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In this paper we propose the use of machine learning methods to estimate inequality of 

opportunity. We illustrate how our proposed methods—conditional inference regression 

trees and forests—represent a substantial improvement over existing estimation approaches. 

First, they reduce the risk of ad-hoc model selection. Second, they establish estimation 

models by trading off upward and downward bias in inequality of opportunity estimates. 

The advantages of regression trees and forests are illustrated by an empirical application 

for a cross-section of 31 European countries. We show that arbitrary model selection may 

lead to significant biases in inequality of opportunity estimates relative to our preferred 

method. These biases are reflected in both point estimates and country rankings. Our 

results illustrate the practical importance of leveraging machine learning algorithms to 

avoid giving misleading information about the level of inequality of opportunity in different 

societies to policymakers and the general public.
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1 INTRODUCTION

Equality of opportunity is an important ideal of distributive justice. It has widespread support

in the general public and its realization has been identified as an important goal of public policy

intervention (Cappelen et al., 2007; Alesina et al., 2018; Corak, 2013; Chetty et al., 2016). In spite

of its popularity, providing empirical estimates of equality of opportunity is notoriously diffi-

cult. Next to normative dissent about the precise factors that should be viewed as contributing

to unequal opportunities, current approaches to estimate inequality of opportunity are encum-

bered by ad-hoc model selection that lead researchers to over- or underestimate inequality of

opportunity.

In this paper we propose the use of machine learning methods to overcome the issue of ad-

hoc model selection. Machine learning methods allow for flexible models of how unequal op-

portunities come about while imposing statistical discipline through criteria of out-of-sample

replicability. These features serve to establish inequality of opportunity estimates that are less

prone to upward or downward bias.

The empirical literature on the measurement of unequal opportunities has been flourishing

since John Roemer’s (1998) seminal contribution, Equality of Opportunity. At the heart of Roe-

mer’s formulation is the idea that individual outcomes are determined by two sorts of factors:

those factors over which individuals have control, which he calls effort, and those factors for

which individuals cannot be held responsible, which he calls circumstances. While outcome

differences due to effort exertion are morally permissible, differences due to circumstances are

inequitable and call for compensation.1 Grounded on this distinction, inequality of opportu-

nity measures quantify the extent to which individual outcomes are predicted by circumstance

characteristics. They are usually calculated in a two-step procedure. First, researchers pre-

dict an outcome of interest from observable circumstances. Second, they calculate inequality

in the distribution of predicted outcomes: the more predicted outcomes diverge, the more are

circumstances associated with outcomes, and the more inequality of opportunity there is.

1The distinction between circumstances and efforts underpins many prominent literature branches in economics
such as the ones on intergenerational mobility (Chetty et al., 2014a,b), the gender pay gap (Blau and Kahn, 2017)
and racial differences (Kreisman and Rangel, 2015). For different notions of equality of opportunity, see Arneson
(2018).
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Current approaches to estimate inequality of opportunity suffer from biases that are the con-

sequence of critical choices in model selection. First, researchers have to decide which circum-

stance variables to consider for estimation.2 The challenge of this task grows with increasing

availability of high-quality datasets that provide very detailed information with respect to indi-

vidual circumstances (Björklund et al., 2012; Hufe et al., 2017). On the one hand, discarding rel-

evant circumstances from the estimation model limits the explanatory scope of circumstances

and leads to downward biased estimates of inequality of opportunity (Ferreira and Gignoux,

2011). On the other hand, including too many circumstances overfits the data and leads to up-

ward biased estimates of inequality of opportunity (Brunori et al., 2019). Second, researchers

must choose a functional form according to which circumstances co-produce the outcome of

interest. For example, it is a well-established finding that the influence of socio-economic dis-

advantages during childhood on life outcomes varies by biological sex (Chetty et al., 2016; Dahl

and Lochner, 2012). In contrast to such evidence, many empirical applications presume that

the effect of circumstances on individual outcomes is log-linear and additive while abstracting

from possible interaction effects (Bourguignon et al., 2007; Ferreira and Gignoux, 2011). On the

one hand, restrictive functional form assumptions limit the ability of circumstances to explain

variation in the outcome of interest and thus force a downward bias on inequality of opportu-

nity estimates. On the other hand, limitations in the available degrees of freedom may prove a

statistically meaningful estimation of complex models with many parameters infeasible.

This discussion highlights the non-trivial challenge of selecting the appropriate model for es-

timating inequality of opportunity. Researchers must balance different sources of bias while

avoiding ad-hoc solutions. While this task is daunting for the individual researcher, it is a

standard application for machine learning algorithms that are designed to make out-of-sample

predictions of a dependent variable based on a number of observable predictors. In this paper,

we use conditional inference regression trees and forests to estimate inequality of opportunity

(Hothorn et al., 2006). Introduced by Morgan and Sonquist (1963) and later popularized by

Breiman et al. (1984) and Breiman (2001), they belong to a set of machine learning methods that

is increasingly integrated into the statistical toolkit of economists (Varian, 2014; Mullainathan

2Roemer does not provide a fixed list of circumstance variables. Instead he suggests that the set of circum-
stances should evolve from a political process (Roemer and Trannoy, 2015). In empirical implementations typical
circumstances include biological sex, socioeconomic background, and race.
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and Spiess, 2017; Athey, 2018). Trees and forests obtain predictions by drawing on a clear-

cut algorithm that imposes only minimal assumptions about which and how circumstances

interact in shaping individual opportunities. Thereby, they restrict judgment calls of the re-

searcher and inform model specification by data analysis. As a consequence, they cushion

downward bias by flexibly accommodating different ways of how circumstance characteristics

shape the distribution of outcomes. Moreover, the conditional inference algorithm branches

trees (and constructs forests) by a sequence of hypothesis tests that prevents the inclusion of

noisy circumstance parameters. This feature reduces the potential for upward biased estimates

of inequality of opportunity through model overfitting. Hence, regression trees and forests ad-

dress the detrimental consequences of ad-hoc model selection in a way that is sensitive to both

upward and downward bias in inequality of opportunity estimates.

To showcase the advantages of regression trees and forests we compare them to existing es-

timation approaches in a cross-sectional dataset of 31 European countries. We demonstrate

that current estimation approaches overfit (underfit) the data which in turn leads to upward

(downward) biased estimates of inequality of opportunity. These biases are sizable. For ex-

ample, some standard methods overestimate inequality of opportunity in the Nordic countries

while they underestimate the extent of inequality of opportunity in Germany and France. As a

consequence, these countries appear at par in terms of their opportunity characteristics. Hence,

standard estimation approaches may yield misleading information about the level of inequality

of opportunity in different societies to policymakers and the general public alike.

The remainder of this paper is organized as follows: section 2 gives a brief introduction to

current empirical approaches in the literature on inequality of opportunity. Section 3 introduces

conditional inference regression trees and forests, and illustrates how to use them in the context

of inequality of opportunity estimations. An empirical illustration based on simulated data and

the EU Survey of Income and Living Conditions is contained in section 4. In this section we also

highlight the particular advantages of tree- and forest-based estimation methods by comparing

them to the prevalent estimation approaches in the literature. Section 5 concludes the paper.3

3In a parallel paper, Blundell and Risa (2019) apply machine learning methods to the estimation of intergenera-
tional mobility. In particular, they assess the completeness of rank-rank estimates of intergenerational mobility as
measures of equal opportunities. In contrast to their work, we directly estimate inequality of opportunity statistics.
Therefore, our focus is not on downward bias that follows from focusing on one circumstance only (i.e. parental
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2 EMPIRICAL APPROACHES TO EQUALITY OF OPPORTUNITY

Theoretical Set-up and Notation. Consider a population N = {1, ..., N} and an associated

vector of non-negative incomes y = (y1, ..., yN). Income is determined by two sets of factors:

circumstances beyond individual control and individual efforts. We define the (P ⇥ 1)-vector

wi 2 W as a comprehensive description of the circumstances of i 2 N . Analogously we define

the (Q ⇥ 1)-vector qi 2 Q as a comprehensive description of the efforts that are exerted by

i 2 N . The income generating function can be defined as follows:

y = d(w, q). (1)

Based on the realizations of individual circumstances, the population can be partitioned into

types. We define the type partition T = {t1, ..., tM}, such that individuals are member of one

type if they share the same circumstances: i, j 2 tm () wi = wj.

Measurement. Opportunity egalitarians are averse to inequalities that are rooted in circum-

stances, however, they are indifferent to inequalities that originate from individual effort ex-

ertion. In spite of the intuitive appeal of this idea, the literature has suggested a variety of

formulations that differ in their precise normative content—see Ramos and Van de gaer (2016)

for a recent overview. In this work we exclusively focus on ex-ante utilitarian measures of in-

equality of opportunity (Van de gaer, 1993; Checchi and Peragine, 2010). They are the most

widely applied formulations in the empirical literature.4

According to the ex-ante utilitarian view, the value of a type’s opportunity set is pinned down

by the expected value of its outcomes, E[y|w]. Thus, the distribution of opportunities in a

population can be expressed by the following counterfactual distribution yC:

yC = (yC
1 , ..., yC

i , ..., yC
N) = (E[y1|w1], ..., E[yi|wi], ..., E[yN |wN ]). (2)

income) but on balancing both downward and upward bias if the set of available circumstances is large in relation
to a given sample size.

4The use of ML methods is not restricted to ex-ante utilitarian formulations but can be easily extended to alter-
native measures of inequality of opportunity.
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From this distribution one can construct ex-ante utilitarian measures of inequality of opportu-

nity by choosing any functional I() that satisfies the following two properties:

1. I(yC) decreases (increases) through transfers from i to j if i is from a circumstance type

with a higher (lower) expected value of outcomes than the recipient j.

2. I(yC) remains unaffected by transfers from i to j if they are members of the same type.

In most empirical applications I() represents an inequality index satisfying the standard prop-

erties of anonymity, the principle of transfers, population replication, and scale invariance

(Cowell, 2016).5 Examples of the latter are the Gini index or any member of the generalized

entropy class. Note that the choice of I() is normative in itself as it specifies the extent of in-

equality aversion at different points of the counterfactual distribution yC. For example, the

mean logarithmic deviation (MLD) values compensating transfers to the most disadvantaged

types more than the Gini index. In this work we are agnostic about the normatively correct

choice of I(). While we present our main results in terms of the Gini index, we provide robust-

ness checks based on other inequality indexes in Supplementary Material S.2.

Estimation. Given the measurement decisions described above, we require an estimate of the

conditional distribution yC. The data generating process (DGP) described in equation (1) can

be rewritten as follows:

y = d(w, q) = f (w) + e = E(y|w) + e. (3)

E(y|w) captures unfair variation due to observed circumstances. The iid error term e captures

both fair (individual effort) and unfair (unobserved circumstances) determinants of individual

outcomes; hence resulting measures of inequality of opportunity have a lower bound interpre-

tation.

5The b coefficient from intergenerational mobility regressions can also be interpreted as an ex-ante utilitarian
measure of inequality of opportunity. In the intergenerational mobility framework, b =

E(yic |yip)
yip

, where yip rep-
resents parental income as the sole circumstance. Hence, the functional applied to the distribution of conditional
expectations can be written as I() = 1

yip
. Note that b decreases (increases) through transfers from children from ad-

vantaged (disadvantaged) backgrounds to children from less (more) advantaged backgrounds. However, b remains
unaffected by transfers between children from parental households with equal yip.
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Estimating yC is a prediction task in which the researcher tries to answer the following question:

What outcome yi do we expect for an individual that faces circumstances wi? The precise form

of f () is a priori unknown. In the vast majority of empirical applications, researchers address

this lack of knowledge by invoking strong functional form assumptions. For example, they

perform a log-linear regression of the outcome of interest on the set of observed circumstances

and construct an estimate for yC from the predicted values:

ln(yi) = b0 +
P

Â
p=1

bpw
p
i + ei, (4)

ŷC
i = exp


b0 +

P

Â
p=1

b̂pw
p
i

�
. (5)

The literature refers to this estimation procedure as the parametric approach (Bourguignon et al.,

2007; Ferreira and Gignoux, 2011).6

According to another procedure, the researcher partitions the sample into mutually exclusive

types based on the realizations of all circumstances under consideration. An estimate for yC is

then constructed from average incomes within types:

ŷC
i = µm(i) =

1
Nm

Nm

Â
j=1

yj, 8j 2 tm, 8tm 2 T . (6)

The literature refers to this estimation procedure as the non-parametric approach (Checchi and

Peragine, 2010).

