and date-of-birth level.
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D Awareness of Pollution Exposure

We collected data on the attendance of 1,002 professional football games played at 15 sta-
diums in Hong Kong between the 2008/09 and 2013/14 seasons. We combined these data
with pollution exposure at the stadium on the day of the match to explore the degree to
which spectators are aware of pollution levels. The combination of these data sets results in
943 matches. After including date fixed effects we are left with a panel of 560 matches due
to singleton observations.

We regress the log of attendance on pollution exposure for that day, controlling for
stadium-year fixed effects, date fixed effects, and match-type fixed effects, which control for
level differences in the types of match that are played, e.g. international matches, regular
season matches, charity games, etc.

logAttendanceijdt = βPollutionidt + αit + αdt + αj + ǫijdt

αit is the stadium-year fixed effect, αdt is the date of match fixed effect, and αj is the
match type fixed effect. We explore the effects of three types of pollution: Particulate
Matter, Ozone and Carbon Monoxide. We posit that if awareness of pollution is empirically
relevant then we would expect larger effects for particulate matter, which is visible, and
smaller effects for Ozone and Carbon Monoxide, which are not visible.

The results of our analysis can be found in table D1. We estimate that a 10 µg/m3

increase in PM10 is associated with an 17-20% reduction in match attendance. By contrast,
there is no meaningful effect of Carbon Monoxide (CO) or Ozone (O3) on match attendance.
This findings suggest that awareness about particulate matter appears to be a relevant
consideration in Hong Kong.
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Table D1: The Effect of Daily Average Air Pollution Exposure on Football Game Attendance
in Hong Kong

(1) (2) (3)
log Attendance log Attendance log Attendance

PM10 Exposure -0.0194∗∗∗ -0.0184∗∗∗ -0.0169∗∗∗

(0.00466) (0.00472) (0.00453)

CO Exposure 0.00750∗∗ 0.00681∗ 0.00587∗

(0.00321) (0.00320) (0.00284)

O3 Exposure 0.00405 0.00301 0.000823
(0.00711) (0.00760) (0.00593)

Stadium TPU × Year FE Yes Yes Yes

Date of Match FE Yes Yes Yes

Match Type FE No Yes Yes

Weather Controls No No Yes

Observations 560 556 556

Notes: This Table presents estimates from an analysis of the relationship between daily pollution

exposure (PM10, CO, and O3) and football game attendance. We find that higher PM10 exposure

is associated with reductions in attendance. We do not find that higher exposure to CO or

O3 is associated with reduced attendance. Weather controls include maximum and minimum

temperature, total rainfall, surface pressure, and average humidity. Standard errors are clustered

at the TPU level.
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E Comparison Studies and Calculations

In this appendix we document the results and characteristics from the studies used in our
cross-institutional analysis, as well as the calculations we made to construct comparable es-
timates.

Chay and Greenstone (2003a)

Sample period: 1969-1974
Context: USA
GDP per capita: $5,987
Average PM10 Exposure: 41.58µg/m3-51.81µg/m3 (annual average)
Infant mortality rate: 18.7 deaths per 1,000 births
Neonatal mortality rate: 14 deaths per 1,000 births
Measure of Exposure: Pre-Natal.

Using an IV strategy they estimate that a 10 µg/m3 increase in average pre-natal TSP
is associated with 0.7-1.3 more infant deaths per 1,000 live births.23 Following Knittel et al.
(2016) we apply a commonly used conversion metric of 0.55TSP = PM10. This translates a
10 µg/m3 increase in PM10 into 0.39 - 0.72 more infant deaths per 1,000 live births. Using
the ratio between the neonatal mortality rate and infant mortality rate we attribute 74% of
the estimated deaths to neonatal mortality, resulting in 0.29 - 0.53 more neonatal deaths per
1,000 live births.

Chay and Greenstone (2003b)

Sample period: 1978-1984
Context: USA
GDP per capita: $13,698
Average PM10 Exposure: 31.02µg/m3-39.11µg/m3 (annual average)
Infant mortality rate: 12.2 deaths per 1,000 births
Neonatal mortality rate: 8.2 deaths per 1,000 births
Measure of Exposure: Pre-Natal.

Using an IV strategy they estimate that a 10 µg/m3 increase in average pre-natal TSP
is associated with 0.4 more neonatal deaths per 1,000 live births. Following Knittel et al.
(2016) we apply a commonly used conversion metric of 0.55TSP = PM10. This translates a
10 µg/m3 increase in PM10 into 0.22 more neonatal deaths per 1,000 live births.

