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ABSTRACT

Clustered Local Average Treatment
Effects: Fields of Study and Academic
Student Progress®

Multiple unordered treatments with a binary instrument for each treatment are common
in policy evaluation. This multiple treatment setting allows for different types of changes
in treatment status that are non-compliant with the activated instrument. Therefore,
instrumental variable (IV) methods have to rely on strong assumptions on the subjects’
behavior to identify local average treatment effects (LATEs). This paper introduces a new
IV strategy that identifies an interpretable weighted average of LATEs under relaxed
assumptions, in the presence of clusters with similar treatments. The clustered LATEs
allow for shifts across treatment clusters that are consistent with preference updating,
but render IV estimation of individual LATEs biased. The clustered LATEs are estimated by
standard IV methods, and we provide an algorithm that estimates the treatment clusters.
We empirically analyze the effect of fields of study on academic student progress, and find
violations of the LATE assumptions in line with preference updating, clusters with similar
fields, treatment effect heterogeneity across students, and significant differences in student
progress due to fields of study.
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1 Introduction

Many policy evaluations include multiple unordered treatments. For instance, randomized
control trials with multiple treatment arms (Duflo, Glennerster, and Kremer, 2007), loca-
tion decisions by firms or families (Chetty, Hendren, and Katz, 2016), and fields of study
choices by students (Kirkeboen, Leuven, and Mogstad, 2016). Since treatments are often
endogenous, instrumental variable (IV) approaches are used to estimate the local average
treatment effects (LATEs). To illustrate the multiple unordered treatment setting, consider
three treatments — A, B, and C—, an additional control group that does not receive any treat-
ment, and one binary instrument for each treatment. There are five possible changes in
treatment status induced by the instrument for treatment A: (1) from control group to treat-
ment A, known as compliers; (2) between control group and treatment B or C; (3) between
treatments B and C; (4) from treatment B or C to treatment A; (5) away from treatment A,
known as defiers. In this paper, we develop an IV framework that identifies the weighted
average of LATEs in the presence of treatment shifts (1-4).

In a binary treatment setting, Imbens and Angrist (1994) show that IV can identify a local
average treatment effect (LATE) for the compliers (1). This result relies on a monotonicity
assumption that ensures that the instrument does not induce individuals to shift away from
the treatment group, and hence excludes (5). In addition to the compliers and defiers, the
multiple treatment setting also includes shifts (2-4). Since it is likely that these type of shifts
are present in many multiple unordered treatment applications, and we do not observe the
type of shifts, these settings pose an additional identification problem.

The current literature on multiple unordered treatments estimates LATEs under the as-
sumption that all shifts can be excluded except the compliers. Under this assumption, Be-
haghel, Crépon, and Gurgand (2013) show that LATEs can be estimated with standard IV
methods in the presence of a natural control group. Kirkeboen, Leuven, and Mogstad (2016)
extend this result to settings where there is no natural control group. Using individual infor-
mation on the preferred and next-best treatment, they identify the LATE of one treatment
relative to a particular next-best alternative. This approach has been used to study the im-
pact of fields of study on wages (Kirkeboen, Leuven, and Mogstad, 2016; Heinesen and Hvid,
2019; Dahl, Rooth, and Stenberg, 2020), and the impact of institutions of study on marriage
outcomes (Kirkeboen, Leuven, and Mogstad, 2021). Provided that there is treatment hetero-

geneity, these approaches are biased in the presence of shifts (2-4). These shifts arise if, for



instance, individuals update treatment preferences in response to treatment assignment,
which is found in a large empirical literature on preference updating (see e.g., Kuziemko,
Norton, Saez, and Stantcheva (2015) and Schildberg-Horisch (2018)).

This paper introduces an IV strategy that identifies multiple unordered treatment ef-
fects, while allowing for shifts across treatment clusters. We identify clustered local average
treatment effects (CLATE): a weighted average of the LATEs of all pairs of treatments across
the treatment cluster and control cluster, and the instruments corresponding to these clus-
ters. CLATE allows for any shift from a treatment that is in the same cluster as the control
group, towards a treatment that is in the same cluster as the active instrument. The weighted
average of LATEs is therefore not restricted to LATEs of compliers, allows for preference up-
dating, and does not require any homogeneity assumptions. We show that CLATE can be
applied to empirical settings with a natural control group, or with individual information on
the preferred and next-best treatment. CLATE is estimated by standard IV methods, and we
provide an algorithm that estimates treatment clusters without requiring additional data.

The CLATE approach overcomes the bias in existing approaches for estimating LATE, if
the multiple unordered treatments can be partitioned into disjoint treatment clusters, and
there are only shifts across, and not within, these clusters. With many unordered treatments,
some treatments may be more similar than others, and therefore the actual treatment shifts
are likely to follow this pattern. This can be explained by preference updating among, and
low switching costs across, similar treatments. For instance, in the analysis of the causal ef-
fects of fields of study, students assigned to Economics may be more likely to update their
preference to Business than to Medicine. Moreover, moving from Economics to Medicine
might be too costly (Altonji, Arcidiacono, and Maurel, 2016). In this case, the instrument of
Economics may induce shifts to a cluster of fields of study, where the cluster includes fields
similar to Economics, but does not shift students to fields outside this cluster. In general,
individuals may obtain a treatment from a cluster after being initially assigned to a treat-
ment in the cluster. Since the initially assigned treatment is in the cluster, but may not be
considered after preference updating, a cluster is different from a consideration set (Mehta,
Rajiv, and Srinivasan, 2003; Nierop, Bronnenberg, Paap, Wedel, and Franses, 2010).

Clustering multiple unordered treatments relaxes the assumptions imposed on the in-
strument induced treatment shifts, while retaining an interpretable treatment effect. In
contrast, Angrist and Imbens (1995) show that with a single multi-level treatment, standard

IV identifies a weighted average of LATEs across multiple compliers: the monotone shifts



across all treatment levels, which is sometimes argued to lack interpretability (Andresen
and Huber, 2021). Binarizing the treatment variable into a control group below a cutoff and
a treatment group above, excludes all compliers who are shifting on one side of the cutoff,
which may result in a biased treatment effect (Marshall, 2016; Andresen and Huber, 2021).
With multiple unordered treatments, each instrument only has one complier: the shift from
the control group to the treatment of the activated instrument. CLATE allows for additional
shifts across treatment clusters, instead of excluding compliers. Moreover, since CLATE only
includes the LATEs of shifts between the control cluster and treatment cluster, instead of all
compliers across all treatments, it still identifies a local average treatment effect.

We show that CLATE is able to identify treatment effect heterogeneity. In the presence
of non-compliant shifts (2-4), we derive which homogeneity assumptions are necessary for
IV to identify LATE. Under these assumptions, CLATE equals a weighted average of identifi-
able LATEs, which allows for the examination of treatment effect heterogeneity. Moreover,
we show that the type of shift determines the strength of the required homogeneity. This re-
sult is different from Kirkeboen, Leuven, and Mogstad (2016), who show that IV is unbiased
when treatment effects are common across all individuals. This complete treatment effect
homogeneity has been rejected in many economic settings (Angrist and Pischke, 2008).

We develop an algorithm that estimates the treatment clusters for settings in which the
clusters are not observed. The LATE assumptions pose a testable necessary condition on
the first stage IV estimates of the unclustered treatments (Behaghel, Crépon, and Gurgand,
2013), which the algorithm uses to identify violations of the LATE assumptions. This is con-
sistent with Imbens and Rubin (2015), who argue that treatments have to be considered at
the individual unclustered level, instead of an arbitrary clustering, as otherwise violations
may stay undetected. Next, the algorithm clusters these treatments in such a way that the
set of treatment clusters has the highest level of granularity that satisfies the CLATE assump-
tions. The algorithm ensures the practical applicability of CLATE, as treatments do not have
to be clustered ad hoc in absence of information on the treatment clustering. Arbitrary clus-
tering may bias the results, as is also shown in the literature on categorization of ordered
treatment variables (Angrist and Imbens, 1995; Marshall, 2016; Andresen and Huber, 2021).

We use CLATE to study the causal effect of field of study on academic student progress.
Sixty percent of the higher education students in OECD countries experiences study delay
(OECD, 2019). This is costly to both governments and students: The cost of higher edu-

cation, excluding R&D activities, is about 10.000 euros per student per year across OECD



countries (OECD, 2020), and nobody reaps the full benefits until the degree is completed.
Decreasing study delay is therefore a first-order policy objective in a majority of the Euro-
pean countries (European Commission and Directorate-General for Education, Youth, Sport
and Culture et al., 2015). Our causal estimates may detect exemplary and problematic fields
in terms of student progress, and inform changes to curriculum design and pedagogy, the
allocation of placement slots and resources, and study choice for prospective students.

We have access to an administrative data set that includes four complete cohorts in the
Portuguese higher education system, from which we exploit a natural experiment. Prospec-
tive students apply to higher education via the submission of a ranking of courses based
on their preferences. A course is a field of study at a particular institution (e.g., Law at the
University of Lisbon). Each course ranks their applicants by a score that consists of high
school and national exam grades, after which a deferred acceptance mechanism assigns all
applicants to one course (DGES, 2019). This mechanism generates (many) application cut-
off scores for each field, where an applicant scoring just above (below) the cutoff for her
preferred field in the submitted ranking is assigned to her preferred (next-best) field. This
allows us to estimate CLATEs for applicants with the same next-best field via a fuzzy re-
gression discontinuity design while using the initial field assignments as instruments, the
second-year fields as treatments, and the number of credit points collected in the second
year through the European Credit Transfer System (ECTS) as outcome variable.

We find many violations of the LATE assumptions, and they are consistent with prefer-
ence updating and switching costs. For instance, students assigned to IT in the first year,
enroll in the similar field Engineering in the second year. Our clustering algorithm clusters
IT and Engineering together. With this treatment cluster, CLATEs are identified in the pres-
ence of the additional shift towards Engineering while a student is assigned to IT. We find
evidence for treatment effect heterogeneity, which results in biased LATE estimates, while it
does not affect the validity of our CLATE estimates. The CLATE estimates suggest that, for
instance, Law has a negative and Information and journalism a positive impact on academic
student progress.

Our empirical study is related to a large body of research that studies the effect of vary-
ing interventions on academic student outcomes, such as group assignment policies (Booij,
Leuven, and Oosterbeek, 2017), academic dismissal policies (Lindo, Sanders, and Oreopou-
los, 2010), professor quality (Carrell and West, 2010), and restricting access to alcohol (Car-

rell, Hoekstra, and West, 2011) and cannabis (Marie and Z6litz, 2017). Similar to our analysis,



academic outcomes are often measured via the number of study credit points collected. In-
stead of comparing study credit points within fields of study as a measure for student skills,
we compare study credit points across fields of study as a measure of study progress.

Studying the causal effect of fields of study, instead of interventions within fields of study,
has proven to be a challenging task. Even in the presence of an instrument for each field,
this context likely has many unwanted shifts (2-4) due to students updating their fields of
study preferences and low switching costs within clusters of fields. Therefore, most previ-
ous research towards the relationship between fields of study and academic progress doc-
uments correlations (Lassibille, 2011), which may only reflect causal effects under strong
conditional independence assumptions (Kirkeboen, Leuven, and Mogstad, 2016).

Our CLATE estimates identify the causal effects for the students who are induced to shift
field of study by their instrument, and are at the margin of entry to particular fields. Since
it is often infeasible to run a randomized experiment with full compliance (Imbens, 2010),
especially in multiple unordered treatment settings, additional assumptions are necessary
to identify average treatment effects. For instance, Heckman and Vytlacil (2007), Brinch,
Mogstad, and Wiswall (2017), and Mogstad, Santos, and Torgovitsky (2018), among others,
study marginal treatment effects (MTEs) under different sets of assumptions. Heckman,
Urzua, and Vytlacil (2008) identify MTEs with multiple unordered treatments. Alternatively,
bounds can be derived on the average treatment effect (Manski, 2003). Mogstad and Tor-
govitsky (2018) provide an overview on the methods that extend LATE estimates from IV
methods to average treatment effects.

The paper proceeds as follows. In Section 2 we discuss the identification of LATEs in the
presence of multiple unordered treatments, and the bias that results from violations of the
LATE assumptions. In Section 3 we introduce the less strict CLATE assumptions, and derive
the treatment effects identified by CLATE. Section 4 introduces our algorithm for estimating
treatment clusters, and Section 5 extends CLATE to a fuzzy regression discontinuity design.
Section 6 presents our empirical analysis of the effects of field of study on academic student

progress. Section 7 concludes.

2 The multiple unordered treatment IV model

This section discusses the standard multiple unordered treatment IV model. First, we intro-

duce the model and the assumptions under which the IV coefficients identify LATEs. Sec-



ond, we discuss the LATE identification result. Third, we discuss potential violations of the

assumptions and derive the corresponding bias in the IV coefficients.

2.1 Setting and assumptions

Suppose we have J different treatment choices. Define the dummy variable d; that equals
one if treatment j = 1,...,J is chosen and zero otherwise. The instruments z; are dummy
variables that equal one if the cost to obtain treatment j is decreased and zero otherwise.
Define d = Z;zlj xdjand z = Z§=1j x zj. The value of z can be interpreted as the initial
treatment assignment, where it is costly to obtain treatment d # z.

We are interested in the effect on y of taking any treatment j compared to treatment k,

without loss of generality. Consider the second stage model

y=ar+ ) Pjxdj+ex. €]
j#k
The first stage equations are
dj:6jk+anlkzl+ujk, forallj;ék. (2)
1#k

We define the potential outcomes d? and y%#, which represent the value of d for
each z and the value of y for each combination of d and z, respectively. The dummy
variable d]? equals one if treatment j is chosen for a given value of z. Define the J-
dimensional vector z_x = (1,z1,...,2k-1,Zk+1,---,2j)’ and the (J — 1)-dimensional vector

d_y=(dy,...,dx-1,d+1,...,d;)'. We make the four standard IV assumptions:
Assumption 1. IV assumptions treatment j compared to treatment k

a. (Exclusion) y*% = y? foralld, z.

b. (Independence) yd, d* 1z foralld,z,1l.

¢. (Rank)E[d_iz' ] has full rank.

d. (Monotonicity) dJ]: > d}“.

It follows from Assumption 1(a) that the potential outcomes can be linked to the ob-
served outcomes via y = Z;Zl yl x djand d; = Z§:1 dl] x zj for each [.
With multiple unordered treatments, Assumption 1 is not sufficient to identify LATEs as

it does not rule out additional shifts next to the group of compliers: shifts towards and away
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Figure 1: An overview of all the possible shifts when z switches from k to j

1(d)
1(d) I
dj dy” dp 2 dm
SR
. R EE,,§ |

Notes: the arrows represent a shift from one treatment to another when z switches from k to j. For example,
dj — dy is a shift from treatment j to k when z switches from k to j. The numbers represent the assumption

that prevents the shift of the corresponding arrow.

from treatments [ # j are unrestricted. Figure 1 visualizes this problem, where each arrow
represents a possible change in treatment d if z switches from k to j. In case a shift is ruled
out by an assumption, the arrow is accompanied by the assumption that prevents the shift.
For instance, d; — d. reflects a change from treatment j towards k due to a switch in z from
k to j. This shift is prevented by assumption 1(d). The compliers are represented by the
bold-faced arrow corresponding to the shift from treatment k towards j. However, we also
find multiple dashed arrows that represent shifts that are not excluded by Assumption 1(d).

Recent literature introduces additional assumptions in multiple unordered treatments
settings to prevent the remaining unwanted shifts (see Behaghel, Crépon, and Gurgand
(2013), Heinesen and Hvid (2019), Dahl, Rooth, and Stenberg (2020), Altmejd, Barrios-
Fernandez, Drlje, Goodman, Hurwitz, Kovac, Mulhern, Neilson, and Smith (2021), and
Kirkeboen, Leuven, and Mogstad (2021)). We follow the approach of Kirkeboen, Leuven,
and Mogstad (2016).

Assumption 2. Irrelevance assumption treatment j compared to treatment k
(Irrelevance) Ifd]]. = d}“ =0, then dl] = dlk foralll # j, k.

This assumption prevents all shifts across treatments [ # j, k and m # j, k, and all shifts
across treatments [ # j, k and k. Together with Assumption 1(d), this implies that switching

z from k to j cannot induce an individual to shift towards treatment [ # j, k. To see this,
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write a shift towards treatment [ as dlj > dlk, which implies that d]]: = 0, and according to
Assumption 1(d) that d]].' = d,{ = 0, which contradicts Assumption 2. Moreover, it also implies
that an individual cannot shift fowards treatment k: di > d,’g implies that d]].' = d]’? =0 by
Assumption 1(d), hence the shift towards k must come from treatment / # j, k with dlj <d lk ,
which is again a contradiction of Assumption 2.

Figure 1 visualizes which shifts are prevented by Assumption 2. Note that there is still one
additional group of shifts next to the compliers: from treatment ! # j, k towards treatment
j. To also exclude this group, we focus on the subsample of individuals that revealed treat-
ment k as their next-best treatment. More specifically, assume that each individual has a
preference ranking over treatments. Define r,, as the treatment that received rank m. When
revealed before z, the ranking is a predetermined characteristic, and the independence as-

sumption 1(b) remains valid after conditioning on r,.
Assumption 3. Information on next-best treatment k
(Next-best) If r» = k and d]].' =1, then dlk =0foralll #j,k.

This assumption implies that, after conditioning the sample on individuals with k as
next-best treatment, switching z from k to j cannot induce an individual to shift away from
treatment / towards j. To see this, note that Assumption 3 prevents that d]].. > d]’? with dlj <
d lk . This assumption is less strict than the next-best assumption in Kirkeboen, Leuven, and
Mogstad (2016). Their formulation of Assumption 3 prevents shifts already prevented by
Assumption 2, and excludes the presence of always takers for treatment /.

Figure 1 visualizes that Assumptions 1(d), 2, and 3 together imply that dlj = dlk for all
I # j, k. As a consequence, the only shifts in the multiple unordered treatment model are

the compliers. This allows us to identify the average treatment effect for the compliers.

2.2 Local average treatment effects

The following theorem formalizes what the IV coefficients § ;i identify.

Theorem 1. Under Assumptions 1-3 and the model in (1) and (2), it holds for the individuals
with ry = k that

Bk :[E[yf—ykm]ff—d]’? =1L,d]-df=-1,r,=kl, forallj#k. 3)



A formal proof can be found in Appendix A. Kirkeboen, Leuven, and Mogstad (2016) and
Behaghel, Crépon, and Gurgand (2013) show that IV with three multiple unordered treat-
ments can identify LATEs under appropriate assumptions. We prove the general case under
a less strict next-best Assumption 3, while using the relationship between the IV coefficients
and the reduced form and first stage coefficients.

We obtain the reduced form by substituting the first stage equations in (2) into the sec-

ond stage equation in (1),

y=ar+ ) Bjxbjk+Y. Y Bjxmjikzi+ Y Bjklji+e€k 4)
j#k I7k j#k 7k
A o &

where 0 is a reduced form coefficient. It follows that the IV parameters § jx equal

Bu=DE_y Tkg  forallj#k. 5)
Tjjk 15,k ik

Equation (5) shows that the IV coefficient i consists of two terms. The first term is the

reduced form coefficient on z; divided by the first stage coefficient of d; on z;. This term

is akin to the expression for the IV coefficient in a binary treatment setting. However, in a

multiple treatment setting, there is a second term that is an average of the IV coefficients f;;

for the remaining treatments /, weighted by the first stage coefficients of d; on z;.

