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A Text-Similarity Measure
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patents retrieved by Montobbio et al. (2022), the underlying 4-digit CPC definitions are 

employed in order to detect functions and operations performed by technological artefacts 

which are more directed to substitute the labour input. This measure allows to obtain 

fine-grained information on tasks and occupations according to their similarity ranking. 

Occupational exposure by wage and employment dynamics in the United States is then 

studied, complemented by investigating industry and geographical penetration rates.
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1 Introduction

Robots are coming! Such a statement has been the mantra in the last recent years,
with the perception that “This time is really different” (Brynjolfsson and McAfee,
2012, 2014; Ford, 2015). A large literature on the effects of the new wave of auto-
mation on human labour blossomed since then. Indeed, the pervasiveness of such
new technological artefacts has been one of the most relevant aspects pushing for
troublesome scenarios; among the most radical, Frey and Osborne (2017) suggests
that 47% of total US employment is associated with occupations that are potentially
automatable, a very much debated figure and downward revised by further estim-
ations (Arntz et al., 2016). The recent empirical evidence tends however to agree
that low- and medium-skilled workers, mainly executing routinised tasks, are par-
ticularly at risk (Acemoglu and Restrepo, 2018, 2019, 2020a; Autor and Dorn, 2013;
Frey and Osborne, 2017). At the same time, while some papers find a negative
impact on employment and wages, systematic evidence on the labour market im-
pact of robotic technologies remains elusive (Calvino and Virgillito, 2018; Mon-
dolo, 2021).

The unfolding of robotic impact on labour markets, in terms of occupations and
wages, has been mainly estimated in the literature by two alternate methods. The
first method is based on experts judgement on a subset of occupations, expanded
over the entire occupational structure by a classifier-system algorithm (e.g. Frey
and Osborne, 2017; Nedelkoska and Quintini, 2018). The second approach has
been leveraging on robotic adoption at the sectoral level, relying on the Interna-
tional Federation of Robotics dataset and looking at the impact on local labour
markets (e.g. Acemoglu and Restrepo, 2018, 2019, 2020a).

Currently, a direct measure of human substitutability and occupational expos-
ure, ideally based on the effective functions and operations executed by labour
saving (LS) technologies, is still absent (see Section 2). We contribute to this literat-
ure and provide a direct link between human tasks and machine functions and, as
a result, quantify occupational exposures to LS innovation in robotics. In doing so,
we build a new measure of similarity between the textual description of the tasks
performed by an occupation and the functions performed by observed robotic LS
innovations.

First, we leverage on the identification of robotic LS technologies by means of
natural language processing on robotic patents (Montobbio et al., 2022) and we
perform a task-based textual match between the descriptions of technological clas-
sifications (so called CPC codes) attributed to robotic LS patents and the O*NET
dictionary of occupations. The match exploits a cosine-similarity matrix that meas-
ures the proximity of the two dictionaries of words. The first result of our study
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is therefore the construction of a direct measure of similarity between a dictionary
of technological LS functions and a dictionary of human-based functions. This is
a methodological advancement to measure proximity between humans and ma-
chines, and allows to recover a direct measure of exposure.

In a second step, we aggregate tasks into occupations and recover a measure of
exposure of each task and related occupations to robotic LS technologies. We find
that the distribution of the similarity scores across tasks and occupations is very
skewed, with high similarity events being quite rare, given the underlying hetero-
geneity between the two text corpora. Nonetheless, restricting the analysis to the
top-decile of the similarity distribution, around 8.6% of the overall US employed
workforce (approximately 12.6 million jobs) is at risk of substitutability. The most
affected occupations are “Material Moving Workers”, “Vehicle and Mobile Equip-
ment Mechanics, Installers, and Repairers”, “Other Production Occupations”. Lo-
gistics and standardised service activities are those most exposed to LS technolo-
gies, in line with the evidence that among top-owners of LS patents, Amazon and
UPS stand out (Montobbio et al., 2022).

To validate our methodology, we perform a robustness analysis by replicating
the text similarity exercise between robotic LS patents’ full-texts and the same
O*NET task descriptions. The patent-task match, when LS functions are not taken
into consideration (through CPC codes descriptions, see above), correctly pin-
points those occupations developing new innovative robotic technologies and their
systems of adoption (e.g. Robotics Engineers; Robotics Technicians). This result re-
inforces the goodness of our procedure because it shows that it tells apart substitut-
ability detected via more prevalent functions in LS patents from complementarity
detected via the match with the entire patent text.

Then, we link the similarity measure to the actual US labour market in terms
of occupations and wages. We match our data to the Occupational Employment
and Wage Statistics (OEWS) from US Bureau of Labor Statistics for 8-digit SOC oc-
cupations (1999-2019). LOWESS estimates present a monotonically negative rela-
tionship between occupational exposure and both (i) wage level and growth, and
(ii) employment level and growth. Remarkably, the expected U-shaped pattern
(Acemoglu and Autor, 2011) is not recovered, neither in wages, nor in occupational
growth. In other words, cutting-edge robotic innovative efforts look to be directed
towards the weakest and cheapest segment of the labour market and not versus
the middle one. Finally, the geographical breakdown across US states shows that
the Rust Belt area, the region surrounding the Great Lakes experiencing indus-
trial decline, and the South-East area, with higher prevalence of African-American
communities, record the largest employment shares of occupations that are partic-
ularly exposed to robotic LS technologies.
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The remainder of the paper is organised as follows: Section 2 discusses the liter-
ature and evidence available; Section 3 presents the datasets used and Section 4 the
adopted methodology; Section 5 shows and discusses our results, presenting task
and occupational exposure, labour market, industry and geographical penetration
rates. Section 6 concludes the paper.

2 Literature review

As briefly mentioned in the introduction, the unfolding of robotic applications on
labour markets, in terms of occupations and wages, has been mainly estimated
in the literature by two alternate methods. The first method is the one initiated
by Frey and Osborne (2017), which constructed an automation probability starting
from experts judgement on a subset of 70 occupations, and then expanding the
evaluation over the entire occupational structure by means of a classifier-system
algorithm. Experts were asked about the probability of automating some particu-
lar human functions. This approach has been then employed in Nedelkoska and
Quintini (2018) to study 32 OECD countries using the PIAAC dataset and down-
ward revised by Arntz et al. (2016).

The second approach has been leveraging on robotic adoption at the sectoral
level, relying on the International Federation of Robotics dataset and looking at
the impact on local labour markets. This is the route taken by Acemoglu and Re-
strepo (2018, 2019, 2020a) which generally predict that a higher number of robots
per employee decreases wages and occupations for low-wage workers. However,
cross-country studies at the industry level do find a positive impact of robotics
adoption on labour productivity, and less clear-cut evidence on employment re-
duction. For instance, while Chiacchio et al. (2018) find results very consistent
with Acemoglu and Restrepo (2020a), both Graetz and Michaels (2018) and Dauth
et al. (2017) conclude that robots do not significantly reduce total employment, al-
though they do reduce the low-skilled workers’ employment share, particularly in
manufacturing.