23The coefficients from columns 2 and 5 in Table 6.
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Arceo et al. (2016)

Sample period: 1997-2006
Context: Mexico City
GDP per capita: $11,378
Average PM10 Exposure: 66.94µg/m3

Infant mortality rate: 20.9 deaths per 1,000 births
Neonatal mortality rate: 11.8 deaths per 1,000 births
Measure of Exposure: Weekly Post-Natal.

Using the estimates from their IV strategy we calculate that a 10 µg/m3 increase in
PM10 is associated with an additional 2.97 neonatal deaths per 1,000 live births (NMR).24

We note that their IV estimate on neonatal deaths is statistically insignificant, but much
larger than our own estimate. The authors also estimate statistically significant effects of a
smaller magnitude using a fixed effects specification. If we use their fixed effect estimate,
which is smaller but statistically significant we calculate that a a 10 µg/m3 increase in PM10

is associated with an additional 1.402 neonatal deaths per 1,000 live births (NMR).25 If we
use their estimate on infant mortality (Table 3, Column 4) and adjust by the ratio between
the neonatal mortality rate and the infant mortality rate, attributing 56% of the estimated
deaths to neonatal mortality we calculate that a 10-unit increase in PM10 is associated with
an additional 0.5 deaths per 1,000 live births.26 The inferences drawn from our comparative
analysis are not sensitive to these choices.

Cesur et al. (2016)

Sample period: 2001-2011
Context: Turkey
GDP per capita: $13,454
Average PM10 Exposure: 66.19µg/m3

Infant mortality rate: 20.4 deaths per 1,000 births
Neonatal mortality rate: 12.9 deaths per 1,000 births
Measure of Exposure: Annual Post-Natal.

Using an IV strategy they estimate that a 10 µg/m3 increase in PM10 is associated with
an additional 3.017 infant deaths per 1,000 live births.27 Using the ratio between the neona-
tal mortality rate and infant mortality rate we attribute 63% of the estimated deaths to
neonatal mortality resulting in an additional 1.9 neonatal deaths per 1,000 births.

240.007625×39 weeks×10 µg/m3 = 2.97 (Table 3, Column 3).
250.003595×39 weeks×10 µg/m3 = 1.402 (Table 3, Column 1).
260.0023×39 weeks× 10 units = 0.83. 0.83×0.59 = 0.50.
27This estimate is calculated as a 1.15% increase in PM10 relative to the mean, resulting in a 1.45%

increase in infant deaths per 1,000 live births. Using the Infant Mortality Rate this corresponds to 4.023
additional deaths. We then multiply this by 0.75 to correspond to 9 months of exposure, resulting in an
estimate of 3.017.
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Knittel et al. (2016)

Sample period: 2002-2007
Context: California, USA
GDP per capita: $42,937
Average PM10 Exposure: 28.94µg/m3

Infant mortality rate: 5.77 deaths per 1,000 births
Neonatal mortality rate: 3.52 deaths per 1,000 births
Measure of Exposure: Weekly Post-Natal.

Using the estimates from their IV strategy we calculate that a 10 µg/m3 increase in
PM10 is associated with an additional 0.74 deaths per 1,000 live births (IMR).28 Using the
ratio between the neonatal mortality rate and infant mortality rate we attribute 61% of the
estimated deaths to neonatal mortality, resulting in an additional 0.45 deaths per 1,000 live
births (NMR).

Heft-Neal et al. (2018)

Sample period: 2001-2015
Context: Sub-Saharan Africa
GDP per capita: $2,965
Average PM10 Exposure: 35.71 µg/m3

Infant mortality rate: 71.2 deaths per 1,000 births
Neonatal mortality rate: 34 deaths per 1,000 births
Measure of Exposure: Pre-natal.

These numbers are calculated using the replication files provided by Heft-Neal (2018).
Using a fixed effects strategy we estimate that a 10µg/m3 increase in gestational PM2.5 is
associated with an additional 1.435 deaths per 1,000 live births (NMR). To convert PM2.5

exposure to PM10 exposure we use the ratio PM2.5 = 0.7PM10. The effect of a 10-unit
increase in PM10 would be associated with an additional 2.05 deaths per 1,000 live births
(NMR, gestational exposure).