Both approaches face empirical challenges that are typically resolved by discretionary decisions

of the researcher. For example, the parametric approach assumes a log-linear impact of all cir-

cumstances and therefore neglects the existence of interdependencies between circumstances

and other non-linearities. To alleviate this shortcoming the researcher may integrate interac-

tion terms and higher order polynomials into equation (4). However, such extensions remain

at her discretion. Reversely, the non-parametric approach does not restrict the interdependent

impact of circumstances. However, if the data is rich enough in information on circumstances,

6The logarithmic transformation is not innocuous as the marginal impact of circumstances on incomes may differ
from their impact on log-incomes. Therefore, the predicted outcome should be obtained by applying the correction
suggested in Blackburn (2007). This correction, however, is rarely implemented in empirical applications.

6



the researcher may be forced to reduce the observed circumstance vector to obtain statistically

meaningful estimates of the relevant parameters.7 The necessary process of restricting the cir-

cumstance vector again remains at the researcher’s discretion.

The previous discussion illustrates that common approaches leave the researcher to her own

devices when selecting the best model for estimating the distribution yC. In this paper, we

provide an automated solution to this problem. Similarly, Li Donni et al. (2015) propose the

use of latent class modeling to obtain type partitions that allow for estimates of yC according to

the non-parametric procedure outlined in equation (6). In their approach, observable circum-

stances are considered indicators of membership in an unobservable latent type. For each pos-

sible number of latent types individuals are assigned to types so as to minimize the within-type

correlation of observable circumstances. Then the optimal number of types, M⇤, is selected by

minimizing an appropriate model selection criterion such as Schwarz’s Bayesian Information

Criterion (BIC). The latent class approach therefore partly solves the issue of arbitrary model

selection. However, it has important drawbacks. First, it cannot solve the problem of model

selection once the potential number of types exceeds the available degrees of freedom. In such

cases, the latent class approach replicates the limitations of parametric and non-parametric ap-

proaches: the researcher must pre-select circumstances and their subpartition. Second, latent

classes are obtained by minimizing the within-type correlation of circumstances while ignoring

the correlation of circumstance variables with the outcome variable. As a consequence, they are

likely to underfit the data leading to downward biased estimates of inequality of opportunity

(Lanza et al., 2013).

In the following section, we will discuss how regression trees and forests address the outlined

shortcomings of existing estimation approaches.

7Assume the researcher observes ten circumstance variables with three expressions each—a quantity easily ob-
served in many data sets. The non-parametric approach would require the estimation of 310 = 59, 049 group means.
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3 ESTIMATING INEQUALITY OF OPPORTUNITY FROM REGRESSION

TREES AND FORESTS

Regression trees and forests belong to the class of supervised learning methods that were de-

veloped to make out-of-sample predictions of a dependent variable based on a number of ob-

servable predictors. As we will outline in the following, they can be straightforwardly applied

to inequality of opportunity estimations and solve the issue of model selection.

First, we will introduce conditional inference regression trees. By providing predictions based

on identifiable groups, they closely connect to Roemer’s theoretical formulation of inequality

of opportunity.8 Second, we will introduce conditional inference forests, which are—loosely

speaking—a collection of many conditional inference trees. While forests do not have the in-

tuitive appeal of regression trees, they perform better in terms of out-of-sample prediction

accuracy and hence provide better estimates of the counterfactual distribution yC.

3.1 Conditional Inference Trees

Trees obtain predictions for outcome y as a function of input variables x = (x1, ..., xk). They

use the sample S = {(yi, xi)}S
i=1 to divide the population into non-overlapping groups, G =

{g1, ..., gm, ..., gM}, where each group gm is homogeneous in the expression of some input vari-

ables. These groups are called terminal nodes or leafs. The conditional expectation for observa-

tion i is estimated from the mean outcome µ̂m of the group gm to which i is assigned. Hence, in

addition to the observed outcome vector y = (y1, ..., yi, ..., yN) one obtains a vector of predicted

values ŷ = ( f̂ (x1), ..., f̂ (xi), ..., f̂ (xN)), where

f̂ (xi) = µ̂m(i) =
1

Nm
Â

j2gm

yj. (7)

The mapping from regression trees to equality of opportunity estimation is straightforward. If

8Furthermore, their simple graphical illustration may be an instructive tool for comparisons of opportunity
structures in different societies.
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the input variables x = (x1, ..., xk) are circumstances only, each resulting group gm 2 G can be

interpreted as a circumstance type tm 2 T . Furthermore, ŷ is analogous to an estimate of the

counterfactual distribution yC that underpins the construction of ex-ante utilitarian measures

of inequality of opportunity.

Tree Construction. Regression trees partition the sample into M types by recursive binary split-

ting. Recursive binary splitting starts by dividing the full sample into two distinct groups ac-

cording to the value they take in one input variable wp 2 W. If wp is a continuous or ordered

variable, then i 2 tl if w
p
i < w̃p and i 2 tm if w

p
i � w̃p, where w̃p is a splitting value chosen by

the algorithm. If wp is a categorical variable then the categories can be split into any two arbi-

trary groups. The process is continued such that one of the two groups is divided into further

subgroups (potentially based on another wq 2 W), and so on. Graphically, this division into

groups can be presented like an upside-down tree (Figure 1).

FIGURE 1 – Exemplary Tree Representation

Note: Artificial example of a regression tree. Gray boxes indicate splitting points; white
boxes indicate terminal nodes. The values inside terminal nodes show estimates for the
conditional expectation yC.

The exact manner in which the split is conducted depends on the type of regression tree that
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is used. In this paper, we follow the conditional inference methodology proposed by Hothorn

et al. (2006). Conditional inference trees are grown by a series of permutation tests according

to the following 4-step procedure:

0. Choose a significance level a⇤.

1. Test the null hypothesis of density function independence: Hwp

0 : D(y|wp) = D(y), for all

wp 2 W, and obtain a p-value associated with each test, pwp .

) Adjust the p-values for multiple hypothesis testing, such that pwp

adj. = 1 � (1 � pwp
)P

(Bonferroni Correction).

2. Select the variable w⇤ with the lowest p-value, i.e.

w⇤ = argmin
wp

{pwp

adj. : wp 2 W, p = 1, ..., P}.

) If pw⇤
adj. > a⇤: Exit the algorithm.

) If pw⇤
adj.  a⇤: Continue, and select w⇤ as the splitting variable.

3. Test the null hypothesis of density function independence between the subsamples for

each possible binary partition splitting point s based on w⇤, and obtain a p-value associ-

ated with each test, pw⇤
s .

) Split the sample based on w⇤, by choosing the splitting point s that yields the lowest

p-value, i.e. w̃⇤ = argmin
w⇤

s

{pw⇤
s : w⇤

s 2 W}.

4. Repeat steps 1.–3. for each of the resulting subsamples.

In words, conditional inference start by a series of univariate hypothesis tests. The circum-

stance that is most related to the outcome is chosen as the potential splitting variable. If the

dependence between the outcome and the splitting variable is sufficiently strong, then a split

is made. If not, no split is made. Whenever a circumstance can be split in several ways, the

sample is split into two subsamples such that the dependence with the outcome variable is

maximized. This procedure is repeated in each of the two subsamples until no circumstance in
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any subsample is sufficiently related to the outcome variable. Note that the depth of the result-

ing opportunity tree hinges on the level of a⇤. The less stringent the a⇤-requirement, the more

we allow for false positives, i.e. the more splits will be detected as significant and the deeper

the tree will be grown. In our empirical application we fix a⇤ = 0.01, which is in line with the

disciplinary convention for hypothesis tests. To illustrate the robustness of this choice we show

comparisons to setting a⇤ = 0.05 and choosing a⇤ through cross-validation in Appendix Figure

A.1.

A particular advantage of trees is that they avoid list-wise deletion of observations by imple-

menting surrogate splits. In case of missing data, the algorithm searches for an alternative

splitting point that mimicks the sample partition based on w̃⇤ to the greatest extent. All obser-

vations that lack information on w̃⇤ are then allocated to subbranches based on this surrogate

splitting point.

3.2 Conditional Inference Forests

Regression trees provide a simple and standardized way of dividing the population into types.

Therefore, they solve the model selection problem outlined in section 2. However, trees suffer

from three shortcomings: first, the structure of trees—and therefore the estimate of yC—is fairly

sensitive to alternations in data samples. This issue is particularly pronounced if there are

various circumstances that are close competitors for defining the first splits (Friedman et al.,

2009). Second, trees assume a non-linear data generating process that imposes interactions

while ruling out the linear influence of circumstances. Third, trees make inefficient use of data

since some of the circumstances wp 2 W are not used for the construction of the tree. However,

circumstances may possess informational content that can increase predictive power even if

they are not significantly associated with y at level a⇤. This becomes an issue if two or more

important circumstances are highly correlated. Once a split is made using either of the two,

it is unlikely that the other contains enough information to cause another split. Conditional

inference forests address all of these shortcomings (Breiman, 2001; Biau and Scornet, 2016).
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Forest Construction. Random forests create many trees and average over all of these when

making predictions. Trees are constructed according to the same 4-step procedure outlined

in the previous subsection. However, two tweaks are made. First, given the sample S =

{(yi, wi)}S
i=1 each tree is estimated on a random subsample S 0 ⇢ S . In our application, we ran-

domly select half of the observations for each tree, and estimate B⇤ such trees in total. Second,

only a random subset of circumstances of cardinality P̄⇤ is allowed to be used at each split-

ting point. Together these two tweaks remedy the shortcomings of single conditional inference

trees. First, averaging over B⇤ predictions cushions variance in the estimates of yC and smooths

the non-linear impact of circumstance characteristics. Second, using subsets of all circumstance

variables increases the likelihood that all observed circumstances with informational content

will be identified as splitting variable w⇤ at some point.

Predictions are formed as follows:

f̂ (w; a⇤, P̄⇤, B⇤) =
1

B⇤

B⇤

Â
b=1

f̂ b(w; a⇤, P̄⇤). (8)

Equation (8) illustrates that individual predictions are a function of a⇤—the significance level

governing the implementation of splits, P̄⇤ —the number of circumstances to be considered at

each splitting point, and B⇤—the number of subsamples drawn from the data. In our empir-

ical illustration we fix B⇤ = 200 and determine a⇤ and P̄⇤ by minimizing the out-of-bag error

(MSEOBB). Details on these choices and empirical procedures are disclosed in Appendix A.

4 EMPIRICAL APPLICATION

In this section we illustrate the machine learning approach using harmonized survey data from

31 European countries. We compare the results from trees and forests with results from the

prevalent estimation approaches in the extant literature; namely parametric, non-parametric

and latent class models. Comparisons are made along two dimensions.

First, we evaluate the different estimation approaches by comparing their out-of-sample mean

squared error (MSETest). MSETest is a standard statistic to evaluate the prediction quality of

12



estimation models.9 To calculate MSETest, we follow the machine learning practice of splitting

our sample into a training set with i�H 2 {1, ..., N�H} and a test set with iH 2 {1, ..., NH}. For

each sample, we choose N�H = 2
3 N and NH = 1

3 N.10 We fit our models on the training set and

compare their performance on the test set according to the following procedure:

1. Run the model on the training data (for the specific estimation procedures, see section 3.1

for trees and forests, and section 4.2 for our benchmark methods).

2. Store the prediction function f̂�H().

3. Calculate the mean squared error in the test set:

MSETest = 1
NH Âi2H [yi � f̂�H(wi)]2.

Second, we evaluate the different approaches by comparing inequality of opportunity esti-

mates. To this end, we run the models on all data for a country, and apply the resulting pre-

diction functions f̂ () to obtain ŷC. Estimates of inequality of opportunity are derived by sum-

marizing ŷC with the Gini index. Estimates for alternative inequality indexes are presented in

Supplementary Material S.2.

4.1 Data

We base our empirical illustration on the 2011 wave of the European Union Statistics on Income

and Living Conditions (EU-SILC). EU-SILC provides harmonized survey data with respect to

income, poverty, and living conditions. It is the official reference source for comparative statis-

tics on income distribution and social inclusion in the European Union. In its 2011 wave EU-

SILC covers a cross-section of 31 European countries. For each country, it contains a random

sample of all resident private households. Data is collected by national statistical agencies

following common variable definitions and data collection procedures. We use the 2011 wave

9Minimizing MSETest is equivalent to trading-off upward and downward biases of inequality of opportunity
estimates in a given data environment: The more parsimonious the model, the higher the prediction bias (underfit-
ting) and the stronger the downward bias in inequality of opportunity estimates. The more complex the model, the
higher the prediction variance (overfitting) and the stronger the upward bias of inequality of opportunity estimates.
We provide a thorough illustration of this mapping in Appendix B.

