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ABSTRACT
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There has been a substantial body of work modeling the co-movement of employment, 

vacancies, and output over the business cycle. This paper builds on this literature, and 

informed by empirical investigation, models worker and firm search and hiring behavior 

in a manner consistent with recent micro-evidence. Consistent with empirical findings, for 

a given vacancy, a firm receives many applicants, and chooses their preferred candidate 

amongst the set. Similarly, workers in both unemployment and employment, can evaluate 

many open vacancies simultaneously and choose to which they make an application. 

Business cycles are propagated through turbulence in the economy. Structural parameters 

of the model are estimated on U.S. data, targeting aggregate time series. The model 

can generate large volatility in unemployment, vacancies, and worker flows across jobs 

and employment state. Further, it provides a theoretical mechanism for the shift in the 

Beveridge curve after the 2008 recession - a phenomenon often referred to as the jobless 

recovery. That is, persistently low employment after the recession, despite output per 

worker and vacancies having returned to pre-crisis levels.
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1 Introduction

This paper starts from the premise that the main impediment in finding a job is not a black-

box matching function that approximates other frictions, as is typically assumed in the literature.

Rather, a job seeker fails in their search for a job because a more suitable candidate is hired instead.

A quantitative model is set up in which unemployed and employed workers can observe many job

openings and are discerning in where to apply. On the other side of the market, firms receive many

applicants and screen all candidates, hiring the most suitable. The business cycle is propagated

through turbulence in the economy. Turbulence is defined as variation in the probability that

worker-firm matches are hit by idiosyncratic productivity shocks. The model is estimated on U.S.

data and is able to reconcile a number of empirical regularities regarding labor market dynamics

and the behavior of job vacancies over the cycle.

Firm hiring and worker search practices are informed by recent empirical evidence and embedded

into an otherwise standard model of the labor market. In particular, the paper documents that

a given job opening is likely to receive many applications and that screening, of some form, is

ubiquitous. Indeed, using administrative Swiss data, Blatter et al. (2012) show that the majority

of a firm’s hiring cost is devoted to worker screening – approximately two thirds. On the worker

side, using survey evidence provided by the New York Fed. Faberman et al. (2017) show that the

unemployed devote much more time to job search activities and apply to jobs more frequently than

their employed counterparts. However, despite this, outcomes for the employed, as measured by

offered wages, are better than those received by unemployed workers. A model with these features

incorporated is able to generate levels and dynamics of worker transitions across employment states

and jobs that are consistent with the data. Further, the model simultaneously matches these

flows with a downward sloping Beveridge curve that exhibits an outward shift following the great

recession.

Informed by the evidence provided by Faberman et al. (2017), the model is set up so that the

frequency to which workers actively engage in job search varies by employment status and the

number of open vacancies visible to them is governed by a Poisson distribution that again depends
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on whether they are employed or unemployed. The estimated parameters suggest that although

the unemployed search for jobs more frequently, conditional on looking, the employed are presented

with a greater number of opportunities, on average. The interpretation of this search behavior is

that the unemployed are endowed with more time to engage in job search and hence apply more

frequently. However, being out of work disengages them from the labor market and as such are ‘out

of the loop’ of new potential job opportunities. Hence, when the employed apply for work they will

in expectation sample more job offers. In a typical search model, even with on-the-job search, the

pool of unemployed provide a greater opportunity for open vacancies than the employed as they

search with a greater efficiency. If one models both the in-and-out flow from unemployment, this

can lead to an upward sloping Beveridge curve; as in downturns, unemployment increases which

leads to a rise in the return of posting a vacancy. This is not necessarily the case in the mechanism

discussed here however as the searching employed are more discerning in that they choose the best

match from a larger set of offers than the unemployed. Given that firms too are discerning in who

they match with, it is not clear whether the frequent searching unemployed or the more discerning

employed offer greater opportunities for firms. The estimated model thus generates a downward

sloping Beveridge curve with pro-cyclical flows out of unemployment and counter-cyclical flows into

unemployment.

When deciding whether to post vacancies, as in a model absent of on-the-job search, firms care

about the level of turbulence in the economy and the unemployment rate. Since approximately half

of all hires come from the pool of employed workers (Nagypal, 2008) the distribution of matches

amongst the employed will also matter. Well matched workers are less likely to leave their current

employers than poorly matched ones, therefore this distributional object is also consequential to

the aggregate level of vacancies. Unlike the unemployment rate which adjusts relatively quickly, the

distribution of match quality is a slow moving object. In the model, it is this channel that generates

the high vacancy rate following the great recession, the so-called jobless recovery. The dramatic

downturn sees a quick drop in unemployment and vacancies, but the distribution of matches takes

longer to adjust. As the worker-firm matches deteriorate there is more incentive to post vacancies
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and the Beveridge curve shifts outwards as employers hire poorly matched workers leaving the

unemployment rate relatively stable.

It seems quite counterintuitive that the rate the employed find alternative employers is so

consequential for the behavior of unemployment over the business cycle. The job ladder is not only

responsible for the slow employment recovery post-crisis but also for the movement in output and

wages over the cycle. Since neither aggregate productivity nor wages are hit directly by aggregate

shocks, their movement is determined endogenously by workers moving up and down rungs of the

job ladder.

2 Related literature

There have been numerous models featuring on-the-job search attempting to understand the dy-

namics of the labor market.1 Of these, the most related paper is Engbom (2021). As in this paper,

workers search on the job and firms screen workers. Contrary to this paper, screening is modeled

as producing an informative signal as to whether the match is good or bad. Aggregate fluctuations

are driven by shocks to the separation rate and the model is able to reconcile large movements

in employment with smaller movements in labor productivity, the so-called Shimer puzzle, Shimer

(2005b). Engbom (2021) like here stresses the importance of the search behavior of the employed

in determining the cyclicality of unemployment. Eeckhout and Lindenlaub (2019) make the same

counterintuitive conjecture. In Eeckhout and Lindenlaub (2019), a worker hired from employment

is more productive than one from the pool of unemployed. Vacancy posting firms thus benefit

from on-the-job search and employed searchers benefit from vacancy posting, leading to multiple

equilibria. As will be discussed, a similar strategic complementarity exists here which also gener-

ates a downward sloping Beveridge curve and a shifting of said curve following an extreme downturn.

1Menzio and Shi (2010, 2011) develop models in which firms post wages and workers direct their search to a

specific submarket. From a random search perspective, Robin (2011) and Lise and Robin (2017) explore labor

market dynamics where wages are bargained over ex post of meeting and firms can make counteroffers in an attempt

to retain the worker. Finally, Coles and Mortensen (2016) and Moscarini and Postel-Vinay (2013) consider a random

search environment in which wages are posted ex ante, and in the case of Moscarini and Postel-Vinay (2013) are

committed to.
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Worker search behavior. Crucial to the mechanism of this paper is the differential search

behavior across employment state. The unemployed search more frequently but each time are

exposed tom on average, fewer opportunities than the employed. This leads to the employed

seemingly sampling from a better wage distribution. The mechanism is supported empirically by

recent survey data provided by the New York Fed, see Faberman et al. (2017) and goes against the

predictions of a canonical sequential random search model with on-the-job-search.

There are many classes of models in which the employed sample jobs from a different distribu-

tion from the unemployed. In a directed search model with on-the-job-search as in Delacroix and

Shi (2006) the jobs workers direct their search to is a function only of their current wage. Condi-

tional on a worker’s place in the job ladder the sampling distribution of jobs will be degenerate at

the targeted rung. Variance in the sampling distribution can be introduced by assuming jobs are

targeted with some imprecision, Lentz et al. (2019). In a random search environment, Bradley and

Gottfries (2021) develop a model in which workers accrue opportunities and apply to their set of

opportunities at differing rates, depending on their employment state. The sampling of jobs thus

depends on their entire labor market history and they show large quantitative differences in these

distributions between the employed and unemployed.

Firm screening. Typically, in the labor search literature firms are modeled as passive. They post

vacancies and negotiate or post wages. Hiring of workers in this model is slightly more involved.

After posting a vacancy, the firm screens all those who apply at a cost, and then chooses their

preferred candidate to fill the position. Evidence from firm hiring data suggests that screening

constitutes a large share of the frictional impediment in finding workers, see Blatter et al. (2012),

Davis and Samaniego de la Parra (2017) and Andrews et al. (2017).

In the model, workers can observe many vacancies and ultimately apply to one. This results

in an urn-ball matching function whereby firms receive a Poisson number of applications.2 The

2This follows Moen (1999), Burdett et al. (2001), Shi (2001, 2002, 2006), and Shimer (2005a) who all model such

a co-ordination friction in the labor market.
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framework can be extended to consider workers making multiple applications as in Albrecht et al.

(2006), Kircher (2009) and Galenianos and Kircher (2009). Multiple applications within a period

introduces an additional co-ordination friction, in that a firm must internalize the probability that

a worker receives an offer from an alternative firm. Finally, Villena-Roldan (2012) and Wolthoff

(2018) go a step further still, and introduce an intensive margin into the screening process. The

firm chooses a subset of applicants to screen, something that this paper abstracts from. Instead,

in this paper screening is treated as a fixed cost for the firm and therefore all or no candidates are

screened.

The aforementioned papers are solved in a stationary environment. However, firm screening has

also been modeled in the presence of aggregate shocks. Following the work of Pissarides (2009) and

Silva and Toledo (2009), Christiano et al. (2016) and Moscarini and Postel-Vinay (2018) introduce

screening costs as a labor turnover cost incurred ex post of meeting a worker. Like here, while

vacancy costs are paid upfront, a screening cost is paid conditional on meeting a worker. A high

unemployment rate increases the probability of a firm hiring. However, since some of the hiring

costs are paid once a firm has met a worker the models are able to generate a larger volatility in

unemployment for the same aggregate shock process. Quantitatively, it is shown that such a cost

helps to mitigate the lack of employment volatility as pointed out by Shimer (2005b).