For §jx to identify a LATE, the second term in (5) has to be zero. This term is a function
of the first stage coefficients in (2), for which we define the (J — 1) x (J — 1) matrix I1; with
the first stage coefficients 7, = Eld;|z = jl —Eld;|z = k] = [E[dlj - dlk] as elements. The sub-
script [ corresponds to the outcome variables d; across the rows of I1y, and the subscript j
corresponds to the instruments z; across the columns, with /, j # k. If [ = j, the element is
on the diagonal of I, and we will refer to it as a diagonal first stage coefficient. Conversely,
if I # j, we will refer to it as an off-diagonal first stage coefficient. The off-diagonal first
stage coefficients are a function of dlj -d lk with [ # j, k, which we will refer to as off-diagonal
shifts. The second term in (5) sums over all off-diagonal first stage coefficients in one col-
umn, which correspond to the coefficients of all d; with [ # j, k on z;. It follows that if there
are no off-diagonal shifts, so that 7 = 0, the second term in (5) equals zero.

The off-diagonal first stage coefficients can be written as

ik =Eld) - df) =Pld] —df =11-Pld] —df =11, foralll# k. (6)



Figure 1 shows that Assumption 1(d) and 2 prevent that dlj - dlk =1, and if we condition
the sample upon r» = k, Assumption 2 and 3 further prevent dlj - dlk = —1. That is why

Assumption 2 and 3 are pivotal to the proof of Theorem 1.

2.3 Individual behavior that generates off-diagonal treatment shifts

To prevent off-diagonal shifts, Assumptions 2 and 3 impose strong restrictions on individual
behavior. We illustrate this in two different empirically relevant settings.

First, consider the setting with z € {j, k} for individuals with r; = j and r» = k, so that
instrument z can only switch from an individual’s next-best treatment k to her preferred
treatment j. This is common in empirical applications of multiple unordered treatment
IV models (Kirkeboen, Leuven, and Mogstad, 2016; Heinesen and Hvid, 2019; Dahl, Rooth,
and Stenberg, 2020), and is also our empirical setting in Section 6. As it is costly to obtain
treatment d # z, the individuals with z = k take their next-best treatment d = k or make
costs to obtain the preferred treatment d = j. For z = j, these individuals will obtain their
preferred treatment d = j. This means that these individuals either have to be compliers
with d]]: = d]’g =1, or always takers with d]]: = d]’.C =1.

The assumptions rule out that individuals update their preference ranking due to expo-
sure to treatment z. If there is a treatment [ # j, k with a higher updated preference rank
than j or k, the individual may obtain treatment [/ with a lower revealed preference ranking
than j or k. If the updated rank of / depends on the value of z, preference updating may
result in off-diagonal shifts.

Figure 1 shows that Assumptions 2 and 3 prevent five off-diagonal shifts when z switches
from k to j, which may all be possible under preference updating. First, an individual can
update preferences for either z = j or z = k. In case initial exposure to treatment z = j
induces an individual to prefer treatment /, but initial exposure to treatment z = k results
in treatment d = k, we may have dy — d;. If z = k induces an individual to prefer / but
z = jresultsind = j, d; — dj. Second, individuals can deviate from revealed preferences
for both z, so that treatment m has a higher updated preference rank than k if z = k, and
treatment / a higher updated preference rank than j when z = j. This explains d,,, — d;, but
also d; — d, if we reverse m and [, and d,;, — d; if [ = k.

Preference updating in response to treatment assignment z has been demonstrated in
several settings. First, preference parameters often used to describe individual behavior,

such as risk aversion, are affected by economic crises, natural catastrophes, and violent
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conflicts (Schildberg-Horisch, 2018). Second, preferences for support of public policy are
affected by information provision (Kuziemko, Norton, Saez, and Stantcheva, 2015; Lerget-
porer, Werner, and Woessmann, 2020). Third, changes in preferences have been demon-
strated in the ranking of job type characteristics (Cotofan, Cassar, Dur, and Meier, 2021) and
fields of study (Altonji, Arcidiacono, and Maurel, 2016). Heinesen and Hvid (2019) discuss
the role of preference updating in violations of Assumptions 2 and 3 while analyzing the
returns to fields of study in a multiple unordered treatment setting.

Preference updating is unlikely to generate violations of Assumption 1(d). As individuals
have to make costs to obtain the revealed preferred treatment d = j if z = k, it can be argued
that their preference for the revealed preferred treatment j is strong. This, in turn, makes it
unlikely these individuals move away from treatment j if z = j.

Second, consider the setting in which the preference ranking is unobserved. The instru-
ment z may switch from treatment k to any j for all individuals, where treatment k is a single
natural control group rather than one of many next-best treatments. This is the setting in
randomized control trials (RCTs) with multiple treatment arms, where individuals assigned
to the natural control group do not receive any treatment (see e.g., Behaghel, Crépon, and
Gurgand (2013); Duflo, Glennerster, and Kremer (2007)). In such RCTs, a preference ranking
is not elicited, but individuals may nevertheless have one based upon the perceived out-
come of each treatment and the costs to obtain treatment d # z.

If individuals are indifferent ex-ante, Assumptions 2 and 3 rule out preference updating
in response to treatment assignment z. For instance, if assignment to the natural control
group z = k induces individuals to prefer treatment m, whereas z = j induces a preference
for [, we may have d,, — d;. If individuals are not indifferent ex-ante, Assumptions 2 and 3
impose even stronger restrictions: Even without preference updating, individuals with r; =/
may make costs to obtain their preferred treatment [ if assigned to the natural control group

z = k and stay in treatment j if z = j, which would generate d; — d;.

2.4 The bias from off-diagonal treatment shifts

In the presence of off-diagonal shifts, the Assumptions 2 and 3 are violated and the IV coef-

ficients in (1) are biased. The following corollary provides an expression for the bias.

Corollary 1. Under Assumptions 1-3 and the model in (1) and (2), with Assumption 2 or 3
only violated byP[d,jn - d,’% =1, d,]; - d’,,f =—1lro =kl >0 withm # nandn # j, it holds for the

11



individuals with ro = k that

Pld),—dk =1,d] - d* = -1|r, = k]
Pld]—d¥=1lr, = ki ’

Bk =Ajkjk+ (Ajkmn — Amkmk — Anknk)) (7)

where A jipmy = E[y™ —y”ld,];1 —dk = l,d,]; —dk=-1,r,=kl.

The proofis deferred to Appendix B. Corollary 1 shows that in the presence of a violation
of Assumption 2 or 3, the IV coefficient ;1 equals the LATE of the compliers A jxj plus a
bias term that consists of a weighted combination of additional LATEs. Note that if m # j,
the bias results from a violation of Assumption 2, and if m = j of Assumption 3.

The bias term includes the difference between A ji,,,, which is the treatment effect for
the off-diagonal shifts from treatment n to m as a result of a switch in the instrument from
k to j, and A, kmk — Anknk, which includes the LATEs of two different compliers. The LATE
A jkmn is not identified, but Theorem 1 shows that 8, = Apkmr and Bux = Apknk-

Depending on the off-diagonal shift, a different treatment effect homogeneity assump-
tion sets the bias to zero. The dashed arrows in Figure 1 represent the off-diagonal shifts
violating Assumptions 2 and 3. For dy — d; or d; — dy, Ajrix = Ajx results in zero bias.
Therefore, these shifts only require treatment effect homogeneity across different values of
z, while treatment effects are allowed to be heterogeneous across d. For d; — d,, or dy,, — d;,
we require Ajgm; = Apgmk — Akik- This only holds under the strict assumption that the
LATEs are homogeneous across different values of both d and z. In general, treatment ef-
fect homogeneity has been rejected in many economic settings. For instance, Angrist and
Pischke (2008) discuss examples where several credible instruments estimate different treat-
ment effects for the same causal relation.

The bias is weighted by the probability of observing the off-diagonal shift P[d,f;l —dk =
l,d,]; - d’,,f = —1|r; = k] > 0 divided by the first stage coefficient 7 j; = IP[d]]: - d]’? =1|rp = kl.
Hence, the bias increases in the probability of a violation of Assumption 2 or 3, and decreases
with a stronger first stage for the compliers. The first stage plays a similar role in the bias
that follows from violating the exclusion restriction in Assumption 1(a). This bias is studied
in binary treatment IV models, that is (1)-(2) with J = 2, and known to be small if the first
stage is strong (Bound, Jaeger, and Baker, 1995; Angrist, Imbens, and Rubin, 1996).

There are also differences between the bias of a violation of the exclusion restriction and
the bias in Corollary 1, which potentially exacerbate the effect of the latter. Since an off-

diagonal shift cannot be a complier at the same time, the presence of off-diagonal shifts,
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in addition to always- and never takers, must weaken the first stage. In contrast, a viola-
tion of the exclusion restriction does not need to reduce the first stage. Moreover, there
can be multiple off-diagonal shifts in a multiple treatment setting: Each of these shifts add
an additional bias term and further reduce the first stage. Section 6 shows the presence of
off-diagonal shifts in our empirical context, and Appendix C argues that they may also be

present in other applications of the multiple unordered treatment model.

3 Treatment cluster IV model

This section introduces the multiple unordered treatment IV model in which we identify
CLATEs: clustered local average treatment effects. First, we adapt the IV assumptions to the
cluster level. Second, we derive the treatment effects identified by CLATE. Third, we discuss
the settings in which CLATEs can be identified, but LATEs cannot. Finally, we show that
CLATEs can identify treatment effect heterogeneity.

3.1 Setting and assumptions

Suppose we have ¢ = 1,...,C mutually exclusive clusters of treatments S.. Define the set
S = {SC}CC:1 that includes all treatment clusters. Define d; = ¥, s, dy that equals one if a
treatment in treatment cluster S. is chosen and zero otherwise. Similarly, Z; = }_,cs_ 2n
equals one if the cost of one of the treatments in cluster S; is decreased, and zero other-
wise. We are interested in the effect on y of taking treatment from cluster S, compared to
taking treatment from cluster S;. Consider the second stage model

y=ap+ Z ﬁabda +&p, (8)
a#b

where the first stage equations are
Aa=08ab+ Y RachZc+ilap, forallat#b. 9)
c£b
We adapt the IV assumptions 1(d), 2, and 3 in Section 2 to the cluster setting. Figure 2
shows all possible shifts in d when z switches from one k € S, to one j € S,. The circles rep-
resent three different clusters. In this setting, the LATE assumptions only allow for one group

of compliers: the treatment shifts from k towards j. However, with multiple treatments in

the clusters, the CLATE assumptions allow shifts from all treatments in cluster S; towards
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Figure 2: An overview of all the possible shifts when z switches from k€ S, to j € S,

1¢(@d)

Notes: j,1 € S;, k,me Sy, and n,0 € S.. The arrows represent a shift from one treatment to another when z
switches from k € S, to j € S;. The numbers represent the assumption that prevents the shift of the corre-

sponding arrow.

all treatments in cluster S,. That is, CLATE allows for the presence of |S,| x |Sp| shifts instead
of only one. When each cluster contains one treatment, Figure 2 boils down to Figure 1, and

the adapted IV assumptions boil down to their standard form.
Assumption 1¢. Monotonicity treatment cluster S, compared to S,
d. (Monotonicity) dlj > dlk forall j,l€S, andk € Sy,.

For treatment j within cluster S,, Assumption 1¢(d) requires that dlj >d lk for each treat-
ment / within cluster S,. Standard monotonicity 1(d) only requires this for treatment / = j.
Hence, in isolation Assumption 1¢(d) may be viewed as a stronger assumption than 1(d).
However, Assumption 1(d) can only identify LATEs in conjuction with Assumptions 2 and 3,
which together require that dlj = dlk for all [ # j, k, which is a substantially stronger set of

restrictions than imposed by Assumption 1¢(d) and the following two assumptions.
Assumption 2€. Irrelevance assumption treatment cluster S, compared to Sy,
(Irrelevance) Ifdlj = dlk =0forallle S, then d,]; =dk foralln¢ S,, j€ S, andk € Sy,

Following the same logic as with Assumption 2, Assumption 2¢ implies together with
Assumption 1¢(d) that switching z from k to j cannot induce an individual towards a treat-

ment outside cluster S,. In contrast to the stronger Assumption 2, this does not impose any
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restriction on the shifts towards the treatments / # j within cluster S,. Figure 2 shows how
Assumption 2¢ prevents any shifts towards treatments outside cluster S,, while Figure 1

shows how Assumption 2 prevents any shifts towards [ # j.
Assumption 3. Information on next-best treatment cluster Sy,

(Next-best) If ro = k and there isan | € S, for which dlj =1, thend]! =0 forall j € S,,
k,me Sy andn ¢ {S,, Sp}.

Following the same logic as with Assumption 3, Assumption 3¢ implies that, after con-
ditioning the sample on individuals with a next-best treatment in S, switching z from k
to j cannot induce an individual to shift away from a treatment outside clusters S, and S;,
towards a treatment within cluster S,. In contrast to the stronger Assumption 3, this does
not impose a restriction on all treatments [ # j, k, but only on the treatments that are not
included in the clusters S, and Sj,. This is also illustrated by Figures 1 and 2, where the first
shows that only treatment k is excluded from the next-best assumption, and the latter shows

that all treatments in the cluster Sy, are excluded.

3.2 Clustered local average treatment effects

Similar as in Section 2, we substitute the first stage equations in (9) into the second stage

equations in (8), to obtain the reduced form,

y=ap+ Z Babgab"‘ Z Z Babﬁacb Zc+ Z Babaab +€p, (10)
a#b c#ba#b a#b
0 Beo &

from which follows that the IV parameters f,;, equal

Bab = Oah _ ) chabﬁcb, forall a#b, (11)

7 aab c£ab Faab

where the expression is similar as in (5).

Lemma 1. Under Assumptions 1(a)-(c), 1 (d)-3° and the model in (8) and (9), it holds for the

individuals with r, € Sy, that

fcap =0 forallc# a,banda#b.
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The proof is deferred to Appendix D. Lemma 1 shows that in the treatment cluster IV
model, the multiple treatment bias disappears under less strict assumptions than for LATE.
We discuss this in more detail in Section 3.3.

Theorem 2 shows that S, is a weighted average of the LATEs of all pairs of treatments in
which a treatment from cluster S, is compared to a treatment from cluster S;. We will refer

to this as CLATE: clustered LATE.

Theorem 2. Under Assumptions 1(a)-(c), 1€(d)-3 and the model in (8) and (9), it holds for

the individuals with r, € Sy, that

Bar=Y ¥ Y Y AjumEly' —y™Mdl -df=1,d},-dk=-1,r,e8),  (2)
JjeSa keSy leS, meSy,

for all clusters a # b, with

P [dzj‘dzk: 1,dj, - dk, = —1] Plz = jlz€ SqlPlz = klz € S

Ajkim = , (13)

Y ¥ Pla=jlzeSJPlz=kzeSy) ¥ ¥ P|d]-df=1,d},-dl=-1
JESA kESy, leS, meSy

where the probabilities implicitly condition on ry € Sy,

The proof is deferred to Appendix E.

Since 0 < Ajiim < 1and ¥ jes, Y ies, Lkes, Lmes, Ajkim = 1, Pap is a weighted average of
LATES Ajkim = E[y’ —y’"ldlj - dlk = l,d,];i —dk = -1,r, € Sp]. The weighted average is taken
over all possible pairs of treatments with one treatment from S, and one from S, and for
each of those treatment pairs all possible pairs of instruments with one from S, and one
from Sy,

The LATE A j;, equals the causal effect of a change from an individual treatment m € S,
to treatment [ € S,, for the individuals that shift from treatment m to [ as a result of a switch
in the instrument from k € S to j € S,. Although Theorem 2 shows that under the CLATE
assumptions the weighted average of the LATEs f,y, is identified, the individual LATEs A jkim
are not identified under these assumptions.

When the LATE assumptions are satisfied, it follows from Theorem 1 that one can iden-
tify Bjx = Ajrjk. At the same time, note that under the strict LATE assumptions, one can
not identify the treatment effects A, with either j # [ or k # m. When we compare the
CLATEs in Theorem 2 to the LATEs in Theorem 1, CLATE equals a (weighted) local average
treatment effect for a more comprehensive sample. This sample does not only include the
shifts from k to j as a result of a switch in the instrument from k to j, but all the shifts from

Sy to S, as a result of a switch in the instrument from S, to S,.
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The weights Ak, show which LATEs A jk;,, contribute the most to ,Bab. The weight
Ajkim represents the normalized proportion of individuals that shift from treatment m to
I as a result of a switch in the instrument from k to j. The weight is normalized by the
cumulative proportion of all possible shifts from a treatment within S, to a treatment within
S, as aresult of a switch in the instrument from S, to a S,,.

Since we observe for each individual only the treatment choice for one instrument value,
the individuals for which we observe a treatment choice from S, could have shifted from any
treatment in Sp, and the other way around. Therefore, the normalized proportion A, of
individuals that shift from treatment m € Sj, to [ € S, cannot be point-identified when both
Sq and Sy, contain multiple treatments. Corollary 2 identifies bounds on these weights under

the CLATE assumptions.

Corollary 2. Under Assumptions 1(a)-(c), 1° (d)-3° and the model in (8) and (9), it holds for

the individuals with r, € Sy, that the weights A, in (13) with j,l1 € Sq and k,m € S, are

bounded as
max(0, =7k — Lnes,\i} Tnji)Wjk min(jx, =7 mjr)Wjk
S Ajkim = ) (14)
Y X Wik X Tk Y X Wik X Tk
JESL keSy, leS, JESa keSy, leS,

where =Tk = Yies, Tijk + Lmeis,\k} Tmjk» Tijx With 1 # k is a first-stage coefficient in (2),

andwjr =Plz= jlz€ Sg,12 € SpIPlz = k|z € Sp, 12 € Sp].

The proof is deferred to Appendix F. Corollary 2 shows that the proportion of shifts from
treatment m € Sy, to [ € S, is upper bounded by both the total proportion of shifts away from
m and the total proportion of shifts towards /. Alower bound is constructed by the difference
between the total proportion of shifts away from m and the total proportion of shifts towards
{S4\1}. In the special cases where either S, or S, contains only one treatment, the first stage
coefficients respectively identify where the shifts come from or go to. Hence, the bounds in
Corollary 2 boil down to point identification:

—TtmjkPlz = klz € Sp, 12 € Spl njkPlz= jlz € Sa,12 € Spl

and A g = ,
> Plz=klze€ Sp,r2€ Splmjji LS Plz=jlz€ Sa,r2€ Spl X 7yjk
keSy JE€Sa €S,

Ajkjm =

(15)

with respectively S, = {j} and S, = {k}.
Under the LATE assumptions it holds that 71;;r = 0 for all [ # j, k. In that case, it fol-

lows from Corollary 2 that A jx =7 jxwjk/ (X jes, Lkes, Tjjkwji) and A jrrm, = 0if [ # j and
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m# k. Then, CLATE boils down to ,Eab = (Zjesa Zkesb Ajkjk”jjkwjk)/(ZjESa Zk(—:Sb njjka)jk),
which is a weighted average of LATEs A j . for the regular compliers. Moreover, if each clus-
ter has only one individual treatment, as in the standard multiple unordered treatment IV

model, ﬁab = Ajkjk, and the CLATE in Theorem 2 equals the LATE in Theorem 1.

3.3 When CLATE:s are identified, but LATEs are not

The CLATE assumptions allow for off-diagonal treatment shifts that are ruled out by LATE.
Similar as in Section 2.3, we illustrate this using two empirically relevant applications of the
multiple unordered treatment model.

First, consider the individuals with preference ranking ry = j and r» = k, z € {j, k}, and
a switch in z from k to j. As it is costly to obtain treatment d # z, the individuals with
z = k take their next-best treatment d = k or make costs to obtain the preferred treatment
d = j. For z = j, these individuals will obtain their preferred treatment d = j. The shift of
the compliers d; = d’kf = 1is the only one that is allowed by the LATE assumptions.

