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ABSTRACT

IZA DP No. 15466 JULY 2022

Evaluating the Impacts of Minigrid 
Electrification in Sub-Saharan Africa

A large share of the population of sub-Saharan Africa (SSA) lacks access to modern energy 

services. To bridge the electricity access gap, distributed power generation systems such 

as minigrids and stand-alone photovoltaic systems emerge as attractive options in the 

power supply solution space. In this study, we analyze the impact of minigrid electrification 

on household welfare and agricultural development across SSA countries. The empirical 

analysis makes use of a novel geocoded database covering 1,888 minigrid projects from 

27 SSA countries, which is merged with various data sources including satellite-based 

nighttime light data, vegetation health index, and Demographic and Health Surveys. 

Our results indicate that minigrid electrification is positively associated with households’ 

electricity uptake, ownership of low-power home appliances, and agricultural employment 

and productivity, while being effective in changing neither overall labor market outcomes 

nor the choice of cooking fuels.
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1. Introduction 

Nearly half of the sub-Saharan African (SSA) population, namely almost 600 million people, lack 

access to electricity, while clean cooking solutions are only available to about one in six people in 

the region (IEA, 2019; World Bank, 2022b). To achieve universal electricity access in SSA, 

distributed power generation and supply systems such as minigrids and solar home systems are 

increasingly seen as attractive and financially viable solutions in the electricity access solution 

space (IEA, 2019; SEforAll, 2020). At present, over 1,500 minigrids are estimated to be operating 

across SSA, connecting around 15 million people, and at least 400 additional minigrids are planned 

(ESMAP, 2019).  Despite the growing relevance of minigrids, a comprehensive, multi-country ex-

post assessment of the socio-economic impacts of electrification through minigrids has so far been 

lacking in the literature.  

Unlike standalone systems (e.g. solar home systems, pico-PV systems), properly sized 

minigrids are capable of providing sufficient energy for productive uses1, without incurring into 

the high upfront costs of extending transmission lines required for grid extension (AMDA, 2020; 

Peters et al., 2019). Given our key interest in the productive use of energy, we limit the scope of 

this study to minigrid electrification, excluding stand-alone systems from the present analysis. The 

present analysis is built on two pillars, namely the effects of minigrid electrification on (i) 

household welfare and (ii) agricultural development. Concerning the first pillar, we use household-

level outcome variables and incorporate the behavioral responses of households through the access 

to electricity, ownership of electrical appliances, choice of cooking fuel, and employment related 

 
1 See the appendix for power requirements of selected income-generating appliances presented in Table A.1 and the 

tier system for measuring energy access presented in Table A.2.  



   
 

   

 

outcomes. For the second pillar, we consider community-level agricultural vegetation health status 

as a proxy for agricultural productivity as well as agricultural employment at household level. 

It is worth noting that due to strong and multiple sources of endogeneity, substantial 

challenges exist in the establishment of an identification strategy capable of causally linking 

electrification and development outcomes, as recently noted in a set of discussion papers (Bensch 

et al., 2020a, 2021). Building on this literature, here we seek to evaluate the impacts of 

electrification through minigrids on lightening and empowering rural African communities. To the 

best of our knowledge, it is the first attempt to provide causal evidence on household welfare and 

agriculatural development effects of minigrid electrification across a broad set of SSA countries.  

The lack of a structured dataset has so far been the main limitation for the empirical 

research in the field (Knuckles, 2019). The increasing attention on off-grid solutions has recently 

stimulated several data collection initiatives. One of the most comprehensive and publicly 

available databases on minigrids has been published by the African Association for Rural 

Electrification (CLUB-ER), which involves 1,888 georeferenced minigrid projects from twenty-

seven SSA countries and their characteristics including the year of installation, installed capacity, 

technology type, operational status, and ownership structure. This study makes use of the CLUB-

ER minigrid database combined with other sources of data to assess the social and economic 

effects of minigrid electrification. To assess household welfare outcomes, we complement the 

minigrid database with geo-referenced Demographic and Health Surveys (DHS) from eleven SSA 

countries collected by the U.S. Agency for International Development (USAID). With regards to 

the potential of minigrid technology for productive uses by providing sufficient power for 

irrigation equipment and conducing toward labor force reallocation (AMDA, 2020), we focus on 

the impacts on the “Enhanced Vegetation Index” (EVI) derived from MODIS satellite sensor as a 

proxy for agricultural productivity (MODIS, 2021). The index is averaged over country-specific 
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dominant harvest season of maize (the most cultivated crop in SSA) to quantify the annual 

variation in the health of crop vegetation (IFPRI, 2020). Previous literature demostrates that the 

input of electricity and appliances such as pumps can have a significant impact on crop health and 

yields, which in turn can be estimated through remotely sensed data (Best, 2014; Burke & Lobell, 

2017; Gupta, 2019).  

For the main empirical analysis, we follow a difference-in-differences (DiD) strategy 

combined with propensity score matching to achieve identification of the average treatment effect. 

To construct treatment and control groups, we exploit the spatial information in the minigrid 

database and satellite-based nighttime light (NTL) data, which enables us to distinguish electrified 

minigrid sites (i.e., treatment group) from non-electrified communities outside the reach of a 

minigrid system (i.e., control group). The results suggest that minigrid electrification increases the 

probability of household electricity uptake and ownership of low-power home appliances. While 

we can confirm substitution effects from radio towards TV, we also find limited evidence of the 

uptake of medium and higher power appliances (e.g. fridges), suggesting that other factors, such 

as income avaiability and cultural norms, are likely at play. Concerning the potential impact of 

minigrid electrification on local agricultural outcomes, our results reveal evidence of a positive 

effect on the agricultural vegetation health measured over the cropland surrounding the community 

served by the mini-grid. In parallel to this evidence, we find that minigrid electrification increases 

the probability of working in the agricultural sector. The estimated effects on the EVI show a great 

heterogeneity across countries and over years. The effects become more salient after a certain lag 

following the installation and are by far the largest in Kenya, which is a leading market for off-

grid electrification solutions in the region. Our results indicate no statistically significant 

association with other labor outcomes and the choice of cooking fuels.  



   
 

   

 

The remainder of this paper proceeds as follows. Section 2 discusses the related literature on 

electrification effects. Section 3 illustrates the data along with descriptive statistics and Section 4 

introduces the empirical methodology adopted. Section 4 presents the estimation results of 

houseold welfare and agricultural productivity, while Section 5 discusses the robustness of the 

results, as well as the validity of the nighttime light data for the analysis. Finally, section 6 

concludes.  