3 Empirical Motivation

This section documents a number of empirical regularities regarding the hiring behavior of firms

and search behavior of workers. These facts will inform the modeling choices made in section 4

and be used to evaluate the quantitative performance of the model in section 6. Put succinctly, the

facts relating to firm hiring are:

1. Screening is ubiquitous, to some degree a firm will screen every candidate it ends up hiring.

2. A typical job opening can expect to receive many job applicants.

3. Screening costs constitute the lion’s share of total hiring cost, approximately two thirds.
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Regarding the search behavior of workers:

4. Relative to the employed, the unemployed apply more frequently to jobs. But, receive a

similar number of job offers.

5. Conditional on receiving a job offer, the employed and unemployed appear to sample wages

from different distributions.

Firm side. The Multi-City Study of Urban Inequality (MCSUI) coupled with recent evidence

from Blatter et al. (2012) are exploited to document a number of empirical phenomena to inform

the modeling choices made in the paper.

The MCSUI employer survey is a survey of establishments in Atlanta, Boston, Detroit and

Los Angeles, conducted over the telephone between the springs of 1992 and 1995. Employers were

questioned about the specific firm’s characteristics, hiring and recruiting practices in general, as

well as specific information pertaining to the recruitment of the last employee hired. Firms were

asked about their hiring protocol and whether they ‘always’, ‘sometimes’ or ‘never ’ implemented

a variety of practices. The 15 practices questioned about have been split, in a fairly ad hoc way,

into either a screening or recruitment motive. Screening is defined as an attempt to select the best

applicant from all who applied. The recruitment motive is defined as maximizing the total number

of applicants. Creating binary indicators based on whether or not a firm ‘always’ implements a

specific practice and running a principal components analysis, to some extent, supports the ad

hoc categorization. Factor loadings are depicted in Figure A.1 of Appendix A.1. The principal

component analysis is not only supportive of the a priori categorization but also is indicative of

two separate classes of hiring practices.

The left panel of Table 1 shows the responses of firms to the questions deemed to be related to

screening practices. Every responding firm, of which there were 3,510, stated they ‘always’ check

at least one of the five criteria listed. This finding is interpreted as screening, although the specific

practice varies, is universally carried out. It is easy to see why. Respondents were asked about the

number of applications received for the last position they hired. The distribution exhibits a very
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Table 1: Screening and Applications

(a) Screening Intensity

Always Sometimes Never

do you check?

written application 82% 12% 7%

personal interview 87% 11% 2%

references 74% 22% 4%

education/training 32% 39% 29%

criminal record 32% 17% 52%

any of the above 100% 0% 0%

(b) Applicants and Interviews

# applicants # interviewed

Median 10 5

Unweighted mean 17.7 6.2

Weighted mean 18.4 6.4

Notes: Data are taken from the MCSUI. Panel (b) refers to the last hire the firm made. For these statistics the

top 5% of the distribution is trimmed. Weights are constructed as one divided by the number of months between

hiring and the survey interview date. The idea is that this should proxy for the overall hiring intensity of a firm.

long left tail. Even after trimming the top five percent of the distribution a job opening can expect

to get almost twenty applicants. Of these applicants, they are likely to interview more than six.

Whilst the MCSUI is informative about the screening and recruiting practices of firms, it tells

us little about the resources attributed to these practices. To get a better understanding of this,

work by Blatter et al. (2012) is relied upon. The upper panel of Table 2 is computed from Blatter

et al. (2012). Hiring costs have been differentiated into three broad margins: costs of job posting;

costs of interviewing; and costs in hiring external advisors. As before, earmarking costs towards

screening and hiring is quite ad hoc. It appears uncontroversial to attribute job posting costs to

recruitment and interview costs to screening. However, it is not clear whether the hiring of external

advisors was to aid in increasing the number of applicants to interview or to determine the best

candidate from the set of applicants. In order to approximate the relative costs of screening and

recruitment the bottom panel of Table 2 computes two extremes. One in which external advisors

only help with recruitment and one in which they only aid with screening. The results suggest that

in aggregate, screening accounts for somewhere between 57% and 69% of total hiring costs.

Worker side. Data from the Survey of Consumer Expectations (SCE) are used and in particular

the job search supplement. The main data follows workers for a year and the supplement is annual

and conducted in October each year. All data is based on 2013 to 2017, inclusive and is restricted to
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Table 2: Recruiting Costs

Number of employees Total

1-9 10-49 50-99 100+

Costs measured relative to mean monthly wages

Costs for job postings v 11% 25% 37% 51% 18%

Costs for interview per applicant ca 5% 8% 9% 12% 6%

No. of interviewed applicants J 4.7 4.9 4.7 5.4 4.8

Personnel costs for interviews Jca 25% 41% 44% 70% 32%

Costs for external advisors e 4% 9% 18% 24% 7%

Total cost: Jca + v + e 41% 75% 99% 145% 56%

Implied share of hiring cost attributed to screening

LB: Jca/(Jca + v + e) 62% 54% 45% 48% 57%

UB: (Jca + e)/(Jca + v + e) 72% 67% 63% 65% 69%

Data are taken from Blatter et al. (2012) and based on administrative Swiss data between 2000 and 2004, inclusive.

Costs are benchmarked to mean wages using OECD data on mean annual wages over the same window, implying a

mean monthly wage of 6,299.7 CHF (Swiss Francs).

workers between the ages of 18 and 65. For a comprehensive discussion of the data, see Faberman

et al. (2017). The data contains information not typically observable in labor market data. In

particular the survey contains information regarding a worker’s failed job search and on job offers

rejected by a worker. Here the focus will be on the number of applications made and job offers

received in the last four weeks, as well as the wage of the best offer received in the last six months.

Note, the best offer is determined by the respondent and may not coincide with the highest wage

offered.

Table 3 presents differences in applications made, offers received and wages of best offers by

employment status. Using the main sample of the SCE a variety of worker level controls have also

been included. The results of these regressions represent the supporting argument for facts four and

five listed previously. First, note that a typical employed individual, will be 60 percentage points

less likely to send out a job application in a given month than an unemployed individual. These

differences persist even after conditioning on the employed looking for work. However differences

in job offers are much lower across employment state. With the employed only three percentage
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Table 3: Worker Search Behavior

Applied: last Received offer: Log wage of

four weeks last four weeks best offer

Employed (all) −0.599⋆⋆⋆
(0.030)

−0.032⋆⋆
(0.017)

0.220
(0.175)

Employed (looking) −0.103⋆⋆⋆
(0.025)

0.017
(0.018)

Employed (not looking) −0.749⋆⋆⋆
(0.023)

−0.047⋆⋆⋆
(0.017)

In work 0.221⋆⋆⋆
(0.056)

Ne 3067 3067 3067 3067 738 292

Nu 186 186 186 186 238 25

R2 0.130 0.517 0.012 0.026 0.191 0.186

The table shows the coefficients for the variables of interest. Covariates not shown include: age; age squared; and

dummies for gender; white ethnicity; hispanic; marital status; calendar year; four regions; and eight educational

dummies. Unemployment follows the BLS definition and the employed are those in paid work, regardless of hours,

omitting the self-employed. Employed (looking) is defined as the employed who have done ‘anything in the last four

weeks to look for new work ’. In work is based on the whether at the time of offer a worker was in paid work, it does

not discriminate between self- and paid-employment. In this case the control group is being not in work (including

the economic inactive) in all other cases the control group are the unemployed. The total sample size is Ne +Nu,

where Ne is the size of the treatment group (usually the employed) and Nu the control. Only workers aged between

18 and 65 are included and stars represent conventional levels of statistical significance.

points less likely to be the recipient of a job offer in a given month. Once one conditions on the

employed to be looking for work they become, albeit insignificantly, more likely to receive a job

offer.

The final columns report coefficients from a Mincer wage regression on the ‘best ’ offer received

by a worker in the last six months. The ‘best ’ offer is self-reported and need not be the highest

wage offered. The employment status is at the time the offer was received. Respondents were

asked if they were in or out of work at the time. However, it is not clear if this means paid or

self-employment if in work, or unemployed or inactive, if out. In some instances, if the offer falls

in a window where respondents were questioned in the main sample, a concurrent employment

status consistent with the BLS definition can be inferred. The employment status is then cross-

referenced with the response regarding work. In both cases there appears to be a large premium

10



for the employed, who on average sample wages more than 20% higher than their unemployed

counterparts.

4 Model

Environment. Time is discrete and the economy is populated by risk neutral, infinitely lived firms

and workers. Both firms and workers are ex ante homogeneous. Workers can be either employed

or unemployed and have access to a search technology that allows them to evaluate multiple job

openings simultaneously. The number of vacancies they assess is governed by a Poisson distribution,

with parameter λu for the unemployed and λe for the employed. The match productivity z, is

specific to the worker-firm match, and drawn from a distribution with probability density function

g(z). After evaluating all matches, workers have the ability to apply to just one per period. The

productivity level z is transitory, and at rate γt, a new productivity z′ is redrawn from the sampling

distribution g(z′|z). The duration of the match quality is governed by γt and is thought of as a

measure of turbulence in the economy. The parameter γt evolves stochastically over time and is

the source of aggregate fluctuations in the economy.