Shifting to studies using firm-level data, results are conflicting. Domini et al.
(2020), using robotic adoption or, alternatively, imported capital equipment, does
not detect labour expulsion, but rather employment growth. Interestingly enough,
in some studies the positive employment impact at the firm level appears entirely
due to the so-called “business stealing effect” – i.e. innovative adopters gain mar-
ket shares at the expense of non-innovators (Dosi and Mohnen, 2019) – since neg-
ative employment impacts emerge once non-adopters and sectoral aggregates are
taken into account (see Acemoglu et al., 2020b; Koch et al., 2021).

Other studies, using longitudinal data and a more comprehensive measure of
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embodied technological change (which includes robots) do find a labour-saving
effect of new technologies (see Barbieri et al., 2018; Pellegrino et al., 2019). Such
contradictory results, out of different levels of aggregations, are not new to schol-
ars in the economics of innovation (Clark et al., 1981; Freeman and Soete, 1987)
which identify alternate effects of technical change on employment via a series of
compensation mechanisms balancing the initial direct LS effects of mechanization
and automation (Dosi et al., 2021; Piva and Vivarelli, 2018; Simonetti et al., 2000;
Van Roy et al., 2018; Vivarelli, 1995, 2015). Indeed, the level of analysis, whether
sectoral or establishment/firm, produces different signs on the underlying rela-
tionship (Calvino and Virgillito, 2018).

More recent papers have focused on artificial intelligence, the purportedly new-
comer disruptive technology, often blamed to have a strong LS impact on white-
collar jobs, more related to service activities. Felten et al. (2021), which refines
the measure proposed in Felten et al. (2018), links the Electronic Frontier Found-
ation dataset (EFF), within the AI Progress Measurement initiative, with O*NET
(abilities). A direct matching between 10 AI selected scopes of application (ab-
stract strategy games, real-time video games, image recognition, visual question
answering, image generation, reading comprehension, language modelling, trans-
lation, and speech recognition) and human abilities is conducted. The matching is
performed by crowdsourcing a questionnaire to gig workers at Amazon’s Mech-
anical Turk (mTurk) web service. To 2,000 mTurkers residing in the United States
the questions administered ask whether, for each of the 52 abilities listed in the
O*NET, they believe that the AI application is related to or could be used for. The
study reports higher AI exposure for white-collar workers. However, the measure
is silent about any direct replacement or complementarity effect.

Webb (2020) proposes a direct measure of exposure via co-occurrence of verb-
noun pairs in the title of AI patents and O*NET tasks. However, titles of patents
are hardly informative of the underlying functions executed by the technological
artefact and restricting to verb-noun pairs has high likelihood of false positives.
The measure of exposure is not constructed in terms of overall similarity of the
two corpora but rather in terms of the relative frequency of occurrence of the eli-
cited pair in AI titles versus the remaining titles of non-AI patents. Moreover, the
proposed methodology does not allow to distinguish labour-saving from labour-
augmenting technologies.

Acemoglu et al. (2020a) look at AI exposed establishments and their job posts us-
ing Burning Glass Technologies data, which provide wide coverage of firm-level
online job postings, linked to SOC occupational codes. In order to account for the
degree of firm-level AI exposure, three alternative measures are employed, namely
the ones put forth by Brynjolfsson et al. (2018), Felten et al. (2021) and Webb (2020).
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Not surprisingly, considering the still relatively niche adoption, no clear effects
at the industry and occupational level are detected, while recomposition toward
AI-intensive jobs is spotted. In addition, they do not find evidence of any direct
complementarity between AI job posts and non-AI jobs, hinting therefore at a pre-
valent substitution effect and workforce recomposition, rather than a productivity-
enhancing effect of AI adoption.

The closest analysis to our own is the one performed in Kogan et al. (2021) which
constructs a text-similarity measure between the corpus of so called breakthrough
innovations, according to the methodology devised in Kelly et al. (2018), and the
fourth edition of the Dictionary of Occupation Titles (DOT). The measure is con-
structed to allow for time variability by keeping constant the textual content simil-
arity but summing it for each defined breakthrough innovation at each time step,
exploiting patent information over the period 1850-2010. Breakthrough innova-
tions, identified as the distance between backward and forward similarity of each
filed patent compared to the existing stock of patents, are by no means ex-ante
defined as being in nature labour-saving ones. In addition, the way the measure
is built reflects more the dynamics of breakthrough innovations according to their
emergence along subsequent technological revolutions, quite akin to the findings
in Staccioli and Virgillito (2021), rather than the actual penetration of these techno-
logies in the labour market. Therefore, what the measure captures is more the clus-
tering of technologies under mechanisation in the first period of analysis, followed
by automation and the ICT phase. They find that most exposed occupations lost
in terms of wages and employment level, and that over time white-collar workers
became relatively more exposed compared to blue-collar ones. However, it is not
clear whether the results are reflecting more long-run dynamics in technological
and structural change rather than actual similarity between patents and occupa-
tions. Indeed, the within patent-occupation text-similarity is kept constant over
time.

The Kogan et al. (2021)’s measure has been applied in Autor et al. (2020) inter-
ested in devising the entry of new work titles along the historical records of the so
called Census Alphabetical Index of Occupations (CAI), an index listing all new
work-title entries. The authors define complementary-technologies those patents
matched with the CAI text (new job titles), and labour-saving technologies the ones
linked to the DOT text (existing job titles). The paper documents the increasing
entry of white-collar middle-paid occupations in the period 1940-1980, while since
1980 new jobs have been concentrating in both high-educated and low-educated
services. Another application of the Kogan et al. (2021)’s measure has been done
with reference to I4.0 patents in Meindl et al. (2021), matching in this case the pat-
ent text corpus with the “detailed work activities” (DWAs) section of the O*NET.
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According to their results, financial and occupational professions are more exposed
to I4.0 patents compared to non I4.0 patents.

3 Data description

The first dataset used in this study is represented by the O*NET, a primary source
of occupational information, largely employed in the literature studying the actual
content of the workplace activities (Handel, 2016). It provides details for the US
occupational structure at the 8-digit level. The O*NET content model allows to
gather information on a series of attributes of the world of work, namely executed
tasks, task ratings (in terms of importance, relevance, and frequency), abilities,
education, training and experience, knowledge, skills, work activities, work con-
text, work styles.

Among the many available descriptors, the detailed Task Statements descriptor
contains specific definitions of the tasks performed by each 8-digit occupation,
while the Task Statement Ratings allows to gather information on the actual im-
portance, relevance and frequency of each task, being each occupation composed
by a multiplicity of tasks, also variable across occupations. The definitions of Core
or Supplemental tasks synthesise the numerical rating scores, as detailed below.

Take as an example the occupation 19-3011.00 defining “Economists”. The lat-
ter perform 11 core tasks, some of them more specific to the occupation in itself
(e.g. task 7537: “Develop economic guidelines and standards and prepare points of view
used in forecasting trends and formulating economic policy”); some other tasks are
less occupational specific (e.g. task 7542: “Supervise research projects and students’
study projects”); some others considered to be supplemental tasks (e.g. task 20051:
“Provide litigation support, such as writing reports for expert testimony or testifying as
an expert witness”). Such type of granular information will be the basis to construct
the dictionary of words defining human functions.