2. Related Literature  

The present study aims at contributing to two main strands of the literature. The first strand 

mainly focuses on socio-economic impacts of grid electrification, most commonly evaluating 

specific roll-out programs in rural areas for a single country. Prominent examples from SSA 

include Dinkelman (2011, for South Africa),  Lenz et al. (2017, for Rwanda), and Salmon & 

Tanguy (2016, for Nigeria). In this literature, the widely investigated outcomes include the total 

or gender-specific employment, sectoral shifting in labor, poverty, income, and expenditure, 

household asset ownership, education, and business creation. The main intuition behind the quest 

for causality between the provision of electricity and these development indicators is that 

electricity is an enabler, both direct and indirect, of structural transformations that can happen 

within a community (Riva et al., 2018). For instance, an important mediating factor is the 

availability of electricity-consuming appliances, as highlighted by recent empirical surveys’ 

information on appliance ownership and aspirations of households at different steps of the 

“energy ladder” (Grimm et al., 2016; Lee et al., 2016; van der Kroon et al., 2013).   

Within this set of studies, there is relatively limited evidence on the evaluation of 

decentralised electrification systems. The existing studies mostly rely on randmoized controlled 

trials (RCTs); e.g., Mahajan et al. (2020, for India); Rom & Günther (2017, for Kenya); 

Stojanovski et al. (2018, for Zambia). These analyses find a mixed effect of pico-solar products, 
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with positive impact on lighting use and its related domestic activities, but lack of significant 

impact on educational attainments or income generation. Differently from the experimental 

studies, Bensch et al. (2011) assess the impacts of a Rwandan micro-hydro power project through 

an ex-post evaluation and find robust evidence for positive effects on lighting usage, but 

insignificant effects on income and children’s home studying after controlling for regional 

differences. Combining quantitative and qualitative evidence from Kenya, Kirubi et al. (2009) 

explore the extent to which community-based micro-grid electrification can contribute to rural 

development and document that access to electricity enables the use of electric equipment by small 

and medium enterprises and farmers, thereby resulting in productivity gains and expanded income 

opportunities in rural areas.  

The second strand of the literature that our study contributes to refers to the potential 

benefits of electrification for the agricultural sector. In low-income countries, agriculture is 

considered as the driver for economic development given its large employment capacity and 

significant contribution to the GDP (Amuakwa-Mensah & Surry, 2022; Sumberg et al., 2014). The 

agricultural implications of electrification are particularly relevant for the SSA context, where 

more than half of the population is employed in the sector (World Bank, 2022a). Rural 

electrification can bring about long-lasting positive effects on rural development by enabling 

business creation and improving village-level infrastructure, while simultaneously improving the 

productivity of agricultural activities  (Kirubi et al., 2009; Kyriakarakos et al., 2020). The adoption 

of modern irrigation technology such as groundwater pumps and machinery provided by access to 

electricity is expected to yield an expansion in irrigation land and increase in agricultural output 

and productivity. The increase in productivity and production potentially stimulates employment 

creation in the sector (Grogan & Sadanand, 2013; Knox et al., 2013). Moreover, the extended 

working hours owing to electricity access enable households and farmers to expand their output 



   
 

   

 

and improve their storage facilities to reduce post-harvest losses (Amuakwa-Mensah & Surry, 

2022; Lee et al., 2020).  

The link between the energy input and community development dynamics is highly complex. 

One question that still remains open is whether the provision of electricity is a sufficient and/or 

only a necessary condition for fostering development. In fact, most empirical studies find mixed 

results and generally weak structural economic impacts (Bayer et al., 2020). In the case of a set of 

seminal research papers providing evidence of significant employment or development effects of 

electrification, serious methodological concerns have recently been highlighted, casting doubt on 

the reliability of those results (Bensch et al., 2020b, 2021). As discussed in Bayer et al. (2020), 

impact evaluations from observational studies tend to over-promise positive impacts and lack the 

external validity of the results. Compared to survey data, RCTs offer more solid results thanks to 

rigorous ex-ante experimental designs, however they are usually limited to a specific target group 

and location, and thus not easy to generalize. The present study attempts to fill the gap in the 

literature by providing evidence on an ex-post evaluation of a key set of decentralized 

electrification solutions in a broad set of African countries.  

3. Data 

The minigrid database used in the present study is established and published by the African 

Association for Rural Electrification (CLUB-ER)2 in 2019. As part of the Green Minigrid Market 

Development Program (GMG MDP), CLUB-ER in partnership with CARBON TRUST develops 

 
2 CLUB-ER is the most appropriate for the present analysis given its content and scope, when compared to other 

available data sources such as African Minigrid Developers Association (AMDA), which covers only private 

companies. For example in Senegal, a leading example of minigrid electrification, private companies account for only 

15% of the sector, while hundreds of companies are state-owned.  
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a map of the mini-network for 27 countries in SSA.3 There are 1,888 minigrid projects covered in 

the database. Besides subnational geographical information (i.e., province, region, district, county) 

and geo-coordinates, the database provides information on minigrids’ installed capacity in 

megawatt (MW), technology type (i.e., diesel,  hydro, solar PV, hybrid systems), operational status 

(i.e., operating, non-operating, under construction, in pipeline), ownership model (i.e., private, 

community, public-private partnership), and the year of commission/installation that ranges 

between 2010 and 2019.  

Minigrids are typically built in remote locations where grid extension is not economically 

attractive. Minigrids usually have a capacity up to 10 MW (EUEI PDF, 2014), but 75% of the 

minigrids have a capacity equal to or less than 1 MW. Table 1 displays minigrid projects by 

operational status, techngology, and ownership type. Of the 1,888 minigrid projects, about 50% 

are currently operational, 40% are in pipeline and the rest is either not operating or under 

construction.  

The four common categories of the minigrid technology include diesel, hydro, solar, and 

renewable hybrid systems. Given that the fastest growing segment of the global minigrids market 

is solar hybrid technology, there is a greater emphasis on this third-generation technology  in the  

CLUB-ER database, whereas many of the existing first and second generation (i.e., diesel- or 

hydro-powered) minigrids  are not included (ESMAP, 2019; SEforAll, 2020). Accordingly, solar 

PV and solar-diesel hybrid are the most predominantly used generation technology in our sample, 

accounting for about half of the minigrids. Nevertheless, still 41% of the installed minigrids belong 

to diesel/heavy fuel oil or hydro systems. Considering the ownership structure, public and utility 

 
3 The SSA countries covered in the CLUB-ER dataset include Angola, Benin, Botswana, Burkina Faso, Cabo Verde, 

Cameroon, Cote d'Ivoire, DR Congo, Ethiopia, Gambia, Ghana, Guinea, Kenya, Liberia, Madagascar, Mali, 

Mauritania, Mozambique, Niger, Nigeria, Senegal, Sierra Leone, Tanzania, Togo, Uganda, Zambia, and Zimbabwe.   