Firms post vacancies at a cost κ and a vacancy can be matched with multiple workers. If work-

ers apply to a vacancy a firm then screens its applicants at a cost σ. A firm then chooses which

candidate to hire. The same screening cost is paid irrespective of the number of applicants.3 After

picking the ideal candidate the firm and worker negotiate wages according to a Nash bargaining

protocol without the threat of permanent separation. Wages are then re-negotiated every period.

Timing. The within period timing is as follows:

1. New γt is realised.

3One can imagine a more sophisticated screening cost as a function of the number of applicants. The simple setup

is motivated by inspection of Table 2 where recruiting costs are compared across the firm size distribution. While

the number of candidates interviewed varies little with firm size. There is large variation in the personnel costs for

interviews. The interpretation of this result is that the number of candidates screened plays little role in the total

cost of screening.
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2. Wages in all jobs are re-bargained over.

3. Produce output and exchange wages according to contractual agreement.

4. A productivity shock hits the match with probability γt. The new productivity z′ is drawn

from the sampling distribution g(z′|z), which is a function of the current match productivity

z.

- Existing matches may separate.

5. Firms post vacancies at a cost, κ.

6. Worker’s actively engage in search with probability αu for the unemployed and αe for the

employed.

7. The active searching unemployed and employed (who have not been laid off) workers sample

vacancies at random.

- The number of vacancies they look at depends on a draw from a Poisson distribution,

with rate parameter λs, s ∈ {u, e}.

- For each vacancy they draw a match specific productivity z, from an exponential distri-

bution, with parameter λz.

8. Workers choose which single vacancy to apply for out of the set available to them.

9. Firms who receive applications, screen said applicants at a cost σ.

10. Screening firms offer their first choice candidate a job and reject all others.

Evolution of γ. At the start of a period t, γt, the probability an existing match is hit with a

productivity shock is revealed and is public information. It is assumed that γt follows a first order

autoregressive process of the form

γt+1 = γ0 + ργt + ǫt where, ǫt ∼ N(0, σ2
γ).
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For brevity, the Markov transition probability of γ evolving to γ′ is denoted as π(γ′, γ). After a

shock hits, the new productivity z′ is drawn from the same distribution as it is initially sampled

from, bounded by the current match productivity level z. It is assumed that g(z) follows an

exponential distribution, with parameter λz, and therefore,

g(z′|z) =
{

λz exp(−λzz′)
1−exp(−λzz)

for, 0 ≤ z′ ≤ z

0 otherwise.

It is the evolution of γ that propagates movements in the business cycle. Prolonged periods of

high γ are associated with shorter match duration and lower future levels in productivity, this will

consequently correspond with economic downturns in this setting. Similarly, the booms are the

result of prolonged periods of low γ. One can either interpret the changing γ as turbulence in

the economy. An alternative interpretation is since all shocks reduce the match productivity, γ

represents the speed of technological depreciation.

Wage Determination. Wages are determined via Nash bargaining, but echoing Binmore et al.

(1986) and Hall and Milgrom (2008), with threats of temporary disruption. That is a firm cannot

credibly let the worker return to unemployment and leave the match vacant. This environment

has been explored in continuous time, with large firms and decreasing returns to scale by Elsby

and Gottfries (2019). Following Elsby and Gottfries (2019), the threat point of the worker is

not returning to unemployment but instead a temporary disruption during which time the worker

receives a per period payoff ωw. To ensure a worker would always prefer a temporary lapse in the

negotiation phase it is assumed that the flow benefit associated with unemployment is sufficiently

small. The firm in the event of negotiation breaking down incurs a cost ωf . The total per period

surplus of a match producing output z is given by z+ωf −ωw. Assuming the worker takes a share

β ∈ (0, 1) of the total surplus, the negotiated wage solves the equality

β(z + ωf − ωw) = w − ωw.

Rearranging gives a simple linear wage equation increasing in the productivity of the match.

w = ω0 + βz where, ω0 := βωf + (1− β)ωw (1)
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Negotiation will breakdown if the joint period surplus is negative. Although the worker would

prefer to remain idle in the match, no wage can credibly be agreed upon. Negotiation thus breaks

down when the per period surplus is negative, or when the match draw is less than the threshold

productivity z⋆, where

z⋆ = ωw − ωf . (2)

It will be shown later that matches will separate when productivity falls below this threshold value

which is independent of the state of the economy. A further virtue of wage bargaining in this setup

is that it can accommodate Nash bargaining when workers look for jobs in employment. Typically,

in this scenario, as discussed in Shimer (2006) and Gottfries (2019) the bargaining set becomes

non-convex. A higher wage deters would be poachers and thus increases the expected duration of

the match, thereby increasing the total surplus that is being bargained over. Akin to the timing

in Krause and Lubik (2007), since negotiation, payment and production happens before turnover

decisions, bargaining sets remain convex as the wage has no bearing on the duration of a match.

Idiosyncratic productivity shock. After production in a period, the idiosyncratic productivity

shock shuffles the distribution of matches in the economy. The measure of unemployment at the

start of period t is denoted as ut and the measure of employed workers in productivity z is et(z).

The ‘+’ subscript is used to denote these measures in the immediate aftermath of the productivity

shock.

et+(z) = (1− γt)et(z) + γt

∫

et(z
′)g(z|z′)dz′ for, z > z⋆ (3)

The new measure of employed workers of productivity z are those previously in match quality z

not hit by a shock plus those, previously of higher match quality who draw a new productivity z

following an idiosyncratic shock.

Firm value. At the time of bargaining, in period t, the value of a match of productivity z is

denoted at Πt(z). The Bellman equation of which is given below, where ft(z) is the probability

a worker of match quality z leaves for an alternative employer and Vt is the value of an unfilled
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vacancy.

Πt(z) = z − w(z) +
1

1 + r
Et

[

(1− γt)
[

ft(z)Vt+1 + (1− ft(z))Πt+1(z)
]

+ γt

∫ z⋆

g(z′|z)Vt+1dz
′ + γt

∫ z

z⋆
g(z′|z)Πt+1(z

′)dz′

]

Given free entry, the value of an unfilled vacancy will equal zero. Free entry, coupled with the the

wage equation (1) gives (4).

Πt(z) = (1− β)z−ω0 +
1

1 + r

[

(1− γt) (1− ft(z))

∫

π(γt+1, γt)Πt+1(z)dγt+1

+ γt

∫

π(γt+1, γt)

∫ z

z⋆
g(z′|z)Πt+1(z

′)dz′dγt+1

]

(4)

Notice, this value function still retains a t subscript. The probability a worker exits the match ft(z)

will be endogenized later and will be a function of the distribution of match quality in the economy

at large. How the firm approximates this infinitely dimensional state variable will be returned to.

Active searchers. A worker engages in search behavior with probability αu if they start the

period unemployed or with probability αe if employed and have not been hit by a productivity

shock making them redundant. Given one engages in search, they actively search - send out an

application with probability (1− exp(−λs)), s ∈ {u, e}. At time t, the mass of active searchers is

defined as

at := αu (1− exp(−λu))ut + αe (1− exp(−λe))

∫

et+(z)dz.

Since a given worker applies to a given vacancy with probability 1/v. The number of applicants per

job k ∼ bin(a, 1v ), where a is the active number of job searchers. For a continuum of job searchers

and vacancies, the number of applicants per vacancy is distributed with a Poisson distribution with

parameter θ−1, where θ is defined as the effective market tightness, θ := v/a, see Appendix A.2.

Firm hiring. A firm’s decision on whether and which candidate to hire after screening is straight-

forward. They hire a worker if they generate positive value for the firm, the match quality exceeds
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the threshold z⋆. If multiple candidates apply to a vacancy a firm chooses the highest match qual-

ity draw from the set. So, given k applicants, the probability that the match draw z is the best

candidate and offered the job is given by q(z|k).

q(z|k) = 0 for, z < z⋆

q(z|k) = k × Prob(no better z′ arrives from k − 1 trials)× Prob(z is drawn) for, z ≥ z⋆

At period t, this probability can be expressed as

qt(z|k) = 0 for, z < z⋆

qt(z|k) = k

(

1− 1

at
ut

∫

z
gu(z

′)dz′ − 1

at

∫ z

et+(z
′′)dz′′

∫

z
ge(z

′)dz′

)k−1

1

at

(

utgu(z) +

∫ z

et+(z
′)dz′ge(z)

)

for, z ≥ z⋆. (5)

Contained in equation (5) are the measures gs(z), s ∈ {u, e}. These represent the measure of

actively searching workers in each state who apply to a vacancy with match quality z. These

objects will be endogenized shortly. Since the number of applications per vacancy follows a Poisson

distribution, shown in Appendix A.2, the unconditional probability qt(z) is given as

qt(z) =

∞∑

k=0

(

θ−k
t

k!
e−1/θtqt(z|k)

)

. (6)

Finally, the decision to post a vacancy for a firm is determined by the firm’s expected return to

a match (equation (4)), the probability of matching (equation (6)), and the cost of posting and

screening, κ and σ, respectively. The posting cost κ is always paid by a recruiting firm, and the

screening cost is paid conditional on meeting a suitable candidate. Firms continue to enter the

market until the value of posting a vacancy Vt is zero.

Vt = −κ+

∫ ∞

z⋆
qt(z) (Πt(z)− σ) dz (7)

Equation (7) pins down the the level of vacancies posted in period t, vt.