10Note that the size of the training set for each country is constant regardless of the estimation method. Hence,
any cross-method differences in prediction accuracy are not driven by differences in sample size.
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since it contains an ad-hoc module about the intergenerational transmission of (dis)advantages.

This module allows us to construct finely-grained circumstance type partitions. Observed cir-

cumstances W and their respective expressions are listed in Table 1. We include all variables of

EU-SILC containing information about the respondent’s characteristics at birth and their living

conditions during childhood. Descriptive statistics of circumstance variables are reported in

Supplementary Material S.1.

TABLE 1 – List of Circumstances

1. Respondent’s sex:
- Male
- Female

2. Respondent’s country of birth:
- Respondent’s present country of residence

- European country

- Non-European country

3. Presence of parents at home⇤:
- Both present

- Only mother

- Only father

- Without parents

- Lived in a private household without any par-
ent

4. Number of adults (aged 18 or more) in respondent’s
household⇤

5. Number of working adults (aged 18 or more) in re-
spondent’s household⇤

6. Number of children (under 18) in respondent’s
household⇤

7. Father’s/mother’s country of birth and citizenship:
- Born/citizen of the respondent’s present

country of residence

- Born/citizen of another EU-27 country

- Born/citizen of another European country

- Born/citizen of a country outside Europe

8. Father’s/mother’s education (based on the Inter-
national Standard Classification of Education 1997
[ISCED-97])⇤:

- Unknown father/mother

- Illiterate

- Low (0-2 ISCED-97)

- Medium (3-4 ISCED-97)

- High (5-6 ISCED-97)

9. Father’s/mother’s occupational status⇤:
- Unknown or dead father/mother

- Employed

- Self-employed

- Unemployed

- Retired

- House worker

- Other inactive

10. Father’s/mother’s main occupation (based on the In-
ternational Standard Classification of Occupations,
published by the International Labour Office [ISCO-
08])⇤:

- Managers (I-01)

- Professionals (I-02)

- Technicians (I-03)

- Clerical support workers (I-04)

- Service and sales workers (I-05 and 10)

- Skilled agricultural, forestry and fishery
workers (I-06)

- Craft and related trades workers (I-07)

- Plant and machine operators, and assemblers
(I-08)

- Elementary occupations (I-09)

- Armed forces occupation (I-00)

- Father/mother did not work, was unknown
or was dead

11. Managerial position of father/mother⇤:
- Supervisory

- Non-supervisory

12. Tenancy status of the house in which the respondent
was living⇤:

- Owned

- Not owned

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: This table lists the circumstance variables available in EU-SILC 2011. Questions marked with ⇤ refer to the
time when the respondent was 14 years old. Item 11 is missing for Finland.
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The unit of observation is the individual and the outcome of interest is equivalized disposable

household income. We obtain the latter by dividing household disposable income with the

square root of household size. Reported incomes refer to the year preceding the survey wave,

i.e. 2010 in the case of our empirical application. In line with the literature we focus on equival-

ized household income as it provides the closest income analogue to consumption possibilities

and general economic well-being. Inequality statistics tend to be heavily influenced by out-

liers (Cowell and Victoria-Feser, 1996); therefore we adopt a standard winsorization method

according to which we set all non-positive incomes to 1 and scale back all incomes exceeding

the 99.5th percentile of the country-specific income distribution to this lower threshold. Our

analysis is focused on the working age population. Therefore, we restrict the sample to respon-

dents aged between 30 and 59. To assure the representativeness of our country samples we use

individual cross-sectional weights throughout the analysis.

Table 2 shows considerable heterogeneity in income distributions across Europe. While the av-

erage households in Norway and Switzerland obtained incomes above e40,000 in 2010, the av-

erage household income in Bulgaria, Romania and Lithuania did not exceed the e5,000 mark.

Lowest inequality prevails in Norway, Sweden and Iceland, all of which have Gini coefficients

below 0.220. At the other end of the spectrum we find Latvia and Lithuania with Gini coeffi-

cients above 0.340.

4.2 Benchmark Methods

We compare trees and forests to three benchmark estimation methods from the extant literature.

First, we draw on the parametric approach as proposed by Bourguignon et al. (2007) and Fer-

reira and Gignoux (2011). In line with equation (4), estimates are obtained by a Mincerian

regression of log income on the following circumstances: educational attainment of mother

and father (5 categories each), father’s occupation (11 categories), area of birth (3 categories),

and tenancy status of the household at age 14 (2 categories). The prediction model includes 22

parameters.

Second, we draw on the non-parametric approach as proposed by Checchi and Peragine (2010).
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TABLE 2 – Summary Statistics

Equivalized Disposable Household Income in e

Country N µ s Gini

Austria 6,220 25,451 13,971 0.268
Belgium 6,011 23,291 10,948 0.249
Bulgaria 7,154 3,714 2,491 0.333
Croatia 6,969 6,627 3,819 0.306
Cyprus 4,589 21,058 11,454 0.279
Czech Republic 8,711 9,006 4,320 0.250
Denmark 5,897 32,027 13,836 0.232
Estonia 5,338 6,922 3,912 0.330
Finland 9,743 27,517 13,891 0.246
France 11,078 24,299 14,583 0.288
Germany 12,683 22,221 12,273 0.276
Greece 6,184 13,184 8,651 0.334
Hungary 13,330 5,327 2,863 0.276
Iceland 3,684 22,190 9,232 0.210
Ireland 4,318 24,867 14,307 0.296
Italy 21,070 18,786 11,730 0.309
Latvia 6,423 5,334 3,618 0.363
Lithuania 5,403 4,774 3,150 0.344
Luxembourg 6,765 37,911 19,977 0.271
Malta 4,701 13,006 6,747 0.277
Netherlands 11,411 25,210 11,414 0.235
Norway 5,026 43,260 16,971 0.202
Poland 15,545 6,103 3,690 0.316
Portugal 5,899 10,781 7,296 0.334
Romania 7,867 2,562 1,646 0.337
Slovakia 6,779 7,304 3,416 0.257
Slovenia 13,183 13,772 5,994 0.225
Spain 15,481 17,088 10,597 0.329
Sweden 6,599 26,346 10,700 0.215
Switzerland 7,583 42,208 24,486 0.279
United Kingdom 7,391 25,936 16,815 0.320

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: This table provides summary statistics by country. N indicates the total number of
observations. The last three columns summarize the distribution of equivalized dispos-
able household income: mean (µ), standard deviation (s), and Gini coefficient.

In line with equation (6), non-parametric estimates are obtained by calculating average out-

comes in non-overlapping circumstance types. Types are homogeneous with respect to edu-

cational attainment of the highest educated parent (5 categories), fathers’ occupation (4 cate-

gories), and migration status (2 categories).11 The prediction model includes 40 parameters.

Third, we draw on the latent class approach as proposed by Li Donni et al. (2015). We use the

full set of observable circumstances from which the algorithm infers the appropriate number

of unobserved types in the data by minimizing BIC.

Do these specification choices serve for a fair assessment of these benchmark methods? As

11To minimize the frequency of sparsely populated types we divert from the occupational list given in Table 1 by
re-coding occupations into the following categories: high-skilled non-manual (I-01–I-03), low-skilled non-manual
(I-04–I-05 and I-10), skilled manual and elementary occupation (I-06–I-09), and unemployed/unknown/dead.
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outlined in section 2, model specification in the (non-)parametric approach is a discretionary

choice of the researcher; therefore there are many different specifications that could be used

for the benchmarking. To make the comparison non-arbitrary, we anchor our comparison on

model specifications of existing studies. The specification of the parametric approach is in-

spired by Palomino et al. (2019). We divert from their specification by excluding gender (due to

our focus on disposable household income) and retrospective information on the financial situ-

ation during childhood (due to potential recall bias) from the list of circumstances. In compar-

ison, our prediction model (22 parameters) is more parsimonious than the model in Palomino

et al. (2019, 24 parameters). The specification of the non-parametric approach is inspired by

Checchi et al. (2016). We divert from their specification by excluding gender (due to our focus

on disposable household income) and age (due to its interpretation as a proxy for life-cycle

effects) from the list of circumstances. In comparison, our prediction model (40 parameters)

is more parsimonious than the model in Checchi et al. (2016, 96 parameters). As outlined in

section 2, model specification in latent class analysis is data driven. We therefore do not need to

specify the model itself but commit to a model selection criterion. We anchor our comparison

on the study of Li Donni et al. (2015) who use BIC to select the number of parameters to be

estimated. We conclude that our specification choices for all three benchmark methods have

clear precedence in the existing literature.

4.3 Simulation

We begin our analysis with a simulation exercise. The simulation allows us to assess the prop-

erties of different estimation approaches while maintaining control over the true DGP. As a

consequence we can i) assess the prediction accuracy by decomposing MSETest into its variance

and bias components, and ii) assess the resulting bias in inequality of opportunity estimates.

We impose three DGP that are summarized in Table 3. The parametric DGP and non-parametric

DGP correspond to the estimation models outlined in section 4.2. They present a challenging

test for data-driven estimation methods since the latter have to compete against fixed speci-

fications (parametric, non-parametric) that correspond to the ground truth. In addition, we

specify a mixed DGP that integrates features of both the parametric and the non-parametric
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TABLE 3 – Summary of Data Generating Processes

Parametric Non-Parametric Mixed

Outcome ln(y) y ln(y)

Parameters 22 40 18

Circumstances Education Father
Education Mother
Occupation Father
Birth Area
Tenancy Status

Education Parents
Occupation Father
Mig. Background

Education Parents
Occupation Father
Mig. Background
Tenancy Status

Non-Linearity None Full Interaction
All Circ. w/

Mig. Background
(2 Levels)

e N (0, 2000) N (0, 2000) N (0, 2000)

DGP. This is a more realistic scenario since it is plausible to assume that researchers devise

fixed specifications without prior knowledge of the true DGP. We estimate all three models

on the full sample of EU-SILC while list-wise deleting observations with missing information

(N = 200, 754). In turn, we retain the predictions from these estimations and add a disturbance

term with N (0, 2000).12 Thus, we obtain three variables that define the distribution of income

for the purpose of this simulation.

Next we specify five sample sizes that broadly cover the range of effective country sample

sizes observed in EU-SILC (see Table C.1): N 2 {1, 000; 2, 000; 4, 000; 8, 000; 16, 000}. For each

sample size, we draw one test set of size NH = 1/3N and 50 training sets of size N�H = 2/3N.

Thus, for each observation in the test sets we obtain 50 predictions per combination of DGP

and estimation approach. Based on these predictions we calculate two statistics: i) expected

MSETest to assess out-of-sample prediction accuracy (James et al., 2013), and ii) the expected

absolute difference between inequality of opportunity estimates and the true level of inequality

of opportunity.

Figure 2 displays the results. In its lower part, each panel describes expected MSETest per com-

bination of DGP, estimation approach and sample size. Since we know the true DGP we can

decompose MSETest into variance and expected bias.13 In its upper part, each panel describes

the corresponding absolute bias in inequality of opportunity estimates on an inverse scale. The

12We choose a variance term small enough such that y 2 R++.
13See also Appendix B for an illustration of the variance-bias decomposition. The irreducible error term is unin-

formative for differences in MSETest because Var(e) = 2, 0002 is constant across specifications. Therefore, we only
present evidence on the variance and the bias component of MSETest.

18



FIGURE 2 – Simulation Results
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: This figure shows expected MSETest and expected bias in inequality of opportunity estimates from the sim-
ulation exercise. Each row corresponds to one data generating process (see Table 3). Each column corresponds
to one estimation method (see sections 3.1, 3.2, 4.2). We multiply MSETest by 1 ⇥ 10�6 and deduct the irreducible
error term. Inequality of opportunity is measured by the Gini coefficient of the counterfactual distribution ŷC. We
measure expected bias in inequality of opportunity by the average absolute difference between inequality of oppor-
tunity estimates and the true level of inequality of opportunity as specified by the data generating process.

absolute bias is calculated as the expected absolute difference between inequality of opportu-

nity estimates and the true level of inequality of opportunity as a percentage share of the latter.

The simulation results are in line statistical theory. First, if the true DGP is known, expected

bias is zero and MSETest is driven by its variance component only. Second, with increasing

N the variance component of MSETest decreases for each combination of DGP and estimation

approach. Third, with increasing N, the bias component of MSETest remains constant for fixed

specifications (parametric, non-parametric) and decreases for data-driven approaches (LCA,

trees, forests). Third, forests tend to have lower variance than trees—in our simulation this is

true in 80% of all cases.