In addition to this diagonal shift, Figure 2 precisely demonstrates which off-diagonal
shifts are allowed under the CLATE Assumptions. Initial exposure to treatment z = j may
result in treatment / € S,, and initial exposure to treatment z = k may result in treatment
m € Sp. CLATE allows for the off-diagonal shift d,, — d;, for all m € S, and [ € S,. However,
if [ ¢ S,, the off-diagonal shift is prevented by Assumption 2€ andforleS,and m¢ S p, the
off-diagonal shift is prevented by Assumption 3¢. Therefore, S, and S;, have to be disjoint
clusters of treatments.

The off-diagonal shifts from cluster Sj, to cluster S,, which are allowed under the CLATE
assumptions, may be explained by preference updating within clusters. Initial exposure to
treatment z = j in cluster S, may result in preferring and obtaining any other treatment
d =l in cluster S,. The same holds for z = k and d = m in cluster Sy,

CLATE allows for preference updating within, and not across, disjoint clusters. Consis-
tent with disjoint clusters in a setting with fields of study as multiple unordered treatments,
Wiswall and Zafar (2015) find evidence that student preferences are similar for majors within
large sets, such as Natural sciences and Mathematics, and Business and Economics. Disjoint
sets are also expected in settings in which the switching costs are lower between treatments
within, and not across, clusters. In this case, the costs to obtain treatment d # z will depend
on the initial treatment assignment z. An example of this is provided by Altonji, Arcidia-

cono, and Maurel (2016), who discuss that the costs to enroll in certain majors depend on
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an individual’s educational history.

In the second setting, the instrument z can switch from k to any j for all individuals,
where k € Sy, is a single natural control group. Preference updating, and low switching costs
between treatments, within clusters may generate shifts from treatment m € S, to l € S,
when instrument z switches from any n € S, to any j € S,. Ultimately, the presence of
disjoint treatment clusters is an empirical question, to which we find a positive answer in

our analysis of the effect of fields of study in Section 6.

3.4 Anillustration with five treatments

In order to show which restrictions in LATE are eased by CLATE, consider an example with
J = 5 unordered treatments clustered into S; = {1,2}, S, = {3}, and S3 = {4,5}. We are inter-
ested in the treatment effects for the individuals with r, = 5. For these individuals, S; and S,
are the preferred treatment clusters, and S3 is the next-best cluster.

The assumptions in LATE and CLATE impose different restrictions on the first stage ma-

trix for this sample. The LATE assumptions prevent all off-diagonal shifts in I15:

f115>0 m25=0 mi35=0 m45=0

[ATE = | 7215 = 0 725>0 7235=0 7245=0 | 6

7315=0 7325 =0 m335>0 7m345=0

| 71415 =0 7425 =0 7435 =0 7445>0]

where the restrictions follow from Assumptions 1-3. The CLATE assumptions, however, only
prevent off-diagonal shifts towards or from a treatment d that is not in the same preferred

or next-best treatment cluster as the values of the instrument z:

Mi5>0 75=0 7i35=0 74550

cLaTE _ |721520 o5 >0 7235 =0 724550
ST = , a7
m315=0 7305 =0 7335 >0 734550

71415 =0 7425 <0 7u35<0 7445 0]

where the restrictions follow from Assumptions 1¢-3¢.

When the off-diagonal shift corresponds to a treatment d that is in the same preferred
or next-best treatment cluster as one of the instrument values z, the CLATE assumptions
impose an inequality instead of an equality restriction on the off-diagonal shifts. Assump-

tion 1¢(d) ensures that there are only shifts towards treatments in the preferred cluster,
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whereas Assumption 2¢ and 3¢ ensure that there are only shifts away from treatments in
the next-best cluster.

These inequality restrictions in (17) allow for five off-diagonal shifts. First, 725 = 0 and
7415 < 0 allow for preference updating within clusters S; and Sz when z switches from 5 to 1.
This behavior may result in the shifts ds — d», dy — d;, and dy — d». Similarly, 725 = 0 and
7425 < 0 may result in ds — d,, dy — d», and dy — d, after switching z from 5 to 2. Finally,
7435 < 0 explains dy — ds when z switches from 5 to 3.

CLATE does not include switches in z from one treatment in the next-best cluster to
another treatment in the next-best cluster. Therefore, the fourth column of IT; in (17) is
unrestricted: Since both treatment 4 and 5 are in the next-best cluster S3, CLATE will not
consider switches in z from 5 to 4. It follows that the possible shifts 745 = [E[d;1 — dl5], with

l=1,...,4, are unrestricted.

3.5 CLATE and heterogeneous treatment effects

Corollary 1 shows that § in (1) does not equal A ji ;. if Assumption 2 or 3 is violated, and
the LATEs are heterogeneous. Since A jx,, is only identified if m = j and n = k, we cannot
identify from the IV coefficients whether the LATEs are indeed heterogeneous. However, the

corollary below shows that CLATE can identify treatment effect heterogeneity.

Corollary 3. Under Assumptions 1(a)-(c), 1 (d)-3° and the model in (8) and (9), it holds for

the individuals with r» € Sy, that under the following two conditions:
L Ifj€Sa Njkim = Dikik — Amkmk for L€ Sq and k,me Sy, foralla # b,

2. If] €Sy, Ajklm = Alkik —Amkmkfork €Sy andalll,me S,

the 1V coefficients equal
- Y jeSa LkeS, LieS, BUkT1jk@jk X jes, LkeS, LmeS, BmkTmjk® jk
ﬁab = - ’ (18)
D €Sy 2keSy 218, 1 jkW jk D jeSa 2keSy, omeS, Tmjk® jk

wherewj =Plz = jlz€ Sa,12 € SpIPlz = klz € Sp, 12 € Sp).

The proofis deferred to Appendix G. In addition to the CLATE assumptions, Corollary 3
imposes homogeneity assumptions under which the IV coefficient § j; identifies A j jx, even
if the LATE Assumptions 2 and 3 are violated. In this case, the weighted average of IV coef-
ficients in (18) equals the corresponding CLATE. Hence, the homogeneity assumptions are

violated if the equality in (18) does not hold.
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Corollary 1 shows that the bias in the IV coefficients from an off-diagonal shift between
treatments [ and m is zero with A g, = Ajgik — Amikmi- The CLATE assumptions prevent
off-diagonal shifts across treatments within preferred clusters S, with a # b as a result of a
switch in z from k € S, to j € S,;. Therefore, we only require homogeneity assumptions on
the effects between treatments across a preferred cluster and a next-best cluster (condition
1) and for all treatment changes as a result of a switch in z within Sj; (condition 2). These
shifts correspond to 7215 and 725 in (17), and the final row and column in (17), respectively.

Kirkeboen, Leuven, and Mogstad (2016) show that LATE is unbiased under the stronger
homogeneity assumption that E[y’ — y™] is common across all individuals for all treatments
I and m. Under this assumption A jx;p, = E[y'—y*1—-E[y™-y*], from which the conditions in
Corollary 3 follow. In case the next-best treatment cluster has only one individual treatment
Sp = {k}, the assumptions in Corollary 3 boil down to A jx;x = Ak, which imposes that the

treatment effects are common across individuals for which the instrument switches from k.

In this case, Bap = Xies, Bik X jes, Ajkik-

4 Granularity estimation

In general, the treatment clusters {Sc}gz1 that satisfy the CLATE assumptions are not ob-
served. This section explains how these treatment clusters can be estimated from individual
treatment data for d and z. We estimate the set of treatment clusters S with the highest level
of granularity so that treatment effects are estimated at the finest level.

To obtain the highest level of granularity, we estimate the set of treatment clusters S
separately for each sample of individuals with next-best treatment r» = k, with k =1,..., J.
Moreover, we start at the individual treatment level and only cluster treatments for which
we find violations of Assumptions 2 and 3. As we show in Figure 1, each assumption ex-
cludes different off-diagonal shifts, but together with Assumption 1(d) they exclude all off-
diagonal shifts. This results in the necessary condition that 7 = 0, which serves as the
null-hypothesis for a two-sided t-test in (2). If the necessary condition is rejected, this is
evidence of the presence of off-diagonal shifts, which implies that at least one of the As-
sumptions 1(d), 2 or 3 is violated.

Next, we cluster the treatments corresponding to the violations of the LATE assumptions
in such a way that the resulting set of treatment clusters satisfies the CLATE assumptions.

Since 7y = P[dlj — dlk =1]- P[dlj - dlk = —1], a #1;jx > 0 implies the presence of off-diagonal
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shifts towards treatment /, and 7;jx < 0 off-diagonal shifts from treatment /. According to
Figure 2, shifts towards [ only satisfy the CLATE assumptions if / is in the same treatment
cluster as treatment j. On the other hand, shifts from treatment / are only allowed if / is in
the same treatment cluster as treatment k. Therefore, we merge the clusters of / and j when
f1jx >0, and of l and k when 7 < 0.

We complete the clustering algorithm with a rule for the treatments for which the neces-
sary condition is rejected and one of the following statements hold: (i) 7 j;x > 0 together with
fyjk <0, or (ii) 7% < 0 together with 7, > 0. To ensure disjoint clusters of treatments,
we merge in both cases the cluster of treatment / with the next-best cluster of k. In (ii) we
additionally merge treatment m with the next-best cluster of k. The CLATE assumptions
do allow for shifts from the next-best cluster, and hence 7, < 0 in (i) and 7, jx < 0 in (ii)
are accommodated. Since CLATE does not consider treatment shifts or instrument switches
within the next-best cluster, the CLATE assumptions do not impose restrictions on the first
stage coefficients in the column related to z;: 7 jjx in (i) Or 7,k in (ii). This clustering rule is
automatically satisfied if clusters are first merged according to 7;;x < 0, and the merge of a
preferred treatment cluster and next-best treatment cluster results in a next-best treatment
cluster.

Algorithm 1 summarizes the CLATE estimation algorithm. The algorithm tests the nec-
essary condition for all / and j with [ # j. In case the necessary condition is rejected, there
is evidence for the presence of off-diagonal shifts, and hence the LATE assumptions are vi-
olated, and clusters are merged. On the other hand, if we cannot reject 7 j = 0, there is no
evidence of violation, and no further action is required. The final set of treatment clusters
S satisfies the CLATE assumptions in Theorem 2 for the sample of individuals with r, = k.
The cluster that includes treatment k is referred to as the next-best treatment cluster. Con-
ditional on S, CLATE can be estimated using two-stage least squares.

Note that the CLATE assumptions do not necessarily hold for the resulting set of CLATEs.
Failure to reject the necessary condition 7;j; = 0 does not necessarily mean that Assump-
tions 2 and 3 are satisfied, as the probability of the shifts dlj -d lk =1and dlj -d lk = —1 might
cancel outin 7 = IP[dlj - dlk =1]- P[dlj — dlk = —1]. Therefore, this procedure is useful for
testing which set of treatment clusters do not satisfy the CLATE assumptions, but cannot
guarantee for which set the CLATE assumptions are satisfied.

Algorithm 1 estimates separate CLATEs S, for J groups of individuals with r, = k,

k =1,...,], to obtain the highest level of granularity. However, treatment effects may be

22



Algorithm 1 CLATE estimation for the sample of individuals with next-best treatment k
1: Set J treatment clusters: one for each treatment j

2: Estimate I1j in (2) with least squares

3: foralll # j do

4: Two-sided t-test for Hy: 7 =0

5: if Hy: 71 = 0isrejected and 71, <0 then
6: merge the clusters of / and k

7 elseif Hy: 7 = 0 is rejected and 7, > 0 then

8: merge the clusters of [ and j
9: end if
10: end for

11: Define S as the set of nonempty clusters

12: Given S, estimate Bab for all a # b with k € S, in (8) and (9) with two-stage least squares

hard to identify when the sample corresponding to r, = k is small. Appendix H shows that
the CLATEs can potentially be more precisely estimated under a homogeneity assumption

across the individuals with r; € S,

5 The fuzzy regression discontinuity design

Most applications of the multiple unordered treatment IV model have used a fuzzy regres-
sion discontinuity design (RDD) (Kirkeboen, Leuven, and Mogstad, 2016; Heinesen and
Hvid, 2019; Dahl, Rooth, and Stenberg, 2020; Kirkeboen, Leuven, and Mogstad, 2021). This
section provides an expression for CLATE in the fuzzy RDD used in this literature. Appendix I
derives an expression for CLATE with general covariates. We leave nonparametric IV mod-
els with covariates —as studied by Froélich (2007) in a binary treatment setting— for future
research, but note that the typical sample sizes in multiple unordered treatment settings do
not allow for nonparametric estimation.

In a fuzzy RDD, treatment assignment z is determined by the value of a continuous run-
ning variable lying on either side of a fixed cutoff. We analyze the setting where the running
variable determines assignment to the multiple unordered treatments as follows:

rn s=0,

zZ= (19)
ro s§<0,
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where s is defined as the running variable minus the cutoff. Hence, by conditioning the
sample on individuals with r, = k as next-best treatment, z either equals k or the preferred
treatment j # k.

We extend the treatment cluster IV model in (8) and (9) by including the running vari-
able and fixed effects for preferring treatment j and having treatment k € Sj;, as next-best
treatment. This results in the second stage model

Y=Y vixi+ Y, Pakda+Yis+Ek, (20)
I#k a#b

and the corresponding first stages are
da=Y NakXi+ Y RackZe+WakS+ lar, foralla#b, 21)

I#k c#b
where the fixed effect x; equals one if r; = j and zero otherwise. Therefore, the instrument z
can only switch from r, = k'to r; = x, with x = }_ 4 jx;j, for the individuals with r, = k. Recall
that in the case that each treatment cluster contains only one treatment, this model boils
down to the (unclustered) multiple unordered treatment IV model, and hence the results in

this section hold both for LATE and CLATE with a fuzzy RDD.
The fuzzy RDD replaces the independence assumption 1(b) by the local continuity as-

sumption (Dong, 2018; Imbens and Lemieux, 2008; Hahn, Todd, and Van der Klaauw, 2001):
Assumption 1°. Continuous potential outcomes at the cutoffs = 0
b. (Continuity) yd and d* are continuousin s ats=0 foralld, z.

This assumption implies that individuals just above the cutoff are similar to individuals
just below the cutoff. Theorem 3 shows that the following CLATEs are identified under the

local continuity assumption.

Theorem 3. Under Assumptions 1(a), 1° (b), 1(c), 1€ (d)-3%, and the model in (20) and (21),
it holds for the individuals with r» = k that

Ba=Y ¥ % )L,-klm[E[y’—ymd{—d,’“:1,d,f;1—d,’§1:—1,x:j,s:o,r2:k], 22)

jeSaleS, meSy,

forall a for which k ¢ S, and k € Sy, with

P[dlj_dlk:1’d£1_dfn=—1|x=j,8=0] I}LIEIOP[XZj|Z€Sa,S: V]

Ajkim = , . )
Y LmP[x=jlzeSes=v] ¥ ¥ P[dl]—dlk:l,d,]n—d,’;:—llx:j,s:o]

jeS,v—*0 leS, meSy,

where the probabilities implicitly condition on ry = k.
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The proof is deferred to Appendix J. The IV coefficients in the fuzzy RDD IV model iden-
tify a weighted average of LATEs, with weights 0 < Ak, < 1and Y jes, Y ies, Xmes, Ajkim =
1. Similar to Theorem 2, the weights represent a normalized proportion of shifts correspond-
ing to each LATE: the individuals corresponding to the fixed effect x = j that shift from treat-
ment m to treatment / as a result of a switch in the instrument from k to j. However, the
weighted average of LATEs does not include a summation over k € Sy, as it conditions on
the sample of individuals with r, = k. Appendix K derives CLATE with a fuzzy RDD applied

to the total sample of individuals.

6 The effect of field of study on academic student progress

This section studies the effect of field of study on academic student progress. To do so, we

exploit a natural experiment in the Portuguese higher education system to estimate CLATEs.

6.1 Empirical context and strategy
6.1.1 Higher education admission in Portugal

In the final year of high school, prospective students in Portugal apply to public higher edu-
cation via a centralized admission process of the Direcao-Geral do Ensino Superior (DGES;
Directorate General for Higher Education). Only 17 percent of the students use a different
enrollment system to enroll into private higher education (Pordata, 2022). The public appli-
cation process is commonly referred to as Regime Geral de Acesso (General Access Regime).
Applicants apply to a field and institution simultaneously, which we will refer to as a course
(e.g., Law at the University of Lisbon). On applying, applicants submit a ranking of up to six
courses based on their preferences.

Each course has a quota (g) of applicants that can be admitted, which are set in agree-
ment between the institutions and the Ministério da Ciéncia, Tecnologia e Ensino Supe-
rior (MCTES; Ministry of Science, Technology and Higher Education) and are stable across
years. DGES ranks for each course the applicants by their application score. This score is a
weighted average of an applicant’s high school and national exam grades. Since each course
weighs the high school grades and the different national exams differently, the application
scores are both applicant- and course-specific (Article 33 until 36 of DGES (2019)).

The applicants are assigned to courses using an iterative process (Article 37 of DGES
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(2019)), similar to the college-proposing Gale-Shapley algorithm (Gale and Shapley, 1962):

 Step 1: Each course makes offers to the first g applicants on its ranked list. Each ap-

plicant keeps the best offer according to her submitted ranking and rejects the rest.

e Step s = 2: Any course rejected in step s —1 by n = 1 applicants proposes to the next n
applicants on its list. Each applicant keeps the best offer according to her submitted
ranking among all the proposals received in step s (including the one retained in step

s—1) and rejects the rest.

The algorithm terminates when the allocation is not updated, and matches each course to
the set of g most preferred applicants who did not reject it.

One to two weeks before the start of the academic year, each applicant receives the offer
from her assigned course. Within that week, applicants have to accept the offer, participate
in a second cycle, or withdraw from the application process. The slots that have remained or
were not accepted after the first cycle are then allocated to the applicants who participate in
the second cycle according to the same algorithm. The process concludes with an identical
third cycle. Second and third cycle applicants must submit a new ranking of up to six courses
among the remaining courses only. Our analysis will use a student’s first cycle from the first
observed application.

Active students that want to change field of study have to make an official request at
DGES. This process is commonly referred to as Mudanca de Curso (Change of Course).
DGES (2015) describes that approval of such a request depends on course availability and
minimum legal requirements. This process also includes the potential accreditation of rele-

vant subjects from a student’s previous course.

6.1.2 Preferred and next-best field of study

The matching algorithm generates (ex-ante) unknown application score cutoffs for each
course. Each cutoff represents the lowest application score that qualifies an applicant to
receive an offer from that course. The preferred and next-best field of study can be con-
structed from these course cutoffs and course rankings in three steps. First, we only con-
sider applicants who apply to at least two different fields. Second, we construct preference
blocks, where a block gives all consecutive ranked courses within the same field the same
rank. For example, if an applicant ranks a course in a field from different institutions as first

and second in her course ranking, then this applicant’s first block contains two courses.
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Third, we construct a sample of applicants with two blocks of preferences by only con-
sidering an applicant’s assigned block, the block above (if available), and the block below
(if available). If the application score is below the cutoff for each course within the block
below the assigned block, we remove this block. This ensures that the applicant would have
been assigned to the field of the block below if she had scored below the course cutoff(s) of
her assigned block. Subsequently, we drop applicants that have neither an available block
above or below her assigned block. For applicants that have both an available block above
and below her assigned block, we drop the block below.

In this sample, the highest ranked block is our measure for the preferred field ry, and
the lowest ranked block is our measure for the next-best field r,. This sample includes 57
percent of the total applicants. The instrument z; for enrollment in field j equals one if j is
the preferred field and the application score for j exceeds the cutoff. In our fuzzy RDD, the
running variable s is the distance between the application score and the cutoff. We measure
this as the maximum re-centered application score amongst all courses within the highest
ranked block. For applicants assigned to their preferred (next-best) field, this value is always
positive (negative) and represents the margin of being assigned to their next-best (preferred)
field.