The second dataset employed is the Occupational Employment and Wage Stat-
istics (OEWS) retrieved from the US Bureau of Labor Statistics. Such dataset allows
to analyse the evolution of the employment dynamics, excluding self-employed,
and it is directly linkable to the O*NET dataset via the SOC occupational codes at
full-digit. In addition the dataset allows to recover information on the average and
median nominal wages for each 8-digit SOC category.

Fig. 1 is a snapshot of the US occupational structure in 2019, showing occupa-
tional categories aggregated at 2-digit levels (22 codes, excluding military specific
occupations) (top panel) and the evolution over the last two decades in terms of
employment shares (bottom panel). In 2019, the largest occupational share (14%)
is populated by “Office and Administrative Support” workers; “Healthcare Practition-
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ers” and “Technical, Business and Financial Operations, Management” both stand at
6%, while “Life, Physical, and Social Science” are less than 1%. The snapshot tells
about the remarkable de-industrialisation of the US economy, with prevalence of
administrative operations but also of service activities related to the satisfaction of
social needs, such as “Food Preparation and Serving Related”, “Transportation and Ma-
terial Moving”, while “Production” is relegated to the fifth position with less than 7%
of the US workforce. The bottom panel presents the change in employment shares:
the most growing occupation is “Healthcare Support” with almost a 100% increase as
employment share, followed by “Business and Financial Operators”, “Computer and
Mathematical” occupations. In general, a negative relationship between employ-
ment share growth in the last twenty years and employment share levels in 2019
is detectable, with those occupations recording the highest shares also experien-
cing strong contraction, like “Office and Administrative Support” or contraction, like
“Sales and Related”. “Production” workers record the largest decline in employment
share (-4%), a further confirmation of the accelerated de-industrialization process
in the US.

Fig. 2 presents the corresponding information for nominal median wages by oc-
cupational categories at the 2-digit level. While an evident hierarchical distribu-
tion of median wages emerges (top panel), with managerial median wages five
times higher than food preparation activities, the bottom panel presents the de-
meaned dynamics of median nominal wage growth. Albeit all occupations have
experienced a generalised nominal wage growth, with a minimum 50% increase,
top-growing occupations in terms of remuneration have been both top-paid and
bottom-paid ones according to the 2019 wage level: take the opposite dynamics
of managerial vs. legal activities, in top remuneration tiers, that in the first case
experienced an almost doubling remuneration when compared to 1999 levels, and
a 20% increase more than the average, while in the second case recorded the low-
est median wage increase with respect to average one. Regarding the lower tiers,
“Food Preparation and Serving Related” activities, the least-paid occupations in 2019,
have likely experienced a wage growth over twenty years and a 10% wage increase
higher than the average, but still maintain their relative position in the wage hier-
archy. Such crystallised hierarchical structure informs about a more rigid than
expected US labour market, wherein notwithstanding occupational changes in re-
lative employment shares, the wage distribution across occupational categories is
quite sticky over twenty years.

The third employed dataset is represented by the universe of USPTO patent ap-
plications in robotic technologies in the period 2009-2018, the last recent phase
recording a steep increase in patenting activity in such field (cf. Fig. 3). As we shall
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Figure 1: Employment shares in 2019 and share changes (1999-2019) for 2-digit
SOC occupations.

describe below, both patent text corpus and the technological fields are taken into
account (CPC classification at 4-digit level).

4 Methodology

In the present section, we develop the necessary methodology to build a new meas-
ure of similarity between the textual description of the tasks performed by an occu-
pation and the functions performed by LS innovations. In particular, we leverage
on the text similarity between the definitions of CPC (Cooperative Patent Classi-
fication) codes and the descriptions of tasks contained in the O*NET dictionary of
occupations. Before delving into the methodological details of the text similarity
measure that we devise (Section 4.2), it is useful to first summarise the relevant
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Figure 3: Number of USPTO robotic patents per year. Source: own elaboration
based on Montobbio et al. (2022, Fig. 2).
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Figure 4: Flowchart of our methodology.

workflow of Montobbio et al. (2022) which brought about the set of LS patents
which constitutes the starting point of the present analysis (Section 4.1). In Sec-
tion 4.3 we explain how we map our measure of exposure from the task level to
the occupation level. Our methodological workflow is synthesised by the flow-
chart in Fig. 4.

4.1 Discovery of labour-saving patents

The contribution of Montobbio et al. (2022) in the discovery of robotic LS patents
unfolds along three methodological steps. First, patents which either directly or
indirectly relate to robotics technology are singled out. Second, a procedure is
implemented in order to detect the underlying LS heuristics and pinpoint the set
of explicitly LS patents. Finally, most relevant CPCs in robotic LS patents vis-à-
vis sheer robotic patents are identified. A brief technical summary of the relevant
workflow is presented in Appendix A.

4.2 Measuring exposure with text similarity

Within the scope of the present analysis, the technological content of LS patents is
proxied by the official definitions of the relevant CPC codes. Patent publications
are each assigned one or more classification terms indicating the subject to which
the invention relates. The CPC system (of which we use the version 2019.08) con-
sists of 250,000+ distinct codes, organised according to a multi-level hierarchical
structure. For the purpose of striking a fair balance between density of informa-
tion and granularity, we focus on 4-digit codes, of which 671 are present.
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In order to match the technological content of LS patents to occupations, we rely
on the O*NET database (of which we use version 25.1) which contains a thorough
description of 19,231 distinct tasks, further aggregated into 923 8-digit SOC2018 oc-
cupations according to a weighing scheme detailed in Section 4.3. In the following,
we aim at measuring the pairwise text similarity of the 671 CPC codes’ definitions
and the 19,231 tasks’ descriptions.

From the methodological point of view, we adopt the so-called bag-of-words
model and we measure textual proximity between CPC definitions and task de-
scriptions by means of cosine similarity (see e.g. Aggarwal, 2018). The bag-of-words
model entails the representation of text as a multiset of underlying words, which
disregards any grammar structure and the order in which terms appear, but keeps
their multiplicity. The underlying assumption is that CPC-task pairs whose text
consists of the very same words, possibly repeatedly, are more associated to one
another than pairs which share few common words, or their frequency is negli-
gible.

Each piece of text, either a CPC definition or a task description, first undergoes
a preprocessing step in which words are stemmed to their morphological root and
so-called stop-words, i.e. tokens that are overly common in English (such as ‘a’,
‘the’, ‘if’. . . ) and do not convey any useful information to our analysis, are re-
moved. Each text is then transformed into a vector of frequencies of the underlying
words. The number of vector components reflects the common dictionary of terms
across the two whole corpora. In other words, all vectors belong to the same vec-
tor space, whose dimension equals the number of distinct words in the common
dictionary. The similarity of each CPC-task pair is then quantified as the cosine of
the angle between the two underlying vectors.

As opposed to simply counting the occurrences of each word in each body of
text, we adopt the customary tf-idf (term frequency–inverse document frequency)
term-weighting scheme for computing the relevant frequencies, according to the
following definition.

Definition 1 Let D be a collection of documents d, each composed of an ensemble of terms
t from a dictionary T. The tf-idf measure of term t appearing in document d is defined as
follows:

tf-idf(t, d, D) := tf(t, d) · idf(t, D) 8 d 2 D, 8 t 2 T,

tf(t, d) := 1d(t) =

8
<

:
1 if t 2 d

0 otherwise
8 d 2 D, 8 t 2 T,

idf(t, D) := log
✓

|D|
|{d 2 D : t 2 d}|

◆
8 t 2 T.
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The associated |D| ⇥ |T| document term matrix DD is an array of tf-idf measures
for all documents d in the generic collection D and for all terms t in the relevant
dictionary T. In other words,

DD
d,t = tf-idf(t, d, D), 8 d 2 D, 8 t 2 T.