   
 

   

 

ownership is the most common type, followed by public-private partnership, accounting for 53 

and 32% of minigrids installed, respectively (Table 1).  

Table 1. Minigrid projects by operational status, technology, and ownership type 

  Obs.  Percent   

Operational status:      
Operating 870 49.77   
Construction 49 2.8   
In pipeline 705 40.33   
Not operating 124 7.09   
Total 1,748 100   

Technology type:     
Diesel 361 19.12   
Hydro 413 21.88   
Solar 519 27.49   
Solar-diesel 461 24.42   
Other4 134 7.1   
Total  1,888 100   

Ownership status:     
Private 142 14.98   
Public 503 53.06   
Partnership 303 31.96   
Total  948 100   

Source: CLUB-ER (2019) minigrid database.  

 

Nighttime light data 

For the impact evaluation of mini-grid electrification, we rely on a counterfactual analysis 

and define the treatment and control group using minigrid database combined with geospatial data 

and satellite-based nighttime light (NTL) data. The treatment group is limited to electrified 

communities where minigrid systems are installed, whilst the control group comprises non-

electrified communities remote from the minigrid sites. The electrification status of the 

 
4 Other technology category includes biodiesel, biofuel, biogas, biomass, biomass cogeneration, biomass gasification, 

biomass jatropha, biomass palm oil, gas, hybrid hydro/diesel, hybrid straight vegetable oil/diesel, hybrid wind/diesel,  

wind, as well as other hybrid solar technologies such as hybrid solar PV/biodiesel, hybrid solar PV/biomass 

gasification, hybrid solar PV/hydro,  hybrid solar PV/wind, hybrid solar PV/wind/diesel. 
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communities is determined by the NTL data; in particular, for each location in the database, the 

yearly median nighttlime light radiance around a 2.5 km radius buffer is extracted. Locations where 

no radiance is detected throughout the time span of the NTL data between 2012 and 2019 are 

classified as unelectrified communities. Seminal literature contributions document that NTL 

brightness can be used to detect electrification at different scales. Min et al. (2013) find evidence 

of a significant relationship between NTL measure and electrification rate in rural Senegal and 

Mali.  Baskaran et al. (2015), Burlig & Preonas (2016), and Dugoua et al. (2018) provide 

supportive evidence from India and document that many NTL measures derived from satellite data 

are accurate for measuring rural electrification.  

Following the approach described in Falchetta et al. (2019, 2020), nighttime light data are 

extracted from the VIIRS (Visible Infrared Imaging Radiometry Suite) stray-light corrected 

monthly composites for the period of 2012–2019. NTL data have a native resolution of about 500m 

at the equator.  The data is combined with the High-Resolution Settlement Layer (HRSL) 30-m 

ambient population, and the Global Human Settlement Layer (GHSL)—including built-up areas 

and settlement type layers—used for rural and urban areas classification.5 A noise threshold of 

0.25 μW · cm−2 · sr−1 is used in the analysis, with the threshold being increased by +0.125 

μW · cm−2 · sr−1 from year 2017 to cope with calibration adjustment in the data (Uprety et al., 

2017). The NTL measure used in the present analysis is the local nighttime yearly median radiance 

extracted within a 1-km radius buffer around each minigrid site geo-coordinates.  

 

 

 
5 The Google Earth Engine platform is used to process spatially explicit imagery and extract data, which is used for 

calculating trends and running statistical analysis in the R scientific computing environment. 



   
 

   

 

Household welfare 

To evaluate the impact of minigrid electrification on household welfare, we complement 

the minigrid dataset with geo-referenced Demographic and Health Surveys (DHS) for a subset of 

SSA countries. The eleven countries covered in this merged dataset include Angola, Cameroon, 

Democratic Republic of Congo, Ethiopia, Kenya, Mali, Mauritania, Senegal, Tanzania, Togo, and 

Uganda. The DHS dataset is an unbalanced panel covering the period between 2005 and 2019 

(DHS, 2021). Only households observed at least two times over the panel period are kept in the 

sample. The DHS contains information on demographic characteristics of the household head 

including age, gender, and educational attainment; number of household members; household’s 

residential characteristics including rural/urban location, electricity uptake, appliance ownership 

(i.e., fridge, TV, radio), cooking fuel type (i.e., charcoal/firewood, kerosene, LPG, natural gas, 

electricity); and labor market characteristics such as employment status, earning type, and 

occupation. While demographics are used as control variables in the analysis, household’s access 

to electricity, ownership of home appliances, cooking fuel type, and the respondent’s labor market 

outcomes comprise the set of dependent variables. Labor market related questions come from 

individual records of the female respondents.  

The direct welfare impacts of household electrification on female labor supply and cooking 

fuel choice are well-documented in the literature. Electrification may change work opportunities 

in rural areas by stimulating job creation in new firms as well as in agriculture as a result of an 

increase in the sectoral production (Amuakwa-Mensah & Surry, 2022; Dinkelman, 2011). 

Household electricity may also change the home production patterns given the reduction in time-

intensive home-based activities such as firewood collection, food preparation and storage, and 

hence may increase labor supply for market work (Dinkelman, 2011). Rural electrification is also 

expected to improve people’s health. As a replacement for biomass cooking fuel, modern cooking 
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energy substantially reduces indoor air pollution and carbon emissions (Khandker et al., 2014). On 

the other hand, other appliance ownership enable us to assess whether households’ access to 

information and knowledge has improved (Lenz et al., 2017).  

Agricultural productivity: Enhanced vegetation index (EVI) 

As a proxy for agricultural productivity, we look at agricultural vegetation health, 

measured by the EVI. Several literature contributions show that the EVI is strongly correlated with 

local cropland productivity, namely yield (Burke & Lobell, 2017; Son et al., 2014). The index 

derived from MODIS satellite sensor is extracted over cropland area using the GFSAD1000 layer 

as a cropland mask for the period 2010-2019 (MODIS, 2021; Thenkabail et al., 2013). The index 

indicates the density of greenness of the cropland, ranging from -1, the most arid to 1, the greenest 

cropland. For the analysis, the index is temporally averaged over country-specific harvest season 

of maize (the most widely cultivated crop in SSA). Also in this case, the median EVI value is 

extracted within a 5-km buffer around each mini-grid site geo-coordinates for all pixels classified 

as cropland.   