Table 1 illustrates the construction of the preferred and next-best field. Panel A shows the
course ranking of an applicant with field j in the first block and field k in the second block.
The ex-post realized cutoff to be admitted to field j at institution A is 180. The applicant
has an application score for field j of 180.1, and so she receives an offer from field j. This
applicant also scores above the cutoff for field k at institution A in the second block. Hence,
field j (k) is the applicant’s preferred (next-best) field.

Panel B illustrates the fuzzy RDD design by comparing the top applicant to an applicant
that has the same preferred and next-best field, but has a slightly lower application score
for preferred field j at institution A, namely 179.9. The fuzzy RDD compares the students
just above and below the cutoff, and uses a scoring above the cutoff of 180 as an instrument
for field j enrollment (instead of k). As students are likely to be similar near the cutoff, this
identifies the causal effect of field j assignment.

Panel B illustrates variation in fields of study while keeping the institution fixed. How-
ever, in our analysis, we also indicate courses with the same field of study from different
institutions as the same treatment. For instance, field k at institution A or D are indicated as

the same treatment k. Panel C illustrates this, where our analysis also compares the top ap-
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Table 1: Illustration of preferred and next-best fields and the instruments

Ranking Field Institution Score Cutoff Block z s

Panel A: Course ranking

1st j B <190 190 1 j 01
2nd j A 180.1 180 1 j o1
3rd k A >170 170 2 j 0.1
4th k B 2 j 0.1
5th l B 3 j 0.1
6th j C 4 j 0.1
Panel B: Preferred and next-best fields
Preferred (r1) j A 180.1 180 1 j 0.1
Next-best (1) k A >170 170 2 j 0.1
Preferred (r1) j A 179.9 180 . k -0.1
Next-best (r7) k A >170 170 . k -0.1
Panel C: Preferred and next-best fields while institution changes
Preferred (1) j A 180.1 180 1 j 0.1
Next-best (r2) k A > 170 170 2 j 0.1
Preferred (1) j C 169.9 170 . k -0.1
Next-best (r2) k D > 180 180 . k -0.1

Notes: panel A provides an illustrative example of an applicant’s course ranking and the corresponding
outcome of the admission mechanism. Panel B and C illustrate how this ranking and outcome can be used

in a fuzzy RDD. See the text for details on the construction of the columns Block, z, and s.

plicant to an applicant that has preferred field j at a different institution than her next-best
field k.

In case the preferred and next-best field are measured with error, switches in the instru-
ment are not restricted between r, and r;. Section 2.3 shows that the additional switches
also generate off-diagonal shifts, even without preference updating. There might be two

reasons for the measurement error. First, our measure of the preferred and next-best field
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may not refer to the top two fields in the course ranking. However, the descriptive statistics
in the next section show that our measure of r; corresponds to the top field in the course
ranking for 88% of our sample. By construction, if r; corresponds to the first ranked field, r,
corresponds to the second ranked field.

Second, the college-proposing Gale-Shapley algorithm is not strategy proof from the
applicants’ perspective. In particular, it has been shown that an applicant might have in-
centives to misrepresent her preferences from the second ranked course onwards (Roth,
1982). Hence, if applicants truly understand the allocation mechanism, the preferences
in the course ranking are not necessarily an applicants true preferences from the second
ranked course onwards. This may especially generate error in our measure for the next-best
field.

6.1.3 Data

We use data from two different sources. First, the higher education application data from
the DGES contains for each applicant the six listed courses, their application scores, the as-
signed course, and the course cutoff for all courses, from 2008-09 unto 2019-20. We consider
for each student the first cycle from the first observed application. We refer to students that
applied within the same year as a cohort.

The second data set has the student outcome data from the Direcdo-Geral de Estatisti-
cas da Educacao e Ciéncia (DGEEC; Directorate for Education Statistics). For each enrolled
student, this data set contains the enrolled course, whether the student is active in the first,
second, or third year of that course, and the study points collected in that course in the pre-
vious year, from 2013-14 unto 2019-20. These study points are denoted by ECTS (European
Credit Transfer System). This measure for student progress accommodates the transfer of
students between European universities. One ECTS is equivalent to 28 hours of studying. A
course of five (ten) ECTS is considered as a medium-sized (large) course. Sixty ECTS account
for one year of study.

The two data sets are merged so that we observe for each student the course ranking
(r1, 12), the assigned course (z), the application score minus the cutoff (s), the first observed
enrollment in the second year of a course (d), and the ECTS collected in that second year (y).
A student’s enrollment in the first year needs to be observed to combine the two data sets.
Hence, the first cohort for which we can combine the data sets is 2013-14. We take 2016-17

as the final cohort, so that we can observe course enrollment in the second year up unto
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Table 2: Descriptive statistics for estimation sample

Panel A: Means and standard deviations

Running variable (re-centered)

1(running variable > 0)

No. of courses ranked

1(top two courses = {r1, 12})

1(d # z) in year 2

No. of ECTS in year 2

Observations (cohorts)

Mean

8.56

0.68

5.46

0.88

0.08
54.18
50252 (4)

Std. dev.

18.17

0.99

13.52

Next-best field

Agriculture, forestry and fisheries

Architecture and construction

Arts

Business sciences

Commercial services

Engineering
Health
Humanities
IT

Information and journalism

Law
Life sciences

Manufacturing

Mathematics and statistics

Physics

Social and behavioral sciences

Social services
Teacher

Veterinary

Panel B: Common preferred fields per next-best

Total obs.

404

2132
1785
7498
3036
5258
2913
2903
1807
1358
1411
4402
1153
968

2705
7062
1290
1417
750

Largest pref. field:

Name
Veterinary
Engineering

Arch. and constr.

Soc. and beh. sci.

Business sci.
Health

Life sciences

Soc. and beh. sci.

Engineering
Business sci.
Business sci.
Health

Engineering
Engineering
Engineering

Business sci.

Soc. and beh. sci.

Soc. and beh. sci.

Health

Obs.

155
1009
602
3014
993
1906
1055
885
1369
338
477
2351
682
390
1135
2507
409
512
590

2nd largest pref. field:

Name

Life sciences
Arts
Humanities
Comm. services
Health

Life sciences
Engineering
Business sci.

Business sci.

Soc. and beh. sci.

Soc. and beh. sci.

Engineering
Health
Business sci.
Life sciences
Law

Teacher
Social services

Life sciences

Obs.

65
780
273
878
453
1002
726
550
294
290
464
1164
102
175
610
1174
273
212
59

Notes: columns of Panel A display descriptive statistics of our estimation sample, based upon 50252 appli-

cants from 4 cohorts. The number of ECTS and 1 (d # z) refer to the first observed enrollment in the second

year of a course. Panel B provides an overview of the number of applicants per combination of next-best

and preferred field. For instance, 477 of 1411 applicants with Law as next-best prefer Business sciences.
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2018-19, allowing for a one year delay. This results in the final data set with four application
cohorts from 2013-14 unto 2016-17.

Panel A of Table 2 shows descriptive statistics of the final estimation sample. The final
estimation sample includes 36 percent of the total number of applicants in the four applica-
tion cohorts. The mean of the running variable is positive, and 68% of the students are as-
signed to their preferred field. The applicants have on average 5.46 courses on their course
ranking. In 88% of these rankings, the top two fields equal our measure for the preferred
and next-best field. The enrolled field in year two is different from the initially assigned
field for 8% of the students. Next to always- and never takers, this suggests the presence of
off-diagonal treatment shifts.

Panel B of Table 2 provides an overview of the most common preferred fields for each
next-best. We have nineteen (unclustered) fields of study, which we write with a capital
letter for clarity. We find next-best fields with a skewed distribution of students across pre-
ferred fields. For instance, 75% (15%) of the students with IT as next-best prefer Engineering
(Business sciences). The remaining 10% prefer any of the other 16 fields. Panel B also shows
that the number of observations differs across next-best fields. For example, there are 7498
students with Business sciences as next-best versus 404 students with Agriculture, forestry
and fisheries.

Figure 3 shows the mean of the second year ECTS across all students enrolled in a field
of study, together with the 95% confidence interval. There is substantial variation in student
progress between fields, with less second year progress for fields like Architecture and con-
struction and Physics, and more progress for Health and Information and journalism. The
fields Law and Social and behavioral sciences are close to the mean ECTS of 54.18 across
all fields of study (see panel A of Table 2). These mean comparisons are in line with previ-
ous research that documents correlations between fields of study and measures of academic
progress. For instance, it is often found that Health students have higher on-time comple-

tion rates (Lassibille, 2011).

6.1.4 Model specification and estimation

The outcome variable y equals the number of ECTS collected in the first observed enroll-
ment in the second year of a course. The endogenous treatment variable d; equals one if
the corresponding second-year course enrollment is in field j. We estimate the CLATEs in

the fuzzy RDD model as specified in (20) and (21) per sample of applicants with r, = k. The
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Figure 3: Mean ECTS per field of study
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Notes: this figure shows the mean second year ECTS across all students enrolled in a field of study, together

with the 95% confidence interval of the mean.

clusters are estimated with Algorithm 1, the coefficients with 2SLS, and we employ robust
standard errors.

Our sample sizes do not allow for local nonparametric estimation. Therefore we follow
Imbens and Lemieux (2008), and assess the robustness of our results against more flexible
model specifications. First, we include an additional interaction term in the first stage be-
tween s and an indicator for scoring above the cutoff across all preferred fields (3.5 Z;). We
find that 87 percent of the first stage estimates corresponding to } ..} Z. x s are statistically
insignificant at the 1%-level. Second, we include s2 as an additional variable in both the first
and second stage. Similarly, 86 (95) percent of the first (second) stage estimates on s% are

statistically insignificant at the 1%-level. Moreover, in both cases the estimates of interest

are qualitatively similar.
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Figure 4: Balancing test
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Notes: this figure shows a scatterplot of the application score to the next-best field against the running variable
with a fourth-order polynomial estimated with a uniform kernel on the full estimation sample (the default of

the Stata program rdplot).

6.1.5 Validity of the continuity assumption

This section assesses the validity of the local continuity assumption (Assumption 17). First,
since we observe the application score to the next-best field for all students, we can examine
whether it is continuous at the cutoff. Figure 4 plots the maximum score across all courses
in the preference block of the next-best field against the running variable. Consistent with
continuous potential outcomes, this score does not show a discontinuity around the cutoff.
This result is confirmed with a pooled reduced form regression on the students from all next-
best fields: We regress the application score to the next-best field on the running variable
and a single treatment dummy indicating whether students scored above the cutoff, and
the estimate on this treatment dummy is equal to -0.29 and has a p-value of 0.19.

Second, we examine the density of the students near the course cutoffs (McCrary, 2008).
If applicants have precise control over their application score, we might observe bunch-
ing just above the cutoffs and the local continuity assumption may not be valid (Lee and

Lemieux, 2010). In contrast, Figure 5 shows excess mass just below the cutoffs. Moreover,
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Figure 5: Discontinuity in density test
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Notes: this figure shows the density of the running variable estimated with a second-order polynomial and a
third-order polynomial for the bias-correction estimate, an optimally-chosen bandwidth with the full estima-
tion sample as plot range, a triangular kernel, and 95% confidence intervals with jackknifed standard errors

(the default of the Stata program rddensity).

the bias corrected discontinuity test introduced in Cattaneo, Jansson, and Ma (2018) has
a test statistic equal to 0.11 with a p-value of 0.91, implying that we cannot reject the null
hypothesis of no discontinuity.

The continuity assumption is also consistent with the setting at hand. The number of
applications is different each year, and hence the cutoffs change from year to year and are
unknown at the time of application. The cutoffs only become publicly available when the
applicants receive their offer. A regression of the course cutoffs across years on course dum-

mies has an R-squared of 0.81, which confirms the movement in the cutoffs across years.

6.2 Results
6.2.1 LATE first stage

We use the nineteen unclustered fields of study to estimate the first stage coefficients in (21)

for each sample corresponding to the different next-best fields. Figure 6 and 7 show the
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estimated first stage matrices corresponding to the next-best fields Architecture and con-
struction and Social and behavioral sciences, respectively. The rows represent the treatment
variables and the columns the instruments. A black (grey) element indicates that the esti-
mate is positive (negative) and significantly different from zero at the 1%-level.

Figure 6 shows that six of the fifteen off-diagonal first stage estimates for the Engineering
treatment are negative and significantly different from zero. These estimates suggest that in-
dividuals with initial exposure to the next-best Architecture and construction update their
preference towards Engineering. This results in the treatment shift from Engineering to-
wards the preferred field in the corresponding column, when the instrument switches from
the next-best Architecture and construction towards this preferred field.

Figure 7 shows four treatments with negative off-diagonal first stage estimates that are
significantly different from zero, with next-best Social and behavioral sciences. The signif-
icant negative estimates on the treatment Humanities suggest that individuals with initial
exposure to the next-best Social and behavioral sciences change their preference towards
Humanities. The other significant negative off-diagonal estimates for the treatments Arts,
Business sciences, and Law imply that individuals assigned to the next-best Social and be-
havioral sciences also change their preferences towards Arts, Business sciences, and Law.

Figure 7 also shows a significant positive off-diagonal estimate for the treatments Busi-
ness sciences and Information and Journalism. The positive estimate of the instrument Law
on treatment Information and journalism suggests that initial exposure to the preferred
field Law may result in preferring Information and journalism. This explains a treatment
shift from the next-best Social and behavioral sciences towards Information and journal-
ism, when the instrument switches from the next-best towards the preferred field Law.

The first stage estimates corresponding to the other seventeen next-best fields are de-
ferred to Appendix L. Eight of these first stage matrices have off-diagonal estimates signifi-
cantly different from zero. This implies that for nine of the nineteen next-best fields, such as
Health and Manufacturing, we find diagonal first stage matrices. The first column in Table 3

provides an overview of the ten fields with significant off-diagonal estimates.

6.2.2 Treatment clusters

Next, we apply Algorithm 1 to the first stage estimates of the unclustered fields of study to in-
fer the treatment clusters. The fields corresponding to rows with negative off-diagonal esti-

mates will be clustered with the next-best field. For next-best Architecture and construction
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Figure 6: LATE first stage estimates with next-best Architecture and construction

Agriculture, forestry and fisheries -0.000 | -0.000 | -0.000 | -0.000 | -0.000 -0.000
Arts |- -0.007 | -0.004 [ -0.007 | -0.007 | -0.006 -0.004

Business sciences |- -0.004 | -0.085 | -0.004 | -0.004 | -0.065 -0.002
Commercial services |- 0.078 | -0.003 | -0.005 | 0.023 [ -0.004 -0.003
Engineering —o.ozaﬂro.zsz -0.032 | -0.262 -o.ozs.-o.o19

Health 0.003 | 0.002 | 0.003 | 0.003 | 0.002 0.002

Humanities 0.002 | 0.001 | 0.002 | -0.075 | 0.002 0.001

IT - -0.001 | -0.001 | -0.001 | -0.001 | -0.001 -0.001

Information and journalism 0.001 | 0.001 | 0.001 | 0.001 | 0.001 0.001
LaW 0.001 | 0.004 | 0.002 | 0.001 | 0.004 | 0.002 [ 0.002 | 0.001 | 0.001 EEN-M 0.002 0.001

Life sciences |-0.000 | -0.000 | -0.000 |-0.000 | -0.004 | -0.000 | -0.000 | -0.000 | -0.000 |- -0.000
Manufacturing |-0ot|-0.001 |-0.001 | -0.001 |-0.001 | -0.001 |-0.001 | 0001 |-0.000 | - -0.001
Mathematics and statistics |-0.001 |-0.002 | -0.001 |-0.001 | -0.002 | -0.001 | -0.001 | 0.001 [ -0.001 |- -0.001

Physics |-0.005 |-0016|-0.006 | 0.005 | 0.005 | -0.006 | 0.007 |-0.005 | -0.003 | - 0,005

0.001

Social and behavioral sciences | 0.001 | 0.004 | -0.058 | 0.001 | 0.007 | 0.001 | 0.001 | 0.001 | 0.001

Social services |-0.001 |-0.002-0.001 |-0.001 | -0.002 | 0.001 | -0.001 | -0.001 [ -0.001 |-0.001 | -0.002 | -0.001 | -0.002 [ -0.002 | -0.001 -0.001

Teacher 0.001 |-0.005 | 0.002 [ 0.001 [ 0.002 | 0.002 | 0.002 | 0.001 | 0.001 | 0.002 | 0.003 | 0.001 [ 0.003 | 0.002 | 0.002

Veterinary 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 [ 0.001 | 0.000 | 0.001 |-0.124 | 0.001 | 0.001 | 0.029 | 0.001 0.001
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Notes: this figure shows the estimated first stage coefficients corresponding to the next-best field Architecture
and construction. The rows represent the treatments and the columns the instruments. A black (grey) element

indicates a positive (negative) estimate significantly different from zero at the 1%-level. There is no variation

in the instruments for Social services and Veterinary conditional on the fixed effects.

in Figure 6, this implies that Engineering is clustered with next-best. For next-best Social

and behavioral sciences in Figure 7, the fields Arts, Business sciences, Humanities, and Law

are clustered with next-best.

For next-best Social and behavioral sciences in Figure 7, we find two positive off-

diagonal estimates: treatment Information and journalism on instrument Law, and treat-

ment Business sciences on instrument Commercial services. As Law is already clustered

with next-best, and CLATE does not consider instrument switches within the next-best clus-
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Figure 7: LATE first stage estimates with next-best Social and behavioral sciences

Agriculture, forestry and fisheries -0.000 | -0.000 | -0.000 [ -0.000 | -0.000 -0.000 | -0.000 | -0.000 [ -0.000 | -0.000
Architecture and construction -0.001 | -0.000 | -0.000 | -0.000 | -0.000 -0.001 | 0.012 {-0.000 | -0.000 | -0.000
Arts 0.004 | 0.000 -0.007 | 0.007 0.018 | 0.012 | 0.000 | 0.000 | 0.000
Business sciences 0.016 | 0.008 0.005 | -0.020 0.029 | -0.077 | 0.008 | 0.018 | 0.007
Commercia| services -0.010 | 0.002 | 0.002 |-0.007 | 0.009 -0.034 | 0.002 [ 0.002 | 0.011 | 0.002
Engineering 0.000 |-0.251 | 0.002 | -0.002 | 0.005 -0.002 [ -0.002 | -0.001 | -0.002 | -0.001
Health 0.003 | 0.001 |-0.007 | 0.003 | -0.024 0.019 | 0.001 |-0.015 | 0.001 | 0.001

Humanities -0.021 -

|T 0.001 | 0.012 -0.000 [ 0.001 | 0.001 | 0.001 | 0.001 oA 0.001 | 0.001 | 0.001 | 0.001| 0.001

-0.003

Information and journa”sm -0.001 | 0.010 | -0.005 | -0.001 |-0.001 | -0.000 | 0.001 |- 0.010 | -0.001 [ -0.001 | -0.000 | -0.001 | -0.000
Law -0.005 -o.oosﬂ-o.oez -0.004 | -0.003 [ -0.003 | - 0831 & -0.005 | -0.005 | -0.004 | -0.004 [ -0.003
Life sciences -0.002 | -0.002 | -0.002 | -0.002 | -0.002 | -0.011 [ -0.002 | - -0.002 [ 0.010 [ -0.002 | 0.007 | -0.001
Manufacturing -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 -0.000 | -0.000 | -0.000 | -0.000 | -0.000
Mathematics and statistics -0.004 | -0.004 [ -0.003 | -0.004 [ -0.004 | -0.003 [ -0.002 | 0.247 [-0.003 | -0.004 | -0.003
Physics -0.000 | -0.000 | 0.000 | -0.000 | -0.013 [ -0.000 | -0.000 | -0.000 | -0.000 | 0.001 | 0.013
Social services 0.000 | 0.000 [ -0.002 | 0.000 | 0.000 | 0.002 | 0.001 | 0.000 | 0.003 | 0.000 | 0.000
Teacher 0.003 | 0.003 | 0.002 | 0.003 | 0.003 | 0.006 | 0.005 | 0.002 | 0.005 | 0.004 | 0.002
Veterinary -0.000 | -0.000 [ -0.000 | -0.000 | 0.008 | 0.004 |-0.000 | -0.000 | -0.000 | -0.000 | 0.006
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Notes: this figure shows the estimated first stage coefficients corresponding to the next-best field Social and
behavioral sciences. The rows represent the treatments and the columns the instruments. A black (grey) el-
ement indicates a positive (negative) estimate significantly different from zero at the 1%-level. There is no
variation in the instruments for Agriculture, forestry, and fisheries and Manufacturing conditional on the fixed

effects.

ter, the first positive off-diagonal does not result in an additional cluster. Since Business sci-
ences is also clustered with next-best, and a merge between a preferred and next-best treat-
ment cluster results in a next-best treatment cluster, we have one large next-best treatment
cluster with Commercial services, Arts, Business sciences, Humanities, Law, and Social and
behavioral sciences.