The tf-idf statistic reflects how important a specific term is to a certain document,
compared to other documents in the collection. The tf-idf value increases propor-
tionally to the number of times a word appears in the document and is offset by
the number of documents in the corpus which mention that word. This helps to
adjust for the fact that some words appear more frequently in general.

Extending the reasoning to the corpus level, we construct two document-term
matrices, DCPC and DTASK, whose rows contain the aforementioned tf-idf fre-
quency vectors, for each CPC code definition and each task description, respect-
ively. Both matrices are based on the dictionary of terms from CPC definitions,
namely the smaller between the two collections, which consists of 2309 terms.
Therefore DCPC has dimension 671 ⇥ 2309 and DTASK has dimension 19231 ⇥ 2309.

Finally, we construct the cosine similarity matrix S containing the cosine similar-
ity score between all pairs of row vectors from the document-term matrices DCPC

and DTASK according to the following definition.

Definition 2 Given two vectors X, Y 2 R|T|, their cosine similarity is defined as the
cosine of the angle between them, which is also equal to the inner product of the same
vectors normalised to unit length, as follows:

cos(X, Y) :=
X · Y

kXk kYk =

|T|
Â

t=1
xtyt

s
|T|
Â

t=1
x2

t

s
|T|
Â

t=1
y2

t

, (|)

where xt and yt denote the components of vectors X and Y, respectively, and k·k denotes
the Euclidean norm.

Since row vectors of document-term matrices are non-negative valued, their cosine
similarity is bounded by the unit interval, i.e. cos(X, Y) 2 [0, 1]. Moreover, when
term frequency is measured by tf-idf, the normalisation denominator in eq. (|) is
redundant and cos(X, Y) ⌘ X · Y. Therefore, given document-term matrices DCPC

and DTASK, and extending the cosine similarity computation to the matrix level,

S = cos
⇣
DCPC, DTASK

⌘
⌘ DCPC

⇣
DTASK

⌘0
.
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OCCUPATION 11-1011.00 · · · 53-7121.00

CPC

TASK

8823 8824 · · · · · · · · · 12809 12810

A01B cos(A01B,8823) cos(A01B,8824) · · · · · · · · · cos(A01B,12809) cos(A01B,12810)

A01D cos(A01D,8823) cos(A01D,8824) · · · · · · · · · cos(A01D,12809) cos(A01D,12810)

· · · · · · · · · · · · · · · · · · · · · · · ·
H05H cos(H05H,8823) cos(H05H,8824) · · · · · · · · · cos(H05H,12809) cos(H05H,12810)

H05K cos(H05K,8823) cos(H05K,8824) · · · · · · · · · cos(H05K,12809) cos(H05K,12810)

Table 1: Architecture of the cosine similarity matrix S .

The cosine similarity matrix S has dimension 671 ⇥ 19231, one row for each CPC
code and one column for each task, and each cell contains the similarity score of
the underlying CPC-task pair. In total, there exist 12,904,001 such pairs. The archi-
tecture of matrix S is represented in Table 1, where the task-occupation mapping,
defined in the O*NET database itself, is also highlighted.

In order to make the cosine similarity matrix reflect the technological structure
of the LS patents found by Montobbio et al. (2022), we multiply each row of S by
the frequency of the associated CPC code in the whole set of LS patents. When a
patent is assigned multiple CPC codes with the same 4-digit representation, each is
taken into account separately. In other words, we filter the cosine similarity matrix
by the distribution of technological codes across LS patents. In this way, we weigh
the contribution of each CPC code to the occupational exposure of a certain task
proportionately with how widespread the code appears in LS patents (cf. Table 5).
Finally, in order to rank O*NET tasks by similarity score with the ensemble of CPC
codes of LS patents, we compute column sums of matrix S across all CPC codes
(rows). The result is a task similarity vector TS containing a unique measure of
aggregate similarity to each task. Given a column vector C of frequencies of the
671 CPC codes among LS patents, vector TS is defined simply as

TS = S 0C

where the usual matrix multiplication is intended. A ranking of tasks by (aggreg-
ate) similarity score is later presented in Table 2, where values have been rescaled
between 0 and 1.

4.3 From tasks to occupations

So far we have measured the textual proximity of LS patents to each O*NET task,
mediated by CPC codes, the result of which is stored in the task similarity vector
TS (cf. Section 4.2). In order to draw conclusions on the effect of LS technologies
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upon employment, we need to further aggregate the similarity measure at the oc-
cupation level.

The O*NET database defines occupations as a collection of underlying tasks,
distinguishing between core and supplemental tasks. This classification takes into
account three distinct measures, namely importance, relevance, and frequency. In
order to aggregate a task similarity measure to the relevant occupation in a sensible
way, it is crucial to understand how the core/supplemental distinction is devised
in the first place. Importance spans a range between 1 and 5, while relevance and
frequency are both represented as percentages. Core tasks are deemed critical to
the occupation; the criteria a task to be classified as core require that relevance
� 67% and importance � 3.0. Supplemental tasks are deemed less relevant and/or
important to the occupation; two sets of tasks are included in this category, namely
tasks rated � 67% on relevance but < 3.0 on importance, and tasks rated < 67%
on relevance, regardless of importance.

Taking the O*NET definition of core and supplemental tasks into account, we
impute task similarity to occupations with the following weights:

core :
2/3

# tasks in the occupation

supplemental :
1/3

# tasks in the occupation

It is worth noticing that occupations differ in the number of constituent tasks. This
warrants the need of rescaling the similarity contribution of each task accordingly,
hence the denominator in the aforementioned weighting scheme. A ranking of oc-
cupations by (aggregate) similarity score is later presented in Table 3, where values
have been rescaled between 0 and 1.

5 Results

In the following, we shall display our results. This section is organised as follows:
Section 5.1 presents the distribution of the text similarity measure across tasks and
occupations. Section 5.2, exploiting the match with the OEWS dataset, allows to
understand the degree of penetration of technological exposure in terms of struc-
ture of the labour market, looking at employment and wages, and industry com-
position. Finally, Section 5.3 presents the geographical distribution of LS threats.

5.1 Task and occupational exposure

Table 2 shows the top-fifteen tasks in terms of the similarity score. Notably, the
tasks presenting a higher similarity score regard human functions related to the
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Figure 5: Distribution of cosine similarity with respect to tasks.

handling and moving of objects, materials, products, with the first top-three tasks
being (i) “Load materials and products into machines and equipment, or onto conveyors,
using hand tools and moving devices”; (ii) “Move levers or controls that operate lifting
devices, such as forklifts, lift beams with swivel-hooks, hoists, or elevating platforms, to
load, unload, transport, or stack material”; (iii) “Position lifting devices under, over, or
around loaded pallets, skids, or boxes and secure material or products for transport to des-
ignated areas”. Such types of tasks are more prevalent in the logistics industry inas-
much they require activities like preparing boxes, packaging, sorting, and routing
items.