In terms of substantive results, it is clear that trees and forests dominate all other estimation ap-

proaches in terms of expected MSETest. This result holds both in comparison to fixed estimation
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approaches that do not invoke the true DGP (parametric, non-parametric) and in comparison

to LCA as an alternative data-driven estimation approach. However, even in the unlikely case

that researchers were to specify (non-)parametric models correctly, trees and forests quickly

converge to the test error of the fixed model that invokes the true DGP.

The simulation results furthermore highlight the close correspondence between MSETest and

expected bias in inequality of opportunity estimates: the higher MSETest, the stronger inequality

of opportunity estimates diverge from the ground truth.

In summary, the simulation results provide a strong case for the use of regression trees and

forests. They flexibly approximate the true DGP. Thereby, they outperform fixed estimation

approaches (parametric, non-parametric) and alternative data-driven estimation approaches

(LCA) in terms of the expected MSETest which itself is tightly linked to expected bias in in-

equality of opportunity estimates.14

4.4 Cross-Country Comparison

We now turn to a cross-country comparison based on actual data. First, we calculate MSETest

to assess the prediction accuracy of different estimation approaches. Second, we calculate in-

equality of opportunity estimates. In contrast to the simulation exercise, we do not know the

true DGP and we cannot assess bias in inequality of opportunity estimates by comparison to

the ground truth. Therefore, we assess bias in inequality of opportunity estimates by compar-

ing estimation approaches against the method with the highest prediction accuracy, i.e. the

method yielding the lowest MSETest.

Prediction Accuracy. Figure 3 compares MSETest across countries and estimation approaches.

For each method, MSETest is presented in differences relative to random forests. By differencing

14We note that our simulation choices are conservative. First, we construct a simulation sample without missing
data points. As a consequence—and in contrast to actual empirical applications—parametric and non-parametric
approaches do not suffer from data reductions through list-wise deletion. Second, we restrict circumstances to
the union of circumstances used in the (non-)parametric approach. As a consequence—and in contrast to actual
empirical applications—we deprive data-driven approaches from the advantage of using all available circumstance
information in the data.
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across methods, we provide a close analogue to the simulation exercise in section 4.3: We omit

the irreducible error term from the comparison, and relative MSETest is driven by variance and

bias components, only. For better visual clarity, we again scale MSETest by 1 ⇥ 10�6. Relative

MSETest > 0 indicates poorer prediction accuracy in comparison to random forests.

Random forests outperform all other methods in terms of prediction accuracy. On average,

the parametric approach yields test errors that exceed random forests by 14.2 (9.2%) (Figure

3, Panel [a]). With average shortfalls of 4.0 (2.5%) and 5.2 (2.9%), prediction errors are less

pronounced for non-parametric (Figure 3, Panel [b]) and latent class models (Figure 3, Panel

[c]). These averages, however, mask considerable heterogeneity. For example, the relative test

error of parametric estimates for Slovenia, Slovakia and Czech Republic is below 4.0. To the

contrary, the relative test error of parametric estimates for the UK and Luxembourg are more

than eight times as large.

Conditional inference trees are closest to the test error rate of forests (MSETest = 3.7 [2.3%]). Yet,

they also fall short of the performance of forests due to higher variance, imposing non-linearity,

and omission of less relevant circumstances (see section 3.2).

We conclude that among all considered methods, conditional inference forests deliver the high-

est out-of-sample prediction accuracy. Hence, relative to random forests, other methods under-

utilize or overutilize the information contained in W which in expectation will lead to bias in

inequality of opportunity estimates.

Inequality of Opportunity Estimates. Figure 4 displays inequality of opportunity estimates

across countries and estimation approaches. In each panel we plot inequality of opportunity es-

timates for a particular method, as well as the associated differences to estimates from forests.

We emphasize that results from forests cannot be interpreted as the truth. However, since

forests yield the lowest test error among all considered methods, they provide the best approx-

imation of the true DGP in a given data environment. Therefore, they are a useful benchmark to

assess bias of other estimation methods.15

15It is important to keep this relative interpretation of "bias" in mind. We compare method-specific estimates
to the best estimate of inequality of opportunity in a given data environment. Methods that are upward biased
in this comparison may potentially be closer to the ground truth than our reference estimate. Such statements,
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FIGURE 3 – Comparison of MSETest by Method
(A) Parametric Approach
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(B) Non-Parametric Approach
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(C) Latent Class Analysis
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(D) Conditional Inference Tree
�������

�����������
�������
��� �¢
�������
� ����
��������
��������

�£���ȱ��������
���������

�����
�������
�������

������ȱ
������
	�����¢
�¢����
�������

� ��£������
�������

����¢
������
������
�������

�����¢
	�����

�������
������
�����

��������
��������

��¡�������

������
Ȭś ś ŗś Řś řś

������
����
���ǯ

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: This figure shows differences of MSETest from different estimation approaches relative to random forests.
For all methods, we multiply MSETest by 1 ⇥ 10�6. Values > (<)0 indicate worse (better) out-of-sample prediction
accuracy than random forests. Vertical lines indicates unweighted cross-country averages. Point estimates and
associated standard errors are listed in Table D.1.

Panel (a) shows estimates from the parametric approach. In our country sample the chosen

model specification for the parametric approach tends to overstate inequality of opportunity

however, are purely speculative and cannot be falsified until better data becomes available (see also Appendix B
for a thorough explanation). Therefore, another interpretation of forests is that they provide the reliable maximum
lower bound estimate of inequality of opportunity in a given data environment.
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FIGURE 4 – Comparison of Inequality of Opportunity Estimates by Method
(A) Parametric Approach
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(B) Non-Parametric Approach
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(C) Latent Class Analysis
�������

�����������
�������
��� �¢
�������
� ����
��������
��������

�£���ȱ��������
���������

�����
�������
�������

������ȱ
������
	�����¢
�¢����
�������

� ��£������
�������

����¢
������
������
�������

�����¢
	�����

�������
������
�����

��������
��������

��¡�������

������
ŖǯŖś ŖǯŗŖ Ŗǯŗś ŖǯŘŖ

������
���

(D) Conditional Inference Tree
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: This figure shows inequality of opportunity estimates from different estimation methods relative to forests.
Inequality of opportunity is measured by the Gini coefficient of the counterfactual distribution ŷC. Point estimates
and associated standard errors are listed in Table D.2.

relative to forests which is the method providing the lowest expected bias in comparison to the

true DGP. For 27 out of 31 countries the inequality of opportunity estimates are higher than

the results from forests. Most pronounced overstatements are observed in countries that are

typically considered as high-opportunity societies. For example, forests classify Iceland and

the Netherlands as the societies offering the highest equality of opportunity in Europe. To the
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contrary, the parametric estimate would rank them at similar levels as France and Germany.

Panel (b) shows estimates from the non-parametric approach. The overall pattern resembles

the parametric approach but on a more attenuated level. For 19 out of 31 countries the non-

parametric estimate exceeds its forest-based analogue. These overstatements are again clus-

tered among countries that are typically considered as high-opportunity societies. To the con-

trary, in the upper part of the equal-opportunity ranking the non-parametric approach tends to

replicate the results from forests reasonably well. As evidenced by the simulation in section 4.3

such resemblance should be interpreted as a luck of the draw rather than a property inherent to

the estimation approach. Under alternative type partitions, estimates from the non-parametric

approach may diverge much more strongly than under the partition adopted in this work.

Panel (c) shows estimates from the latent class approach. The overall pattern is more hetero-

geneous than for the previous approaches. While overstatements prevail in countries that are

typically considered as high-opportunity societies, there are 22 out of 31 countries for which

the latent class estimate falls short of the forest estimate. These countries are clustered in the

center and lower part of the the equal-opportunity ranking. For example, forests classify Ger-

many and the UK at an intermediate position among all countries in Europe. To the contrary,

the latent class estimate would elevate them into the top group next to the Nordic countries.

Panel (d) shows that trees and forests tend to produce similar results. The correlation between

point estimates is high (0.99). In contrast to all other approaches there is no general tendency

to over- or underestimate inequality of opportunity relative to forests.

Finally, all benchmark estimation approaches underestimate inequality of opportunity in the

joint European sample. This finding emphasizes that our methodological conclusions about

benchmark estimation approaches are contingent on their particular implementation in a given

data environment. For example, consider the parametric approach that tends to overfit the data

in the smaller country samples. In the large joint sample, upward bias due to noisy parameter

estimates vanishes, while downward bias due to model mis-specification emerges as the dom-

inant force driving differences to forests. In view of such contingency, one may ask to what

extent our conclusions on inequality of opportunity in Europe are driven by differences and
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sample sizes across methods and countries. Therefore, we assess the robustness of our results

to sample size differences in the following.

Robustness to Differences in Sample Size. Effective sample sizes differ by estimation method

and country (Table C.1). First, samples for the benchmark methods (parametric, non-parametric,

LCA) are reduced as they rely on list-wise deletion in case of missing circumstance informa-

tion. These reductions can be sizable and exceed 50% in 6 countries of our sample (Denmark,

Iceland, Netherlands, Norway, Slovenia, Sweden). Second, even when accounting for missing

information the largest country sample in EU-SILC (Italy, N = 21, 070) is almost seven times as

large as the smallest country sample (Iceland, N = 3, 684). Therefore, we perform two robust-

ness analyses.

First, we recompute inequality of opportunity after completing missing data through multi-

ple imputation (Schafer, 1999).16 As a consequence, we can compare inequality of opportunity

estimates across methods on the same effective sample size per country. Figure C.1 shows a

decrease in inequality of opportunity estimates relative to forests for all benchmark methods

(parametric, non-parametric, LCA). This result is in line with the intuition that upward biases

decrease as sample sizes grow relative to the number of model parameters. To the contrary,

the patterns for trees and forests remain unaffected since they handle missing values by de-

fault through surrogate splits. The general pattern of our methodological comparison remains

unaffected.

Second, we recompute inequality of opportunity reducing sample sizes across countries to the

smallest common denominator. As a consequence, we can compare inequality of opportu-

nity estimates across countries on the same effective sample size. Figure C.2 shows that point

estimates and country rankings differ strongly for all benchmark methods (parametric, non-

parametric, LCA). To the contrary, point estimates and country rankings of trees and forests are

unaffected by harmonization in sample sizes across countries. This result bolsters confidence

that opportunity rankings of trees and forests are not an artifact of cross-country variation in

16List-wise deletion yields unbiased parameter estimates if data is missing completely at random (MCAR). Mul-
tiple imputation weakens this assumption by assuming that data is missing at random (MAR), i.e. that missing data
is random conditional on observed variables.
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sample sizes.

Comparison to Existing Literature. We have shown that benchmark methods from the ex-

isting literature yield markedly different estimates of inequality of opportunity relative to the

method for which we expect the lowest bias. These differences are manifested in both point

estimates and country rankings. Therefore, these methods may be misleading in two related

dimensions. First, they may mis-classify European societies regarding their need for opportu-

nity equalizing policy interventions. Second, researchers and policymakers in search of best

practices to devise opportunity equalizing policy interventions may turn to the wrong country

examples. In the following we will assess the extent to which such concerns are reflected in the

extant literature on inequality of opportunity in Europe.

We proceed in two steps. First, we assess whether existing literature on inequality of opportu-

nity in Europe is consistent, i.e. whether it yields similar opportunity rankings across European

societies. If the literature were consistent, researcher discretion in model selection would be ir-

relevant for conclusions about inequality of opportunity in Europe. Second, we assess whether

existing literature on inequality of opportunity in Europe conforms with evidence on the inter-

generational income elasticity (IGE). The IGE is a commonly used proxy statistic for equality

of opportunity that is based on data links across generations. The IGE provides a suitable

benchmark since it can be interpreted as an ex-ante utilitarian measure of inequality of oppor-

tunity (see footnote 5) and it is often based on richer (administrative) panel data. If there was

conformity, current estimation approaches would yield opportunity rankings that are strongly

in line with common priors about mobility in European societies. We answer both questions

by calculating correlations in opportunity rankings across i) existing studies on inequality of

opportunity,17 ii) existing consensus estimates of the IGE,18 and iii) inequality of opportunity

estimates from our preferred methods—regression trees and forests.

17We focus on published studies estimating ex-ante measures of inequality of opportunity on the 2011 wave of
EU-SILC. Further studies that do not meet both criteria include Andreoli and Fusco (2019), Carranza (2020), and
Hufe et al. (2018). Furthermore, we do not include Brzezinski (2020) since he derives estimates based on the methods
proposed in this paper.