Sample selection 

The main identification strategy makes use of a DiD-type counterfactual analysis based on 

a matched sample, which will be described in detail in the following section. The analysis sample 

is restricted to minigrids installed from 2010 onwards, accounting for 77% of 1,888 minigrid 

projects. The selection is based on the mini-grid markets report (SEforAll, 2020) indicating early 

2010s as the deployment year of the minigrid installation particularly for solar and hybrid minigrid 

systems. This sample selection is overlapping with the time span of the nighttime light data (2012-

2019) and vegetation index (2010-2019). The treatment group comprises communities covered in 

the minigrid dataset, while the control group is constructed using spatial data to detect communities 



   
 

   

 

where no minigrid is installed. To exclude on-grid electrification from the control group, the 

control group is further restricted to communities where zero NTL measure is detected.  A 

randomly drawn 20% of non-treated communities are used for matching, comprising 13,923 

observations, whereas the treatment group has 1,369 observations. The resulting sample hence 

includes 15,292 observations in total, corresponding to 12,970 individuals belonging to 8,726 

households located in 52 minigrid sites. DHS surveys are spatially joined with the minigrid 

database using a search radius of 5 km. 

4. Empirical method 

To estimate the impact of minigrid installation on agricultural productivity and household welfare, 

we follow a standard difference-in-differences (DiD) strategy such that:   

𝑌𝑖𝑡 =  𝛽0 +  𝛽1𝐷𝑡𝑖𝑚𝑒𝑡 +  𝛽2𝐷𝑡𝑟𝑒𝑎𝑡𝑖 +  𝛽3𝐷𝑡𝑟𝑒𝑎𝑡𝑖 ∗ 𝐷𝑡𝑖𝑚𝑒𝑡 +  𝑋𝑖𝑡´Ω + 𝛿 + ѵ𝑖𝑡       (1) 

where 𝑌𝑖𝑡 represents two sets of outcome variables at community or household level i for time t,  

including: (i) enhanced vegetation index on a scale of [-1,1]; (ii) a continuous measure of nighttime 

light radiance ranging between [0, +∞); and (iii) binary indicators for electricity uptake, appliance 

ownership (i.e., fridge, TV, and radio), and employment outcomes (i.e., being employed, earning 

cash, employed all along the year, employed in agricultural sector). While the EVI and NTL are 

measured at community level, the second set of outcome variables are measured at household 

level. The treatment group indicator 𝐷𝑡𝑟𝑒𝑎𝑡𝑖 takes the value of 1 for electrified communities with 

minigrids, and 0 for non-electrified communities (i.e., zero NTL measure) without a minigrid 

system. The treatment time indicator 𝐷𝑡𝑖𝑚𝑒𝑡 capturing the post-installation years is coded 1 for 

survey years (coming from DHS) after 2010, and 0 for the pre-installation years (i.e., survey years 

before 2011). The vector  𝑋𝑖𝑡 in Eq. (1) includes household level control variables such as 

demographic characteristics of the household head (i.e., age, gender, education), the number of 
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household members and urban/rural location of the household. We finally add country dummies 

(𝛿) to account for country-specific factors that are invariant over time.  

The coefficient 𝛽3 on the interaction term captures the treatment effect. In this case, the 

treatment effect measures the change in the outcome variable in minigrid sites following the years 

after the minigrid was installed, compared to non-electrified communities outside the reach of a 

minigrid system in pre-installation years. A potential threat to the identification of the treatment 

effect is the violation of the identifying assumption of the DiD method, namely the common trend 

assumption. Because DHS is an unbalanced panel and in most country cases, only one or two years 

are observable for the pre-installation period, we cannot check whether the outcome variables of 

the treatment and control groups follow a parallel trend over several years before the treatment. 

Alternatively, we construct a matched sample to make the treatment and control communities 

comparably similar. To this end, we follow the method of propensity score matching and first 

estimate a probit model for the probability of receiving the treatment, which is minigrid installation 

in the present context.  

Propensity score matching 

The propensity scores estimated in this stage are used for the selection of the control group 

as similar as the treatment group based on pre-determined characteristics, such as population 

density, urban-rural location dummy, distance to the central grid system (km), travel time to the 

nearest city center (minutes), the number of a health centers, and share of cropland area. These 

matching covariates are selected following the studies by Lenz et al. (2017) and Saing (2018), who 

use the DiD method combined with propensity score matching to evaluate the impacts of rural 

electrification on household consumption patterns (amongst others) in Rwanda and Cambodia, 

respectively. The travel time to the city center is calculated in minutes using a cumulative cost 

algorithm based on the World Cities database (Simplemaps, 2021) and the friction surface layer 



   
 

   

 

from Weiss et al. (2020).  In addition, a spatial intersection algorithm is used to calculate the count 

of healthcare facilities within a 2.5 km radius buffer around the installed minigrid (data from Maina 

et al. (2019), while a GIS distance algorithm is adopted to calculate the distance to the MV 

electricity grid in kilometers (data from Arderne et al. (2020)). The share of land area inside the 

minigrid buffer that is covered by cropland is estimated based on the GFSAD1000 layer 

(Thenkabail et al., 2013)6. The population density is measured as the sum of population (based on 

the the EC-JRC GHS-POP layer by European Commission (2019)) within a 2.5 km radius buffer 

around the installed minigrid divided by the area of the buffer in km2. The variables population 

density, distance to the grid (in km), and travel time to the city center (in minutes) are scaled by 

1/100 in the present analysis.  

Descriptive statistics 

Table 2 presents summary statistics by treatment and control group for household-level 

dependent variables and community-level characteristics that are used for matching. Minigrid 

characteristics are only available for the treated communities and hence are excluded from the 

counterfactual analysis, as well as from the table. Household welfare measures including 

electricity uptake and the ownership of fridge and TV are remarkably larger among treated-

community residents. On the other hand, the radio ownership is comparable between the two 

groups, as it is mostly affordable by poorer rural households and does not depend on electricity 

access. While half of the treated communities are located in urban areas, it is less than 1% among 

the control communities. The remarkable difference in the urban share between the two groups is 

 
6 Note that in some instances this share is greater than 1 (see Table 2) for reasons linked to the GIS algorithms used 

to calculate the variable. Namely, while a vector area algorithm estimates the mini-grid buffer area (2.52 * π), the 

cropland area is defined as the sum of the area of the raster pixels where cropland density >50%. The latter may 

include the portion of the raster pixels that falls outside the mini-grid buffer area. 
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likely due to the construction of the control group that consists of communities without a grid 

system and nighttime luminosity. As a result, more densely populated, urban areas, closer to the 

city center are disproportionately largely represented in the treatment group. Similarly, the distance 

to the grid system in the control communities is about six times the treated ones. On the other hand, 

an average treated community has almost five health care centers, while there is hardly one health 

center in a control community.  