Fig. 5 presents the distribution of the similarity measure across the entire set of
19,231 O*NET tasks, according to the Task Statements file. Given the wide spec-
trum of the covered tasks by the O*NET, it is not surprising to obtain an extremely
skewed distribution, with events of high similarity being extremely rare. Indeed,
cosine similarity values beyond 0.8 apply to a tiny fraction of tasks and at this stage
seem to constitute more the exception rather than the norm. However, such an ex-
treme value distribution is quite comforting in terms of reliability of the measure,
the underlying information being quite sparse, inasmuch the probability of false
positives is low and the overall accuracy of the measure high. Nonetheless, one
might consider irrelevant or less informative the task domain, given that occu-
pations are defined by not as a single, but rather as a set of distinct tasks. Most
exposed tasks therefore might result to be largely not core in many occupations,
in line with the evidence provided in Fig. 1, telling a picture of a labour market
where administrative, office, and sales occupations represent the largest shares of
employed workers.

However, such a handful of tasks, when aggregated into occupations, happens
to be quite revealing of the direction of robotic LS efforts. Table 3 shows the cor-
responding top-twenty occupations most exposed to substitution exerted by some
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form of automation or intelligent automation, obtained by aggregating tasks into
occupations, as described in Section 4.3. Although the distribution by tasks is quite
skewed, the very same information, once aggregated at the SOC level, allows the
detection of a series of occupations at a strong exposure risk. Most exposed oc-
cupations are “Industrial Truck and Tractor Operators”; “Maintenance Workers, Ma-
chinery”; “Machine Feeders and Offbearers”; “Packers and Packagers, Hand”. Such oc-
cupations are clearly among the ones reporting the higher incidence of tasks with
higher similarity scores. Browsing Table 3, it emerges a recurrent pattern of some
specific macro-occupational groups, as evident by the presence of the 2-digit oc-
cupations “Transportation and Material Moving” (53), “Installation, Maintenance, and
Repair” (49), “Packaging and Filling Machine Operators and Tenders” (51), all recur-
rently ranking in the top-twenty 8-digit most exposed occupations.

Fig. 6 presents the histogram of occupations by similarity. Albeit less skewed
than the task histogram, it confirms that high similarity is a rare event, affecting
only a relatively small fraction of the entire occupational structure. The top-twenty
occupations with the highest similarity scores are indeed very few, and the mode
of the distribution stands in the medium range of similarity, between 0.2 and 0.4.
The area on the right of the orange bar identifies the range of the top-twenty most
exposed occupations. But, what does it happen if we move the bar to the left?

Fig. 7 (left-panel) plots the quantile function of the similarity distribution in
Fig. 6. Given the highly skewed pattern, up to the eighth decile of the similar-
ity distribution there is a low range of variation, reaching the value of 0.4. Higher
cosine similarity values, in the range [0.6, 1] occur only after the inflection point
located around the ninth decile. This non linear-relationship informs about the ex-
istence of a threshold level beyond which exposure dramatically increases while
below such point, exposure is tamed. Such threshold behaviour has a twofold
implication: from the one hand, high-exposure risk to substitutability affects a re-
latively tiny fraction of the entire occupational range, while from the other hand,
whenever the risk is high, it swiftly accelerates, potentially leading to quite prob-
able substitutability events.

Fig. 7 (right-panel), by using the O*NET-OEWS match, allows to recover the ef-
fective number of employed workers per each occupation at risk of substitutability.
As expected, the number of replaceable employees dramatically drops when the
similarity value increases: the top-decile of the similarity distribution, on the far-
right, affects 8.6% of the employed working population, which amounts to approx-
imately 12.6 million workers. Notably, and differently from other extant measures,
our approach allows to identify not a point value but rather an interval of expos-
ure which enables to understand how labour-substitutability unevenly hampers
the labour force.
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Figure 6: Distribution of cosine similarity with respect to 8-digit occupations.
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Figure 7: Quantile function of the similarity distribution for 8-digit occupations
(left) and number of replaceable employees by quantile (right).
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Rank Code Description CS

1 14587 Load materials and products into machines and equipment, or onto conveyors, using hand tools and
moving devices

1.0

2 3202 Move levers or controls that operate lifting devices, such as forklifts, lift beams with swivel-hooks,
hoists, or elevating platforms, to load, unload, transport, or stack material

0.96

3 3203 Position lifting devices under, over, or around loaded pallets, skids, or boxes and secure material or
products for transport to designated areas

0.9

4 17928 Lift and move loads, using cranes, hoists, and rigging, to install or repair hydroelectric system equip-
ment or infrastructure

0.89

5 15266 Manually or mechanically load or unload materials from pallets, skids, platforms, cars, lifting
devices, or other transport vehicles

0.88

6 14584 Remove materials and products from machines and equipment, and place them in boxes, trucks or
conveyors, using hand tools and moving devices

0.86

7 11839 Transport machine parts, tools, equipment, and other material between work areas and storage, using
cranes, hoists, or dollies

0.85

8 3217 Load materials and products into package processing equipment 0.85
9 12805 Operate conveyors and equipment to transfer grain or other materials from transportation vehicles 0.85

10 12323 Communicate with systems operators to regulate and coordinate line voltages and transmission
loads and frequencies

0.84

11 12798 Operate industrial trucks, tractors, loaders, and other equipment to transport materials to and from
transportation vehicles and loading docks, and to store and retrieve materials in warehouses

0.83

12 20387 Optimize photonic process parameters by making prototype or production devices 0.83
13 17496 Provide information about community health and social resources 0.83
14 13705 Unload materials, devices, and machine parts, using hand tools 0.8
15 10757 Load, unload, or adjust materials or products on conveyors by hand, by using lifts, hoists, and scoops,

or by opening gates, chutes, or hoppers
0.8

Table 2: Top 15 tasks by (rescaled) similarity.
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Rank Code Title CS

1 53-7051.00 Industrial Truck and Tractor Operators 1.0
2 49-9043.00 Maintenance Workers, Machinery 0.97
3 53-7063.00 Machine Feeders and Offbearers 0.94
4 53-7064.00 Packers and Packagers, Hand 0.91
5 49-2091.00 Avionics Technicians 0.87
6 51-9111.00 Packaging and Filling Machine Operators and Tenders 0.81
7 49-3041.00 Farm Equipment Mechanics and Service Technicians 0.81
8 49-3092.00 Recreational Vehicle Service Technicians 0.78
9 49-3042.00 Mobile Heavy Equipment Mechanics, Except Engines 0.77

10 47-2111.00 Electricians 0.76
11 49-9098.00 Helpers–Installation, Maintenance, and Repair Workers 0.75
12 49-9041.00 Industrial Machinery Mechanics 0.75
13 51-9082.00 Medical Appliance Technicians 0.75
14 47-3011.00 Helpers–Brickmasons, Blockmasons, Stonemasons, and Tile and Marble Setters 0.75
15 51-9191.00 Adhesive Bonding Machine Operators and Tenders 0.75
16 51-9023.00 Mixing and Blending Machine Setters, Operators, and Tenders 0.74
17 13-1032.00 Insurance Appraisers, Auto Damage 0.73
18 51-4111.00 Tool and Die Makers 0.73
19 49-9081.00 Wind Turbine Service Technicians 0.72
20 51-8013.04 Hydroelectric Plant Technicians 0.72