Across all next-best fields, we find one preferred treatment cluster. With Commercial
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Table 3: Clusters for the next-best fields with significant off-diagonal estimates

Next-best field k m clustered with k [ clustered with j
Agriculture, forestry and fisheries Veterinary -
Architecture and construction Engineering -
Commercial services - Business sciences

and Humanities

Engineering Business sciences -
Humanities Information and journalism -
IT Engineering -
Life sciences Veterinary -
Mathematics and statistics Engineering -
Social and behavioral sciences Arts, Business sci., Commercial -

services, Humanities, and Law

Teacher Life sciences -

Notes: the nine next-best fields without significant off-diagonal estimates are Arts, Business sciences,

Health, Information and journalism, Law, Manufacturing, Physics, Social services, and Veterinary.

services as next-best, the treatment Business sciences and instrument Humanities have a
significant positive off-diagonal estimate, which results in a preferred treatment cluster in-
cluding Business sciences and Humanities.

We find ten treatment clusters in total, which are in general in line with preference
updating. Table 3 documents the clusters for all ten next-best fields with significant off-
diagonal estimates. According to preference updating, the treatment clusters contain sim-
ilar fields. We find that, for instance, Engineering is in clusters with Architecture and con-
struction, IT, and Mathematics and statistics. These clusters contain STEM (Science, Tech-
nology, Engineering and Mathematics) fields. On the other hand, Humanities clusters with
fields of study from the Social sciences umbrella: Arts, Business sciences, Commercial ser-
vices, Information and journalism, Law, and Social and behavioral sciences. The clusters
are also consistent with the presence of lower switching costs between similar fields of study.
Similar fields may share parts of the curriculum and subjects, which makes the accreditation
of previous subjects easier. The first stage CLATE estimates, using the treatment clusters in

Table 3, do not show evidence of remaining violations.
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6.2.3 CLATE second stage

Figure 8 shows the CLATE estimates. The rows correspond to next-best samples and the
columns to treatments or treatment clusters. Table 3 shows that we find treatment clusters
for ten next-best samples. We find one preferred treatment cluster, Business sciences and
Humanities, with Commercial services as next-best. The corresponding CLATE is in the
element corresponding to Business sciences, the element of Humanities is left empty, and
both elements are indicated by an asterisk.

Figure 8 contains 235 CLATE estimates. From these estimates, 111 (44) are larger than
five (ten) in absolute value, and 24 (12) of these 111 (44) CLATE estimates are also signif-
icantly different from zero at the 1%-level. This implies that fields of study speed up or
slow down student academic progress with the equivalence of a medium-sized or even large
course per year. As many European universities, including those in Portugal, have academic
dismissal policies that can dismiss students in case they do not obtain a minimum number
of ECTS (Sneyers and Witte, 2018), this result implies that the choice of field of study has a
substantial impact on academic student progress. Note that in the United States and Canada
these academic dismissal policies are often based upon a student’s GPA (Lindo, Sanders, and
Oreopoulos, 2010; Ost, Pan, and Webber, 2018).

The CLATE estimates further identify fields that have a positive or negative impact on
student progress. For instance, the estimates in Figure 8 suggest that Law (Information and
journalism) slows down (speeds up) student academic progress. Across all next-best fields,
the majority of the CLATE estimates of treatment Law (Information and journalism) are neg-
ative (positive), whereas with Law (Information and journalism) as next-best the majority of
the CLATE estimates are positive (negative). Our finding on Law is consistent with Garrett
and Bahia (2020), who argue that, in Portugal, Law is considered as a conservative field with
traditional pedagogical practices. The authors also discuss that Law professors recognize
the need to modernize and invest in their pedagogical practices. For some fields the pic-
ture is more heterogeneous. For instance, consider the field Architecture and construction
as next-best. Compared to the preferred field Social and behavioral sciences this field slows
students down, whereas this field increases academic progress compared to Teaching.

In absence of causal estimates, policy makers and university administrators might resort
to simple descriptive statistics to identify slow and exemplary fields. The CLATE estimates
in Figure 8 suggest that the simple mean comparisons in ECTS can be misleading. For in-

stance, the CLATE estimates identify Law as a slow field, but Law is close to the average
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Figure 8: Second stage CLATE estimates
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Notes: this figure shows the estimated CLATEs. The rows correspond to next-best samples and the columns
to treatments. The next-best treatments, corresponding to the next-best samples, are clustered with other
treatments as outlined in Table 3. Treatments that are clustered with the next-best have an empty element.
The CLATE for the preferred treatment cluster, Business sciences and Humanities with Commercial services
as next-best, is included in the column of the treatment Business sciences with an asterisk, and the column
of the treatment Humanities is empty. The remaining empty elements correspond to instruments with no

variation.

across fields based on the mean comparisons in Figure 3. In contrast, the mean comparison
for Information and journalism is more in line with the CLATE estimates. Both suggest that
this field improves academic student progress.

The CLATE estimates may also be used to provide students with information for their
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fields of study choice. Consider two students with the same next-best field, Architecture
and construction, but with different preferred fields, Social and behavioral sciences versus
Teaching. The positive CLATE estimate of 12.10 from Social and behavioral sciences versus
next-best Architecture and construction might inform the first student to choose her pre-
ferred field. In contrast, the negative CLATE estimate of —5.72 from Teaching versus next-

best Architecture and construction may inform the second student to choose next-best.

6.2.4 Heterogeneous treatment effects

Within each next-best sample, we find at most one treatment cluster. Corollary 2 shows
that in this case CLATE equals a weighted average of LATEs, in which the weights are point
identified even in the presence of heterogeneous treatment effects.

We find non-negligible weights for the LATEs corresponding to the off-diagonal treat-
ment shifts. With the next-best sample Architecture and construction (Social and behavioral
sciences) the next-best cluster contains two (six) treatments, and the CLATEs consist of two
(six) LATEs multiplied by the weights. For example, the CLATE of Physics in the next-best
sample Architecture and construction, is a weighted average of the LATE between Physics
and this next-best, and the LATE between Physics and Engineering, with weights 0.610 and
0.390 respectively. The CLATE of Information and journalism in the next-best sample Social
and behavioral sciences, is a weighted average of the LATE between Information and jour-
nalism and this next-best, and the five LATEs between Information and journalism and Arts,
Business sciences, Commercial services, Humanities, and Law. The weights equal 0.876,
0.038, 0.042, and smaller than 0.030 respectively.

Under homogeneous treatment effect assumptions, Corollary 3 shows that CLATE
equals a weighted sum of identifiable LATEs. It follows that a difference between CLATE
and the weighted sum of LATEs suggests the presence of treatment effect heterogeneity. The
presence of off-diagonal first stage coefficients different from zero and treatment effect het-
erogeneity, implies that the LATE estimates are biased.

Figure 9 plots the estimated weighted sum of LATEs against the estimated CLATEs for
the next-bests Architecture and construction and Social and behavioral sciences. For the
latter next-best we cannot find evidence of treatment effect heterogeneity as the differences
between the CLATEs and the weighted sum of LATEs are small. One reason for this result,
next to potential treatment effect homogeneity, is that the weights corresponding to the off-

diagonal shifts are small in magnitude. Hence, even in the presence of treatment effect het-
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Figure 9: Weighted sum of LATEs versus CLATE
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Notes: this figure shows the estimated CLATEs with next-best sample Architecture and construction (circles)
and Social and behavioral sciences (triangles) on the x-axis and the corresponding weighted sum of LATEs as

in Corollary 3 on the y-axis.

erogeneity one would expect small differences between CLATE and the weighted LATEs. For
Architecture and construction as next-best we do find evidence for the presence of hetero-
geneous treatment effects: the CLATEs are substantially different from the weighted sum of

LATEs across all treatment variables.

7 Conclusion

Since many modern policies consist of multiple treatments, it becomes increasingly unre-
alistic to restrict treatment evaluation to a binary treatment setting. At the same time, the
increase in sophisticated policy design and data collection makes it possible to construct

valid instruments in a wide variety of multiple treatment settings. However, existing IV ap-
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proaches to multiple unordered treatment evaluation only identify treatment effects under
strong assumptions on the behavior of the individuals.

This paper shows that we can identify clustered local average treatment effects (CLATE)
under relaxed assumptions in the presence of clusters with similar treatments. Since these
assumptions impose less restrictions on individual behavior, they are more likely to hold in
empirical settings. Moreover, they can be motivated by the preference updating literature
that finds that differences across preferences for similar treatments are usually small, and
switching costs between dissimilar treatments are high. CLATE is estimated by standard IV,
and we provide a simple algorithm for estimating the treatment clusters.

CLATE identifies a weighted average of unidentifiable LATEs of all pairs of treatments
across the treatment cluster and control cluster, and the instruments corresponding to these
clusters. The weights represent the proportion of shifts corresponding to each LATE, for
which we derive the settings in which they are set and point identified. We show that CLATE
is able to identify treatment effect heterogeneity by deriving the homogeneity assumptions
under which CLATE equals a weighted average of identifiable LATEs.

The relevance of CLATE is further emphasized by our empirical analysis of the effect of
field of study on academic student progress. We find many violations of the LATE assump-
tions, evidence for treatment clusters that are in line with preference updating, and a strong
indication of the presence of treatment effect heterogeneity. Since CLATE retains a causal
interpretation in these settings, we use the IV CLATE estimates to derive implications for
policy makers, university administrators, and students.

The CLATE approach might also be well suited for treatment effect estimation in other
multiple treatment settings. Multiple ordered treatments, such as years of education, are
commonly modelled as a single multi-valued treatment (Angrist and Imbens, 1995). The
literature on dynamic treatment assignment (Kasy and Sautmann, 2021), also has to deal
with multiple type of changes in treatment status. Moreover, our paper provides an avenue

for the structural modelling of treatment clusters.
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A Proof Theorem 1

Equation (5) shows,
0k Tjk .
Bix=——- 3 —Pu Vj#£k 23)
Tjjk 12,k ijk

We start with the first stage estimates. Realize that 7, = Eld,|z = j] —Eld,;|z = k], substitute
for potential outcomes d; = ZLl d ]l x z;, and then use assumption 1(b) to arrive at,

ik =Eld) - df) =Pld] —dF =11-Pld] —dF =11, Vi#k. (24)
Monotonicity assumption 1(d) implies that I]J’[d]]: -d f = —1] =0, so that 7 ; ;. simplifies to
7k =Pld] - df =11. (25)
Assumpti.on 2, together with Asspmption 1(d), guarantees first that [P’[dlj — dlk =1] = IP[dlj —
dlk = l,d]]. =0] = IP[dl] - dlk = l,d]]. = O,d]’.C =0] =0, so that 7, simplifies to
nijk=-Pld] —df =-11, VI# ]k (26)

Second, Assumption 2, together with Assumption 1(d), guarantees that when dlj -d lk =-1
it must be that d; - d]’.C = 1. Hence,

nljk:—u)[d{—dl’c:—l,d]ff—d]’?:1], VI# j k. 27)
Then assumption 3 implies that P[dlj - dlk = —l,d]].. =1] = P[dlj - dlk = —l,d]]: - d]’? =1] =0 for
individuals with r, = k, and it follows that for these individuals

HlijO, Vl?fj,k. (28)

In turn, the individuals with dJ]: -d ]k = 1 must have d,{ -d ,’C‘ = —1. We rewrite 7 jx by being
explicit that the shifts towards treatment j come from treatment k,

njje=Pld] —df =1,a] - df =-1Ir, = k, 29)
and as 7 = 0 with [ # j, k it follows that conditional on r; = k,

Ok :
Bjk=—— Vj#k. (30)
Tjjk
Next, we continue with the reduced form. Realize that 0, = E[y|z = j] —E[ylz = k], use as-
sumption 1(a) to substitute for potential outcomes y = Z§=l ylxd i, and then use assump-

tion 1(b) to arrive at,

0k =Ely! (d] - d) +Ely*(d] - dp)) + l;k[ﬂy’ (d] -dp), 81
I
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where the expectations implicitly condition on individuals with r, = k. From the above we
know that d — df = 0 with I # j, k, that di — df = -1if @/ - d¥ = 1, and that @] - a¥ = 1 if
d,]C - d,’j = —1, and so 0 simplifies,
0k =Ely! (d] - d) +Ely* (@] - df) (32)
=Ely/ - y¥d] - df =1,a] - df = -1Pla] - af =1,a] - af = -11.

Finally, using (29) and (32) we have

0k
Bie=— k—[E[y] Yl —df =v,da]-df=-1,r,=k, Vj#k (33)
Tjj

where assumption 1(c) ensures £ j« is finite.

B Proof Corollary 1

Note that in this proof all expectations and probabilities implicitly condition on r, = k. For
the case with IP[d] dk =1, d] dk=—1]>0and m # j, it follows from (5) that

Ok  TTmjk ik
Bik=——~—""Pmi ﬂ’” Bk (34)

where 7 = [F"[d] dk 1, d] d,’cC = —1] as derived in (29) in Appendix A, and 7, =

~Tpjk = IF’[d,J;l - d’,% = l,d,]1 dk = —1] as follows from Assumption 1(d), 2, and 3. From (31)
in Appendix A follows that

0r=Ely’ -y |d’ dj =1, dl - d,’j——l][P’[ —dj =1, dl - d’,j_—11+ 35)
Ely™ - y"\dl, — dX =1,d] — ¥ = —1)P(d}, - d¥ =1,d] - ~1].
Substituting (35) into (34) gives
ﬁjk:[E[yf—y’ﬂd]f—d]’?:1,d,fc'—d,’§:—1]+ (36)
Pldl,—dk =1,d] - ak = -1]

Pldl —dk = 1.l —dk Ely™ - y"Id), — d¥, = 1,d} - dF = 11+ B — B
FAR B L S

Since all assumptions for Theorem 1 hold, we have that 8,,; = E[y"—y*|d-dk =1, d,’g—dllj =
~1] and B = Ely™ - y*|d? - dk, = Ld- dllg = —1]. Hence

Pld) —dk =1,d) —d*=—1)
Bik=Ajkjk+ Ajkmn — Amkmic — Mnienk)) ———— s . (37)
P[d]’.—dj’?:l]

For the case with IP[d d’C =1, d] dk = —1] >0, it follows from (5) that

ij Tnjk
ﬁ]k— T
Tjjk  Tjjk

Pk (38)
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Similarly as in the first case, we have that 7, = —[P’[dj]: - d}c = l,d,];—d,li =-1], 0 = E[yj -
ky g7 k _ J k _ J k _ J k_ j J k_ J k _
y |dj —.d]. = l,dk—.al]C = —I]P[dj —dj =1,d, —d; = -1 +E[y/ —y”ldj —dj =1,d,—-d, =
—l]IP[d} —d]’? =1,d;,—df = -1], and Bk = Ely" — y¥|d}! — df = 1,d} — df = —1]. However,
7jjk=Pld] —df =11 =Pla] -ak =1,d] - df = -1+ P(a] - a¥ =1,d], - d¥ = -1). Hence,

Bk =Ely! - y¥1a] —ak =1,a] - df = -1plal -af =1,d] - df = -11/m i+ (39)
([E[yf—y"m]ff —df=1,d)-df =-1] +ﬁnk)uﬂ>[d]ff—d]’? =1,d}—df =11/
Pld) - d¥ =1,d), - df = -1 Pld]—d¥ =1,dj,—df=-1]

=Djrjk—Ajkjk + (Ajkjn+ Anknk)

J_ gk _
Pld] - df =1] | |
Pld] -df =1,d;,~d; =~1]

i gk _
IP[dj dj_l]

=Njkik+Aikin— Ajkik — Anknk)) .
jkj jkjn jkj nkn P[d]].—dj’?:l]

C Empirical relevance of off-diagonal treatment shifts

Kirkeboen, Leuven, and Mogstad (2016) combine the identification result generalized in
Theorem 1 with credible instruments for each field of study to estimate the returns to fields
of study in higher education in Norway. Figure 10(a) plots their IV estimates (f jk) against
the numbers that result from dividing the corresponding reduced form estimate @ jk) by the
diagonal first stage estimate (7 j ). It reveals deviation from the 45 degree line. For instance,
43 of the 81 IV estimates are more than twice as big or small compared to the number that
divides the corresponding reduced form by the diagonal first stage.