Table 2. Summary statiscs by control and treatment group 

  Treated communities Control communities 

  
Obs 

(1) 
Mean 

(2) 
Std. Dev. 

(3) 
Min 

(4) 
Max 

(5) 
Obs 

(6) 
Mean 

(7) 
Std. Dev. 

(8) 
Min 

(9) 
Max 
(10) 

Dependent variables:                     
Electricity uptake 1,368 0.60 0.49 0 1 13,904 0.11 0.31 0 1 
Fridge ownership  1,368 0.18 0.38 0 1 13,913 0.03 0.16 0 1 
TV ownership 1,365 0.54 0.50 0 1 13,914 0.12 0.32 0 1 
Radio ownership 1,368 0.66 0.47 0 1 13,913 0.59 0.49 0 1 
Cash job 693 0.84 0.37 0 1 9,662 0.57 0.50 0 1 
Employed all year 693 0.71 0.45 0 1 9,668 0.45 0.50 0 1 
Employed 1,368 0.46 0.50 0 1 13,888 0.62 0.48 0 1 
Employed in agriculture 970 0.23 0.42 0 1 11,881 0.70 0.46 0 1 
Vegetation index 709 0.24 0.08 0.05 0.41 9,263 0.23 0.08 -0.01 0.43 
Matching covariates:                     
Population density 1,369 53.11 68.32 0.04 381.33 13,923 1.21 2.99 0 68.88 
Travel time to city (min) 1,369 0.91 3.32 0 43.70 13,923 4.86 4.84 0 72.96 
Health care center 1,369 4.49 10.38 0 136 13,923 0.33 0.72 0 15 
Distance to grid (km) 1,369 0.18 0.46 0 3.83 13,923 0.94 1.14 0 7.19 
Urban 1,369 0.50 0.50 0 1 13,923 0.002 0.04 0 1 
Cropland share 1,369 1.01 0.32 0.01 1.22 13,923 0.98 0.37 0 1.26 
Demographics:                      
Household size 1,369 9.04 5.71 1 36 13,923 7.83 5.07 1 59 
Head: Female 1,368 0.26 0.44 0 1 13,916 0.18 0.39 0 1 
Head: Age  1,368 47.88 13.78 18 93 13,906 45.94 14.52 15 99 
Head: Education (years) 1,367 5.29 4.17 0 18 13,915 2.51 3.72 0 19 

Notes: Statistics are computed using the merged minigrid-DHS-EVI dataset. While demographic 

characteristics and dependent variables (except for vegetation index) are at household level, the matching 

covariates and the vegetation index are at community level. The variables population density, distance to 

the grid (in km), and travel time to the city center (in minutes) are scaled by 1/100. 
  

Table 2 further presents demographics used as control variables in regression analyses.  

Female heads are relatively more represented among households residing in the treated 

communities. On average, household heads are about 2 years older and better educated than 



   
 

   

 

households living in the control communities. Among female respondents, who are the 

interviewees of the labor market module in the DHS,  the employment rate is about 60% in the 

control communities, which is larger than the rate in the treatment group. Unsurprisingly, it is due 

to the agricultural sector being the major employer in rural areas, employing 70% of the female 

population in the control communities. In contrast, the share of population employed all the year 

and having a cash job is higher in the treated communities.  

Table 3 presents the mean differences between treatment and control groups before and 

after matching. The statistics shown for unmatched treated sample keeps the second column of 

Table 2 in Table 3 (column 5) for the sake of comparison. Although the balancing property is 

hardly satisfied, the mean difference between the control and treatment group is substantially 

reduced after matching irrespective of the algorithm in use. Table 3 shows the statistics based on 

Kernel matching algorithm which is used as the main specification, although the results are also 

produced by using radius matching method and the corresponding results are presented in the 

appendix as a robustness check. The weights obtained from the mathing estimation are then used 

to estimate Eq.(1) based on the matched sample.    

The mean difference between the treatment and control group is statistically significant for 

each covariate at 1% level confidence interval. The difference substantially reduces after matching, 

although it is still statistically significant and the balancing property is hardly satisfied when all 

six covariates are used for matching. An alternative approach would entail reducing the set of 

covariates so as to satisfy the balancing property. Nonetheless, this would negatively affect the 

matching quality, increasing the chance of an omitted variable bias. Considering such trade-off, 

our main identification relies on a larger set of matching covariates and we present the results from 

the alternative specification, fully satisfying the balancing property, in the appendix.  
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Table 3. Mean differences between treatment and control group for the matched and unmatched 

sample 

  Matched Sample Unmatched Sample   
  Mean Mean Diff. t-test Mean Mean Diff. t-test 

  
Treated 

(1) 
Control 

(2)  (3) 
 

(4) 
Treated 

(5) 
Control 

(6) (7)  
 

(8) 

Dependent variables:                
Electricity uptake 0.632 0.173 0.459 12.5 0.603 0.106 0.497 53.5 
Fridge ownership  0.168 0.110 0.058 2.8 0.175 0.025 0.150 28.3 
TV ownership 0.551 0.201 0.350 9.2 0.543 0.117 0.426 44.1 
Radio ownership 0.642 0.673 -0.031 -0.6 0.660 0.590 0.070 5.1 
Cash job 0.823 0.729 0.094 1.0 0.841 0.565 0.276 14.4 
Stable job 0.714 0.635 0.079 0.8 0.711 0.453 0.259 13.3 
Employed 0.454 0.612 -0.157 -2.9 0.459 0.625 -0.166 -12.0 
Agricultural emp. 0.299 0.687 -0.388 -7.1 0.226 0.704 -0.478 -31.5 
Vegetation index 0.235 0.225 0.009 0.9 0.237 0.226 0.012 3.8 
Matching covariates:                
Population density 18.610 24.608 -5.998 -4.7 53.110 1.212 51.898 88.8 
Travel time to city  1.807 4.160 -2.352 -6.8 0.910 4.856 -3.946 -29.5 
Health care center 2.840 3.291 -0.451 -1.6 4.495 0.325 4.169 46.3 
Distance to grid 0.219 0.822 -0.604 -11.7 0.183 0.942 -0.759 -24.4 
Urban 0.175 0.096 0.079 3.5 0.505 0.002 0.503 110.0 
Cropland share 0.899 1.057 -0.158 -7.1 1.013 0.985 0.028 2.7 

Notes: Test results rely on kernel matching with common support option. As for the test results of the 

matched sample, Stata pstest command is used following the psmatch2 program, in which electricity uptake 

is used as a dependent variable.  