Table 3: Top 20 occupations by (rescaled) similarity.
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5.2 Industry and labour market penetration

Occupations are distributed across industries, and therefore identifying the most
and least affected ones is crucial for any potential policy intervention. Table 4
shows the relevance of occupational exposure to robotic LS technologies in each
NAICS 2-digit sector by weighting the cosine similarity by percentage of occupa-
tion membership to each sector. The measure, which takes value 1 for the most and
value 0 for the least exposed industry (in relative terms), depicts the manufactur-
ing sector as the most exposed to automation. Not only manufacturing is leading
the ranking, but all the other sectors follow after a dramatic drop. Indeed, the in-
dustry ranking reflects the aggregation of scattered occupations entailing manual
abilities and handling, as shown above, which however are largely concentrated
in manufacturing. Moreover, manufacturing as an industry collects all those activ-
ities related to logistics and warehouse which are still currently under the parent
manufacturing companies, while third-party logistics, doing logistics activities as
a service, rank seventh across industries.

On the whole, robotic LS technologies will further deepen the long-run ongoing
de-industrialisation of the US economy (cf. Section 3). However it is remarkable
the high ranking of healthcare, social assistance and education, the most human-
oriented industries. Such a result is a warning, already detected in Montobbio et al.
(2022), about the direction of cutting-edge innovative efforts diverted towards in-
dustries where, at least in principle, the human-based component should be prefer-
able. Similarly, public administration ranks in the top-five most exposed sectors to
substitution and this signals the ability of our measure to comprise not only auto-
mation per se but also advanced digitalisation processes entailed by administrative
services. Notably, “Management of Companies and Enterprises”, although recording
a contraction in occupational employment shares in the last twenty years, presents
the lowest similarity score.

The last battery of results is shown in Figs. 8 and 9, presenting a non-parametric
LOWESS estimation (locally weighted scatterplot smoothing), as in Acemoglu and
Autor (2011) and Webb (2020), of the relationship between the cosine similarity
measure, employment, and wages both in level in 2019 and in growth rate in 1999-
2019. A neat negative, almost monotonically decreasing relationship emerges in
all four considered variables. Starting with employment levels, LOWESS estim-
ates confirm the previous evidence, showing low occurrence of high similarity
measures for the majority of employees. However, such negative relationship also
emerges when the similarity measure is compared against employment growth,
revealing that shrinking occupations in the last two decades have been also those
most exposed to robotic LS technologies. Such evidence confirms that, among
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Figure 8: Similarity and employment level in 2019 (left) and 1999-2019 employ-
ment growth (right). Robust LOWESS estimates of the underlying scatter
plots (bandwidth = 0.8).

other potential sources determining the displacement of some occupations, sub-
stitutionary technical change related to automation might have played a role.

Towards which labour force segments are such innovative efforts directed? Ac-
cording to the LOWESS estimates, the relationship in terms of wage level and
growth, again almost monotonically decreasing, signals that the most exposed
occupations to LS technologies are the least-paid and recording the lowest wage
growth. In other words, robotic LS technologies and their underlying patents are
more directed towards substituting the cheapest segments of the labour force.

Anecdotal evidence suggests a high incidence of highly automatised produc-
tion processes in already quite standardised workplaces (Ford, 2015); related, a
large majority of case studies on Industry 4.0 questions the revolutionary content
of the latest technological wave and highlights the patterns of continuity with ICT
(Cetrulo and Nuvolari, 2019; Cirillo et al., 2021; Dosi and Virgillito, 2019; Krzy-
wdzinski, 2020; Santarelli et al., 2021). High innovative efforts to automate cheap
labour are what Acemoglu and Restrepo (2020b) define “so-so” technologies. Far
from judging labour from its remuneration, it is evident from our analysis that
gains from automation in terms of productivity are searched in the knowledge
and technological space allowing for incremental upgrading of already automated
processes and substituting the labour force therein involved.

5.3 Geographical penetration

The United States are very much differentiated in terms of productive special-
isation and ensuing occupational composition. Understanding the different geo-
graphical penetration of robotic LS technologies across states is useful and inform-
ative, both as a validation exercise and as a tool to perform targeted policy actions.
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Rank NAICS CS

1 Manufacturing 1.0
2 Health care and social assistance 0.39
3 Education services 0.33
4 Construction 0.30
5 Public administration 0.21
6 Other services, except public administration 0.18
7 Transportation and warehousing 0.17
8 Retail trade 0.16
9 Professional, Scientific and Technical Services 0.11

10 Utilities 0.10
11 Administrative and support and waste management

and remediation services
0.09

12 Information 0.09
13 Arts, entertainment, and recreation 0.07
14 Accommodation and food services 0.07
15 Wholesale trade 0.07
16 Mining 0.06
17 Finance and insurance 0.05
18 Agriculture, forestry, fishing and hunting 0.04
19 Real estate and rental and leasing 0.02
20 Management of Companies and Enterprises 0.00

Table 4: Relevance of exposed occupations to NAICS 2-digit sectors, obtained as a
weighted average of similarity and occupation membership to the under-
lying sector, rescaled between 0 and 1.
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Figure 9: Similarity and wage level in 2019 (left) and 1999-2019 wage growth
(right). Robust LOWESS estimates of the underlying scatter plots (band-
width = 0.8).
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Figure 10: Disaggregation by state. Employment shares of most exposed occupa-
tions (top-decile) to LS technologies. Continental US.

Fig. 10 shows the state-level disaggregation of the top-exposed occupations (top-
decile of the distribution in Fig. 6). The heat-map presents five colour shades, go-
ing from the more exposed states to LS technologies (dark brown), to less exposed
states (light pink). The range of variation, considering the 8.6% share for the US as
a whole, goes from 4% to 11%. In the picture, states presenting a share below 7%
are coloured in white.

Going from the most to the least exposed states, according to our results, the so-
called Rust Belt area (i.e. the region surrounding the Great Lakes) is populated by
states characterised by darker reds, namely Wisconsin, Indiana, Michigan, Illinois.
Other dark red states are Alabama, Arkansas, Mississippi, Louisiana, located in
the Southern East, where African-Americans are largely concentrated. Texas, with
a prevalent fraction of Hispanic communities, presents 9% of the occupational cat-
egories exposed to LS technologies. At the opposite, all states on the two coasts,
representing the cradle of high-tech companies and of high-specialised service
activities are coloured in light red, like Washington, California, Florida, Virginia.
Notably, states like New York and D.C. are indicated in white being the share of
occupations exposed to LS technologies below 7%.
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6 Conclusions

This paper represents one of the first attempts at building a direct measure of occu-
pational exposure to labour-saving technologies. We encompass such an objective
by making use of natural language processing (NLP) techniques. First, we leverage
on the information retrieved by Montobbio et al. (2022), allowing to identify expli-
citly labour-saving robotic patent applications, collected in the 2008-2018 period.
After identifying robotic and LS robotic patents, the underlying 4-digit CPC defini-
tions are employed in order to detect functions and operations performed by tech-
nological artefacts which are more directed to substitute the labour input. The
measure allows to obtain fine-grained information on tasks and occupations ac-
cording to their similarity ranking. In addition, performing a match with the occu-
pational and wage statistics, we offer evidence on the relationship between our ex-
posure measure, employment and wage levels, and their changes in the last twenty
years. Industry and geographical penetrations are studied as well.