18We focus on IGE estimates based on actual data linkages across generations and exclude IGE estimates based
on two-sample instrumental variable estimators to mitigate distortions through measurement error. Estimates are
extracted from Stuhler (2018) and Carmichael et al. (2020). Jointly both studies contain the following subset of our
country sample: Denmark, Finland, France, Germany, Italy, Netherlands, Norway, Sweden, Spain, and the United
Kingdom.
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Panel (a) of Table 4 suggests that existing literature on inequality of opportunity in Europe is not

consistent. Rank correlations as low as 0.09 indicate strong heterogeneity in country rankings.

This result is notable since all estimates were derived from the same underlying data source

(EU-SILC), refer to a similar age group (approx. 25-60), and summarize counterfactual distri-

butions ŷC by the same inequality metric (mean log deviation). Hence, discretionary choices

with respect to model specifications may be a major force behind inconclusive evidence in the

inequality of opportunity literature.19 To the contrary, application of our preferred estimation

methods explicitly addresses this source of incoherence.

TABLE 4 – Rank Correlations of Existing Studies

Existing Studies This Paper

Checchi et al.
(2016)

Palomino et al.
(2019)

Suarez et al.
(2021) Tree Forest

Panel (a): Equality of Opportunity (23 countries)
Tree . . . 1.000 .
Forest . . . 0.983 1.000
Checchi et al. (2016) 1.000 . . 0.388 0.380
Palomino et al. (2019) 0.281 1.000 . 0.877 0.875
Suarez et al. (2021) 0.090 0.855 1.000 0.738 0.762

Panel (b): Intergenerational Elasticity (10 countries)
Stuhler (2018) &
Carmichael et al. (2020) 0.535 0.657 0.444 0.894 0.869

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: This table shows country rank correlations in inequality of opportunity estimates across existing studies.
Panel (a) is based on the intersection of countries included in this paper, Palomino et al. (2019), Checchi et al.
(2016), and Suárez Álvarez and López Menéndez (2021) (23 countries). All ranks are calculated from the mean log
deviation of the counterfactual distribution ŷC. Panel (b) is based on the intersection of countries included in this
paper, Palomino et al. (2019), Checchi et al. (2016), and Suárez Álvarez and López Menéndez (2021), and the union
of Stuhler (2018) and Carmichael et al. (2020) (10 countries). Ranks in Stuhler (2018) and Carmichael et al. (2020)
are calculated from consensus estimates of the intergenerational earnings elasticity (IGE). All rank correlations are
based on Spearman’s r.

In Panel (b) of Table 4 we test for conformity of opportunity rankings with the IGE litera-

ture. Inequality of opportunity rankings of existing studies are moderately correlated with IGE

rankings. However, various findings contradict comparative evidence on the IGE (Carmichael

19We acknowledge that differences differences in income concept definitions, i.e. individual vs. household in-
come, may also contribute to the observed divergence.
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et al., 2020; Bratberg et al., 2017). For example, Palomino et al. (2019) and Suárez Álvarez and

López Menéndez (2021) find inequality of opportunity in Germany to be at par with the Nordic

countries. Checchi et al. (2016) find the Netherlands to be in the lower part of the opportunity

ranking. To the contrary, rankings based on trees and forests strongly increase conformity with

IGE estimates and therefore yield results that are more strongly in line with common priors

about mobility in Europe.

We conclude that regression trees and forests foster consistency in the inequality of opportunity

literature by reducing researcher discretion and increase conformity with evidence from the

neighboring IGE literature. Both findings further bolster confidence in the ability of trees and

forests to make reliable distinctions among high and low opportunity societies in Europe.

5 CONCLUSION

In this paper we propose the use of conditional inference trees and forests to estimate in-

equality of opportunity. Both estimation approaches minimize arbitrary model selection by

the researcher while trading off downward and upward biases in inequality of opportunity

estimates.

Conditional inference forests outperform all methods considered in this paper in terms of their

out-of-sample prediction accuracy. This observation is valid both for simulated data generating

processes and representative survey data from 31 European countries. Hence, within a given

data environment they provide estimates of inequality of opportunity that have the lowest

expected bias. Conditional inference trees closely mirror forests in terms of their out-of-sample

prediction accuracy and their inequality of opportunity estimates. Hence, they provide a fair

first-order approximation to the least biased inequality of opportunity estimates.

Next to these advantages, we acknowledge two potential drawbacks of our preferred meth-

ods for empirical research. First, (non-)parametric estimation approaches can be estimated by

OLS—one of the workhorse estimation methods in economics and other social sciences. To the

contrary, machine learning tools may require some upfront investment of applied researchers

to familiarize themselves with these methods. However, as evidenced by the large volume of
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recent review articles, machine learning methods are increasingly integrated into the statistical

toolkit of economists (Varian, 2014; Mullainathan and Spiess, 2017; Athey, 2018). Therefore, we

expect this drawback to vanish over time. Second, trees and forests are computationally more

costly than predictions via OLS regressions. However, in our empirical application trees ap-

proach the computation times of the (non-)parametric approach.20 Therefore, time-constrained

researchers who are willing to settle for a fair first-order approximation of the least biased

method may consider using trees instead of forests.

To be sure, the development of machine learning algorithms and their integration into the ana-

lytical toolkit of economists is a dynamic process. Finding the best machine learning algorithm

for inequality of opportunity estimations is a methodological horse race that eventually will

lead to some method outperforming the ones employed in this work. Therefore, the main con-

tribution of this work should be understood as paving the way for new methods that are able

to handle the intricacies of model selection for inequality of opportunity estimations. A partic-

ularly interesting extension may be the application of local linear forests that outperform more

traditional forest algorithms in their ability to capture the linear impact of predictor variables

(Friedberg et al., 2020).

Finally, we restricted ourselves to ex-ante utilitarian measures of inequality of opportunity.

The exploration of these algorithms for other measurement approaches in the inequality of

opportunity literature provides another interesting avenue for future research (Lefranc et al.,

2009; Kanbur and Snell, 2018; Pistolesi, 2009; Brunori and Neidhöfer, 2021).

20The simulation of section 4.3 has the following computation times: 0.5 min (parametric), 0.5 min (non-
parametric), 121.4 min (LCA), 2.1 min (trees), 2,816.2 min (forests). These computation times are based on a machine
with a AMD Ryzen 7 4700U Processor (8 cores) and 16 GB RAM working memory.
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A EMPIRICAL CHOICES

Tuning of Trees. Alternatively to specifying a⇤ a priori, it can be chosen by K-fold cross-

validation (CV), which—under some minimal assumptions—provides unbiased estimates of

the out-of-sample MSE (Friedman et al., 2009). First, one splits the sample into K equal-sized

folds. Second, one implements the conditional inference algorithm on the union of K � 1 folds

for varying levels of a. This step makes it possible to compare the prediction from the K � 1

folds with the unused data points in the kth fold. Third, one calculates the out-of-sample MSE

as a function of a:

MSECV
k (a) =

1
Nk Â

i2k
(yk

i � f̂�k(wi; a))2, wi 2 W, i 2 N , (9)

where f̂�k() denotes the estimation function constructed while leaving out the kth fold. Fourth,

this exercise is repeated for all K folds, so that MSECV(a) = 1
K Âk MSECV

k (a). Finally, one

chooses a⇤ such that

a⇤ = argmin
a

{MSECV(a) : a 2 (0, 1)}. (10)

Figure A.1 reveals that selecting a⇤ based on cross-validation or setting a⇤ = 0.05 has little

bearing on our results.

Tuning of Forests. The grid of parameters (a, P̄, B) can be imposed a priori by the researcher

or tuned to optimize the out-of-sample fit of the model. In our empirical illustration we proceed

as follows. First, we fix B⇤ at a level at which the marginal gain of drawing an additional

subsample in terms of out-of-sample prediction accuracy becomes negligible. Empirical tests

show that this is the case with B⇤ = 200 for most countries in our sample (Figure A.2).

Second, we determine a⇤ and P̄⇤ by minimizing the out-of-bag error. This entails the following

three steps for a grid of values of a and P̄:

1. Run a random forest with B⇤ subsamples, where P̄ circumstances are randomly chosen to

be considered at each splitting point, and a is used as the critical value for the hypothesis

tests.
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FIGURE A.1 – Tuning Conditional Inference Trees
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: This figure shows MSETest for different specifications of a⇤ relative to the baseline specification of a⇤ = 0.01. Relative
MSETest > 1 indicates worse fit than the baseline specification. Tuning is conducted by 5-fold CV. 95% confidence intervals are
derived based on 200 bootstrapped re-samples of the test data using the normal approximation method.

FIGURE A.2 – Optimal Size of Forests
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: This figure shows MSEOOB for different specifications of B⇤ in the country sample of Germany. We fix P̄⇤ = 6. The blue line
is a non-parametric fit for MSEOOB estimates. Gray shades indicate the 95% confidence interval.
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2. Calculate the average predicted value of observation i using each of the prediction func-

tions estimated in the subsamples B�i := {S 0 ⇢ S : S 0 \ {(yi, wi)} = ∆ } (the so called

bags) in which i does not enter: f̂ OOB(wi; a, P̄) = 1
NB�i

ÂS 02B�i
f̂ S 0

(wi; a, P̄).

3. Calculate the out-of-bag mean squared error:

MSEOOB(a, P̄) = 1
N Âi [yi � f̂ OOB(wi; a, P̄)]2.

Finally, one chooses the combination of parameter values that delivers the lowest MSEOOB:

(a⇤, P̄⇤) = argmin
a,P̄

{MSEOOB : (a, P̄) 2 (0, 1)⇥ P̄}. (11)
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B UPWARD BIAS, DOWNWARD BIAS AND THE MSE

A standard statistic to assess prediction accuracy is the mean squared error (MSE):

MSE = ES [(y � f̂ (w))2], (12)

where y is the observed outcome and f̂ (w) the estimator of the conditional expectation E(y|w)

in a random sample S . The MSE can be decomposed into (1) variance, (2) expected bias, (3)

irreducible error term (Friedman et al., 2009):

MSE = Var( f̂ (w)) + ES [ f (w)� f̂ (w)]2 + Var(e), (13)

= Var( f (w)� f̂ (w))
| {z }

(1)

+ ( f (w)� ES [ f̂ (w)])2
| {z }

(2)

+Var(e)| {z }
(3)

. (14)

In the literature on statistical learning this is referred to as the variance-bias decomposition. All

three components can be linked to upward and downward biases in inequality of opportunity

estimates.

(1) The variance captures upward bias due to model mis-specification. To see this, note that

we minimize (1) by imposing the following model specification y = f̂ (w) + e = b0 + e, i.e. by

assuming that individual outcomes are best predicted by the sample mean µS .21 As a conse-

quence, (1) drops out and MSE is entirely captured by components (2) and (3):

MSE = Var( f (w)� f̂ (w)) + ( f (w)� ES [ f̂ (w)])2 + Var(e)

= ( f (w)� µ)2 + Var(e).

Hence, the variance-minimizing estimation model cannot yield upward biased estimates of in-

equality of opportunity since it is restricted in a way that does not allow for any role of w in

the explanation of y. To the contrary, it will be downward biased. For any functional I() that

satisfies the measurement criteria outlined in section 2, I(ŷC) = 0.

21For the sake of exposition, we additionally assume µS = µ. Obviously, this is a stark assumption. In reality,
there will always be some variance in sample means as long as one does not capture the entire population.
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(2) The expected bias captures downward bias due to model mis-specification. To see this,

note that we minimize (2) by specifying a complex model that allows for all observable circum-

stances, their mutual interactions and non-linearities.22 As a consequence, (2) drops out and

MSE is entirely captured by components (1) and (3):

MSE = Var( f (w)� f̂ (w)) + ( f (w)� ES [ f̂ (w)])2 + Var(e),

= Var( f (w)� f̂ (w)) + Var(e).

Hence, in expectation and within a given data environment the bias-minimizing estimation model

cannot yield downward biased estimates of inequality of opportunity. To the contrary, it will

be upward biased. The conditional expectations within a particular sample S is estimated with

error and measurement error inflates the variance of ŷC in comparison to the underlying truth:

Var(ŷC) = Var(yC) + Var(u). For any functional I() that satisfies the measurement criteria

outlined in section 2, I(ŷC) > I(yC).

(3) The irreducible error term contains downward bias due to unobserved circumstance vari-

ables. To see this, assume we relax the assumption that we observe the full set of relevant

circumstances. In this case, variation due to unobserved circumstances is captured in the irre-

ducible error term (3). This part of downward bias prevails regardless of estimation method

and decreases as more circumstance information becomes available. Therefore, minimizing

the out-of-sample MSE corresponds to minimizing expected bias in inequality of opportunity

estimates conditional on a given data environment.