 

 

5. Results 

The results section is organized in three subsections. We first discuss the DiD estimation results 

evaluating the impacts of minigrid electrification on household welfare. In the subsequent 

subsection we provide the DiD results for agricultural productivity, in which we also shed light on 

the channels explaining the link from electrification to agricultural productivity through minigrid 

and community characteristics. To this end, we carry out an OLS estimation on the sample of 

minigrid communities (namely, the treated group), where the key regressor refers to a binary 

indicator for the period after the minigrid was installed. Although this exercise does not claim a 

formal causal relationship, it enables us to uncover the association between the vegetation index 

and minigrid and community characteristics. To control for minigrid-level time-invariant 

heterogeneity we also present fixed effects results, which help to benchmark the OLS results.  This 



   
 

   

 

exercise also allows us to perform an event study-type analysis where we explore heterogeneous 

across years and across countries. Finally, in the third subsection, we examine the relationship 

between minigrid electrification and the choice of cooking fuels through a multinomial logit 

model.  

5.1. Impacts of minigrid electrification on household welfare 

To estimate the impacts of minigrid electrification on household welfare, we consider the 

electricity uptake; the ownership of household appliances including refrigerator, TV, and radio; 

and labor market outcomes including being employed, having a cash-paid job, working along the 

entire year, and working in the agricultural sector. The estimation relies on a DiD specification 

described in Eq. (1) based on a matched sample constructed by using the propensity score 

matching. The results presented in Table 4 (and, in particular, the DiD estimator coefficient 

Dtime*Dtreat) show that the probability of electricity uptake increases by 0.5 for households living 

in the minigrid sites after 2010, compared to counterfactual households living in non-electrified 

communities in pre-installation years (column 1). Similarly, minigrid electrification increases the 

probability of owning a television by 0.15, albeit its statistical significance at the borderline. The 

positive association with the TV ownership accompanies a decline in the probability of a radio 

ownership (although statistical insignificant), which implies a substitution effect between 

communication channels. On the other hand, we find no impact on the ownership of higher power 

appliances such as refrigerator, suggesting that other factors such as income avaiability and 

cultural norms, are likely at play. The results in Table 4 relying on a matched sample using weights 

from Kernel method are similar to those based on radius matching method that are presented in 

Table A.3 in the appendix.  

Electricity connection can have countervailing effects on employment outcomes. On one 

hand, electrification could result in less labor intensive production due to an efficiency gain in 
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agriculture. On the other hand, the increase in agricultural productivity could yield a larger amount 

of harvest and hence increase the labor demand. In parallel, thanks to electricity access, labor 

supply freeing up from collecting firewood, particularly of women might canalize to the (formal) 

labor market. Our results suggest that minigrid electrification increases the probability of working 

in the agricultural sector and holding a job along the whole year. However, the employment effect 

seems to be limited to the agricultural activities, as minigrid electrification is neither associated 

with the probability of being employed in general nor with the earning type.   

Table 4. Effects of minigrid electrification on household welfare and agricultural productivity 

DiD results based on a matched sample using weights from kernel matching 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

  

Electricity 
uptake 

Fridge 
ownership 

TV 
ownership 

Radio 
ownership 

Cash job Employed 
all year 

Employed Employed 
agriculture 

Vegetation 
index 

Dtime -0.094 0.072 0.132 -0.048 0.207*** 0.030 0.282*** -0.218*** -0.037*** 

  (0.082) (0.083) (0.080) (0.077) (0.080) (0.079) (0.090) (0.085) (0.014) 

Dtreat 0.161*** 0.043 0.172*** 0.070 0.156** 0.025 -0.106 -0.343*** -0.010 

  (0.056) (0.034) (0.053) (0.065) (0.074) (0.055) (0.069) (0.070) (0.012) 

Dtime*Dtreat 0.505*** 0.030 0.146* -0.035 -0.058 0.179** -0.086 0.173** 0.045*** 

  (0.079) (0.076) (0.079) (0.073) (0.089) (0.087) (0.091) (0.082) (0.016) 

Household size 0.003 0.006 0.002 0.013*** 0.003 -0.004 -0.001 -0.005   

  (0.005) (0.004) (0.004) (0.003) (0.003) (0.004) (0.004) (0.003)   

Head: Female -0.018 -0.051* -0.152*** -0.134** -0.027 0.001 0.031 0.040   

  (0.043) (0.026) (0.030) (0.055) (0.041) (0.063) (0.041) (0.066)   

Head: Age 0.000 0.000 -0.001 0.002 -0.002 -0.004** -0.002 0.005***   

  (0.002) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002)   

Head: Education  0.013** 0.022*** 0.025*** 0.018*** -0.000 0.008 -0.005 -0.037***   

  (0.006) (0.007) (0.006) (0.005) (0.005) (0.005) (0.006) (0.006)   

Constant 0.207* -0.139* 0.111 0.416*** 0.490*** 0.530*** 0.586*** 0.845*** 0.232*** 

  (0.121) (0.080) (0.117) (0.122) (0.140) (0.106) (0.122) (0.125) (0.012) 

Country dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes 

                    

Observations 14,807 14,816 14,817 14,816 10,080 10,086 14,783 12,472 9,714 

Notes: Estimation is retstricted to a matched sample, using weights obtained from Kernel matching method 

based on covariates including population density, urban dummy, distance to the grid, travel time to city, 

cropland share, the number of healthcare centers. While Dtime and Dtreat refer to dummy variables for 

time and group indicators, Dtime*Dtreat is the interaction term between the two variables.   The covariates 

population density, distance to the grid, and travel time to city are scaled by 1/100. While the household 

level dependent variables presented in columns (1) to (8) are dummy variables, the community level 

dependent variable in column (9), the enhanced vegation index ranges within a scale of [-1, 1]. Robust 

standard errors clustered at community level are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 



   
 

   

 

 

5.2. Impacts of minigrid electrification on agricultural productivity  

In this section, we discuss results from the estimation of impacts of minigrid electrification on 

agricultural productivity measured by the enhanced vegetation index. As described earlier, the 

EVI ranges from -1, the most arid cropland to 1, the greenest. The DiD results presented in 

column (9) of Table 4 suggest that  minigrid electrification leads to an increase of 0.045 

percentage points in the index. Given the unconditional mean of the EVI of about 0.24 (Table 

3), the estimated effect would translate into about 19% increase in the mean. While this finding 

does not directly indicate the channels behind this association, we suggest that this vegetation 

health improvement as a result of electrification might be associated with increased production 

in agriculture (e.g. due to water pumping and irrigation), and hence more labor demand, which 

is supported by the finding on the positive association with the agricultural employment (Table 

4, columns 8-9).   