Job finding rates. Since firms only make offers to workers they are confident of employing we

know the worker’s job filling rate and job contact rate are identical and they will thus be used

interchangeably.
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qt(z) =
mt(z)

vt
(8)

The number of matches of type z at time t are defined as mt(z). Further, mt(z, z
′) is the number

of matches of match quality z hired from match quality z′, the absence of z′, written as ∅, denotes

a hire from unemployment.

mt(z,∅) =mt(z).
utgu(z)

utgu(z) +
∫ z

et+(z′)dz′ge(z)

mt(z, z
′) =mt(z).

et+(z
′)ge(z)

utgu(z) +
∫ z

et+(z′)dz′ge(z)
for, z′ < z (9)

Finally, the probability a worker leaves a match of quality z for better suited employment is

given below. This equation is required for computation of the value of a match to the firm, equation

(4).

ft(z) =

∫
mt(z

′, z)dz′

et(z)

Worker’s application strategy. Since wages are monotonic in match productivity, equation

(1), and firms strictly prefer higher match quality, a worker’s optimal strategy is to apply to the

maximum match quality they are exposed to. Define G̃s(z) as the cumulative distribution function

of the best match quality an actively searching worker in state s ∈ {u, e} samples. Recall, a worker

is actively searching with probability αs. Since the number of offers are governed by a Poisson

distribution, the probability an actively searching worker gets no offers is exp(−λs). Thus the

probability a worker gets no offers above G̃s(z) will follow a Poisson distribution with a reduced

rate equal to λe(1−G(z)). Where G(z) is the primitive sampling cumulative distribution function.

G̃s(z) = exp(−λs(1−G(z))) for z ≥ 0

Match quality is assumed to be drawn from an exponential distribution with parameter λz, so

G̃s(z) = exp(−λs exp(−λzz)) for z ≥ 0.
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Notice that G̃s(0) = exp(−λs), the probability an actively searching worker looks at zero open

vacancies. For z > 0 the distribution corresponds to a truncated type 1 extreme value distribution

(Gumbel) with scale parameter equal to 1/λz and location parameter equal to log(λs)/λz.
4 The

probability any worker, actively searching or not, in state s, has no Z > z amongst all the their

visible vacancies, is given by Gs(z).

Gs(z) = 1− αs + αs exp(−λs exp(−λzz)) for z ≥ 0.

The measure of quality z a worker in state s applies to is the derivative of Gs(z) and given by

gs(z) = αsλsλz exp(−λs exp(−λzz)− λzz) for, z > 0.

This gives the different distributions that unemployed and employed workers seemingly sample

vacancies from. Notice they are independent of the aggregate state of the economy, and the degree

of difference will depend on differences in search behavior. Further, this is a measure rather than a

probability density as it does not integrate to one. The definite integral is equal to αs(1−exp(−λs)),

which is the probability a worker observes at least one vacancy.

Labor dynamics. At the very end of the period employment transitions occur. The evolution of

unemployment from period t to period t + 1 is given by equation (10). That is, the unemployed

tomorrow are those previously unemployed, net of those who found a job, plus those previously

employed who received a productivity shock sending them to unemployment.

ut+1 = ut −
∫

mt(z,∅)dz + γt

∫ z⋆ ∫

et(z
′)gt(z|z′)dz′dz (10)

The measure of employed workers in matches of productivity z evolves period to period according

to equation (11). The first term on the right hand side are those of productivity z after the

productivity shock hits. The final two terms are those who move up the job ladder to productivity

4The cumulative distribution function of a Gumbel distribution with location parameter µ and scale parameter

β > 0 is given by F (x;µ, β) = exp(− exp(−(x− µ)/β)).
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z net of those who move to better matches.

et+1(z) = et+(z) +

∫

mt(z, z
′)dz′ −

∫

mt(z
′, z)dz′ (11)

Match formation and dissolution. To understand why a threshold productivity z⋆ is sufficient

in determining the feasibility of matches, consider the value function of a matched firm, equation

(4). All future productivity shocks to the match are drawn from a distribution bounded by the

current match productivity. Thus if the match produces no output today, because of negotiation

breakdown, there is no associated option value in retaining it. In the context of the model therefore,

separations should be interpreted as being initiated by the firm rather than the worker. It is still to

be established that a worker would be willing to accept a match of quality z⋆. The value function

of an unemployed worker is given by the equation below.

Ut =b+
1

1 + r

[
∫

π(γt+1, γt)

(

Ut+1 +

∫

z∗
µt(z,∅) (Wt+1(z)− Ut+1) dz

)

dγt+1

]

The parameter b is the per period payoff a worker receives while unemployed, and encompasses

both pecuniary and non-pecuniary aspects. The following period, after the realization of the new

aggregate state, one of two things can happen. Either the worker stays in unemployment, or

with probability µt(z,∅) finds a job with match quality z, yielding present value Wt+1(z). The

probability measure µt(z,∅) can be computed by dividing the expression for mt(z,∅) (equation

(9)) by the stock of unemployed ut. The Bellman equation for an individual employed at match

productivity z at time t is presented below. If the worker is not hit by an adverse productivity

shock they either stay in their current job or move to a higher productivity job z′ with probability

measure µt(z
′, z). The probability measure is computed by dividing the expression for mt(z

′, z) by

the measure of employed at productivity z, given by et(z). If the match is subject to a productivity

shock, either the worker stays in their job at a lower productivity, in the interval [z⋆, z]. Or, if it

is sufficiently bad and the new match productivity is less than z⋆, the worker separates from the
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match, becoming unemployed.

Wt(z) = βz+ω0 +
1

1 + r

[
∫

π(γt+1, γt)

(

(1− γt)

(

Wt+1(z) +

∫

z
µt(z

′, z)
(
Wt+1(z

′)−Wt+1(z)
)
dz′
)

+ γt

∫ z

z⋆
g(z′|z)Wt+1(z

′)dz′ + γt

∫ z⋆

0
g(z′|z)Ut+1dz

′

)

dγt+1

]

For an unemployed worker to accept a job of match quality z ≥ z⋆ it must be, that for all

states of the world, summarized by the index t, Wt(z
⋆) ≥ Ut. Comparing the value functions for

the employed and unemployed, for sufficiently low b this can be guaranteed for any state of the

economy. In the estimation, the flow payoff associated with unemployment is treated as a free

parameter and it is assumed it is sufficiently low that acceptance decisions are invariant to the

business cycle. While attractive from a tractability perspective having worker’s search decisions

invariant to the cycle may omit other interesting mechanisms.5

Aggregation. When deciding on whether to post vacancies, the state variables facing a firm are

the parameter γ and the entire distribution of match quality in the economy. The distributional

state variable makes the solution somewhat problematic. A solution relies on something somewhat

similar to the approach taken by Krusell and Smith (1998).6 Rather than observing the entire

distribution a firm observes three moments of the distribution of match quality and makes a para-

metric assumption. The firm perfectly observes the unemployment rate and the mean and standard

deviation of productivity amongst those in employment, m1 and m2, respectively. Further, firms

assume the match quality distribution follows a log-normal distribution, truncated at z⋆. That is,

rather than observe e(z) perfectly, they observe u perfectly and assumes e(z) ≈ ẽ(z;u, m̌1, m̌2, z
⋆),

equation (12). The parameters of the distribution, m̌1 and m̌2 can be backed out to rationalize the

5See for example Barnichon and Zylberberg (2019), who suggest screening as an explanation for the abundance

of ‘over-qualified’ workers employed in a recession.
6Similar solution algorithms in this context are implemented in Krolikowski (2019) and Walentin and Westermark

(2018).
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mean and standard deviation of match productivity, m1 and m2.

ẽ(z;u,m1,m2, z
⋆) =

{

(1− u).B(z⋆, m̌1, m̌2).
1

zm̌2

√
2π
. exp

(
(log(z)−m̌1)

2

2m̌2
2

)

for, z ≥ z⋆

0 for, z < z⋆
(12)

where, B(z⋆, m̌1, m̌2) =

(
1

2
− 1

2
erf

[

−(log(z⋆)− m̌1)√
2m̌2

])

and erf(·) is the Gauss error function.

Given this parameterization of firms’ beliefs, the value of a match of productivity z can be

written as a function of four aggregate state variables. They are: γ, the idiosyncratic probability

of the match being hit by an adverse productivity shock; u, the unemployment rate; and m1 and

m2, the mean and standard deviation of match productivity amongst matches in the economy.

Π(z, γ, u,m1,m2) = (1− β)z − ω0+

1

1 + r

[

(1− γ) (1− f(z, γ, u,m1,m2))

∫

π(γ′, γ)Π(z, γ′, u′,m′
1,m

′
2)dγ

′

+ γ

∫

π(γ′, γ)

∫ z

z⋆
g(z′|z)Π(z′, γ′, u′,m′

1,m
′
2)dz

′dγ′

Included in the value function are the beliefs firms have about the evolution of the aggregate

state variable and the probability that a worker leaves for an alternative employer f(·). These are

computed by replacing equation (3) with the approximation

et+(z) = (1− γt)ẽ(z;u,m1,m2, z
⋆) + γt

∫

ẽ(z′;u,m1,m2, z
⋆)gt(z|z′)dz′ for, z > z⋆.

The solution algorithm is written up in full in Appendix A.3.

5 Estimation

Data. To discipline the model, parameters are estimated to fit aggregate time series of the U.S

economy from 2001 to 2014, inclusive. Monthly employment transitions: the rate employed workers

leave for unemployment; and the rates the unemployed and employed find new jobs are computed

from the Current Population Survey (CPS). Additionally, the aggregate unemployment rate is also

computed from the CPS. Attention is restricted to 18-65 year old workers. The monthly vacancy

rate is taken from the Job Openings and Labor Turnover Survey (JOLTS) and a composite labor

market tightness is also computed as the computed vacancy rate divided by unemployment. The

21



JOLTS data begins in December 2000, at the start of the period examined. From the six labor mar-

ket monthly series, the mean, standard deviation, and cross- and autocorrelations are computed.