22For the sake of exposition, we additionally assume that we observe all relevant circumstances. Obviously, this
is a stark assumption. In reality, non-observable circumstance information is a key reason for downward bias in
inequality of opportunity estimates that prevails regardless of estimation methods.
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C SENSITIVITY TO SAMPLE SIZE

TABLE C.1 – Sample Size by Method

Benchmark Methods Conditional Inference

Country Parametric Non-Parametric Latent Class Tree Forest

Austria 6,060 6,107 5,961 6,220 6,220
Belgium 5,289 5,439 4,412 6,011 6,011
Bulgaria 6,104 6,212 5,728 7,154 7,154
Croatia 5,997 6,159 5,329 6,969 6,969
Cyprus 4,491 4,525 4,448 4,589 4,589
Czech Republic 6,488 6,524 5,826 8,711 8,711
Denmark 2,218 2,302 1,985 5,897 5,897
Estonia 4,918 5,004 4,696 5,338 5,338
Finland 3,080 3,209 2,336 9,743 9,743
France 10,214 10,433 9,710 11,078 11,078
Germany 10,964 11,149 9,104 12,683 12,683
Greece 5,767 5,862 5,516 6,184 6,184
Hungary 12,324 12,526 12,019 13,330 13,330
Iceland 1,481 1,552 1,393 3,684 3,684
Ireland 3,102 3,164 2,880 4,318 4,318
Italy 20,284 20,803 20,012 21,070 21,070
Latvia 6,142 6,192 4,894 6,423 6,423
Lithuania 4,613 4,705 4,344 5,403 5,403
Luxembourg 6,567 6,654 6,361 6,765 6,765
Malta 4,082 4,117 3,915 4,701 4,701
Netherlands 5,461 5,598 5,135 11,411 11,411
Norway 2,355 2,456 2,221 5,026 5,026
Poland 12,808 13,369 12,498 15,545 15,545
Portugal 5,696 5,809 5,624 5,899 5,899
Romania 5,834 6,145 4,989 7,867 7,867
Slovakia 6,212 6,404 6,049 6,779 6,779
Slovenia 4,696 4,749 4,629 13,183 13,183
Spain 14,672 14,817 14,473 15,481 15,481
Sweden 531 624 439 6,599 6,599
Switzerland 6,482 6,766 4,673 7,583 7,583
United Kingdom 5,847 5,922 5,604 7,391 7,391

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: This table shows effective sample sizes for inequality of opportunity estimations by estimation method.
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FIGURE C.1 – Inequality of Opportunity Estimates: Robustness to Multiple Imputation
(A) Parametric Approach
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(B) Non-Parametric Approach
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(C) Latent Class
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(D) Tree
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: This figure shows inequality of opportunity estimates from different estimation methods relative to forests.
We impute missing circumstance information by multiple imputation such that sample sizes are constant across
methods. For each country we make 10 imputations, estimate inequality of opportunity, and calculate the corre-
sponding average. Inequality of opportunity is measured by the Gini coefficient of the counterfactual distribution
ŷC.
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FIGURE C.2 – Inequality of Opportunity Estimates: Robustness to Sample Size Reductions
(A) Parametric Approach
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(B) Non-Parametric Approach
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(C) Latent Class
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(D) Tree

ŖǯŖŖ

ŖǯŖś

ŖǯŗŖ

Ŗǯŗś

��
��ȱ
��
�
��
�

ŖǯŖś ŖǯŗŖ Ŗǯŗś

���Ȭ������

(E) Forest
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: This figure shows changes in inequality of opportunity estimates when reducing estimation samples to the smallest method-
specific sample size. For each country-method cell we make 10 random draws from the full country sample, estimate inequality
of opportunity, and calculate the corresponding average. Inequality of opportunity is measured by the Gini coefficient of the
counterfactual distribution ŷC .
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D POINT ESTIMATES AND STANDARD ERRORS

TABLE D.1 – MSETest Estimates

Benchmark Methods Conditional Inference

Country Parametric Non-Parametric Latent Class Tree Forest

Austria 281.1 [18.1] 275.3 [16.3] 280.1 [16.5] 272.6 [16.2] 268.5 [16.2]
Belgium 163.7 [11.7] 157.2 [9.6] 160.9 [9.5] 156.2 [10.3] 152.3 [10.0]
Bulgaria 37.6 [3.2] 35.7 [2.8] 36.4 [2.8] 35.9 [2.8] 35.2 [2.8]
Croatia 51.6 [2.8] 46.2 [2.4] 46.0 [2.4] 46.6 [2.4] 45.9 [2.4]
Cyprus 264.8 [21.5] 254.0 [19.9] 259.9 [20.0] 253.9 [20.0] 249.6 [19.7]
Czech Republic 49.0 [3.2] 48.5 [2.9] 47.9 [2.9] 48.4 [3.0] 47.4 [2.9]
Denmark 219.8 [25.6] 194.8 [21.0] 194.3 [21.6] 193.8 [20.7] 189.5 [20.2]
Estonia 50.0 [3.1] 46.5 [2.7] 47.4 [2.9] 47.0 [2.8] 45.8 [2.8]
Finland 253.0 [22.5] 242.4 [20.0] 236.7 [20.3] 235.9 [19.9] 234.8 [19.6]
France 295.7 [19.3] 285.4 [17.7] 287.0 [17.8] 283.1 [17.6] 279.4 [17.2]
Germany 262.0 [11.9] 249.4 [10.2] 250.3 [10.2] 251.1 [10.5] 245.0 [10.4]
Greece 153.3 [12.9] 132.1 [11.2] 134.6 [11.7] 131.8 [11.2] 128.1 [10.9]
Hungary 34.3 [1.4] 33.0 [1.2] 33.0 [1.2] 33.0 [1.2] 32.2 [1.2]
Iceland 139.5 [20.2] 118.4 [16.7] 119.2 [17.0] 118.3 [16.8] 115.5 [16.5]
Ireland 259.0 [22.1] 243.5 [19.7] 252.2 [19.6] 250.4 [19.7] 234.8 [18.6]
Italy 238.1 [6.8] 214.4 [5.9] 218.3 [6.0] 210.6 [6.0] 207.2 [5.9]
Latvia 43.0 [2.6] 38.2 [2.0] 39.0 [2.1] 39.4 [2.1] 37.6 [2.0]
Lithuania 40.8 [2.5] 37.6 [2.1] 36.8 [2.1] 37.6 [2.1] 37.0 [2.0]
Luxembourg 415.7 [26.0] 396.9 [23.0] 402.1 [23.3] 396.1 [23.4] 379.2 [22.6]
Malta 114.9 [7.7] 108.4 [6.6] 107.8 [6.8] 109.3 [6.5] 106.1 [6.5]
Netherlands 190.2 [12.2] 184.1 [11.2] 180.4 [11.1] 180.4 [11.0] 179.5 [11.1]
Norway 205.6 [17.4] 198.4 [15.6] 197.7 [16.0] 196.3 [17.0] 197.6 [16.1]
Poland 69.4 [3.3] 65.5 [2.9] 65.9 [3.0] 65.7 [2.9] 64.5 [2.9]
Portugal 109.2 [8.3] 107.3 [7.3] 106.4 [7.4] 107.0 [7.2] 101.3 [6.9]
Romania 14.3 [1.0] 14.3 [0.9] 13.6 [0.9] 13.5 [0.8] 13.2 [0.9]
Slovakia 43.7 [2.4] 41.5 [2.1] 41.5 [2.1] 41.6 [2.3] 41.3 [2.2]
Slovenia 83.1 [5.2] 80.9 [4.8] 82.0 [5.0] 80.9 [4.8] 80.5 [4.7]
Spain 200.1 [7.4] 182.2 [6.3] 190.2 [6.4] 181.2 [6.3] 178.1 [6.3]
Sweden 170.2 [29.6] 151.2 [24.4] 152.4 [27.2] 152.0 [25.8] 149.1 [25.5]
Switzerland 403.6 [28.6] 392.3 [26.2] 393.0 [26.9] 397.7 [27.0] 382.4 [26.0]
United Kingdom 423.7 [38.5] 386.1 [33.7] 386.2 [33.8] 388.7 [33.4] 380.0 [32.9]

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: This tables shows MSETest for different estimation methods. For all methods, we multiply MSETest by 1⇥ 10�6.
Standard errors are derived from 200 bootstrapped re-samples of the test data.

43



TABLE D.2 – Inequality of Opportunity Estimates

Benchmark Methods Conditional Inference

Country Parametric Non-Parametric Latent Class Tree Forest

Austria 0.088 [0.004] 0.075 [0.004] 0.080 [0.005] 0.087 [0.005] 0.088 [0.004]
Belgium 0.108 [0.006] 0.087 [0.004] 0.053 [0.009] 0.087 [0.005] 0.091 [0.003]
Bulgaria 0.152 [0.005] 0.136 [0.005] 0.115 [0.005] 0.136 [0.005] 0.134 [0.005]
Croatia 0.125 [0.007] 0.088 [0.005] 0.076 [0.006] 0.082 [0.006] 0.076 [0.005]
Cyprus 0.093 [0.004] 0.083 [0.005] 0.074 [0.008] 0.080 [0.007] 0.080 [0.008]
Czech Republic 0.066 [0.004] 0.066 [0.004] 0.060 [0.005] 0.057 [0.005] 0.051 [0.004]
Denmark 0.070 [0.013] 0.041 [0.005] 0.029 [0.005] 0.021 [0.005] 0.020 [0.003]
Estonia 0.108 [0.006] 0.102 [0.006] 0.074 [0.008] 0.097 [0.007] 0.101 [0.006]
Finland 0.054 [0.007] 0.052 [0.005] 0.048 [0.008] 0.020 [0.006] 0.028 [0.003]
France 0.084 [0.003] 0.086 [0.003] 0.072 [0.005] 0.090 [0.004] 0.098 [0.003]
Germany 0.069 [0.004] 0.059 [0.003] 0.047 [0.004] 0.070 [0.004] 0.079 [0.003]
Greece 0.144 [0.010] 0.121 [0.006] 0.117 [0.009] 0.126 [0.008] 0.109 [0.008]
Hungary 0.104 [0.003] 0.103 [0.003] 0.095 [0.004] 0.113 [0.003] 0.108 [0.003]
Iceland 0.061 [0.018] 0.032 [0.006] 0.030 [0.006] 0.012 [0.004] 0.016 [0.003]
Ireland 0.102 [0.006] 0.097 [0.005] 0.048 [0.010] 0.084 [0.007] 0.078 [0.005]
Italy 0.116 [0.004] 0.091 [0.002] 0.080 [0.006] 0.108 [0.003] 0.097 [0.004]
Latvia 0.127 [0.008] 0.110 [0.005] 0.095 [0.008] 0.110 [0.007] 0.111 [0.006]
Lithuania 0.088 [0.008] 0.067 [0.005] 0.059 [0.006] 0.069 [0.008] 0.067 [0.006]
Luxembourg 0.132 [0.005] 0.121 [0.003] 0.090 [0.009] 0.133 [0.004] 0.136 [0.003]
Malta 0.085 [0.006] 0.080 [0.005] 0.057 [0.005] 0.071 [0.006] 0.072 [0.005]
Netherlands 0.064 [0.007] 0.053 [0.003] 0.041 [0.006] 0.028 [0.004] 0.019 [0.002]
Norway 0.041 [0.007] 0.041 [0.005] 0.030 [0.006] 0.020 [0.004] 0.023 [0.003]
Poland 0.104 [0.003] 0.097 [0.003] 0.095 [0.004] 0.102 [0.004] 0.099 [0.004]
Portugal 0.133 [0.005] 0.124 [0.005] 0.116 [0.007] 0.136 [0.006] 0.127 [0.007]
Romania 0.161 [0.006] 0.104 [0.005] 0.119 [0.007] 0.120 [0.006] 0.111 [0.006]
Slovakia 0.058 [0.004] 0.051 [0.003] 0.042 [0.005] 0.050 [0.004] 0.046 [0.004]
Slovenia 0.074 [0.004] 0.073 [0.004] 0.059 [0.004] 0.032 [0.004] 0.036 [0.002]
Spain 0.141 [0.005] 0.120 [0.003] 0.089 [0.010] 0.128 [0.003] 0.120 [0.008]
Sweden 0.089 [0.036] 0.060 [0.009] 0.025 [0.009] 0.025 [0.004] 0.031 [0.003]
Switzerland 0.091 [0.005] 0.083 [0.004] 0.063 [0.008] 0.080 [0.006] 0.090 [0.004]
United Kingdom 0.093 [0.008] 0.090 [0.005] 0.062 [0.010] 0.071 [0.008] 0.079 [0.004]