According to our results, the occupations which are more exposed to labour-
saving automation are those performing activities related to manual dexterity, ma-
nipulation, loading of objects into machines and equipment, lift and load mov-
ing. These tasks are mainly characterising occupations as industrial truck and
tractor operators, packaging and filling machine operators and tenders, tool and
die makers, but also medical appliance technicians. When decomposing the in-
formation by industry, we do find that manufacturing is the most exposed one,
followed by healthcare, social assistance, and education services. In addition, al-
though manufacturing is the most exposed sector, many identified tasks regard
logistics activities.

LOWESS estimates of the relationship between occupational exposure and la-
bour market variables confirm that robotic labour-saving innovations target low
paid occupations, experiencing the lowest wage increases in the last twenty years.
In addition, such low paid occupations are also shrinking in terms of workforce.
Although we cannot encompass for the entire set of potential confounding factors
affecting such relationship, we are able to find striking and clear-cut patterns of
innovative efforts directed toward the cheapest and most vulnerable segments of
the working population.

Exposure to LS automation and employment dynamics do not always go hand in
hand. Take the 2-digit occupation “Transportation and Material Moving”, very much
exposed to labour-saving technologies, which has however experienced a positive
employment growth (cf. Fig. 1). Whenever occupations record a positive growth,
notwithstanding their high exposure rate, this signals that employment dynam-
ics is driven by other sources, primarily demand, which might clearly counter-
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balance the potential labour-saving traits of advancement in robotics. Notably, the
aggregation at the industry level highlights a deepening of the de-industrialisation
trend of the US economy, since manufacturing is by far the most exposed sector.
However, social care and assistance services, as well as education, turn out to be
quite high in the exposure ranking. Therefore, not only low-paid manufacturing
and logistics workers are exposed, but also low-paid service workers. On the con-
trary, managerial occupations, although reducing in employment shares, present
the lowest degree of similarity.

A companion result of our study is that high similarity is a quite rare event:
the CPC-task cosine similarity matrix is sparse and high values of similarity are
more the exception than the norm. This finding corroborates our procedure, whose
results are not inflated but rather conservatively underestimated, given our very
cautious identification of robotic labour-saving patents (cf. Section 4.1). As a con-
sequence, when considering the cumulative fraction of potentially replaceable oc-
cupations, the top-decile of the similarity distribution involves 8.6% or approxim-
ately 12.6 million employees.

Strengths of our approach are, first, the construction of a direct measure of prox-
imity by means of an objective procedure, not resorting to subjective and mut-
able expert judgments, or alternatively crowdsourcing. Second, the generality, be-
ing the measure constructed on the entire set of CPC codes, and only in a second
step using a weighting procedure to account for labour-saving technologies. This
means that we obtain a similarity measure for the entire technological (CPC) and
occupational (O*NET tasks) spectra. Finally, the non linear-nature of the quantile
threshold and the sparsity nature of the matrix comfort both in terms of reliability
and in terms of labour market prospects.

A first limitation of the present study is that it gives account uniquely of ro-
botic labour-saving innovations, while labour-saving innovations encompass both
other applications of AI technologies such as technological change embodied in
machineries and tools distinct from robots. A second limitation is that we are not
able to track adopters of these technologies and we do not know the exact num-
ber of workers, in terms of intensive rather than extensive margin, each machine
embedding a labour-saving technology is able to replace. This means that, poten-
tially, if adopters are widespread and the number of their labour units is high, the
occupational losses might be much higher than predicted in this work.

Potential extensions of our study entail, first, the LS identification of other tech-
nologies beyond strict robotics ones, such as AI or standard ICT. Second, our meas-
ure can be adopted to other labour markets, beyond the US. Third, an application
of our indicator at the firm-level constitutes a quite promising avenue of research,
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in order to pinpoint the establishments and plants more exposed to labour-saving
efforts.
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Appendix A

In this Appendix we briefly summarize the methodological steps adopted in Mon-
tobbio et al. (2022).

Step 1 – Identification of robotic patents The analysis starts with the entire set
of 3,557,435 patent applications published by the USPTO between 1st January 2009
and 31st December 2018. Robotic patents are pinpointed therein according to two
distinct criteria, one based on the patent classification codes specified within ap-
plications, the other based on textual keyword search. A patent is deemed ‘robotic’
if it obeys at least one of the criteria. In particular, a robotic patent according to the
first criterion (dubbed ‘CPC’) must be assigned by patent examiners at least one
of a set of 174 full-digit CPC codes which reflect former US. Patent Classification
(USPC) class 901 (“Robots”). Likewise, a robotic patent according to the second
criterion (dubbed ‘K10’) must contain the word ‘robot’ in its full-text at least 10
times, including derivational and inflectional affixes. The first criterion identifies
10,929 robotic patents, while the second criterion identifies another 18,860 (after
discarding robotic patents according to the first criterion). The two criteria single
out a total of 29,789 robotic patents, i.e. approximately 0.84% of the original (uni-
verse) population. Their evolution over time is shown in Fig. 3 (Section 3).

Step 2 – Identification of labour-saving patents LS patents constitute a subset of
robotic patents, identified by a multiple word co-occurrence query at the sentence
level. In particular, a patent is deemed LS (after an additional manual validation
step) if its full-text contains at least one sentence in which the verbal predicate,
direct object, and object attribute belong to the following lists:
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In total, 1,276 LS patents are found (approximately 4.3% of all robotic patents), of
which 461 (⇡ 36.1%) belong to the CPC group and 815 (⇡ 63.9%) belong to the K10

group.
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Step 3 – Identification of the underlying technology Table 5 reports the top ten
couples and triplets of 3-digit CPC codes recurring in our patents, ranked by fre-
quency, whose description is presented in Table 6. These account for a sizeable
chunk of the identified robotics and LS patents, respectively. The focus on couples
and triplets of co-occurring classification codes allows us to better grasp the under-
lying technological complementarities. Indeed, our patents, both robotic and LS,
are characterised by a strong recurrent pattern of coupling between technologies
belonging to automation (such as codes B25, B65) and codes related to computing
and information processing (such as those belonging to the G codes). Additionally,
against a potential bias towards industrial robots, we see the emergence of CPC
code A61, explicitly related to healthcare.

To further characterise the extent to which the selected patents are complement-
ary to the field of AI, i.e. embed traits of “intelligent automation”, we check their
degree of overlap with AI patents identified by Santarelli et al. (2021), who use an
analogous methodology which leverages CPC codes obtained through a statistical
concordance table with USPC class 706, “Artificial intelligence”. We find that while
10.5% of robotic patents (3,140 units) are also classifiable as AI, when restricting the
analysis to LS patents this percentage increases to 23.5% (300 units). This evidence
supports the notion of intelligent automation or intelligent robots or automated
production processes, particularly when referring to LS patents.

Appendix B

In order to test the robustness of our procedure, we replicate the text similarity
exercise described in Section 4 using LS patents full-texts, rather than CPC code
definitions. In principle, one might expect the underlying content of the patent to
be more informative than CPC definitions when it comes to actual labour-saving
efforts and the eventual human functions substituted.