Figure 10(b) does the same for the estimates of Dahl, Rooth, and Stenberg (2020), who
study the returns to fields of study in secondary school in Sweden with a similar credible
IV approach as Kirkeboen, Leuven, and Mogstad (2016). The estimates are close to the 45
degree line. Dahl, Rooth, and Stenberg (2020) deal with five broad fields of study in sec-
ondary school, whereas Kirkeboen, Leuven, and Mogstad (2016) deal with many more gran-
ular fields in university.
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Figure 10: Plotting the IV estimates ,3 jk against the numbers that result from dividing the

reduced form by the diagonal first stage %
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D ProofLemmal

Write the off-diagonal first stage estimate 7.4, for all ¢ # a, b as

eab =Eldc|z=al —E[d,|Z=Dbl= Y Eld,lz=al- Y Eld,|z=D] (40)
nesS. nes,
=Y Y Eldulz=j]Plz=jlzeSa— ), Y Eldnlz=k]P[z=klz€ Sp].
JjeSq neS, keSp neS;

Then we substitute for potential outcomes d,, = Z{Zl d! x z;, and use assumption 1(b) to
write

Fear=Y. Y E|d]|Plz=jlzeSa- Y T E

JjeSa nes; keSy, nesS;

d,’;]P[z:k|zesb]. 41)

Note that }_ jcs,Plz = jlz€ Sl =1 and that } s, Plz = klz € Sp] = 1. We can write

Feap=Y. Y. Y E|d]—dl|Plz=jlze SPlz=klz€ S)] 42)
Jj€Sa keSy neS;
=Y Y Y Pldi-di=1|Plz=jlze SPlz= kize S))-
Jj€Sa keSy neS,
> ¥ Y Pldi-di=-1|Plz=jlze SuPlz=kIze S,
j€S4 keSy neS;

Assumption 1¢(d) guarantees first that IP[df; —dk=1]= [P’[d,]; —dk=1, dlj =0]= I]J’[d,]; —dk =
1, dlj =0, dlk = 0] with [ € S,. Since this holds for all / € S, we have according to Assump-
tion 2€ that P[d},—dX = 1] =0foralln¢ S,, j € S, and k € Sy,. This implies that 7, simpli-
fies to

Aear=-Y Y Y B [d,f; —d¥=-1|Plz= jlz€ SalPlz = klz € Sp. 43)
JESa keSy neS,
Second, assumption 2€ guarantees, together with Assumption 1€(d), that when d,]; —d’nC =-1

it must be that dl] - dlk =1 for one treatment / € S,. Hence, we are explicit in 7.,; where the
shifts go to,

Reap==2 ), 2 2P

Jj€Sa keSy neS. le§,

dy-df=-1,d] —-aF=1|Plz= jlze SIPlz = klz€ Sp. (44)

Then assumption 3¢ implies that for the individuals with r, = k, IP[d£ —dk = —l,dlj =1] =
Pld},—dk = —l,dlj - dlk =1]=0forall n ¢ {S,, Sy}, j € Sz and k € S;,. We leave implicit that
we condition on the individuals with r» = k and write,

ﬁcab = 0, VC # a, b. (45)

E Proof Theorem 2

It follows from (11) and Lemma 1 that for the individuals with r» = k,

= Hab

ﬁab::

——, Va#b. (46)
T aab
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We start with the first stage estimate 7 4, = E[Jalz =al - [E[ciaIZ = b], for which we derived
an expression in the proof of Lemma 1,

Fer=Y ¥ Y IP[dlj—dlk:I]P[z:jlzesa]lp[z:klzesb]— 47)
J€Sq keSy I€S,

Y ¥ Y pld-df=-1|Plz= jlze SulPlz = kiz€ S,
J€S4 keSy 1eS,

The monotonicity assumption 1¢(d) implies that [F"[dlj - dlk =—-1]=0forall j,l €S, and
k € Sy, so that 7,45 simplifies to

Fear=Y Y ¥ P[dlj—dlk:1]P[z:jlzeSa]IP’[z:klzeSb]. (48)
JE€Sa keSy leS,

Since Assumption 3¢ shows that the shifts dlj - dlk = 1 with r» = k move away from S,
or S, and Assumption 1¢(d) shows that these shifts cannot come from S, they must have
d,f;i — d,’% = —1 with m € S;,. We rewrite 7,4}, by being explicit that the shifts towards [ € S,
must come from m € Sy,

Faar=3 Y Y Y P[d{—d,":1,d,f;,—d’,;:—1 Plz=jlz€ S,Plz=klz€ Spl, (49)
JESa keSy leS, meSy,

where the probabilities implicitly condition on r» = k. Next, we continue with the reduced
form. Realize that 8, = E[y|Z = a] —E[y|Z = b], use assumption 1(a) to substitute for poten-
tial outcomes y = Z{Zl y! x d;, and write

o J
Oup=Y Ely'dj)z=al- Y Ely'dz = bl (50)
st i=i

J . ]
=Y YEl'dllz=j|Plz=jlze Sal - ¥ Y E|y'dflz=k|Plz=kizeS)),
jeSal=1 keSp I1=1

then use assumption 1(b) to arrive at,

J ,
bav=Y, Y Y E[y'@-dh]|Plz=jlzeSJPlz=klze Sy, (51)
j€SakeSyi=1

which we split per cluster as follows,

=Y Y Y E[y@-af)|Plz=jlze SaPlz=kize Syl+ (52)
JE€Sa keSy leS,
> ¥ Y E[y"@h-dh)|Plz=jlze SaPlz=kize Syl+
JE€Sa keS, meSy,

22 ) E

Jj€Sa keS, n¢Sy, Sy

Yl - d,’g)] Plz= jlz € SalPlz = klz € Sp.

From Lemma 1 we know that d,]; - d’,§ =0 for all n ¢ {S,, Sp} for the individuals with r, = k.
Hence, the last term in (52) is equal to zero conditional on r, = k, and from hereon the
probabilities in this proof implicitly condition on r, = k.
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For the second term in (52), assumption 1¢(d) guarantees that [P’[d,j;l - d,’f1 =1] = IP[d,];l —
dak =1, dlj =0, dlk = 0] for all [ € S,,. Then we have according to Assumption 2¢ that IP’[d,];1 -
dk =11=0forallme Sy, j€S,and k€ S).

From dj — df = 0 for n ¢ S, Sp, it follows that d}, - d¥, = -1 if d - d* = 1, and that
dlj — dlk =1if d,];1 — d,’; =—1,forall j,l€ S, and k,me Sy, and so éab can be written as

Oar=Y Y Y Y Ely'-y™d -df =1,d),-dk,=-1,1,=kIx (53)
JjE€Sa keSy leS, meSy,

P[d{_d;czl’df;z—d,};:—l Plz = jlz€ S4]P[z = k|z € Sp].

Finally, combining (49) and (53) we have

Bar=="=3 Y 3 ¥ AjumEly' -y™d] -df =1,dj,-df,=-1,r, =k, (54
TWaab  jeS, keS, €S, meSy

for all a # b, with

P [dzj —df=1,d},-dk, = —1] Plz= jlz€ SalPlz = k|z € Sp]

Ajkim = , (55)

Yy Y Y oY P[d{—dl’“:1,d{;1—d,’;l:—1]P[z:j|zesa]uﬂ>[z:k|zesb]
JjE€Sa keSy leS, meSy,

where assumption 1(c) ensures that 8, is finite.

F Proof Corollary 2

Note that in this proof all probabilities implicitly condition on r, = k. From Theorem 2 we
have that

P [dl] _dlk = l,d,];,l—d!% = —1] P[Z:j|z€ Sa]P[Z: k|Z€ Sb] 6

Ajkim = . .
Y Y Plz=jlzeSPlz=klze Syl ¥ ¥ Pld]-df=1,d),-df=-1|
JE€Sq keSy, leS, meS§y,

The denominator can be written as

22 Wik Y X P[d{_dzkzlyd;]ﬁ—df%:—l]: YooY Wik Y Tjk (57)

JE€S4 keSy leS, meSy, JESa keSy, leS,

where we define w jr =P[z = jlz € S4]P[z = k|z € Sp].
For the probability in the numerator we have that

P[dlj—dlk: 1,dl, - df = —1] smin(l]m[dlj—dlk: 11,Pldl, — dk = _1]), (58)

P[d{—df=1’d#—d,'§q=—l]zmaX(O,P[di}l—d,’fﬂ:—l]— y P[d,f;—d’,;:l]). (59)
ne{Sy\1l}

From Assumption 1(b) it follows that

w1k =Eld] —dF =Pld) —ak =11 -Pld) —dF =11, VI#k. (60)
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From Assumption 1€(@d) it follows that IP[dlj - dlk =—-1]=0forall l € S,, and from Assump-
tion 1€(d) and 2€ that P[d dk =1] =0forall [ € S;,. Therefore, we can write

max|0,~T k- 3. nnjk)SIF’[dlj—dlk:I,d,jn—d],;:—l]Smin(ﬂljk,—nmjk). 61)
ne{Sy\1}

Note that 7, jk isa ﬁrst stage coefﬁment in (2) for [ # k. For 7y jx, which is not in (2), we use

that Z] E[ d] = 21€50,Sp [E[d dk] 0, and so we can write
—nkjk:u»[d{c—dk:— =Y Pld/ -df=11- Y Pld},-dt=-1 (62)
leS, me{Sy\k}
=D Wikt ) Tmjke
leS, me{Sy\k}

G Proof Corollary 3

From (31) follows that

J .
0k =Y ELy (@] —d})] (63)
J I i % . © J . K ; k
:ZE[y \d] —dj =1IPld] —d =1]1- )" Ely"|d;, - dy, = -1IPld}), - dpy, = —1]
m=1

Z Y Elyd —dF =1,d), - dk, = ~0pla) -k =1, al, - d¥, = -1)-
1m#l

Y Ely™\d] - df =1,d}, - df, = -1Pld] - df =1,d), - df, = -1]
11#m

M- ﬁM\ i

AjrimPld] —dF =1,d}, - d¥, = -1].

N
I
_
3
T
=

First, for all j,/ € S, and k, m € S;, with a # b, the CLATE assumptions simplify (63) to

0jx=Y. Y AjumPld! -df=1,d),-ak=-11. (64)

1eS, meSy

Assume that A, = Ajkik — Amkmk to rewrite (64) to

0jc=Y Y Ak~ DpmkmpPld] —df =1,d5, - df, = -1) (65)

leS, meSy,

=Y Ak Y, Pld] —df =1,d},—d}, = -11-
leS, meSy,
Y Apemk 3 Pld] —df =1,d5,—dy, =-1]
meSy leS,

=) AlklkP[d] dk—l Y AmimiPldl, - dk =-11= Y Ak
€S, meSy 1€{S4,Sp}
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Second, for j, k € Sy, the CLATE assumptions do not impose any restrictions on (63). We
assume that A jx;m = Ajgix — Amkmi for all I and m, from which it follows that

J . )
Ojk=). Y Aikik—Amimi)Pld] — dlk =1,d},—dk = -1] (66)
I=1m#l

J , .
=Y Ak Y Pld) —df =1,d;,— df, = -1]-
I= m#l

—

Amikmk Y, Pld] —df =1,d},—df, =-1]
1 I#m

g ﬁ[\’]\

. ] .
AlklkP[dl] - dlk =11- Y ApkmiPldy, — dk =-11= Y AT k-
1 m=1 £k

~
Il

Therefore, it is sufficient to assume that Aj;, = Ak — Amkmk to arrive at 0 =
212k Arkix7 1 jx in both the first and second case.
From (5) follows that for all j # k with k€ Sy,
0= Bikmijk- (67)
I#k

Combining (67) with the result that 0 jx = 3 ;41 A7k for all j # k with k € S, we have the
homogeneous system of equations
Y (A —Buk) mijie =0, forall j # k, (68)
17k
which has the unique solution f;; = Ay forall I # k if TI; has full rank. Since E [d_;z’ , | has
full rank according to Assumption 1(c) and E [z_;z’ , | has full rank, E[d_;z’ ,|E[z_z’ ] =
[0, k] has full rank with 6 = 014,---,0k-1,kOk+1,k---,0k) . Therefore, IT; has full rank
with elements 7 forall [ # k and j # k.
Finally, from Theorem 2 follows that

Bar=2 2 Y Y AjimBjkim (69)

JESa keSy leS, meSy,

where we use that A, = Ajkik — Amkmk = Bix—Bmi for j,le S, and k,me S, with a # b to
write

Bav=> XX Bk X Ajkim— Y. Bmk Y Ajkim (70)

JE€Sa keSy \IeS, meSy, meSy, leS,

_ Yjes, Lkes, L1es, PikTijk®jk X jes, Lkes), XmeS, BmkTmjk®jk

) (71)
D €Sy 2keSy 1S, 1 jkW jk D jeSa 2keS, omeS, Tmjk® jk

where wjr =Plz= jlz€ S4,12 € SpIP[z = k|z € Sp, 12 € Sp].

H Treatment clusters for the total sample

Algorithm 1 estimates separate CLATEs f,;, for J groups of individuals with r, = k, k =
1,...,J, which we denote as ﬁab(k). Since the variance of the 2SLS estimates for CLATE de-
creases in the number of observations, the CLATEs can potentially be more precisely esti-
mated under a homogeneity assumption across the individuals with r, € Sj,.
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Assumption 4€. Homogeneity across the individuals with differentr; € Sy,

(Homogeneous treatment effects) E[y' — ymldlj — dlk = l,d{;l —dl = -1, =kl =E[y' -
y"d] —df =1,d), - d¥, = -1,r, € Sp] forall j,1 € Sq and k, m € Sp.

(Homogeneous treatment shifts) [P’[dlj - dlk = l,d,j;i - d],% =—-1lrp, = k] = [P’[dlj - dlk =
1,d),—dX = -1|r, € Sy] forall j,1€ S, and k, m € Sy,

(Homogeneous treatment assignments) Plz = l|z € S;,ro = k] =Pz =1l|z € S;, 12 € §]
forallle S, ke Sy, and S,.

Under Assumption 4¢ we have that ,Bab(k) = ,Bab(m) for all k, m € Sy, and hence ,Bab can
be estimated on all individuals with r, € Sj. Especially if the number of observed individu-
als with rp = k is small, and the group of individuals with r; € S, is large, this can result in
substantial improvements in the variance of the CLATE estimates. In case Assumption 4¢
does not hold, 2SLS is not an unbiased estimator of the CLATE as defined in Theorem 2, but
an unbiased estimator of a weighted average of LATEs that depend on samples of individ-
uals with different r». However, the mean squared error of the CLATE estimates might still
improve as a result of the decrease in variance.

Assumption 4° allows us to estimate one set of treatment clusters across the whole sam-
ple. Instead of starting with a set of individual treatments for each sample of individuals with
next-best treatment r, = k, as in line 1 of Algorithm 1, we apply the loop in line 2-12 itera-
tively to each sample with r, = k for k = 1,..., J to update the set of clusters. In this way, if a
LATE assumption is violated in one subsample, the corresponding treatments are clustered
for all subsamples. The resulting set of treatments satisfies the CLATE assumptions across
all subsamples, and therefore identifies CLATE on the whole sample. Algorithm 2 outlines
these steps for estimating CLATE on the total sample.

Algorithm 2 CLATE estimation for the total sample of individuals

1: Set J treatment clusters: one for each treatment j
2: for all k do
3: Estimate I1j in (2) with least squares

4: forall /[ # j do
5: Two-sided t-test for Hy: 7 =0
6: if Hy: 7, = 0isrejected and 7 <0 then
7: merge the clusters of [ and k
8: else if Hy: 7;;; = 0is rejected and 7 > 0 then
9: merge the clusters of [ and j
10: end if
11: end for
12: end for

13: Define S as the set of nonempty clusters
14: Given S, estimate 3, for all a, b with a # b in (8) and (9) with two-stage least squares
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I Clustered local average treatment effects with covariates

Including control variables in the multiple unordered treatment effect analysis is not
straightforward. Goldsmith-Pinkham, Hull, and Kolesar (2021) show that including controls
in a multiple unordered treatment regression model does not identify a weighted average
of treatment effects. Instead, they show that the controls have to be included as interac-
tions with the treatment variables, to prevent each treatment coefficient to be confounded
with the effects of all other treatments. We extend this reduced form result to the multiple
unordered treatment IV model, and provide an expression for CLATE with covariates.

Let x denote a vector of covariates including an intercept. We extend the treatment clus-
ter IVmodel in (8) and (9) by including the covariates in the second stage model

y=V'x+ ) Bapda+Ep, (72)
a#b

and as interactions with the full set of instruments in the first stage equations

Aa=Y 1, p2cX+ Y RachZc+lap, foralla#b. (73)
c c#b

The following result generalizes Theorem 2 to CLATE with covariates.

Theorem 4. Under Assumptions 1(a)-(c), 1€(d)-3 and the model in (72) and (73), it holds
that for the individuals with r» € Sy, that

Bv=Y ¥ ¥ ¥ E[Ajum@EY -y™a] -af =1,d),-df =-1,r€8,x|,  (78)
Jj€S4 keSy leS, meSy,

for all clusters a # b, with

2w jrOPld] - dF =1,d], - ak, = ~1]x]

Ajkim(x) = , (75)

Elo20) £ ¥ op® ¥ X Pld —df=1,d),-dk=-1Ix]

JE€S4 keSy leS, meSy,

where g(x) = |1- Zé P[z:jlx]) % Plz = jlx], wjr(x) = Plz = jlz € Sg, xIP[z = klz €
J€Sa J€9a

Sp, x1, and the probabilities implicitly condition on r, € Sp.

Proof: Substitute (73) into (72) to obtain the reduced form:

y=Y fywet Y OcpZc+ 8, (76)
¢ c£b

with ficp =V +Y 42p ﬁabﬁacb, we = Zcx, and O,p = > a#b ,Babﬁacb. It follows that

~ (7] b 7T b =
ﬁab == <2 - Z ~ca ﬁcb- (77)
Taab  c#a,b Taab

Below we show that 7.4, = 0 if ¢ # a and derive an expression for 0 b/ 7 gab-
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Applying the Frisch-Waugh-Lovell Theorem to (73) and (76) results in
E|(Zg—E(Z4|Z_g, W
[(Za —ElZalZ-q, w)) Y] 78)

T E[(Za-ElZalZ-a w)?]

_ E[(Ze —ElZc|Z—c, w) da)
Aeab = — — 57— and Ogp
E[(Zc —ElZc|Z—c, w])?]

,-To simplify (78), define Z_. as a vector that stacks

where Z_; = {Z}ezp,c and w = {wc}ccz
{We}ezc and Z_., and Z = (w), Z! ). We can write

- Elwc.w,]

_ ! l c%ec

[E[chz—(,‘; w] - (wc Z—C) [E[chLC], [E[Z—(;ZLC

= wLE[wew,] ' Elwezc] = E[Z|x],

ElweZ' ]\ (Elweze]
1) \ElZ_c2]

where the second line uses that the instruments are mutually exclusive, and hence w, only
contains nonzero elements if Z_, is zero. It follows that E[w.Z’ ] and Z_.Z. only have zero

elements. Hence, (78) simplifies to
S E[(Zc — ElZc|x]) dq]
0 E[(Ze ~ ElZclx)?]

~ IE[(Za_[E[Za|x])J/]
b = . 79
" E[(Za—ElZalx)?] @)

We simplify the numerator of 7.4, in (79) using that d, = Y nes, An = Z{:l > nes, d,llzl:

5 ~ J
dq=EldalZ, W)+ iy =) Y Eldyzi|Z,w]+ g (80)
I=1nesS,
=Y Y Eldflz=k xIPlz=klz€ Sp, X1+ Y ZeTt gep(X) + lap,
e£b

keSy neS,

where
Fae® =Y Y | Y Eldllz=j,x] —Eld¥|z = k,x] | Plz = jlz € So, xIP[z = klz € Sp, x].

JE€Se keSy \nesS,
Since [E[d,]; - d’nclx] = [E[d,Jillz =7j,x]— [E[d’,jlz = k, x], it follows from the proof of Lemma 1 in
Appendix D that 77 ;.5 (x) = 0 if a # e and from the proof of Theorem 2 in Appendix E that

Faab® =Y. Y 0 Y Y Pld]-df=1,d},~d~ =-11x),
JESa keSy, leS, meSy,

with wji(x) = Plz = jlz € Sg,xIP[z = k|z € Sp, x]. Substituting (80) into the numerator of

(81)

Ticap in (79) shows that E [(Z. — E[Z|x]) cia] equals
> Y E|(Z—ElZIx)EldElz =k, xIP[z = klz € Sb,xl] +E[(Zc — E[Z|X]) 2o gap(X)],

keSp neS,
since E[ii,p|2, x] = 0 by definition. The law of total expectation shows that the first term with

¢ # b equals zero: E[(Z, —E[Z|x]) E[dX|z = k, x]P[z = klz € Sp, x]| =
[E([E [(ZC —ElZ|x)EldX|z =k, xIP[z = klz € sb,x]|x]) - 82)

E(EN(ze ~ ElZclx)) |x] Eldf12 = k, xIPl2 = klz € Sp, x1) =0,
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since E[(Z; — E[Z.|x]) |x] = E[Z.|x] — E[Z.|x] = 0. Similarly, the second term can be written as
E[(Zc —E[Zc| X)) 24Tt gap(X)] = E(E[(Z; — E[Z¢|X]) Za| X] T gap (X)), (83)

which equals zero if a # ¢ because, conditional on x, there is only one ¢ with Z. nonzero. For
a = ¢ we have that

E[(Z4 — ElZalx]) dg) = E (var[Z4|X17 gap(x)). (84)
Now consider the numerator of 8 ,, in (79). Similar as for d,, use y= Z{:l yldl to write

- J !k ~ ~

y=EylZ, wl+&p= Y ) Ely'd/IxIPlz=klz€ Sp, X1+ ) ZOcp(x) +Ep, (85)
keSp, I=1 c#b
where écb(x) = [E[yleIZ =cXx]—- [E[yldllz =Db,x] =
J ,

> Y | X ey alix1-Ely'df|x] |Plz = jlz€ S, xIP[z = klz € Sp, x]. (86)

jeS keS, \I=1

Since E[yl(dlj — dlk) |x] = [E[yldlj |x] — [E[yldlklx], it follows from the proof of Theorem 2 in Ap-
pendix E that

O =Y Y 0@ Y Y Ajum0Pld) —df=1,d),-adk =-11x, 87)
JE€Sq keSy leS, meS§y,

with Ajgim (¥) = ELly! — y™Id] —dF = 1,d), - d¥, = -1, x].