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: This tables shows inequality of opportunity estimates for different estimation methods. Inequality of oppor-
tunity is measured by the Gini coefficient of the counterfactual distribution ŷC . Standard errors are derived from 200
bootstrapped re-samples of the test data.
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S.1 DESCRIPTIVE STATISTICS

TABLE S.1 – Descriptive Statistics (Individual and Household)

Birth Area Parents in HH HH Composition

Country Male Native EU Both None Adults Working
Ad. Children Home

Owner
Austria 0.501 0.790 0.070 0.856 0.017 2.730 1.760 2.600 0.585
Belgium 0.498 0.824 0.076 0.855 0.019 2.380 1.590 2.780 0.750
Bulgaria 0.500 0.994 0.001 0.904 0.012 2.440 2.010 2.070 0.910
Croatia 0.501 0.875 0.017 0.874 0.020 2.560 1.350 2.310 0.902
Cyprus 0.525 0.787 0.096 0.900 0.015 2.640 1.670 2.700 0.784
Czech Republic 0.508 0.964 0.026 0.851 0.013 2.090 1.920 2.240 0.597
Denmark 0.505 0.923 0.026 0.809 0.027 2.220 2.310 2.240 0.736
Estonia 0.525 0.847 0.000 0.756 0.011 2.100 1.800 2.090 0.859
Finland 0.499 0.954 0.018 0.829 0.016 2.360 1.750 2.300 0.772
France 0.509 0.885 0.036 0.820 0.022 2.470 1.660 1.750 0.630
Germany 0.496 0.868 0.000 0.830 0.020 2.240 1.680 2.320 0.499
Greece 0.498 0.890 0.025 0.931 0.019 2.310 1.560 2.330 0.834
Hungary 0.517 0.988 0.008 0.844 0.041 2.140 1.750 2.270 0.830
Iceland 0.507 0.920 0.042 0.899 0.012 2.420 1.900 2.630 0.893
Ireland 0.524 0.783 0.149 0.893 0.078 3.170 3.200 3.200 0.727
Italy 0.502 0.880 0.040 0.901 0.011 2.590 1.620 2.410 0.685
Latvia 0.520 0.865 0.000 0.763 0.012 1.970 1.760 2.280 0.455
Lithuania 0.521 0.939 0.004 0.846 0.016 2.320 2.020 2.460 0.698
Luxembourg 0.499 0.480 0.401 0.868 0.020 2.530 1.640 2.710 0.734
Malta 0.497 0.944 0.000 0.932 0.020 3.020 1.840 2.680 0.576
Netherlands 0.509 0.903 0.020 0.882 0.016 2.100 1.540 3.250 0.575
Norway 0.511 0.907 0.041 0.913 0.014 2.020 1.760 1.870 0.922
Poland 0.504 0.999 0.000 0.889 0.015 2.700 1.960 2.440 0.644
Portugal 0.506 0.906 0.022 0.854 0.017 2.680 2.230 2.680 0.544
Romania 0.506 0.999 0.000 0.919 0.009 2.770 1.900 2.270 0.861
Slovakia 0.519 0.987 0.010 0.920 0.010 2.520 2.080 2.340 0.694
Slovenia 0.496 0.876 0.000 0.855 0.019 2.530 1.770 2.200 0.746
Spain 0.495 0.834 0.051 0.893 0.012 2.880 2.110 2.430 0.819
Sweden 0.493 0.846 0.050 0.820 0.035 2.070 1.780 2.350 0.757
Switzerland 0.505 0.684 0.197 0.837 0.017 2.550 1.900 2.530 0.546
United Kingdom 0.507 0.848 0.042 0.825 0.024 2.340 2.240 2.410 0.649

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: Omitted circumstance expressions listed in order of the circumstance categories: “Female”; “Non-EU”; “Only Mother/Only
Father/Collective House”; “House Not Owned”. See also Table 1.
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TABLE S.2 – Descriptive Statistics (Fathers)

Birth Area Citizenship Education Activity Occupation (ISCO-08 1-Digit)

Country Native EU Resid. EU Low Med. High Empl. Self-
Empl.

Un-
empl.

House
Work 1 2 3 4 5 6 7 8 9 Superv.

Austria 0.743 0.093 0.777 0.068 0.398 0.421 0.135 0.714 0.215 0.003 0.001 0.043 0.046 0.064 0.051 0.138 0.145 0.284 0.063 0.085 0.338
Belgium 0.748 0.100 0.762 0.093 0.491 0.199 0.178 0.699 0.179 0.007 0.002 0.068 0.126 0.104 0.084 0.054 0.057 0.209 0.127 0.041 0.278
Bulgaria 0.933 0.004 0.936 0.001 0.466 0.333 0.081 0.899 0.028 0.005 0.000 0.022 0.065 0.047 0.029 0.035 0.135 0.216 0.207 0.142 0.093
Croatia 0.822 0.006 0.834 0.004 0.464 0.312 0.063 0.763 0.103 0.037 0.016 0.025 0.041 0.088 0.036 0.072 0.049 0.214 0.103 0.228 0.129
Cyprus 0.803 0.082 0.808 0.094 0.667 0.178 0.091 0.566 0.381 0.004 0.000 0.011 0.071 0.074 0.029 0.104 0.161 0.245 0.122 0.125 0.229
Czech Republic 0.878 0.065 0.910 0.036 0.602 0.216 0.090 0.891 0.017 0.001 0.000 0.033 0.070 0.125 0.036 0.035 0.039 0.305 0.195 0.053 0.233
Denmark 0.935 0.025 0.970 0.020 0.368 0.418 0.214 0.708 0.272 0.004 0.001 0.111 0.122 0.070 0.043 0.103 0.160 0.288 0.072 0.009 0.447
Estonia 0.603 0.270 0.637 0.233 0.300 0.338 0.165 0.823 0.006 0.003 0.002 0.076 0.092 0.053 0.014 0.013 0.034 0.221 0.253 0.053 0.153
Finland 0.827 0.007 0.827 0.007 0.491 0.182 0.162 0.592 0.209 0.016 0.001 0.041 0.089 0.085 0.016 0.046 0.135 0.146 0.138 0.044
France 0.789 0.078 0.857 0.057 0.695 0.073 0.095 0.753 0.170 0.003 0.001 0.084 0.068 0.111 0.072 0.038 0.103 0.155 0.055 0.223 0.335
Germany 0.800 0.200 0.855 0.145 0.125 0.496 0.213 0.819 0.123 0.008 0.001 0.046 0.104 0.158 0.051 0.061 0.059 0.266 0.154 0.040 0.299
Greece 0.887 0.016 0.911 0.015 0.587 0.135 0.084 0.449 0.517 0.002 0.000 0.073 0.047 0.026 0.087 0.046 0.308 0.210 0.099 0.055 0.182
Hungary 0.962 0.017 0.969 0.012 0.599 0.241 0.087 0.892 0.043 0.001 0.001 0.037 0.060 0.052 0.017 0.053 0.094 0.279 0.193 0.137 0.117
Iceland 0.918 0.050 0.923 0.044 0.334 0.486 0.139 0.638 0.332 0.001 0.000 0.115 0.121 0.076 0.024 0.094 0.180 0.220 0.094 0.042 0.570
Ireland 0.792 0.107 0.758 0.094 0.574 0.258 0.112 0.659 0.221 0.049 0.002 0.104 0.092 0.042 0.022 0.072 0.155 0.149 0.065 0.158 0.344
Italy 0.823 0.022 0.827 0.020 0.708 0.136 0.038 0.614 0.244 0.016 0.004 0.054 0.040 0.074 0.057 0.068 0.099 0.227 0.105 0.118 0.199
Latvia 0.572 0.248 0.642 0.165 0.381 0.297 0.098 0.767 0.005 0.002 0.003 0.036 0.083 0.037 0.010 0.019 0.069 0.199 0.218 0.083 0.070
Lithuania 0.899 0.004 0.926 0.004 0.538 0.228 0.085 0.916 0.011 0.000 0.001 0.049 0.074 0.038 0.017 0.023 0.080 0.241 0.179 0.214 0.110
Luxembourg 0.387 0.467 0.400 0.466 0.484 0.316 0.120 0.757 0.174 0.001 0.001 0.063 0.093 0.118 0.048 0.035 0.112 0.228 0.183 0.039 0.251
Malta 0.952 0.041 0.953 0.040 0.561 0.180 0.059 0.717 0.214 0.013 0.001 0.062 0.046 0.106 0.045 0.141 0.050 0.244 0.099 0.106 0.225
Netherlands 0.829 0.028 0.888 0.022 0.376 0.285 0.198 0.726 0.173 0.006 0.006 0.087 0.124 0.155 0.051 0.069 0.086 0.200 0.079 0.031 0.310
Norway 0.897 0.046 0.908 0.041 0.328 0.390 0.278 0.712 0.255 0.002 0.001 0.116 0.110 0.167 0.029 0.057 0.111 0.227 0.100 0.032 0.285
Poland 0.955 0.012 0.980 0.003 0.462 0.448 0.070 0.701 0.238 0.002 0.001 0.036 0.044 0.053 0.025 0.042 0.237 0.254 0.157 0.078 0.111
Portugal 0.932 0.006 0.945 0.006 0.700 0.031 0.031 0.650 0.248 0.002 0.001 0.047 0.032 0.060 0.038 0.082 0.185 0.264 0.114 0.077 0.190
Romania 0.938 0.001 0.939 0.001 0.726 0.088 0.030 0.642 0.237 0.004 0.013 0.004 0.040 0.034 0.016 0.018 0.253 0.249 0.121 0.104 0.045
Slovakia 0.935 0.020 0.945 0.011 0.362 0.497 0.075 0.921 0.011 0.002 0.001 0.042 0.060 0.095 0.028 0.043 0.030 0.285 0.209 0.128 0.145
Slovenia 0.769 0.200 0.000 0.000 0.684 0.166 0.085 0.773 0.099 0.013 0.011 0.024 0.052 0.100 0.037 0.052 0.089 0.257 0.080 0.173 0.242
Spain 0.836 0.047 0.846 0.046 0.762 0.064 0.081 0.702 0.219 0.006 0.001 0.056 0.045 0.076 0.055 0.087 0.145 0.191 0.113 0.137 0.191
Sweden 0.945 0.022 0.851 0.061 0.422 0.350 0.182 0.745 0.211 0.002 0.001 0.043 0.118 0.067 0.031 0.092 0.086 0.230 0.108 0.019 0.337
Switzerland 0.588 0.286 0.603 0.280 0.227 0.487 0.151 0.653 0.292 0.001 0.000 0.086 0.131 0.140 0.057 0.060 0.111 0.223 0.077 0.054 0.397
United Kingdom 0.800 0.064 0.869 0.039 0.508 0.228 0.150 0.795 0.147 0.025 0.002 0.095 0.142 0.085 0.040 0.075 0.036 0.236 0.133 0.083 0.398

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: Omitted circumstance expressions listed in order of the circumstance categories: “Non-EU”; “Not Europe”; “Dead/Unknown/Illiterate”; “Dead/Unknown/Retired/Other
Inactive”; "Dead/Unknown/Not Working/Armed Forces”; “Dead/Unknown/Not Working/Non-Supervisory”. See also Table 1.
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TABLE S.3 – Descriptive Statistics (Mothers)

Birth Area Citizenship Education Activity Occupation (ISCO-08 1-Digit)

Country Native EU Resid. EU Low Med. High Empl. Self-
Empl.

Un-
empl.

House
Work 1 2 3 4 5 6 7 8 9 Superv.