Finally, the mean labor share is taken from the Bureau of Labor Statistics (BLS). All moments are

reported in the upper panel of Table 5.

Parameterization. The model is calibrated at a monthly frequency. Certain parameters are

calibrated ex ante of estimation. The discount rate is set at r = (1.05)1/12 − 1, implying an annual

discount rate of 5%. To be consistent with the empirical definition of unemployment it is assumed

that the unemployed actively engage in search in every period, αu = 1.7 To provide a numeraire

λz is normalized to one. Implying that the mean match quality of a random worker and job

opening is one. The per period outside option of the firm is assumed to be zero, ωf = 0. Finally,

embedded in the model is an endogenous urn-ball matching function. The urn-ball matching

function is as documented by Petrongolo and Pissarides (2001) “too naive to be empirically a good

approximation”. Without additional parameters the model struggles to replicate simultaneously

the level of unemployment and vacancies seen empirically. Consequently, it is assumed that not all

vacancies are empirically observable, rather a fraction η. So, given υ vacancies posted, the empirical

counterpart is

υ⋆ = ηυ where, η ∈ (0, 1).

Revisiting the microevidence. The novel parameters of the model presented relate to the search

and screening behavior of workers and firms. In particular, the relative number of jobs sampled

by the actively searching employed and unemployed (λe/λu) and the relative cost in screening

compared to recruiting intensity (σ/κ). In a pre-estimation step these ratios are fixed relative to

other parameters to ensure that they are consistent with the microevidence presented earlier. The

remaining parameters will be estimated to target aggregate data. To quantify the strength of the

mechanism, the baseline model will be compared to a model in which employed and unemployed

workers have the same search technology λu = λe and there is no screening cost σ = 0. Fixing

7Notice, this does not imply the unemployed always sample a positive number of job openings. But rather every

period sample a number determined by a Poisson distribution governed by parameter λu.
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these parameters ex ante has the advantage that the model’s mechanism can be quantified relative

to a model with the same degrees of freedom in fitting the data.

Evidence from the SCE suggests that an employed worker’s best job offer is 22% better paid

than their unemployed counterparts, see the final two columns of Table 3. The mean of the best

match productivity offer a worker in state s ∈ {u, e} samples from is denoted as zs, and given by

the upper expression in equation (13). Where, E1(·) is the exponential integral and γ the Euler-

Mascheroni constant.8 The expression is derived in Appenddix A.4. Since wages are linear in

productivity, the 22% premium can be pinned down by the first equality in (13). In the baseline

model, λe is fixed such that this equality always holds. On the firm side, evidence from Switzerland

suggests that screening costs are between 57% and 69% of total hiring costs, depending on which

costs are attributed to screening. The parameter σ is fixed such that the screening cost share is

the midpoint of this range. Where h is the mean level of hiring and v, the mean level of vacancies

adjusted by the fraction observed, in the data. It is necessary to weight the costs by these margins

since in the model the screening cost is only paid when a firm successfully hires and the vacancy

cost is paid irrespective of filling the position.

ze =
0.22ω0 + 1.22βzu

β
where, zs =

1

λz(1− e−λs)
(log(λs) + E1(λs) + γ)

0.63 =
σh

σh+ κv
where, v =

v⋆

η
and h = f0u+ f1(1− u) (13)

The vector of parameters to be estimated is defined as the (9× 1) vector ~θ, given below. Note

the exclusion of the parameters λe and σ which are calibrated ex ante to meet the constraints in

(13).

~θ := (αe, λu, κ, η, ρ, γ0, σγ , β, ωw)
′

Estimation protocol. The model is simulated at a monthly frequency and moments are computed

8The Euler-Mascheroni constant is equal to 0.577 to three decimal places and the exponential integral is given by

E1(z) =

∫
∞

z

e−t

t
dt.
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from the simulated series in an identical way to the empirical series. In practice simulated moments

are computed by simulating a series for a given sequence of γ drawn using the Tauchen (1986)

method. The series begins with a burnin period of fifty years and the moments are computed from

14 subsequent years (the same length as the data). Since the simulated moments depend on the

sequence of γ as well as the vector of structural parameters ~θ this process is repeated one hundred

times and the mean of each moment is computed. Formally the estimated vector ~̂θ is the solution

to

~̂θ := argmin
~θ∈~Θ

(

1

M

M∑

i=1

mi(~θ)−m

)′

Ω

(

1

M

M∑

i=1

mi(~θ)−m

)

.

Where, mi(~θ) is a (34 × 1) column vector of simulated moments of the ith sequence of γ’s. M is

the number of re-simulated series, set at 100. The (34 × 34) weighting matrix Ω = diag(ω ∗ 1
m),

where m is the column vector of moments taken from the data and ω is a vector of additional fixed

weights. In order to make sure the simulated series matches the levels well. Moments that are

means are given tenfold more weight. Two models are estimated. One in which employed workers,

on average, sample wages that offer 22% more than unemployed workers and resolve equation (13).

The other, absent the screening mechanism, in which workers sample from the same distribution

(λu = λe) and screening is costless (σ = 0).

Parameter estimates are presented in Table 4. The estimates suggest a different paradigm

between the two models in how the unemployed and employed search for jobs. In the baseline

model, the unemployed actively search almost eight times as frequently as the employed. However,

conditional on searching the employed are exposed to more than three times as many opportunities.

Although this paper does not take a stand on what drives the large difference in search behavior

across employment status, Faberman et al. (2017) provides empirical support to the phenomenon.9

In the comparison model, the unemployed and employed have the same search technology. In this

9Potential explanations are explored theoretically by Bradley and Gottfries (2021) and Arbex et al. (2019). In

Bradley and Gottfries (2021) opportunities arrive stochastically to the employed and unemployed and if one goes to

the market less frequently (the employed) they are likely to have a greater number of opportunities at hand. Arbex

et al. (2019) model search in a network structure and those in employment are on average better placed through their

exposure to peers to search more efficiently.
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scenario, conditional on actively searching, the employed are less likely to find employment and

thus the job finding rate of the employed is rationalized by them applying to jobs more frequently.

Table 4: Parameter estimates

Baseline Model

Worker search parameters Firm hiring parameters

λu 0.753 κ 7.035

αe 0.127 σ 17.569⋆

λe 2.353⋆ η 0.547

Wage bargaining parameters Aggregate volatility parameters

β 0.451 ρ 0.883

ωw 0.752 γ0 0.003

σγ 0.003

No Screening

Worker search parameters Firm hiring parameters

λu 0.883 κ 13.608

αe 0.248 σ 0⋆

λe 0.883⋆ η 0.433

Wage bargaining parameters Aggregate volatility parameters

β 0.318 ρ 0.877

ωw 1.082 γ0 0.003

σγ 0.002

The two models differ in their calibration of the parameters λe and σ. In the baseline model these are restricted to

match two micro-moments related to search behavior, see equation (13). Under the no screening model they are

fixed such that σ = 0 and λu = λe. Restricted parameters are denoted by a ⋆.

In the baseline model, hiring cost parameters are difficult to interpret in isolation. Since the

vacancy cost is paid on every vacancy and the screening cost is not, a comparison of the values

of κ and σ alone is uninformative. A more informative assessment is performed in section 6.2.

Unsurprisingly, since there is only one hiring cost absent screening, this cost is larger than in the

baseline model. The rent share parameter β in both models is typical of a macro calibration, but

arguably larger than the majority of estimates in the empirical micro literature, see Table 4 of

Manning (2011).
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Table 5: Fit of the Baseline Model

Empirical Moments

s f0 f1 u v θ

Mean 0.014 0.219 0.019 0.066 0.027 0.447

Standard dev. 0.002 0.048 0.003 0.019 0.004 0.17

Correlations

f0 -0.485

f1 -0.322 0.641

u -0.73 -0.668 0.86

v -0.913 0.651 0.876 -0.78

θ 0.48 0.698 -0.745 -0.921 0.886

Autocorrelation 0.666 0.893 0.824 0.993 0.929 0.979

Labor Share Mean = 0.59

Simulated Moments

s f0 f1 u v θ

Mean 0.013 0.218 0.021 0.063 0.026 0.456

Standard dev. 0.003 0.017 0.9 ×10−3 0.013 0.003 0.136

Correlations

f0 -0.818

f1 -0.573 0.665

u -0.844 -0.816 0.579

v -0.818 0.904 0.915 -0.179

θ 0.79 0.387 -0.532 -0.912 0.754

Autocorrelation 0.852 0.844 0.766 0.982 0.697 0.953

Labor Share Mean = 0.593

Data covers the U.S economy from 2001 to 2014, inclusive. Employment dynamics and the unemployment rate are

computed from the CPS and vacancy rates from the JOLTS. All are computed at a monthly frequency. The labor

share comes from the BLS and is reported at a quarterly frequency, it is logged and HP filtered as described in the

main body.
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The fit of the estimated model to the data can be assessed by comparing the two panels of

Table 5. As a result of extra weight being placed on fitting levels in the weighting matrix Ω mean

moments are fitted particularly well. The model contains a trade-off in matching the second mo-

ments of the series. A direct separation shock is a special case of a shock to match productivity

and it is this that drives aggregate fluctuations. The simulated series therefore can comfortably

match the volatility in separation rates but since the other series are a consequence of that shock,

the volatility of other series are under-predicted. The under-prediction is particularly pronounced

for the job-to-job transition rate series.