Tables 7 and 8 present the results of the top-task and top-occupation matching
by similarity scores. Interestingly, the identified tasks and occupations are com-
pletely different from the original exercise. Emerging tasks are “Build or assemble
robotic devices or systems”; “Set up and operate computer-controlled machines or robots
to perform one or more machine functions on metal or plastic workpieces”; “Build, con-
figure, or test robots or robotic applications”; “Conduct research on robotic technology to
create new robotic systems or system capabilities”; “Provide technical support for robotic
systems”. These tasks are clearly the ones labour-complementing, i.e. required to
develop and manufacture the new robotic artefacts. Occupations more exposed
to labour-complementarity are indeed “Robotics Engineers”; “Robotics Technicians”;
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Robotic patents LS patents

CPC couples Count Frequency CPC couples Count Frequency

B25, G05 4,169 0.073 B25, G05 272 0.068

G05, G06 1,879 0.033 G05, G06 193 0.048

B25, G05 4,169 0.073 G06, H04 131 0.033

G06, H04 1,476 0.026 B25, G06 125 0.031

A61, B25 1,248 0.022 B25, B65 93 0.023

G01, G05 1,054 0.018 B65, G06 87 0.022

B25, G01 894 0.016 B65, G05 76 0.019

G01, G06 796 0.014 G05, H04 76 0.019

G05, H04 745 0.013 B23, B25 59 0.015

A61, G06 732 0.013 B25, H04 51 0.013

CPC triplets Count Frequency CPC triplets Count Frequency

B25, G05, G06 1,015 0.024 B25, G05, G06 98 0.025

G05, G06, H04 474 0.011 G05, G06, H04 67 0.017

A61, B25, G05 405 0.01 B25, B65, G05 51 0.013

B25, G01, G05 401 0.01 B25, G06, H04 46 0.012

B25, G05, H04 371 0.009 B65, G05, G06 43 0.011

B25, G06, H04 348 0.008 B25, G05, H04 42 0.011

G01, G05, G06 335 0.008 A01, B25, G05 36 0.009

G01, G06, H04 288 0.007 A01, G05, G06 33 0.009

B23, B25, G05 246 0.006 B25, B65, G06 32 0.008

A61, G06, G16 244 0.006 A01, B25, G06 32 0.008

Table 5: Top ten couples and triplets of 3-digit CPC codes assigned to robotic (left
half) and LS patents (right half), respectively. Source: Montobbio et al.
(2022, Tab. 1).
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CPC Definition

A01 Agriculture; Forestry; Animal husbandry; Hunting;
Trapping; Fishing

A61 Medical or veterinary science; Hygiene

B23 Machine tools; Metal-working not otherwise
provided for

B25 Hand tools; Portable power-driven tools; Manipulat-
ors

B65 Conveying; Packing, Storing; Handling thin or fila-
mentary material

G01 Measuring; Testing

G05 Controlling; Regulating

G06 Computing; Calculating; Counting

G16 Information and communication technology (ICT)
specially adapted for specific fields

H04 Electric communication technique

Table 6: Main 3-digit CPC codes definitions. Source: Montobbio et al. (2022, Tab. 2).

“Computer Systems Engineers/Architects”; “Data Warehousing Specialists”; “Network
and Computer Systems Administrators”.

Notably, the similarity measure by occupations presents a drop after the first two
most-exposed occupations onwards. In addition, the elicited occupations reveal
who are those workers programming and creating LS technologies: they belong
to the upper-echelon of the occupational categories, are well paid, and growing
in number during the last two decades. Indeed, top-complementary occupations
tend to belong to “Computer and Mathematical Occupations” (15) and “Architecture
and Engineering Occupations” (17).
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Rank Code Description CS

1 16596 Build or assemble robotic devices or systems 1.0
2 11944 Set up and operate computer-controlled machines or robots to perform one or more machine func-

tions on metal or plastic workpieces
0.98

3 21057 Build, configure, or test robots or robotic applications 0.97
4 16523 Conduct research on robotic technology to create new robotic systems or system capabilities 0.93
5 16511 Provide technical support for robotic systems 0.91
6 16587 Assist engineers in the design, configuration, or application of robotic systems 0.86
7 16525 Conduct research into the feasibility, design, operation, or performance of robotic mechanisms, com-

ponents, or systems, such as planetary rovers, multiple mobile robots, reconfigurable robots, or man-
machine interactions

0.84

8 16593 Install, program, or repair programmable controllers, robot controllers, end-of-arm tools, or convey-
ors

0.81

9 16584 Modify computer-controlled robot movements 0.8
10 16579 Maintain service records of robotic equipment or automated production systems 0.8
11 20262 Plan special events, parties, or meetings, which may include booking musicians or celebrities 0.82
12 14861 Inquire about pesticides or chemicals to which animals may have been exposed 0.79
13 16075 Implement controls to provide security for operating systems, software, and data 0.79
14 23748 Prepare and submit reports that may include the number of passengers or trips, hours worked,

mileage, fuel consumption, or fares received
0.79

15 1277 Perform systems analysis and programming tasks to maintain and control the use of computer sys-
tems software as a systems programmer

0.79

16 2463 Develop networks of attorneys, mortgage lenders, and contractors to whom clients may be referred 0.78
17 246 Arrange for medical, psychiatric, and other tests that may disclose causes of difficulties and indicate

remedial measures
0.77

18 11338 Transport mail from one work station to another 0.77
19 18280 Install, calibrate, or maintain sensors, mechanical controls, GPS-based vehicle guidance systems, or

computer settings
0.77

20 16434 Calibrate vehicle systems, including control algorithms or other software systems 0.77

Table 7: Top 20 tasks by (rescaled) similarity (based on LS patents full-texts).

36



Rank Code Title CS

1 17-2199.08 Robotics Engineers 1.0
2 17-3024.01 Robotics Technicians 0.96
3 47-2231.00 Solar Photovoltaic Installers 0.49
4 17-2072.01 Radio Frequency Identification Device Specialists 0.46
5 15-1299.08 Computer Systems Engineers/Architects 0.45
6 15-1299.02 Geographic Information Systems Technologists and Technicians 0.42
7 51-9161.00 Computer Numerically Controlled Tool Operators 0.41
8 17-2199.11 Solar Energy Systems Engineers 0.4
9 49-2091.00 Avionics Technicians 0.39

10 15-1243.01 Data Warehousing Specialists 0.38
11 17-1022.01 Geodetic Surveyors 0.38
12 15-1244.00 Network and Computer Systems Administrators 0.38
13 17-2061.00 Computer Hardware Engineers 0.37
14 15-1299.03 Document Management Specialists 0.37
15 15-1211.00 Computer Systems Analysts 0.36
16 51-4034.00 Lathe and Turning Machine Tool Setters, Operators, and Tenders, Metal and Plastic 0.36
17 17-2041.00 Chemical Engineers 0.36
18 49-9044.00 Millwrights 0.36
19 15-2051.02 Clinical Data Managers 0.36
20 17-3021.00 Aerospace Engineering and Operations Technologists and Technicians 0.35

Table 8: Top 20 occupations by (rescaled) similarity (based on LS patents full-texts).
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