Austria 0.740 0.096 0.789 0.065 0.587 0.328 0.041 0.714 0.215 0.003 0.001 0.009 0.024 0.009 0.071 0.154 0.128 0.045 0.010 0.087 0.092
Belgium 0.755 0.097 0.790 0.092 0.564 0.201 0.126 0.699 0.179 0.007 0.002 0.009 0.081 0.045 0.058 0.046 0.002 0.016 0.024 0.069 0.034
Bulgaria 0.931 0.003 0.981 0.002 0.464 0.357 0.099 0.899 0.028 0.005 0.000 0.008 0.123 0.040 0.092 0.140 0.181 0.099 0.064 0.152 0.030
Croatia 0.823 0.008 0.848 0.003 0.634 0.189 0.043 0.763 0.103 0.037 0.016 0.003 0.058 0.036 0.046 0.070 0.022 0.034 0.013 0.122 0.033
Cyprus 0.804 0.080 0.812 0.091 0.684 0.162 0.057 0.566 0.381 0.004 0.000 0.001 0.045 0.020 0.037 0.067 0.036 0.022 0.042 0.220 0.048
Czech Republic 0.882 0.061 0.946 0.037 0.670 0.261 0.043 0.891 0.017 0.001 0.000 0.011 0.080 0.104 0.149 0.160 0.074 0.105 0.080 0.139 0.088
Denmark 0.922 0.029 0.935 0.023 0.531 0.283 0.186 0.708 0.272 0.004 0.001 0.020 0.103 0.095 0.123 0.225 0.035 0.052 0.026 0.001 0.122
Estonia 0.601 0.272 0.726 0.250 0.334 0.391 0.208 0.823 0.006 0.003 0.002 0.049 0.169 0.109 0.097 0.110 0.084 0.051 0.124 0.113 0.085
Finland 0.826 0.007 0.933 0.006 0.559 0.238 0.145 0.592 0.209 0.016 0.001 0.012 0.126 0.091 0.122 0.145 0.048 0.046 0.057 0.202
France 0.806 0.067 0.880 0.047 0.724 0.079 0.072 0.753 0.170 0.003 0.001 0.011 0.036 0.050 0.111 0.107 0.059 0.049 0.005 0.109 0.072
Germany 0.811 0.189 0.862 0.138 0.284 0.475 0.081 0.819 0.123 0.008 0.001 0.012 0.051 0.079 0.089 0.116 0.025 0.015 0.087 0.033 0.059
Greece 0.888 0.016 0.916 0.016 0.592 0.133 0.044 0.449 0.517 0.002 0.000 0.023 0.027 0.004 0.039 0.048 0.223 0.034 0.021 0.049 0.026
Hungary 0.964 0.016 0.980 0.012 0.655 0.243 0.053 0.892 0.043 0.001 0.001 0.014 0.049 0.063 0.113 0.118 0.061 0.075 0.087 0.167 0.044
Iceland 0.905 0.059 0.924 0.046 0.626 0.275 0.075 0.638 0.332 0.001 0.000 0.030 0.095 0.045 0.109 0.180 0.064 0.028 0.013 0.130 0.149
Ireland 0.787 0.114 0.761 0.103 0.546 0.324 0.097 0.659 0.221 0.049 0.002 0.022 0.061 0.007 0.052 0.059 0.017 0.014 0.007 0.060 0.082
Italy 0.820 0.024 0.862 0.024 0.779 0.112 0.023 0.614 0.244 0.016 0.004 0.011 0.038 0.022 0.029 0.051 0.035 0.031 0.022 0.062 0.041
Latvia 0.585 0.234 0.793 0.182 0.414 0.399 0.125 0.767 0.005 0.002 0.003 0.031 0.138 0.084 0.098 0.121 0.085 0.093 0.023 0.221 0.074
Lithuania 0.902 0.002 0.959 0.003 0.519 0.316 0.106 0.916 0.011 0.000 0.001 0.035 0.129 0.046 0.049 0.109 0.067 0.112 0.034 0.293 0.068
Luxembourg 0.374 0.483 0.393 0.485 0.587 0.245 0.071 0.757 0.174 0.001 0.001 0.028 0.049 0.046 0.036 0.061 0.054 0.015 0.024 0.108 0.047
Malta 0.950 0.043 0.957 0.038 0.652 0.145 0.026 0.717 0.214 0.013 0.001 0.003 0.019 0.007 0.009 0.018 0.002 0.004 0.009 0.010 0.011
Netherlands 0.829 0.027 0.907 0.023 0.532 0.288 0.087 0.726 0.173 0.006 0.006 0.010 0.050 0.038 0.052 0.089 0.016 0.011 0.008 0.060 0.037
Norway 0.877 0.048 0.891 0.043 0.368 0.437 0.181 0.712 0.255 0.002 0.001 0.031 0.041 0.142 0.114 0.209 0.053 0.017 0.026 0.091 0.065
Poland 0.957 0.010 0.990 0.004 0.524 0.410 0.057 0.701 0.238 0.002 0.001 0.018 0.057 0.053 0.071 0.096 0.262 0.080 0.018 0.118 0.050
Portugal 0.928 0.008 0.950 0.007 0.631 0.029 0.028 0.650 0.248 0.002 0.001 0.016 0.031 0.017 0.025 0.075 0.158 0.059 0.032 0.145 0.048
Romania 0.936 0.001 0.939 0.001 0.728 0.112 0.020 0.642 0.237 0.004 0.013 0.001 0.034 0.024 0.026 0.050 0.218 0.076 0.040 0.080 0.010
Slovakia 0.932 0.023 0.980 0.010 0.451 0.482 0.039 0.921 0.011 0.002 0.001 0.010 0.075 0.110 0.107 0.161 0.034 0.096 0.052 0.203 0.048
Slovenia 0.791 0.178 0.000 0.000 0.752 0.148 0.058 0.773 0.099 0.013 0.011 0.006 0.047 0.093 0.085 0.090 0.061 0.066 0.006 0.193 0.089
Spain 0.836 0.046 0.849 0.046 0.802 0.048 0.040 0.702 0.219 0.006 0.001 0.010 0.025 0.010 0.021 0.059 0.028 0.021 0.009 0.071 0.029
Sweden 0.942 0.024 0.855 0.058 0.409 0.369 0.201 0.745 0.211 0.002 0.001 0.006 0.087 0.033 0.057 0.152 0.016 0.009 0.021 0.035 0.095
Switzerland 0.567 0.307 0.599 0.286 0.410 0.399 0.057 0.653 0.292 0.001 0.000 0.027 0.056 0.069 0.069 0.125 0.055 0.039 0.025 0.068 0.064
United Kingdom 0.808 0.064 0.877 0.036 0.679 0.099 0.124 0.795 0.147 0.025 0.002 0.026 0.097 0.068 0.078 0.152 0.005 0.028 0.044 0.127 0.104

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: Omitted circumstance expressions listed in order of the circumstance categories are: “Non-EU”; “Not Europe”; “Dead/Unknown/Illiterate”; “Dead/Unknown/Retired/Other
Inactive”; "Dead/Unknown/Not Working/Armed Forces”; “Dead/Unknown/Not Working/Non-Supervisory”. See also Table 1.
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S.2 ALTERNATIVE INEQUALITY INDEXES

FIGURE S.1 – Correlation of Estimates by Method (GE[0])
(A) Parametric Approach
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(B) Non-Parametric Approach
�������

�����������
��� �¢
�������
�������
��������
��������
� ����

�£���ȱ��������
���������

�����
	�����¢

������ȱ
������
�������
�������
�¢����

� ��£������
�������
������
������
�������

����¢
�������

�����¢
������

�������
	�����
�����

��������
��������

��¡�������

ŖǯŖŗ ŖǯŖŘ ŖǯŖř ŖǯŖŚ ŖǯŖś

������
���Ȭ����ǯ

(C) Latent Class Analysis
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(D) Conditional Inference Tree
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: This figure shows inequality of opportunity estimates from different estimation methods relative to random forests. In-
equality of opportunity is measured by the general entropy measure (a = 0) of the counterfactual distribution ŷC .
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FIGURE S.2 – Correlation of Estimates by Method (GE[1])
(A) Parametric Approach
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(B) Non-Parametric Approach
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(C) Latent Class Analysis
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(D) Conditional Inference Tree
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: This figure shows inequality of opportunity estimates from different estimation methods relative to random forests. In-
equality of opportunity is measured by the general entropy measure (a = 1) of the counterfactual distribution ŷC .
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FIGURE S.3 – Correlation of Estimates by Method (GE[2])
(A) Parametric Approach
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(B) Non-Parametric Approach
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(C) Latent Class Analysis
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(D) Conditional Inference Tree
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: This figure shows inequality of opportunity estimates from different estimation methods relative to random forests. In-
equality of opportunity is measured by the general entropy measure (a = 2) of the counterfactual distribution ŷC .
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S.3 OPPORTUNITY STRUCTURES

FIGURE S.4 – Opportunity Tree (Austria)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.5 – Opportunity Tree (Belgium)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.6 – Opportunity Tree (Croatia)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.7 – Opportunity Tree (Cyprus)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.8 – Opportunity Tree (Czech Republic)

mother_edu
p < 0.001

{Medium, High} {Unknown, None, Low}

occ_father
p < 0.001

≤ 5 > 5

n = 1072
y = 10961

3
n = 793
y = 9431

4

occ_father
p < 0.001

≤ 4 > 4

n = 753
y = 9175

6

occ_mother
p < 0.001

≤ 3 > 3

n = 146
y = 9912

8

n_children
p < 0.001

≤ 2 > 2

sex
p = 0.009

Male Female

occ_mother
p < 0.001

≤ 5 > 5

n = 312
y = 9269

12
n = 2128
y = 8834

13
n = 2072
y = 8474

14

mother_edu
p = 0.006

Low{Unknown, None}

n = 1365
y = 7659

16
n = 70

y = 7262

17

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.9 – Opportunity Tree (Denmark)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.10 – Opportunity Tree (Estonia)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.11 – Opportunity Tree (Finland)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.12 – Opportunity Tree (France)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.13 – Opportunity Tree (Germany)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances W used to construct the conditional inference tree is
detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as
the p-value associated with the respective split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the
second number shows the respective estimate of the conditional expectation yC .
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FIGURE S.14 – Opportunity Tree (Greece)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.15 – Opportunity Tree (Hungary)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances W used to construct the conditional inference tree is
detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as
the p-value associated with the respective split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the
second number shows the respective estimate of the conditional expectation yC .
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FIGURE S.16 – Opportunity Tree (Iceland)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.17 – Opportunity Tree (Ireland)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.18 – Opportunity Tree (Italy)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances W used to construct the conditional inference tree is
detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as
the p-value associated with the respective split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the
second number shows the respective estimate of the conditional expectation yC .
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FIGURE S.19 – Opportunity Tree (Latvia)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.20 – Opportunity Tree (Lithuania)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.21 – Opportunity Tree (Luxembourg)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances W used to construct the conditional inference tree is
detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as
the p-value associated with the respective split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the
second number shows the respective estimate of the conditional expectation yC .
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FIGURE S.22 – Opportunity Tree (Malta)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.23 – Opportunity Tree (Netherlands)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.24 – Opportunity Tree (Norway)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.25 – Opportunity Tree (Poland)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances W used to construct the conditional inference tree is
detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as
the p-value associated with the respective split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the
second number shows the respective estimate of the conditional expectation yC .
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FIGURE S.26 – Opportunity Tree (Portugal)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances W used to construct the conditional inference tree is
detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as
the p-value associated with the respective split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the
second number shows the respective estimate of the conditional expectation yC .
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FIGURE S.27 – Opportunity Tree (Romania)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances W used to construct the conditional inference tree is
detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as
the p-value associated with the respective split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the
second number shows the respective estimate of the conditional expectation yC .
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FIGURE S.28 – Opportunity Tree (Slovakia)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.29 – Opportunity Tree (Slovenia)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.30 – Opportunity Tree (Spain)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances W used to construct the conditional inference tree is
detailed in Table 1. Ellipses indicate splitting points, while the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as
the p-value associated with the respective split. The first number inside the terminal nodes indicates the population share belonging to the circumstance type, while the
second number shows the respective estimate of the conditional expectation yC .
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FIGURE S.31 – Opportunity Tree (Sweden)

Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.32 – Opportunity Tree (Switzerland)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .
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FIGURE S.33 – Opportunity Tree (United Kingdom)
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: The tree is constructed by the conditional inference algorithm (Section 3.1). The set of observed circumstances
W used to construct the conditional inference tree is detailed in Table 1. Ellipses indicate splitting points, while
the rectangular boxes indicate terminal nodes. Within each ellipse we indicate the splitting variable as well as the
p-value associated with the respective split. The first number inside the terminal nodes indicates the population
share belonging to the circumstance type, while the second number shows the respective estimate of the conditional
expectation yC .

FIGURE S.34 – Variable Importance Plot from Forests
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Data: EU-SILC 2011 cross-sectional (rev.5, June 2015).
Note: Each dot shows the importance of a particular circumstance variable wp. Variable importance is measured by the decrease
in MSEOOB after permuting wp such that it is orthogonal to y. The importance measure is standardized such that the circumstance
with the greatest importance in each country equals 1.
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