280.0019×39 weeks×10 µg/m3 = 0.74 (Table 8, Column 4).
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Heft-Neal et al. (2019)

Sample period: 2001-2015
Context: Sub-Saharan Africa
GDP per capita: $2,965
Average PM10 Exposure: 35.71 µg/m3 (mean exposure)
Infant mortality rate: 71.2 deaths per 1,000 births
Neonatal mortality rate: 34 deaths per 1,000 births
Measure of Exposure: Annual post-natal.

Using an IV strategy the authors estimate that a 10 µg/m3 increase in PM2.5 in the year
following birth is associated with a 22% increase in infant mortality. Relative to the mean
this is an additional 15.66 deaths per 1,000 live births (IMR). To convert PM2.5 exposure to
PM10 exposure we use the ratio PM2.5 = 0.7PM10. We calculate that a 10 µg/m3 increase
in PM10 would be associated with an additional 22.3 deaths per 1,000 live births (IMR).
Using the average ratio between the neonatal mortality rate and infant mortality rate for
sub-Saharan Africa we attribute 47% of the estimated deaths to neonatal mortality, result-
ing in an additional 10.51 deaths per 1,000 live births (NMR). We then multiply this effect
by 0.75 to provide a comparable 9-month measure of exposure, giving an estimate of 7.88
neonatal deaths per 1,000 live births.

Heft-Neal et al. (2019)

Sample period: 2001-2015
Context: West Africa
GDP per capita: $1,333
Average PM10 Exposure: 65.2µg/m329

Infant mortality rate: 102.8 deaths per 1,000 births
Neonatal mortality rate: 45.9 deaths per 1,000 births
Measure of Exposure: Annual post-natal.

Heft-Neal et al. (2019) estimate an IV effect explicitly for West Africa finding that a 10
µg/m3 increase in PM2.5 is associated with a 17.47% increase in infant mortality. Relative to
the mean this is an additional 17.95 deaths per 1,000 live births. To convert PM2.5 exposure
into PM10 exposure we use the ratio PM2.5=0.7PM10. We calculate that a 10 µg/m3 increase
in PM10 would be associated with an additional 25.63 deaths per 1,000 live births. Using the
average ratio between the neonatal mortality rate and infant mortality rate for West Africa
we attribute 44% of the estimated deaths to neonatal mortality, resulting in an additional
11.28 deaths per 1,000 live births (NMR). We then multiply this effect by 0.75 to provide a
comparable 9-month measure of exposure, giving an estimate of 8.46 deaths per 1,000 live
births.

29Heft-Neal et al. (2019) do not report summary statistics for the West Africa analysis and so we take
average PM10 exposure from Advharyu et al. (forthcoming)
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Advharyu et al. (forthcoming)

Sample period: 1986-2005
Context: West Africa
GDP per capita: $1,333
Average PM10 Exposure: 65.2µg/m3

Infant mortality rate: 102.8 deaths per 1,000 births
Neonatal mortality rate: 45.9 deaths per 1,000 births
Measure of Exposure: Pre-Natal.

Using a fixed effects strategy the authors estimate that a cumulative 100 µg/m3 increase
in PM2.5 during gestation is associated with 2.455 deaths per 1,000 (Table 2, column 3). An
average increase of 10 µg/m3 during gestation is equal to 90 µg/m3. As such, we calculate
that a 10 µg/m3 increase in average gestational PM2.5 would be associated with an additional
2.20 neonatal deaths per 1,000 live births. To convert PM2.5 exposure into PM10 exposure
we use the ratio PM2.5=0.7PM10. We calculate that a 10 µg/m3 increase in average gesta-
tional PM10 would be associated with an additional 3.14 neonatal deaths per 1,000 births.
We note that the estimate presented in Advharyu et al. is statistically insignificant. If we
use their estimate on infant mortality and weight by the share of neonatal deaths we would
estimate that a 10 µg/m3 increase in average gestational PM10 would be associated with an
additional 4.42 neonatal deaths per 1,000 births.30

Tanaka (2015)

Sample period: 1991-2000
Context: China
GDP per capita: $1,980
Average PM10 Exposure: 163.2µg/m3

Infant mortality rate: 36.61 deaths per 1,000 births
Neonatal mortality rate: 25.85 deaths per 1,000 births
Measure of Exposure: Annual

Tanaka (2015) estimates the effect of the “Two Control Zones” policy in China on infant
mortality, finding that it reduced neonatal deaths by 2.08 neonatal deaths per 1,000 live
births.31 In unpublished appendix material, the author also estimates the effect of the policy
on TSP, using a different sample (1991-2004). The policy was associated with a 67 µg/m3

increase in TSP.32 Attributing all of the neonatal mortality effect to reductions in TSP would
result in 0.39 fewer neonatal deaths per 1,000 live births per 10 µg/m3 reduction in TSP.
Translating this into PM10 using the conversion factor TSP = 0.55PM10 this provides an
estimate of 0.22 deaths per 1,000 live births for each 10 µg/m3 reduction in PM10. We then
weight this annual estimate to be 9-months, providing an estimate of 0.16 deaths per 1,000

30(7.170 infant deaths per 100 µg/m3
× 0.9)/0.7 × 0.44 = 4.05 deaths per 1,000 births.