Because the community level covariates are used for matching, the DiD specification does 

not control for additional variables, except for country dummies. Besides, the minigrid 

characteristics that are only available for the treated communities are naturally dropped from the 

DiD analysis. To evaluate the impacts of those community as well as minigrid characteristics on 

agricultural productivity, we furthermore estimate an OLS regression. In this analysis, we rely on 

the merged minigrid-EVI dataset7 and define the key regressor as a binary indicator for the post-

installation period that is extracted from the information on the year of installation/commissioning 

of minigrids. This dummy variable constitutes the time treatment indicator, coded 1 for all years 

following the years minigrid was installed, and 0 otherwise.  

 
7 While the OLS regression relies on the merged minigrid-EVI dataset, the DiD analysis combines it with the DHS 

data. As a result, the size of the estimation sample differ, as presented in Table 4 and Table 5.  
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Table 5. Effects of minigrid installation on agricultural productivity and nighttime brightness 

  Enhanced Vegetation Index Log of Nighttime Light  
  (1) (2) (3) (4) (1) (2) (3) (4) 
  OLS OLS OLS FE OLS OLS OLS FE 

Post-installation  0.013*** 0.006** 0.004** 0.000 0.283*** 0.290*** 0.382*** 0.233*** 
  (0.003) (0.003) (0.002) (0.002) (0.044) (0.046) (0.051) (0.033) 
Baseline: Not operating               
Operating 0.016*** 0.012*** -0.007**   0.132*** 0.218*** 0.218***   
  (0.003) (0.004) (0.003)   (0.047) (0.044) (0.052)   
In pipeline 0.029*** 0.024*** 0.010*   -0.116 -0.029 -0.128   
  (0.005) (0.005) (0.006)   (0.074) (0.073) (0.097)   
Construction 0.018*** 0.025*** -0.040***   0.035 0.075 0.347***   
  (0.006) (0.006) (0.006)   (0.060) (0.061) (0.078)   
Baseline: Partnership               
Public -0.039*** -0.034*** 0.017***   0.689*** 0.663*** 0.528***   
  (0.003) (0.003) (0.003)   (0.043) (0.044) (0.050)   
Private -0.059*** -0.059*** 0.023***   0.158*** 0.171*** -0.025   
  (0.004) (0.004) (0.005)   (0.045) (0.046) (0.071)   
Baseline: Diesel                 
Hydro -0.011*** -0.020*** 0.006*   -0.208*** -0.194*** -0.464***   
  (0.003) (0.003) (0.003)   (0.046) (0.050) (0.060)   
Solar -0.022*** -0.033*** -0.033***   -0.452*** -0.476*** -0.628***   
  (0.004) (0.004) (0.003)   (0.052) (0.057) (0.057)   
Solar-diesel -0.057*** -0.065*** -0.052***   0.394*** 0.353*** 0.263***   
  (0.004) (0.004) (0.005)   (0.069) (0.072) (0.101)   
Other -0.001 -0.005 -0.005   -0.278*** -0.268*** -0.274***   
  (0.004) (0.004) (0.004)   (0.049) (0.050) (0.053)   
Installed capacity (MW) -0.003*** -0.004*** -0.002***   0.290*** 0.278*** 0.255***   
  (0.001) (0.001) (0.001)   (0.015) (0.016) (0.015)   
Community characteristics:               
Population density   0.000 0.000     -0.002*** -0.002***   
    (0.000) (0.000)     (0.000) (0.000)   
Travel time to city   0.000 -0.000     -0.006*** -0.005*   
    (0.000) (0.000)     (0.002) (0.002)   
Cropland (km2)   0.001*** 0.000***     0.005** 0.002   
    (0.000) (0.000)     (0.002) (0.002)   
Constant 0.286*** 0.281*** 0.243*** 0.265*** -0.129** -0.181*** 0.259** 0.592*** 
  (0.004) (0.005) (0.008) (0.001) (0.055) (0.064) (0.131) (0.025) 
Country dummies No No Yes Yes No No Yes Yes 
                  
Observations 4,530 4,180 4,180 4,180 4,484 4,191 4,191 4,191 

Number of id       
425 

      
526 

Notes: Estimation is based on the minigrid data combined with satellite based community characteristics 

(bottom panel), enhanced vegetation index (left panel) and nighttime light data (right panel). While the 

dependent variables range over the period of 2010 and 2019, the covariates are observed one point in 

time. The variable Post-installation is a time treatment binary indicator for years following the year of 

commission of the minigrid. The base line categories for operational status, technology type and 

ownership status are not-operating, diesel technology, and public-private partnership, respectively. Robust 

standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

 

The left panel of Table 5 presents the OLS results in columns (1) to (3), while column (4) 

shows results from the estimator of a fixed effects (FE) model at minigrid site (i.e., community) 

level. Columns (2) and (3) of Table 5 compares OLS results without and with country dummies, 

respectively, to show the importance of the country-specific unobserved heterogeneity. The results 



   
 

   

 

suggest that the minigrid installation is associated with an increase of up to 0.013 percentage points 

in the EVI, after controlling for minigrid characteristics (column 1). The coefficient estimate drops 

to one half once we control for community characteristics (column 2) and declines to 0.004 after 

adding the country dummies (column 3). The unobserved heterogeneity at minigrid level explains 

this variation to a large extent. In fact, the fixed effects estimation cancels out the coefficient 

estimate on the post-installation variable (column 4).  

In line with expectations, operating minigrids are associated with a larger increase in the 

vegetation index, when compared to non-operating minigrid sites. Interestingly, the estimated 

association is by far the greatest for minigrids in pipeline, among other operational status (column 

3). This might be an indicative for the non-random allocation of minigrids towards more 

productive agricultural areas. We have addressed this potential endogenity concern through a 

matching estimator, as discussed earlier. Ownership status also matters; the projects owned by 

private actors are the most effective in increasing agriculture productivity (column 3). As for the 

technology type, minigrids powered by solar and solar-diesel are negatively correlated with 

agricultural vegetation health, when compared to diesel-type minigrids, possibly highlighting 

energy storage-related limitations. Hydro systems are comparable to, even slightly better 

performing than the diesel technology in improving agricultural vegetation health. We also find 

that the larger the cropland, the higher the agricultural vegetation health is (columns 2&3). On the 

other hand, the negative association between the installed capacity and the vegetation index could 

be explain by the fact that ceteris paribus smaller mini-grid systems are allocated to communities 

dominated by agricultural activities, while larger systems might be associated with higher shares 

of non-farm entrepreneurial activities (column 3).  