Substituting (85) into the numerator of 0, in (79) gives E [ (2, — E[Z4|x]) y] =

J ~
N Y E|(Za—ElZaxDEly'dF 1z =k, xIP[z = kIz € Sb»x]] + Y E[(Za—ElZalx)) Z0,05(x)],
keS, =1 c#b

since E[&}|z, x] = 0. In a similar way as for the numerator of 7.5, the law of total expectation
shows that the first term equals zero and the second term [E([E [(Zg—E[Z4]x]) Z4] x] éab(x)),
where we also use that conditional on x, there is only one ¢ with Z. nonzero.

Finally, we have that

~ _ éab _ [E(Var[zalx]éab(x)) _

ﬁub =

Y3 Y Edjum@Ajum®)],  (88)

aah  E(VarlZa X Taan(X) G, kG, (€5, mes,
where 0,5 (x) is defined in (87), 7 445 (X) in (81), and A jkim(x) below (87). It follows that

o2 (N (OPLd] —dF =1,d), - d¥ = -1|x]

Ajkim(x) = , (89)

Elo2) ¥ ¥ k@ £ ¥ Pld -df=1d},-dk=-1lx]
JESa keSy leS, meSy,

where w jr(x) =Plz = jlz € S, x]P[z = k|z € Sp, x] and

0% (x) = var[Z,|x] = (1 -P[Z = alx)P[Z = alx] = (1— Y IF’[z:jlx]) Y Plz=jlx]. (90)
JESa JESa
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J Proof Theorem 3

It follows from the first stage regressions in (21) that for ¢ # b

E(daZ=c,x,s] =) Eldaz=c,x=1s|Plx=1Z=c,s] (91)
17k
=Y Eldaz=c,x=1s]Plx=1Z=c,s]
leS,
=Y nakPlx=1UZ=c,s]+Fack + Vars,
leS,

where we firstuse thatP[x = [|Z=c¢,s] =0if x ¢ S and second that } ;e P[x=1|Z=c,s] = 1.
We take the limit of s towards zero:

llm[E[d 1Z=c,x,s] = hm Z[E[d Z=c,x=1s=v] hmo[P’ =1lz=c,s="v] 92)
0/es, v+

= Z nalk hm P[X—IIZ—c,s_ U + 7 ek
leS,

For Z = b, we can write

Y E[dalzZ=b,x=1,5] llm[P’[x—llz—cs—v] Znalkhmﬂj’ =llZ=c,s= V] +W a5,
leS, leS,

after which we take the limit of s towards zero:

hm ZE[ﬂQIZ:b,x:l,s:v] lin+10IP[x:l|Z:c,s:v] Znalkhmﬂj’[ =1llzZ=c,s=1],

v="0/c3, v IS,

from which it follows that 7 ;. equals

Y hm[E[d |z_cx—ls—v]—hm[E[d 1Z=b,x=1s=v] lim Plx=11z=c¢,s=v].
leS, v

Next, we write the expectations in terms of potential outcomes. For ¢ # b we have that

Elddz=c,x=1s=v]= ) Eldslz=c,x=1s=1] (93)
nes,
=Y Y Eldnlz=j,x=1Ls=v]P[z=jlzeS;,x=1,5=]
neS, jesS.
= Z [E[d,lqlx:l,s:v],
nes,

which follows from the fact that given z € S, and therefore z # k, we have that z = x = [. For
¢ = b holds that

E[daZ=b,x=1s=v]= Y EldpZ=bx=15="0] (94)
nes,
= Z Z Eldulz=j,x=1,s=v|P[z=jlz€Sp,x=1,5s=]
neS, jesSy
= Z [E[d,’;lx:l,s:v],
nes,
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which follows from the fact that for x = [ ¢ Sy, z either equals [ or k.
Substitute the expressions for the expectations into the expression for 7 ;.:

Fack=Y. Y. (lim[E

d,lllx:l,s: v] — limE d’,glx:l,s: v]) IimP[x=1Z=c¢,s=V]

l€S. nes, \W—0 v—"0 v—"0
=Y Y E|dy-dfix=1s=0] imPlx=1iz=c,s=v], (95)
l/—>+

leS. neS,

which follows from Assumption 1°. Now it follows from Lemma 1 and Theorem 2 that

Ba=Y Y Y ;L,-klm[E[y’—ym|d{—dlk:1,d,f;1—d,’§1:—1,x:j,s:o,r2:k], (96)

jeSaleS, meSy,

for all a for which k ¢ S,, with

P[dlj_dlk:l’dlj;v_dlﬁzz—1|x:j,8=0] ,,ILHJOP[XZHZES“’S: v]

Ajkim = J_ gk j_ gk . - ~ ’
>y ¥y ¥ [Fb[dl—dlzl,dm—dm:—llx:],s:o] llmoﬂ:b[x:ﬂZESa,S:v]
l/_’+

Jj€Sq 1ES, MES),

97)

where the probabilities implicitly condition on r, = k.

K Fuzzy RDD on the total sample

The RDD setting discussed in Section 5 defines separate CLATEs for each sample of individ-
uals with r, = k with k € Sj,. CLATE can also be defined for the total sample of individuals.
The RDD model in Section 5 for this sample is

Y=Y Y vixic+ Y. Bapda+Tps+Ep, (98)
kesy iZk azb

dg= Yo NakXik+ Y FachZe+WapS+ gy, foralla# b, (99)
kesy, IZk c#b

where the fixed effect x;i equals one if (r1,72) = (j, k) and zero otherwise. The theorem
below provides an expression for CLATE on the total sample of individuals.

Theorem 5. Under Assumptions 1(a), 1° (b), 1(c), 1€ (d)-3%, and the model in (98) and (99),
it holds for the individuals with ry € Sy, that

b=y T ¥ ¥ /ljklm[E[yl—ymIdlj—dlk:l,d,];,—dfn:—l,xjkz1,320], (100)
Jj€S4 keSy leS, meSy,

forall a# b, with

P [dl] —df =1, dj,—djy, = ~1lxj; = 1,S=O] JL@OP[xjk= 1|z € Sq, s = V]

Ajkim = - j_ gk i _ gk ’
Y ¥ ImPlxx=1lz€S,s=v] ¥ ¥ P|d/-df=1,dj,-dl=-1lx;=1,5=0|

jeSa keS, v—*0 1S, meS;

where xj = 1 indicates the individuals withry = j and r, = k.
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Proof: It follows from the first stage regressions in (99) that for ¢ # b

EldalZ=c,x,s]= Y. Y Eldalz=c,xi=1,s]Plxi=1lZ2=¢,s] (101)
keS, I#k
=Y Y EldazZ=c,xix=1,5|Plxjx=11Z=c,s]
keSy leS,
=Y Y nakPlxie=1z=c, 81+ Fach + Wap$,
leS; keSy
where we first use that Plx;=1lZ=c¢,s] = 0 if [ ¢ S, and second that

Zkesh Yies, Plxix = 11Z = ¢, s] = 1. We take the limit of s towards zero:

11m[E[da|z_cxs]_ lim Y Y Elddz=c,xix=15="1] lim Plxig =112 = ¢,5= v]
v v="0/es, kes,

(102)
=> 2 Nalk | llm P[xlk— 1Z=c,s=v]+Tgcp-
leS keSy,
For Z = b, we can write
Y > Eldaz=bx;=1,s] hm IP[xlkzllz—c s=v]= (103)

leS; keSy,

> 2 Nalk hm P[x”c =11Z=c,s=V]+YupS,
lESCkESb

after which we take the limit of s towards zero:

hm oy [E[d Z=b,xjx=1,s=] hmIP[xlk—llz—c s=vl=) ) nalkhmIP[xlk—llz—c,s—v],
v="0/e35, kes, €S, keSy,

from which it follows that 77 ,.; equals
>y hm EldalZz=c,x;x=1,s=v]- hm [E[dalz b,x;r=1,s="v] hm P[xlk l1Z=c,s=v].
I€S kes, \V— 0

Next, we write the expectations in terms of potential outcomes. For ¢ # b we have that

EldaZ=c,xix=1s=v]= ) EldslZ=c,x;x=1,5= 1] (104)
nes,
=Y Y Eldnlz=j,xi=1,s=v|P[z=jlz€Sex1=1,5= V]
neS, jes,
= Z E[délxlkzl,s:v],
nes,

which follows from the fact that given z € S, and therefore z # k, we have that z=x = [. For
¢ = b holds that

EldalZ=b,x;c=1,s=v]= Y Eldnlz=bx;x=1,5="0] (105)
nes,
= Z Z Eldulz=j,xix=1,s=v|P[z=jlz€Sp,x1x =1,5=V]
neS, jeSy
= Z [E[d,’;lxlkzl,s:v],
nes,
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which follows from the fact that given z € Sy, and therefore z # [, we have that z = x = k.
Substitute the expressions for the expectations into the expression for 7 4.p:

Fach= ). Y. Y (lim E|d|x;=15= v] — 1im0[E[d’,f|xlk =1,s= v]) limO[P’ xix=1lZ=c,s =]
v— v—+

IS, keS, neS, v="0
=Yy Y ¥ [E[dfl—d’nclxlk: 1,s:0] lim P Ly = 112=¢,5= 0], (106)
leS. keSy neS, v—"0

which follows from Assumption 1°. Now the result follows from Lemma 1 and Theorem 2.
L Additional empirical results

Figure 11: LATE first stage estimates with next-best Agriculture, forestry and fisheries

Architecture and construction

Arts -0.003 | -0.002 | -0.003 | -0.002 -0.002 | -0.004 -0.003 -0.002

0.031 | 0.020 0.016 -0.000

Business sciences

Commercial services -0.004 | -0.006 -0.005 -0.004

-0.005 | -0.007 -0.006 -0.004

Engineering
Health

-0.079 | 0.006 0.005 0.004

Humanities
IT

Information and journalism

Law
Life sciences -0.013 | -0.012 | -0.014 | -0.012 -0.015 -0.047
Manufacturing -0.001 | -0.001 | -0.001 | -0.001 -0.001 -0.001
Mathematics and statistics
Physics -0.001 | -0.001 | -0.001 | -0.001 -0.001 | -0.001 -0.001 -0.001
Social and behavioral sciences 0.011| 0.010 | 0.012 | 0.010 0.010 | 0.016 0.762 0.009

Social services

Teacher

Veterinary RIS 0061 -0.072 -0.062 .0_039
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Figure 12: LATE first stage estimates with next-best Arts

Agriculture, forestry and fisheries
Architecture and construction -0.001 0.498 [ 0.002 [ -0.001 | -0.002
Business sciences 0.001 0.002 | 0.002 | 0.002 | 0.002
Commercial services 0.000 0.000 | 0.016 | 0.000 |-0.250
Engineering 0.180 -0.003 | 0.013 [ -0.002 [ -0.002
Health -0.001 -0.002 | -0.001 | -0.001 | -0.001
Humanities -0.001 -0.002 | 0.044 | -0.001 | -0.001
IT 0.000 0.000 | 0.000 | 0.000 | 0.000
Information and journalism -0.000 -0.001 | -0.001 | -0.000 | -0.001
Law -0.001 -0.002 | -0.001 | -0.001 [ -0.001
Life sciences -0.001 [ -0.001 |-0.001 | -0.001 | -0.001 | -0.001 | -0.001 |-0.001 |-0.001 | 0.526 -0.001 [-0.001 | -0.001 | -0.001
Manufacturing -0.000 | -0.000 | -0.000 | -0.053 [ -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 -0.000 | -0.000 | -0.000 | -0.000
Mathematics and statistics
Phys|Cs -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 [-0.001 | -0.001 0.499 | -0.001 | -0.001 | -0.001
Social and behavioral sciences -0.005 | -0.028 | 0.001 | 0.007 | 0.001 |-0.015 | 0.001 | -0.001 | 0.001 | 0.001 0.001
Social services 0.003 | 0.002 | 0.002 | 0.003 | 0.003| 0.007 | 0.003 | 0.002 | 0.002 | 0.002 0.003
Teacher 0.003 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 0.001
Veterinary -0.002 | -0.002 [ -0.001 | -0.002 | -0.002 | -0.002 [ -0.002 | -0.001 |-0.001 | -0.001 -0.002
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Figure 13: LATE first stage estimates with next-best Business sciences

-0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000

Agriculture, forestry and fisheries

Architecture and construction 0.000 | 0.000 | -0.001 | 0.000 | 0.000 | 0.000

0.011 | 0.000 [-0.000 [ 0.000 | 0.000 | 0.001

Arts

-0.001 | 0.062 | -0.003 | -0.020 [ -0.001 | -0.001

Commercial services

Engineering 0.018 | -0.113 | -0.003 | -0.002 | -0.002 | -0.003
Health -0.001 | -0.001 | 0.001 | -0.013 | -0.001 | -0.001
Humanities -0.001 | -0.001 | -0.002 | -0.001 | -0.001 | -0.001
IT 0.001 | 0.001 [-0.000 | 0.001 | 0.001 | 0.001

0.000 | -0.111 [ -0.003 | 0.000 | 0.000 | 0.000

Information and journalism

LaW -0.003 | -0.002 | -0.001 | 0.005 | -0.002 | -0.003

Life sciences 0.001 | 0.001 | 0.000| 0.001 | 0.001 | 0.001

Manufacturing |-0.001 |-0.001|-0.001 | -0.001 | 0.001 | -0.001 | 0.001 | -0.001 | 0.001 | -0.001 | -0.001 -0.001 | -0.001 | -0.001 [ -0.001 [ -0.001 |-0.001

Mathematics and statistics |-0.00t |-0.001|-0.001 |-0.001 | -0.009 | -0.001 | -0.001 | -0.014 | -0.001 [-0.005 [ -0.001

Phys|cs -0.000 [ -0.001 | -0.000 | -0.000 | -0.000 | -0.013 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000

Social and behavioral sciences |-0.001 |-0.002| 0.004 [-0.010{-0.010 [ -0.006 | 0.004 [-0.001 | -0.015 [-0.010 | -0.001

Social services | 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |-0.004 | 0.000

TeaCher -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.012 | -0.003 [ -0.000 | -0.004 | -0.004 | -0.000

Veterinary |-0001|-0.001 |-000t|-0.001 | -0.001 | 0003 |-0.001 |-0.001 |-0.001 |-0.001 | 0.001
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Figure 14: LATE first stage estimates with next-best Commercial services
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Figure 15: LATE first stage estimates with next-best Engineering

-0.005 | 0.001 | 0.001| 0.002 | 0.002 | 0.001 [ 0.002 [ 0.002 | 0.017 | 0.002 | 0.005 | 0.002 0.002 | -0.028

Agriculture, forestry and fisheries

Architecture and construction -0.003 | -0.025 | -0.002 [ -0.004 | -0.012 | -0.003 | -0.003 | -0.006 | -0.038 | -0.009 | -0.008 | -0.003 -0.003 [ -0.002

Arts

-0.006 | 0.009 |-0.003 | 0.001 [-0.004 | 0.000 | 0.000 (-0.006 | 0.000 | 0.001 [ 0.002 | 0.000 0.167 | 0.000

BuS“’]eSS SC|enCes -0.015 -0.005 | -0.038 | -0.003 | -0.004 | -0.014 [ -0.004 | -0.002 | -0.012 [ -0.049 -0.004 [ -0.032
Commercial services | 0.002| 0003 0.002 -0.017 o.eeo 0.002 [-0.008 | 0.002 | 0.002 | 0.002| 0.002 | 0.011 | 0.003 |-0.021 0.002 | 0.001

Health -0.007 | -0.010 [ -0.007 | -0.006 | -0.020 JMuRsZEN - -0.006 | -0.007 [ 0.004 | -0.006 | 0.008 |-0.004 | -0.004 -0.007 | 0.002

0.000 | 0.000 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 0.000 | 0.000

Humanities | 0000 0.000| 0.000 | 0.000 | 0.000

|T |-0.003|-0.004 | -0.003 | -0.009 | -0.002 -0.003 | -0.003 | -0.006 | -0.003 | 0.004 [ -0.005 |-0.003 -0.003 | -0.002
Information and journa”sm -0.000 | -0.001 | -0.044 | -0.007 | -0.023 | 0.001 [ -0.001 | -0.000 | 0.666 | -0.000 | -0.000 | -0.000 | -0.001 | -0.001 | -0.012 -0.000 | -0.000
Law | 0.002 | 0.002 | 0.002 | 0.001| 0.001|-0.003 | 0.002 | 0.007 | 0.001 0.002 | 0.001
Life sciences | 0.005 | 0.007 | 0.005 | 0.004 | 0.004 |-0.003 | 0.006 | 0.009 | 0.004 0.005 | -0.026
Manufacturing {-0.003 |-0.004 | -0.003 | -0.002 | -0.002 | -0.001 | -0.003 | 0.003 |-0.002 | { -0.003 | -0.031
Mathematics and statistics | 0001 | 0.002| 0.001 |-0.005 | 0.001 | 0.000 | 0.002 | 0.003 | 0.001 0.001 | 0.001
Physics |-0.006 | -0.008 | -0.006 | -0.005 | -0.005 | -0.004 | -0.007 | -0.019 | 0.005 | - -0.006 | -0.004
Social and behavioral sciences | 0.001 | 0.017| 0.001 [-0.037| 0.001 | 0.003 | 0.001 [-0.002 | 0.001 0.001 | 0.001
Social services | 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |-0.003 | 0.000 | 0.000 | 0.000 | 0.000 0.000 | 0.000

Teacher |-0.001|-0.001[-0.001 [-0.001 |-0.001 |-0.000 | -0.001 | -0.001 | -0.001 | -0.001 |-0.001 | -0.001 | -0.001 | -0.001 | -0.001

Veterinary -0.175 [ -0.000 | -0.000 | -0.000 | -0.000 | -0.002 | -0.000 | -0.000 | -0.000 | -0.000 [ -0.004 | -0.000 |-0.000 | -0.000 | -0.000
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Figure 16: LATE first stage estimates with next-best Health

-0.000 | -0.000 | -0.000

Agriculture, forestry and fisheries

0.001 | 0.002 [ 0.001

Architecture and construction

Arts

0.000 | 0.001 | 0.006

0.001 | 0.001 [ -0.006

Business sciences

Commercial services 0.251 | 0.001 | -0.006

Engineering -0.010 | -0.016 | -0.006
Humanities -0.001 [ -0.002 [ -0.001
IT 0.003 | 0.005 | 0.003

0.000 | 0.000 | 0.000

Information and journalism

Law 0.001 | 0.001 | -0.006

-0.009 | -0.015 | -0.022

Life sciences

Manufacturing 0.002 | 0.003 | 0.002

-0.000 | -0.000 | -0.000

Mathematics and statistics

Physics 0.001 | 0.001 | 0.001
Social and behavioral sciences 0.003 | 0.004 | -0.012
SOC|aI serv|ces 0.001 | 0.001 | 0.001 | 0.001 [ 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 [ 0.001 | 0.001 | 0.001 | 0.501 | 0.001 [ 0.001
TeaCher 0.002 | 0.001 | 0.001 | 0.001 [ 0.001 | 0.002 | 0.002 | 0.001 | 0.001 | 0.003 | 0.002 [ 0.001| 0.002 | 0.001 | 0.001
Vetennary -0.006 | -0.003 | -0.003 | -0.003 | -0.011 | -0.006 | -0.004 | -0.003 | -0.003 | 0.007 | -0.004 | -0.004 | -0.005 | -0.003 | -0.003 | -
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Figure 17: LATE first stage estimates with next-best Humanities