31Table 4, column 6.
32Table 3.2A, column 3.
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live births for each 10 µg/m3 reduction in PM10.

Chen et al. (2013)

Sample period: 1991-2000
Context: China
GDP per capita: $1,980
Average PM10 Exposure: 249.23 µg/m3

Infant mortality rate: 36.61 deaths per 1,000 births
Neonatal mortality rate: 25.85 deaths per 1,000 births
Measure of Exposure: Annual

Chen et al. (2013) estimates the effect of the Huai river policy in China on TSP and
infant mortality. Using a regression discontinuity design they estimate that a 100 µg/m3

increase in TSP is associated with a 55% increase in infant mortality.33 First, we convert
this into infant deaths. Chen et al. (2013) do not provide descriptive statistics on the infant
mortality rate in their sample so we rely on aggregate statistics. Using the aggregate infant
mortality rate in China between 1991-2000 we calculate that a 55% increase in infant mor-
tality corresponds to an additional 20.14 deaths per 1,000 live births. Second, we convert
this to PM10 using the conversion factor 0.55TSP = PM10. A 100 µg/m3 increase in PM10

is associated with an additional 11.07 deaths per 1,000 live births. We then assign 70% of
these deaths as neonatal deaths using the ratio of neonatal deaths to infant deaths during
this period (7.75 deaths per 1,000 live births). Finally, we weight this annual estimate to be
9-months, and divide by 10 to get the estimate in 10 µg/m3. This provides a final estimate
of 0.581 neonatal deaths per 1,000 live births for each 10 µg/m3 reduction in PM10.

Bombardini et al. (2020)

Sample period: 1990-2010
Context: China
GDP per capita: $16,679
Average PM10 Exposure: 48.79µg/m3

Infant mortality rate: 29 deaths per 1,000 births
Neonatal mortality rate: 20.185 deaths per 1,000 births
Measure of Exposure: Annual

Bombardini et al. (2020) estimate that a 10 µg/m3 increase in PM2.5 is associated with
13.08 deaths per 1,000 live births.34 We first convert this to PM10 using the conversion factor
PM2.5=0.7PM10. A 10 µg/m3 increase in PM10 is associated with an additional 18.67 infant
deaths/1,000 live births. We then impute the implied number of neonatal deaths using the
ratio of neonatal deaths over infant deaths in this context (0.69), implying 12.88 neonatal
deaths/1000 live births for each 10 µg/m3 increase in PM10. We then weight the annual

33Table S4, column 1.
34Table 8, Panel B, column 2.
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measure by 0.75 to provide a 9 month estimate. This results in 9.66 neonatal deaths/1,000
for for each 10 µg/m3 increase in PM10.

Pullabholtra (2020)

Sample period: 2007-2016
Context: India
GDP per capita: $4,501
Average PM10 Exposure: 99.3µg/m3

Infant mortality rate: NA
Neonatal mortality rate: 33.93 deaths per 1,000 births
Measure of Exposure: Pre-Natal

Pullabholtra (2020) estimates that greater exposure to agricultural fires (defined as being
upwind of more than 5 fires within 75k) is associated with a 3.325 µg/m3 increase in prenatal
exposure to PM10.

35 This exposure is associated with an additional 2.757 neonatal deaths
per 1,000 live births.36 Using these numbers we calculate that a 10 µg/m3 increase in PM10

is associated with 8.291 neonatal deaths/1,000.

Our study

Sample period: 2001-2014
Context: Hong Kong
GDP per capita: $41,814
Average PM10 Exposure: 54.31µg/m3

Infant mortality rate: 1.5 deaths per 1,000 births
Neonatal mortality rate: 1.15 deaths per 1,000 births
Measure of Exposure: Pre-Natal.

We estimate that a 10 µg/m3 increase in average prenatal PM10 is associated with an
additional 0.02 neonatal deaths per 1,000 live births.

35Table 2, column 1.
36Table 4, column 1.
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