As has been discussed, it is the search behavior of workers and hiring behavior of firms that

allow the model to simultaneously generate a downward sloping Beveridge curve and match workers

transitional dynamics. This can be seen in the fit of the model absent screening, presented in Table

9. This model generates an upward sloping Beveridge curve, exhibited by a positive correlation

between unemployment and vacancies. In the comparison model, from a firm’s perspective, a high

unemployment rate is desirable. Since the two types of workers have the same search technology,

a high unemployment rate means vacancies are more likely to be filled. In the baseline model, a

higher unemployment rate also increases the probability of hiring a worker, motivating more va-

cancies to be posted. However, because of the different search technologies, conditional on hiring a

worker, an employed worker will on average have drawn a higher match productivity. The baseline

model is thus able to generate correlations between labor market tightness and unemployment of

the correct sign.

Aggregation. In the model, the free entry condition depends, as is typical, on the aggregate state

and the unemployment rate. Additionally however, since firms also hire from the pool of employed

workers, the distribution of match quality across employed workers also features in a firm’s decision

making process. To reduce the dimensionality of the problem, it is assumed that rather than

observing the full distribution firms can observe the first two moments and assume match quality
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follows a truncated log-normal. In Appendix A.6, the accuracy of this approximation is explored.

Simulated transition rates of the model are compared with synthetic transition rates, computed

assuming the firm’s projection is accurate.

6 Results

6.1 Aggregate Series

To better understand the mechanism of the model the main series used in estimation are fitted

directly. To do this the baseline model is simulated for a thousand years following the same burnin

as is used in estimation. The starting point is the point of time that bears most resemblance to

the first period in estimation, January 2001.10 Following this initialization the realization of γ is

backed out to best match the vacancy series following another two year burnin. The fit of the

model is presented in Figure 1 along with the corresponding γ series.

Propagation. Aggregate fluctuations are driven by the turbulence in the economy – the exogenous

Markov process for γ. Following an adverse shock, an increase in the value of γ, there are two

immediate impacts. From a firm’s hiring perspective, the expected duration of a match reduces as

any potential employee is more likely to be hit by a negative productivity shock. Consequently, the

value to a firm of hiring a given worker reduces and so therefore does the value of posting a vacancy.

A reduction in vacancies reduces the flow out of unemployment, increasing the stock of unemployed,

and slows movement up the job ladder. The second immediate response concerns already matched

agents. Following an increase in γ a greater proportion are hit by negative productivity shocks,

increasing the speed workers fall down the job ladder and increasing the pool of unemployed.

The immediate response would be isomorphic in any standard search model with this shock

structure – that is an increase in the pool of unemployed through increased separations and less

hiring. Where the mechanism in this model differs from the literature is in the propagation of these

shocks. In standard random search models, with/without on the job search (assuming that the

10The criterion for this is the log difference between each monthly series in the simulated and empirical series.
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employed search less) a higher unemployment rate will feedback into a greater incentive to post

vacancies. A greater number of active searchers means that vacancies are more likely to be filled

increasing the returns in posting. It is exactly this mechanism that tilts the Beveridge curve to

become upward sloping in the comparison model. It turns out, that when shocks generate move-

ment in the hiring and separation rates this feedback is particularly strong. However, in the model

presented here, although the employed search less often, conditional on searching they sample from

a better match specific productivity distribution. From the perspective of a hiring firm, a large

pool of unemployed workers implies the vacancy is more likely to be filled, but filled by on average

a worse match than if there were fewer unemployed. Although the model is quite different there

is a similar strategic complementarity between vacancy posting and on-the-job search in Eeckhout

and Lindenlaub (2019). In Eeckhout and Lindenlaub (2019) when an employed worker finds a job

they are more productive than an unemployed worker and thus the economy benefits from greater

search intensity of the employed. In this model, the employed are not inherently more productive,

but by sampling from more independent draws they are likely to move to more productive matches.

Shift in the Beveridge Curve. Inspection of Figure 1 shows that the 2008 downturn was caused

by a rapid expansion of γ over the recession years. The high value then stayed high beyond the

recession dates. Unemployment responded quickly and continued to grow following the recession

whereas there was an upturn in the vacancy rate immediately following the end of the crisis.

Plotting this on the vacancy-unemployment space, as is done in Figure 2 shows the shift in the

Beveridge curve following the crisis.

If one models both the in- and outflow from unemployment, the response of unemployment

to a shock is extremely rapid.11 However, as is documented empirically by Moscarini and Postel-

Vinay (2016) the distribution of matches amongst the employed is a slower moving object. In the

context of the model, after the rapid expansion of unemployment the new hires from unemployment

are on average in worse matches. This comes through a standard job ladder mechanism but also

11This can be seen by the accuracy of a steady-state unemployment rate in predicting the contemporaneous un-

employment rate as is documented by Jolivet et al. (2006)
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Figure 1: Fit of Series

Separation Rate Unemployed Job Finding Rate Employed Job Finding Rate

Unemployment Rate Vacancy Rate Underlying γ Series

The simulated series are backed out to replicate the observed vacancy rates in the data.

because they sample matches from a stochastically dominated distribution. These poorly matched

workers provide a different opportunity to recruiting firms. They are less likely to hire them than

an unemployed person, but conditional on hiring them they can expect a higher match quality

and longer match duration. Consequently, vacancy posting increases but rather than hiring the

unemployed and reducing unemployment more vacancies are left unfilled or filled by the already

employed.

Figure 2: Beveridge Curve

Data Series Simulated Series Fitted Curves
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To formally demonstrate that there is a structural break in the unemployment-vacancy relation

in the simulated series the relationship is estimated. The following relationship is estimated on the

model’s simulated series and on the unemployment rate taken from the CPS and vacancy rate from

the JOLTS, where α, β, γ and τ are estimated and 1{X > Y } represents an indicator function

taking the value one if the statement is X > Y is true and zero otherwise.

log(υt) = α{t < τ}+ β{t ≥ τ}+ γ log(ut) + ǫt (14)

The parameter τ is estimated by estimating all other parameters conditional on every possible value

of τ and selecting the value with the smallest residual sum of squares. Parameter estimates are

given in Table 6 and the fitted values are plotted in the final panel of Figure 2. The model predicts

a breakdown in the unemployment-vacancy relationship almost a year later than what is predicted

by the data. The size of the shift, the difference between α and β, is also smaller. Suggesting the

model generates approximately a third of the observed shift in the Beveridge curve.

Table 6: Fitted Beveridge Curves

τ α β γ

Simulated series August 2009 -4.68 -4.58 -0.36

Empirical series September 2008 -6.01 -5.72 -0.83

This table displays the least square estimates of the parameters in equation (14), for simulated and real data.

The matching function. Through modeling the explicit application and screening decisions of

workers and firms, the model has an endogenous urn-ball matching function. The majority of the

search and matching literature assumes the matching function to be Cobb-Douglas. Evaluating the

market through the lens of a Cobb-Douglas matching function, the matching efficiency term has

been shown to be pro-cyclical, Borowczyk-Martins et al. (2013) and Barnichon and Figura (2015).

Here it is shown that the simulated model appears well approximated by a Cobb-Douglas matching

function with pro-cyclical matching efficiency.12

12Firm screening is not the only mechanism that can generate such a phenomenon. The same pro-cyclicality has

been shown to be generated with: firm recruitment intensity, Gavazza et al. (2018); hiring standards Sedlác̆ek (2014);

and occupational mismatch Sahin et al. (2014).
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Assume a constant returns to scale Cobb-Douglas matching function of the form

M(Ut, Vt) = AtU
1−η
t V η

t .

Dividing by Ut so the left hand side becomes the job finding rate of the unemployed, taking logs

and including month dummies τt gives

ft = µ+ ηθt + τt + ǫt. (15)

Where lower case denotes logs, θt := log(Vt/U)t) and the matching efficiency isAt = exp (µ+ τt + ǫt).

Estimates of the regression on simulated and actual data are presented in Table 7. While the pa-

rameters differ, the elasticity of matches with respect to vacancies is more than twice as high in the

data, the behavior of matching efficiency is qualitatively similar. The model is able to generate 30%

of the dispersion in efficiency as in the data and both exhibit pro-cyclicality. Finally, despite being

knowingly misspecified the constant returns to scale Cobb-Douglas matching function appears to

explain the simulated series extremely well.

Table 7: Estimates of Cobb-Douglas Matching Function

η E(At) std(log(At)) corr(At, ut) R2

Simulated series 0.22 0.26 0.03 -0.03 0.95

Empirical series 0.48 0.32 0.10 -0.15 0.79

Table presents results of least square regressions of equation (15) for actual and model simulated data.

6.2 The Search Process

In calibration, standard aggregate moments of the labor market were targeted. However, workers

and firms follow a quite different search process to as is typically modeled. The goal of this section

is to (i) understand the cyclical component of the process and (ii) see how the model compares to

empirical studies on recruitment.

Hiring costs. A firm in the model first decides whether or not to post a vacancy. They then screen

their set of candidates and decide which applicant to hire. The hiring cost can be decomposed into
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two distinct parts, a recruitment and a screening intensity. As in section 3 the recruitment intensity

is defined as the effort of getting people to apply and the screening intensity is the selection of the

candidate. In the model these are interpreted as the total screening costs σ and recruitment cost

κ paid by firms per period. The first panel of Figure 3 depicts how these vary over the series

previously simulated.