Agriculture, forestry and fisheries
Architecture and construction -0.001 | -0.001 | -0.000 -0.001 [ -0.001 | -0.001 [ -0.001 | -0.001
Arts 0.009 | 0.009 | 0.003 0.005 | -0.497 | -0.001 | 0.003 | 0.003
Business sciences -0.033 | -0.003 | 0.005 0.009 | 0.006 [-0.015 | -0.026 |-0.026
Commercial services -0.009 | 0.001 | 0.001 0.002 | 0.001 | 0.001 | 0.002 | 0.001
Engineering -0.002 | -0.013 | -0.002 -0.003 | -0.002 [ -0.005 | -0.002 | -0.002
Health 0.000 | -0.002 [ -0.001 -0.002 [ -0.001 | -0.004 [ -0.001 | -0.016
IT 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 0.001 | 0.001 | 0.001 0.001 | 0.001 | 0.001 | 0.001 | 0.017
Information and iourna”sm -0.020 | -0.025 | -0.006 | -0.057 | -0.013 | -0.009 -0.013 -0.009-0.010 -0.008
Law -0.004 | -0.003 | -0.019 | 0.005 | -0.003 | -0.002 -0.003 [ -0.002 | -0.007 | -0.002 | -0.002
Life sciences 0.003 | 0.002 | 0.001 | 0.002 | 0.002 | 0.001 0.002 | 0.001 | 0.002 | 0.001 | 0.001
Manufacturing
Mathematics and statistics -0.005 | -0.004 [ -0.003 | -0.003 [ -0.003 | -0.003 -0.003 | -0.003 | -0.002
Physics -0.002 | -0.001 | -0.001 | -0.001 | -0.001 [ -0.001 -0.001 | -0.001 | -0.001
Social and behavioral sciences -0.002 | -0.030 | -0.032 | 0.006 | -0.001 | 0.036 -0.032 | -0.002 | -0.001
Social services 0.004 | 0.003 [-0.002 | 0.002 | 0.002 | 0.002 -0.003 | 0.002 | 0.002
Teacher 0.002 | -0.027 | -0.002 | 0.001 | 0.001 | 0.001 0.001 [-0.040 | 0.001
Veterinary -0.006 | -0.004 [ -0.003 | -0.003 [ -0.004 | -0.003 -0.003 | -0.003 | 0.064
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Figure 18: LATE first stage estimates with next-best IT

Agriculture, forestry and fisheries
Architecture and construction

Arts

Business sciences

Commercial services

Engineering
Health
Humanities
Information and journa“sm 0.002 | 0.002 | 0.009 | 0.002 | 0.002 | 0.001 0.001 0.003 | 0.001 | 0.002
Law
Life sciences 0.001 | 0.001 | 0.000 | 0.000 | -0.004 | 0.000 0.000 0.001 | 0.000 | 0.000
Manufacturing 0.001 | 0.001| 0.000 | 0.000 | 0.002 | 0.000 0.000 0.000 0.001 | 0.000 | 0.001
Mathematics and statistics 0.005 | 0.005 | 0.003 | 0.004 | 0.005 | 0.003 0.003 0.003
Physics 0.003 | 0.003 | 0.002 | 0.002 | 0.003 | 0.002 0.002 0.002
Social and behavioral sciences 0.007 | 0.007 [-0.014 | 0.006 | 0.006 | 0.004 0.005 0.095
Social services
Teacher 0.004 | 0.004 | 0.003 | 0.003 | 0.002 | 0.002 0.003 0.002 0.005 | 0.002 | 0.003
Veterinary -0.001 | -0.001 | -0.001 | -0.001 [-0.001 [ -0.001 -0.001 0.001 0.001 | -0.000 | -0.001
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Figure 19: LATE first stage estimates with next-best Information and journalism

Agriculture, forestry and fisheries
Architecture and construction 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.004 0.003 | 0.003 0.003 | 0.003
Arts 0.013 | 0.004 -0.011 | 0.004
Business sciences 0.021 | 0.003 -0.008 | -0.141
Commercial services 0.012 | 0.003 0.012 | 0.003
Engineering -0.020 | -0.249 0.001 | 0.001
Health 0.019| 0.011 0.010 | 0.009
Humanities -0.007 | -0.012 -0.002 [ 0.018
IT -0.002 | -0.002 | -0.002 | -0.002 | -0.002 | -0.003 -0.002 | -0.002 -0.002 | -0.002
Law -0.012 | -0.007 | -0.010 | -0.010 | -0.010 | -0.005 -0.002 | -0.010
Life sciences 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 | 0.000
Manufacturing
Mathematics and statistics
Physics
Social and behavioral sciences -0.006 [ -0.005 | 0.010 | -0.005 | -0.005 | 0.003 -0.005 [ -0.006 0.024
Social services 0.003 | 0.003 | 0.002 | 0.002| 0.002 | 0.003 0.002 | 0.003 0.002
Teacher -0.011 | -0.010 | -0.009 | -0.009 | -0.009 | -0.014 -0.010 | -0.011 -0.010 | -0.009
Veterinary
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Figure 20: LATE first stage estimates with next-best Law

Agriculture, forestry and fisheries -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 -0.021 | -0.001 -0.001 | -0.001 | -0.001
Architecture and construction 0.062 | 0.002 | 0.003 | 0.003 | 0.002 | 0.004 0.002 | 0.003 0.002 | 0.002 | 0.002
Arts -0.003 | -0.004 -0.010 | -0.004 | -0.003
Business sciences 0013 0.104 -0.035| 0.004 | 0.004
Commercial services -0.019 | 0.002 0.001 | 0.002 | 0.002
Engineering -0.002 | 0.098 0.002 | -0.002 | -0.002
Health 0.001 | 0.002 0.004 | 0.002 | 0.001
Humanities 0.003 | -0.008 0.006 | -0.008 | -0.007
IT 0.001 | -0.007 | 0.001 | 0.002 [ 0.001 | 0.002 0.001 | -0.249 0.001 | 0.001 | 0.001
Information and journalism -0.006 | -0.021 | -0.006 [ -0.007 | -0.004 | -0.008 -0.001 | -0.076 | -0.004
Life sciences 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 0.004 | 0.001 | 0.001
Manufacturing
Mathematics and statistics
Physics
Social and behavioral sciences -0.009 | -0.017 | -0.119 | -0.010 | -0.005 | 0.002 0.003 | -0
Social services 0.003 | 0.002 | 0.003 | 0.003 | 0.002 | 0.004 0.002
Teacher -0.008 | -0.009 | -0.008 [ -0.009 | -0.005 | -0.011 -0.026 | -0
Veterinary -0.001 | -0.001 | -0.001 | -0.001 | -0.001 |-0.001 -0.001 |
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Figure 21: LATE first stage estimates with next-best Life sciences

Agriculture, forestry and fisheries -0.001 | -0.001 | -0.001 | -0.001 | -0.001 -0.001 | -0.001 | -0.001 [ -0.001 | -0.001 | -0.001 | -0.001 -0.001
Architecture and construction | .ot 0.001 | 0.001 | 0.001 | 0.002| 0.001 0.001 | 0.001 | 0.001 | 0.001| 0.001 | 0.001| 0.001 0.001
Arts |-0.000 -0.000 | -0.001 | -0.000 [ -0.001 [ -0.001 | -0.001 | 0.011 -0.000
BuS|neSs SC|enCes 0.002 0.001 | 0.003 | 0.002 | 0.002 [ 0.055| 0.009 |-0.021 0.002
Commercial services |-0.000 -0.334 | -0.000 | -0.000 | -0.000 | -0.000 | 0.006 [-0.000 -0.000
Engineering 0.011 -0.005 | -0.009 [ -0.006 | -0.008 | -0.008 | -0.032 | 0.004 -0.017
Health | o014 -0.002 | -0.004 | -0.080 | -0.003 | -0.004 | 0.022 |-0.048 -0.015
Humanities |-0.000 -0.000 | -0.000 | -0.000 | -0.000 | 0.001 -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 -0.000
IT 0.001 0.001 | 0.001 | 0.001 |-0.002 | 0.001 0.000
Information and journalism |-o.002 -0.003 | -0.002 | -0.003 | -0.003 | -0.001 0.005
Law [-0.002 -0.003 | -0.002 | -0.002 | -0.001 | -0.004 -0.002
Manufacturing 0.001 0.001 | 0.029 | -0.036 | -0.002 | 0.002 0.000
Mathematics and statistics |-0.00t -0.001 | -0.001 | -0.001 | 0.001 | -0.003 0,001
PhYSiCS 0.003 0.004 | 0.003 | 0.003 | 0.000 | 0.002 0.002
Social and behavioral sciences | o-.o1 0.002 | -0.099 | 0.001 | 0.008 | 0.004 0.001
Social services
Teacher
Veterinary | o030 -0.006 | -0.005 ro,oos -0.003 | -0.006 | -0.004 | -0.005 | -0.005 | -0.029 | -0.005
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Figure 22: LATE first stage estimates with next-best Manufacturing

Agriculture, forestry and fisheries 0.001 0.002 | 0.001 | 0.001 | 0.001 | 0.001 0.001
Architecture and construction 0.004 0.009 | 0.006 | 0.006 | 0.005 | 0.005 0.004
Arts -0.000 -0.000 | 0.000 | -0.000 | 0.02 [-0.000 -0.000
Business sciences -0.004 -0.010 | -0.006 | -0.007 | -0.006 | -0.005 -0.004
Commercial services 0.000 0.001 | -0.060 | 0.001 | 0.000 | 0.000 0.000
Engineering -0.004 -0.010 | -0.018 | 0.007 | 0.023 | -0.005 -0.004
Health -0.000 -0.000 | 0.057 | -0.000 | -0.000 | -0.000 -0.000
Humanities
|T | 0.001| 0.001 | 0.001 | 0.001 | 0.001 |-0.005 | 0.001 0.501 0.001 | 0.001| 0.001 |-0.199 | 0.001 0.000
Information and journalism
Law | 0.002| 0.003 | 0.003 | 0.002 | 0.002 |-0.004 | 0.002 0.002 0.002
Life sciences |-0.004 |-0.005 | -0.005 [ -0.003 | -0.004 | -0.008 | -0.005 -0.003 -0.003
Mathematics and statistics |-0.004|-0.00s | -0.006 | -0.003 | -0.004 | -0.002 | -0.00 -0.003 40,003
Physics |-0.00s | -0.008 | 0.008 | -0.005 | -0.006 | -0.012 -0.007 -0.005 -0.004
Social and behavioral sciences | 0.009 |-0.009 | -0.010 | -0.006 | 0.014 |-0.012|-0.039 -0.006 -0.005
Social services |-0.006 | 0.030 | -0.009 [ -0.005 | -0.006 | -0.007 | -0.008 -0.005 -0.012 | 0.007 | -0.008 | -0.007 | -0.006 -0.005
Teacher | 0.002| 0002 0.003 | 0.002| 0.002 | 0.002 | 0.002 0.001 0.004 | 0.002 | 0.002 | 0.002 | 0.002 0.001
Veterinary | oo0st|-0.002|-0002-0001 |-0001 | 0.001 | -0.082 -0.001 -0.002 | 0.018 | -0.001 | -0.001 [ -0.001
% O H L o K 5 D &
S F F O N O S EEE FF S
& FFE X & & O S P
N N . N\ ()
S FFE T T e G N
N S g
N =]
P NP & RS &
@ @ Q.S N @ @
<O 6\\) (@) @(b Qf(\ 6‘0
N2 & > &
O N QO 2 \
N N w2
O O O
R o
) )

75




Figure 23: LATE first stage estimates with next-best Mathematics and statistics

Agriculture, forestry and fisheries
Architecture and construction 0.001 | 0.002 | 0.005 |-0.044 0.001 0.002 | 0.001 | 0.012 | 0.028 0.002
Arts 0.009 | -0.002 | 0.001 |-0.001 -0.002 -0.002 | -0.001 | 0.009 |-0.002 -0.003
Business sciences -0.042 -0.000 | -0.000 [ -0.000 | 0.026 -0.001
Commercial services 0.005 0.005 | 0.003 | 0.017 |-0.023 0.007
Engineering -0.087 -0.011|-0.021 70.345 -0.051
Health -0.010 0018 | -0.006 | -0.012 | -0.087 0014
Humanities -0.002 | -0.003 | -0.003 | -0.002 -0.003 -0.003 | -0.001 | 0.018 |-0.002 -0.004
IT -0.011 | 0.002 |-0.021 | 0.001 0.002 | 0.001 | 0.002 | 0.002 -0.497
Information and journalism -0.002 | -0.002 | -0.002 | -0.002 -0.002 -0.002 | -0.001 | -0.002 | -0.030 -0.003
Law
Life sciences -0.011| 0.002 | 0.008 | 0.001 -0.048 0.002
Manufacturing 0.001 | 0.002 | 0.005 | 0.001 0.002 0.003
Physics 0.019 | 0.012 | 0.019 | 0.008 0.011 0015
Social and behavioral sciences -0.027 | -0.003 | -0.038 | -0.002 -0.003 -0.003
Social services
Teacher -0.012| 0.001 |-0.010 0.001 0.001 0.001 | 0.001 | 0.001 | 0.001
Veterinary -0.005 | -0.007 | -0.007 | -0.005 -0.006 -0.007 | -0.004 | -0.007 | -0.006 -0.009
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Figure 24: LATE first stage estimates with next-best Physics

Agriculture, forestry and fisheries -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.001 | -0.000 0.038
Architecture and construction -0.001 [-0.001 | -0.001 | -0.005 | 0.029 | -0.001 |-0.001 -0.001
Arts -0.001 | -0.001 | -0.001 | -0.006 | -0.001 | -0.002 | -0.015 -0.001
Business sciences -0.122 | 0.003 | 0.003 | -0.017 | 0.002 [ 0.005 | -0.025 0.002
Commercial services -0.124 | 0.001 | 0.001 | 0.001 | 0.001 | 0.022 | 0.013 0.001
Engineering 0.315 | -0.017 [ -0.019 | -0.037 | -0.148 [ -0.124 | -0.014 -0.010
Health 0.002 | 0.002 | -0.109 | -0.008 | -0.165 | 0.003 | 0.014 0.001
Humanities 0.000 | -0.055 | 0.000 | -0.004 | 0.000 | 0.021 | 0.011 0.000
IT | 0.000| 0.000 | 0.000 |-0.023 | 0.000 [-0.011 | 0.000 |-0.050 | 0.667 | 0.000 | 0.000 | -0.007 | 0.000 | 0.000 | 0.025 0.000
Information and journalism | 0003 | 0002 | 0.0t |-0.022| 0.002 | 0.005 | 0.001 | 0.002 | 0.002 0.001
Law | 0.001 | 0.001 | 0.001|-0.023| 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |- 0.000
Life sciences |-0.007 | -0.004 | -0.003 | -0.004 | -0.058 | -0.024 | -0.052 | -0.054 | -0.005 | - -0.003
Manufacturing |-0.02|-0.001 0001 |-0001 |-0.028 |-0.001| -0.001 | 0.001 | -0.001 |- -0.001
Mathematics and statistics | 0002 | .00t | 0.001 | 0.001 | 0.001 | 0.008 | 0.001 | 0.001 | 0.001 0.001
Social and behavioral sciences | 0.003 | 0.029 | 0.001|-0.022| 0.020 | -0.012 | -0.026 | 0.002 | 0.002 0.001
Social services | 0.0t | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |-0.055 | 0.001 | 0.001 | 0.001 | 0.001 | 0.013 0.000
Teacher |-0.002|-0.001 |-0.001 |-0.001 | -0.001 [-0.002 | -0.001 | -0.001 | -0.002 | 0.002 [ -0.002 | -0.001 | -0.001 | -0.002 | -0.001 0.001
Veterinary | 000 | 0002 0001 | 0.002|-0.025 -0.004| -0.015| 0.002 | 0.002 | 0.002 | 0,002  0.001 | 0.001 | 0.003 | 0.002 0.363
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Figure 25: LATE first stage estimates with next-best Social services

Agriculture, forestry and fisheries
Architecture and construction 0.002 | 0.001 | 0.001 0.001 | 0.001 0.002 | 0.002 0.002 [ -0.003 | 0.001
Arts 0.005 | 0.005 0.007 | 0.007 0.007 | 0.006 | 0.006
Business sciences -0.000 | -0.000 -0.024 | -0.000 -0.000 | -0.004 | 0.004
Commercial services 0.007 | 0.008 0.039 | 0.010 0.010| 0.014 [-0.012
Engineering 0.003 | 0.002 | 0.002 0022 | 0.002 0.003 | 0.003 0.003 | 0.002 | 0.002
Health 0.000 | -0.013 | 0.000 0.000 | 0.000 0.000 | 0.004 | 0.000
Humanities -0.000 | -0.000 | -0.000 -0.000 | -0.000 -0.000 | 0.001 | -0.000
IT
Information and journalism 0051 [ -0.004 | -0.003 -0.003 |-0.003 -0.004 | -0.008 |-0.003
Law -0.003 [ -0.015 | -0.002 -0.001 [-0.002 -0.002 | -0.006 |-0.002
Life sciences -0.006 [ -0.004 [ -0.004 -0.003 [ -0.004 -0.005 [ -0.005 -0.005 [ -0.004 | -0.004
Manufacturing
Mathematics and statistics
Physics 0.002 | -0.012 | 0.001 0.001 | 0.001 0.002 | 0.002
Social and behavioral sciences -0.145 [ -0.008 | -0.013 -0.012 [-0.013 -0.062 | 0.006
Teacher -0.002 | 0.006 | -0.001 -0.001 [-0.001 -0.002 [ -0.002
Veterinary
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Figure 26: LATE first stage estimates with next-best Teacher

Agriculture, forestry and fisheries
Architecture and construction
Arts 0.000 | 0.000 0.000 | 0.029 0.000 | 0.000
Business sciences 0.007 | 0.023 -0.017 | 0.007 0.008 | 0.013
Commercial services -0.003 | -0.003 -0.003 | -0.003 -0.003 | -0.003
Engineering 0.000 | 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000
Health -0.002 | -0.021 | -0.015 -0.003 -0.026 | -0.003 -0.023 | 0.004
Humanities 0.002 | 0.002 | 0.002 0.002 0.003 | 0.003 0.002 | 0.002
IT -0.002 | -0.002 | -0.002 -0.002 | -0.003 -0.003 | -0.003 -0.002 | -0.002
Information and journaﬁsm -0.003 | -0.003 | -0.003 -0.003 | -0.004 -0.002 | -0.003
Law -0.000 | 0.009 | -0.000 -0.000 | -0.001 0.004 | -0.011

Manufacturing
Mathematics and statistics -0.005 | -0.005 | -0.005 -0.005 | -0.006 -0.006 | -0.006 -0.005 | -0.005
PhySiCS -0.004 | -0.004 | -0.004 -0.004 | -0.005 -0.005 | -0.005 -0.004 | -0.004
Social and behavioral sciences -0.077 | -0.042 | -0.026 -0.015 [-0.002 -0.040 | -0.042 0014
Social services 0.007 | 0.007 | 0.006 -0.041 | 0.008 0.008 | 0.008 0.008
Veterinary
K
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Figure 27: LATE first stage estimates with next-best Veterinary

Agriculture, forestry and fisheries

Architecture and construction
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Figure 28: Second stage LATE estimates
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