Figure 3: Cost of Hiring and Applications

Hiring Costs Proportion: Screening Applications and Interviews

Screening costs are counter-cyclical. In downturns, there are many more unemployed, who send

out applications more frequently than the employed leading to more applicants per vacancy. This

is depicted in the third panel. A greater number of applicants thus generates a greater need for

screening. Conversely, recruitment costs are pro-cyclical. Since these are defined as the cost of

posting a vacancy multiplied by a constant vacancy cost, they like vacancies, exhibit strong pro-

cyclicality. Quantitatively, since screening costs are twice as large as recruitment costs, it turns out

that the counter-cyclicality of screening costs dominate and total hiring costs are counter-cyclical

also. Over the period of simulation total hiring costs and the unemployment rate have a correlation

of approximately one half.

Since recruitment costs are pro- and screening costs are counter-cyclical, the share of total

costs attributed to screening is extremely counter-cyclical. The share of hiring costs attributed to

screening workers is exhibited in the second panel of Figure 3. The share of hiring costs spent on

screening rises from around 55% pre-crisis to almost 75% at its height. For the majority of the

series the cost share is within the bounds implied by the audit study of Blatter et al. (2012).
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Applications and interviews. In the model workers sample many jobs and firms receive many

applicants to which one candidate is offered the job. The number of applications sent by workers

and the number of screened candidates have not been specifically targeted in estimation. As is

shown in Figure 3 when the pool of unemployed is large, in downturns, the number of applications

sent out and number of applicants screened is large. While this is probably uncontroversial the

volume of applicants and those screened may or may not reflect something close to the number

in reality. Table 8 reports recent evidence regarding the number of applications and number of

interviews job openings are likely to receive and conduct.

Table 8: Applications and Interviews

Time period Mean

Model

Feasible candidates screened 2003-2015 3.74

Applicants per opening 2003-2015 6.91

Data - number interviewed per hire

Blatter et al. (2012), Swiss administrative data 2000-2004 4.8

Villena-Roldan (2012), National Employer Survey 1997 2.74-6.48

Wolthoff (2018), Employment Opportunities Pilot Project 1987 5.7

This paper, MCSUI 1992-1995 6.2-6.4

Data - applicants per opening

Davis and Samaniego de la Parra (2017), DHI Group, Inc. 2012-2017 5.1

Marinescu and Wolthoff (2020), Careerbuilder.com 2011 59

Wolthoff (2018), Employment Opportunities Pilot Project 1987 9.7

This paper, MCSUI 1992-1995 17.7-18.4

The upper panel of Table 8 presents the mean number of feasible applicants screened and

the total volume of applications sent out per vacancy. Notice, the former is not necessarily the

theoretical counterpart for the number interviewed and it is best interpreted as a lower bound

as many infeasible candidates may well be interviewed in reality. The distribution of feasible
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candidates, given a hire, at time t, is defined as Pt(k|h) and given by

Pt(k|h) =
Pt(h|k)Pt(k)

Pt(h)
=

∫

z⋆ qt(z
′|k)dz′

∫

z⋆ qt(z
′)dz′

.

(

θ−k
t

k!
e−1/θt

)

.

Recall that embedded in the measures θt and firm filling probabilities qt(·) are only the workers

willing to take the job. This therefore omits those who find a better quality match in another firm

and those currently employed in better matches. The measure of the mass of applicants used in

the model however considers both these groups and is defined as

Applicants per opening =
1

υt

(

αuλuut + αeλe

∫

et+(z)dz

)

.

Table 8 displays a large disparity in the existing empirical literature regarding the number of

applicants and the number interviewed per job. Further, as discussed there does not exist a perfect

theoretical counterpart to the latter statistic. This is the motivation for not specifically targeting

these moments in estimation.

7 Conclusion

This paper develops a model that incorporates five facts from empirical evidence regarding the

search behavior of workers and recruiting behavior of firms. They are: firms always screen; typically

a job opening receives many applicants; screening costs constitute the majority of hiring costs; in

comparison to the employed the unemployed apply more frequently to jobs, but to on average worse

jobs. Embedding these features into an otherwise standard labor search model yields a number of

implications. The simulated model simultaneously generates a downward sloping Beveridge curve

with cross-state employment dynamics. Further, the model generates a third of the observed shift

in the Beveridge curve following the great recession and can rationalize the perceived volatility in

matching efficiency.
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A Appendix

A.1 Factor Loadings of Principal Component Analysis

Figure A.1: Factor Loadings

Notes: Each point represents a factor loading of a dummy variable. The variables in blue are those that have been

pre-categorised as screening variables. They take the value one if the respondents answered they ‘always’ perform

this task in recruitment for the latest recruit hired, and zero otherwise. They were asked how frequently they check:

written applications; personal interviews; references; education/training; criminal records. For the recruitment

variables in red the respondent was asked whether he administered a specific recruiting practice. The practices are:

use of help-wanted signs; newspaper advertisement; consider walk-ins without referrals; ask for referrals from

current employees (i); ask for referrals from the state employment service (ii); ask for referrals from a private

employment service (iii); ask for referrals from a community agency (iv); ask for referrals from schools (v); ask for

referrals from a union (vi); ask for referrals from any other service (acquaintances etc.) (vii).
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A.2 Poisson Distribution of Applicants
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Turning to term 2,
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x

)−λx
〉

where x =
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The limit of the third term is one, so

P (X = k) =
λk

k!
e−λ.

A.3 Solving the Model

To solve the model the support of z, γ, u,m1 andm2 are discretized. The size of the grids are lengths

50 for productivity, 20 for values of γ and unemployment and the mean and standard deviation

of productivity are all length 10. Hence the model is solved for 50 × 20 × 103 = 1, 000, 000 state

variable combinations. The grid for z is from z⋆ up to − 1
λz

log(− 1
λe

log(1 − ǫ)). The maximum is

the value of z for which the employed who actively search will draw a productivity Z > z with
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probability equal to ǫ. The value ǫ is set to 1e-8. It is important to set the upper bound of the

z grid sufficiently high to avoid bunching at the top of the distribution. The grid is then equi-log

spaced. The grid of γ is set according to the method proposed by Tauchen (1986) and is equally

spaced between γ0
1−ρ−3

√
σ2
γ

1−ρ2
and γ0

1−ρ+3
√

σ2
γ

1−ρ2
. A sensible grid for u,m1 and m2 is more difficult

to define and the issue will be returned to in section A.3. For the rest of this section, it is assumed

all grids have been defined. For brevity of notation, a state of the world S := (u,m1,m2) ∈ R
3 is

defined.

1. Define distribution of match quality ẽ(z;S, z⋆) given the aggregate state of the economy as

defined by (12).

2. Approximate equation (3) as

e+(z; γ,S) = (1− γ)ẽ(z;S, z⋆) + γ

∫

ẽ(z′;S, z⋆)gt(z|z′)dz′ for, z > z⋆.

3. Define the number of active job seekers as a function of the state variables (γ, u,m1,m2) as

a(γ,S) := αu (1− exp(−λu))u+ αe (1− exp(−λe))

∫

e+(z; γ,S)dz.

4. Compute the probability a firm hires a worker of type z given they receive k applicants,

equation (5). The grid for k takes every integer value from 1 to K = 20.

q(z|γ,S, k) = 0 for, z < z⋆

q(z|γ,S, k) = k

(

1− u

a(γ,S)

∫

z

gu(z
′)dz′ −

∫
e+(z

′′; γ,S)dz′′
a(γ,S)

∫

z

ge(z
′)dz′

)k−1

1

a(γ,S)

(

ugu(z) +

∫
z

e+(z
′; γ,S)dz′ge(z)

)

for, z ≥ z⋆.

5. Make a guess at policy function v(γ,S) called v0(γ,S) that determines the number of vacancies

posted at state (γ, u,m1,m2).

6. Compute the probability a firm hires a type z worker as

q(z; γ,S) =
K∑

k=0

((
v0(γ,S)
a(γ,S)

)
−k

exp

(

− a(γ,S)
v0(γ,S)

)

q(z|γ,S, k)
)

.

7. Given q(z; γ,S), the matching rates of workers can be computed, as in equations (8) and
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(9).

m(z; γ,S) =q(z; γ,S)v0(γ,S)

m(z,∅; γ,S) =m(z; γ,S). ugu(z)

ugu(z) +
∫
z
e+(z′; γ,S)dz′ge(z)

m(z, z′; γ,S) =m(z; γ,S). e+(z
′; γ,S)ge(z)

ugu(z) +
∫
z
e+(z′; γ,S)dz′ge(z)

for, z′ < z

8. Given the matching rates, next period’s unemployment rate and distribution of match

quality amongst the employed can be computed using equation (10) and (11).

u′(γ,S) =u−
∫

m(z; γ,S)dz + γ

∫
z
⋆ ∫

ẽ(z′;S, z⋆)g(z|z′)dz′dz

e′(z; γ,S) =e+(z; γ,S) +
∫

m(z, z′; γ,S)dz′ −
∫

m(z′, z; γ,S)dz′

9. Given next period’s unemployment u′(γ,S) and the distribution of the employed e′(z; γ,S)

a transition matrix πS(S ′; γ,S) can be defined. This function tells us the state of the

economy tomorrow (u′,m′
1,m

′
2), given the state today (γ, u,m1,m2).

10. Compute the job finding rate of an employed worker in match quality z as

f(z; γ,S) =
∫
m(z′, z; γ,S)dz′
ẽ(z;S, z⋆) .

11. Guess the value to a firm, of a match of quality z given the aggregate state variables,

Π0(z, γ,S).

12. This guess is updated, as in equation (4), as

Π1(z, γ,S) = (1−β)z − ω0 +
1

1 + r

∫
[

(1− γ) (1− f(z; γ,S))π(γ′, γ)Π0(z, γ
′,S ′)dγ′

+ γ

∫

π(γ′, γ)

∫ z

z⋆
g(z′|z)Π0(z

′, γ′,S ′)dz′dγ′

]

13. A tolerance is computed as

tolΠ(z, γ,S) = abs

(
Π0(z, γ,S)−Π1(z, γ,S)

Π0(z, γ,S)

)

14. If the maximum of tolΠ(z, γ,S), an element of dimension 50×20×103 = 1, 000, 000 ,

exceeds 0.01, set Π0(z, γ,S) = Π1(z, γ,S) and return to step 12. Otherwise, proceed

to step 15.

15. Compute the value of posting a vacancy as defined in (7) as

V (v0, γ,S) = −κ+

∫

z⋆

q(z; γ,S) (Π1(z, γ,S)− σ) dz.
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16. Update v0(γ,S) by method of bisection and return to step 5, increasing v(·) if V (·) > 0

and decreasing if V (·) < 0.

17. Stop when find two vacancy levels v0(γ,S) and v1(γ,S) for which V (v0, γ,S) > 0,

V (v1, γ,S) < 0 and for all values of γ, u,m1 and m2

tolv(γ,S) =
(
v1(γ,S)− v0(γ,S)

v0(γ,S)

)

< 0.01

A.3.1 Defining a grid for S

Before the model is solved, two steady-state versions of the model are solved in which γ is fixed at

γ = γ0
1−ρ ± 3

√
σ2
γ

1−ρ2
. In this setting there is a unique unemployment rate and distribution of match

quality in the economy. The solution algorithm is the same with two exceptions. Since, in this

scenario S is stable there is no transition matrix to be computed and there is an outer loop where

(u,m1,m2) are iterated over. Once solved, the two extreme cases for (u,m1,m2) are taken and the

grid is equispaced between the two extremes.

A.4 Sampling Distribution

Recall, conditional on actively looking for a job, every period a worker of state s ∈ {u, e} draws a

new match productivity from the cdf

G̃s(z) = exp(−λs exp(−λzz)) where λs > 0 , λz > 0 and z ≥ 0.

However, embedded in this distribution is the probability a worker receives no offers, which occurs

with probability G̃s(0) = exp(−λs). Thus, conditional on receiving an offer, the best productivity

job follows the cdf

G̃s(z|z > 0) =
exp(−λs exp(−λzz))− exp(−λs)

1− exp(−λs)
where λs > 0, λz > 0 and z > 0.

As is pointed out in footnote 4 in the paper, this is a truncated Gumbel distribution with location

parameter µs := log(λs)/λz and scale parameter β := 1/λz.

G̃s(z|z > 0) =
exp(− exp(−(z − µs)/β))− exp(− exp(µs/β))

1− exp(− exp(µs/β))
where µs ∈ R, β > 0 and z > 0.
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The associated density function, on x = z−µs

β , with s index dropped for brevity, is

g̃ (x) =
1

β
(
1− e−eµ/β

) .e−(x+e−x) where µ ∈ R, β > 0 and x > −µ

β
.

The associated moment generating function is given by

Mz(t) = E(etz) =
1

1− e−eµ/β

∫ ∞

0
etz

1

β
e−(x+e−x)dz

=
1

1− e−eµ/β

∫ ∞

−µ/β
et(βx+µ)e−xe−e−x

dx.

After a change of variables, letting y = e−x, and hence, x = − log(y) and dy = −e−xdx.

Mz(t) =
1

1− e−eµ/β

∫ 0

eµ/β

−etµe−tβ log(y)e−ydy

=
etµ

1− e−eµ/β

∫ eµ/β

0
y−tβe−ydy

︸ ︷︷ ︸

the lower incomplete gamma function

=
etµ

1− e−eµ/β
γ(1− tβ, eµ/β)

Where the lower incomplete gamma function given by

γ(α, x) =

∫ x

0
tα−1e−tdt.

The first moment can be computed as

∂Mz(t)

∂t

∣
∣
∣
t=0

=

[

etµ

1− e−eµ/β

(

µγ(1− tβ, eµ/β)− ∂γ(1− tβ, eµ/β)

∂t

)]

t=0

= µ− β

1− e−eµ/β

∂γ(α, eµ/β)

∂α

∣
∣
∣
α=1

.

Substituting back the expression for µ and β and returning the s subscript yields,

zs =
1

λz

(

log(λs)−
1

1− e−λs

∂γ(α, λs)

∂α

∣
∣
∣
α=1

)

=
1

λz

(

log(λs)−
∂ log γ(α, λs)

∂α

∣
∣
∣
α=1

)

Looking at the log derivative,

∂ log γ(α, λs)

∂α

∣
∣
∣
α=1

=

(
1

γ(α, λs)

∂γ(α, λs)

∂α

)

α=1
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The lower incomplete gamma function (γ(α, x)) can be written as the ordinary gamma function

(Γ(α)) minus the upper incomplete gamma function (Γ(α, x)), where

Γ(α) =

∫ ∞

0
tα−1e−tdt , Γ(α, x) =

∫ ∞

x
tα−1e−tdt and γ(α, x) =

∫ x

0
tα−1e−tdt

Hence,

∂ log γ(α, λs)

∂α

∣
∣
∣
α=1

=

(
1

γ(α, λs)

(
∂Γ(α)

∂α
− ∂Γ(α, λs)

∂α

))

α=1

Going through term by term, at α = 1,

γ(1, λs) =

∫ λs

0
e−tdt = 1− e−λs

(
∂Γ(α)

∂α

)

α=1

= −γ where γ is the the Euler-Mascheroni constant

(
∂Γ(α, λs)

∂α

)

α=1

= E1(λs) + e−λs log(λs) where E1(λs) is the exponential integral and defined

in footnote 8. The identity can be found on page 262 of Abramowitz and Stegun (1970).

Substituting into the expression for the mean productivity sampled in employment state s yields

zs =
1

λz(1− e−λs)
(log(λs) + E1(λs) + γ) .

A.5 Fit of Model — absent screening
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Table 9: Fit of the Model

Empirical Moments

s f0 f1 u v θ

Mean 0.014 0.219 0.019 0.066 0.027 0.447

Standard dev. 0.002 0.048 0.003 0.019 0.004 0.17

Correlations

f0 -0.485

f1 -0.322 0.641

u -0.73 -0.668 0.86

v -0.913 0.651 0.876 -0.78

θ 0.48 0.698 -0.745 -0.921 0.886

Autocorrelation 0.666 0.893 0.824 0.993 0.929 0.979

Labor Share Mean = 0.59

Simulated Moments

s f0 f1 u v θ

Mean 0.017 0.211 0.017 0.081 0.027 0.335

Standard dev. 0.002 0.003 0 ×10−3 0.01 0.001 0.039

Correlations

f0 -0.707

f1 -0.072 0.668

u -0.049 -0.714 -0.217

v -0.91 0.054 0.981 0.331

θ 0.479 -0.204 0.337 -0.947 -0.063

Autocorrelation 0.843 0.882 0.937 0.981 0.355 0.939

Labor Share Mean = 0.574

Data covers the U.S economy from 2001 to 2014, inclusive. Employment dynamics and the unemployment rate are

computed from the CPS and vacancy rates from the JOLTS. All are computed at a monthly frequency. The labor

share comes from the BLS and is reported at a quarterly frequency, it is logged and HP filtered as described in the

main body.

A.6 Accuracy of Aggregation

To assess the validity of the restricted information set imposed on firms, a straightforward com-

parison is made. How close are the simulated labor dynamics in the model to ones that firms
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would forecast? A transition rate is defined as x ∈ {s, f0, f1} and can represent the probability

an employed worker transitions to unemployment (s) and vice-versa (f0), and the probability an

employed worker switches employer (f1). In addition to the unemployment rate, these will also

depend on the state variable et(z). Hence, to evaluate the accuracy of the aggregation synthetic

transition rates are computed, defined as x̃. These are computed assuming that the firm’s approx-

imation of the distribution of match quality amongst the employed is correct. In other words, that

et(z) = ẽ(z;u,m1,m2, z
⋆), where ẽ(·) is defined by equation (12).

To evaluate the proximity of the objects x and x̃ a linear regression on simulated data is run,

taking the form

log(xt) = βx log(x̃t) + ǫt.

Results are displayed in Table 10. For the approximation to be working well there are two metrics to

be evaluated. Firstly, the coefficient βx should be approximately equal to one. This indicates that

there is little bias in the firms forecasting. A βx > 1 for example, would imply that the transition

rate in question is systematically higher than a firm’s expectation. Secondly, the dispersion of the

error component ǫt. This is a measure of the precision of the aggregation. Consequently, included in

Table 10 is both the estimated coefficient and R2, standard errors are omitted as they are rounded

to zero to any meaningful significance level.

Table 10: Accuracy of the Aggregation

s f0 f1

Coefficient 0.999 1.000 1.006

R2 1.000 1.000 0.940

MAE 0.006 0.000 0.029

MAE is the mean absolute error (in logs) and defined as 1

T

∑T
t=1

| log(xt)− log(x̃t)|.

Overall, the aggregation appears to work well. A firm’s approximation of the job finding rate

of the unemployed is indistinguishable from the model’s simulation. This is unsurprising since,

other than through the level of vacancies, the distribution plays no direct role in determining this

rate. The other two rates see small differences in their forecast and realization. For the separation
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rate, differences in the mass of workers at the infimum of the distribution will lead to errors in

the forecast. For job-to-job transition differences across the whole support matter and hence why

this prediction is the poorest. The mean absolute error provided in Table 10 can be interpreted

as approximately the mean proportional error between the actual and predicted rate. Hence, on

average, when forecasting next period’s job-to-job transition rate a firm will be incorrect in the

order of 3%.
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