Next, we check the heterogeneity in the agricultural productivity effects across countries 

and years. The left panel of Figure 1 displays the estimation results for a selected group of 
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countries, where more than a hundred minigrids are installed. The results rely on the specification 

indicated in the third column of Table 5. Despite a substantial heterogeneity across countries in 

the estimated effect,  it is found to be statistically significant only in Kenya, a well-known example 

for an outstanding performance in the off-grid market in the SSA region (Moner-Girona et al., 

2019).  

Furthermore, we carry out a duration analysis and check how the average effect presented 

in Table 5 (column 3) varies across time before and after the installation year. To explore the 

heterogeneity in the operational duration of the minigrid system, we test the hypothesis whether 

the effectiveness of minigrids increases as the operational time passes. The duration measure is 

generated based on the difference between the survey year (i.e., when the EVI was measured) and 

the commission year of the minigrid. The duration measure is coded zero if the survey year 

overlaps with the year of commission, coded 1 for one year after the minigrid installation; coded 

2 for two years after the installation; and so on. Minigrids running for more than 6 years are 

subsumed in the maximum duration value of 6.  Analogously, we create the pre-installation 

duration ranging from -1 to -5. Minigrids commissioned 6 years ago or older are subsumed in the 

value of -5.  



   
 

   

 

 

Figure 1. Effects of minigrid electrification on the agricultural productivity across countries and 

over time 

Notes: Estimation is based on an OLS regression controlling for minigrid and community characteristics, 

as well as country dummies. The key regressor is post-installation, which is a time treatment binary 

indicator for years following the year of commission of the minigrid. The graph on the left hand side 

displays point estimates on the post-installation variable per country for a selected sample of countries, 

where more than a hundred minigrids are installed. The graph on the right hand side displays the results of 

the duration analysis for the entire set of 27 countries. The x-axis of the right panel shows the year difference 

between when the EVI was measured and when the minigrid was installed. While zero indicates that the 

EVI was measured in the year when minigrid was installed, a positive (negative) number refers to how 

many years after (before) the minigrid installation the EVI was measured.  

 

The heterogeneous effects across years are displayed in the right panel of Figure 1. The 

estimated effect becomes statistically significant after three years following the installation and 

continues to increase sharply onwards. It is reasonable to find such a long lag given the time 

required to adopt electrical equipment for irrigation and/or to relocate labor freeing up from 

housework or firewood collection to agricultural activities (Dinkelman, 2011; Tagliapietra et al., 

2020).  
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5.3. Impacts of minigrids on the choice of cooking fuels 

Based on our results we argue that the installation of mini-grids can generally lead to some 

positive development outcomes. This is true both for electrification (and to some extent related 

benefits, such as appliance ownership) as well as for improvements in the agricultural sector. Yet, 

we find important differences depending on the design of the mini-grid. Important differences 

appear regarding the main fuel as well as the capacity of the grid. Solar-based mini grids seem to 

be less effective in providing positive effects on agricultural productivity. As we also find that 

with increasing capacity of the grids the effect on agricultural health increases, we hypothesize 

that those effects might be interrelated. That is, for larger grids that also have a positive effect on 

agriculture some form of backup capacity provided e.g. by diesel generators seems to be desirable. 

On the other hand, solar based mini grids seem to effectively deliver on electrification outcomes 

based on NTL data. 

In addition to the effects on electrification effects, appliance uptake and agricultural 

productivity, from a development perspective it is also an interesting question whether minigrid 

electrification has any impact on the choice of cooking fuel. Given the potential health impacts of 

cooking with firewood or charcoal (Pratiti et al., 2020), it is interesting to check whether we can 

see any substitution effect from biomass stoves towards cooking with cleaner fuels or electricity. 

As the outcome variable is categorical, consisting of electricity, fossil fuel (i.e., kerosene, LPG, 

natural gas), biomass (i.e., charcoal and firewood), and other traditional biomass (i.e., agricultural  

by-products and dung), we estimate a multinomial logit model, where other biomass is used as a 

baseline category.  The conditional marginal effects are, however, statistically insignificant (see 

Figure 6). This finding is in line with the existing evidence from lower income countries that the 

fuel use behavior is likely linked to lifestyle and cultural factors that determine cooking habits 

(Muller & Yan, 2018).  



   
 

   

 

 

 

Figure 5. Conditional marginal effects of minigrid electrification on the choice of cooking 

fuel  

Notes: The figure displays the marginal effects from the estimation of a multinomial logit model, where 

the outcome variable is composed of the categories of electricity, fossil fuel (i.e., kerosene, LPG, natural 

gas), biomass (i.e., charcoal and firewood), and other traditional biomass (i.e., agricultural  by-products 

and dung). The other traditional biomass constitutes the baseline category.  

 

6. Additional analyses and robustness checks 

In this section, we first validate whether NTL data are able to capture minigrid electrification 

outcomes and then evaluate the effectiveness of minigrids in increasing nighttime light luminosity. 

Similar to the analysis for agricultural productivity (see Figure 1), we also examine whether the 

impacts on nighttime brightness show heterogeneity across countries and years. Second, we check 

whether the DiD estimation results are robust to the selection of a different set of matching 

covariates satisfying the balancing property, a different matching algorithm, and different 

comparison periods.  

6.1. Nighttime light data: appropriateness and effectiveness 

  Whether mini-grids determine the emission of a sufficient level of visible light such that it 

can be captured by satellites is an important concern in our analysis.  We check the appropriateness 
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of the NTL data by calculating the share of electrification occurring through the installation of 

minigrid systems, which is detected by the satellite-based NTL data. We consider minigrid sites 

as satellite-detected if the NTL measure8 is strictly greater than zero in the surroundings of the 

minigrid coordinates, and 0 otherwise.  Figure 2 displays the maximum share of operating 

minigrids detected by the NTL data for each country. Tuning country-specific noise floor value 

and buffer areas9, approximately 70% of minigrids are captured by the NTL data in the entire 

sample. There is, however, quite a large heterogeneity across countries. While Botswana, Ghana 

and Tanzania rank among the highest with a 100% detection rate, Ethiopia, Mozambique and 

Zimbabwe rank the lowest with a rate below 20%. The reason for the low rate of detection might 

be due to the dominance of sparsely populated rural areas in those countries,  the scarce nighttime 

illumination due to economic, geographical, and behavioral factors, or limited energy storage 

capacity. 

 

 
8 NTL measure is properly corrected with a noise threshold as described in the data section, testing for different noise 

floor values and buffer areas around the minigrid coordinates. 

9 We consider noise floor values in [0.15, 0.2, 0.21, 0.22, 0.25, 0.3], at which 0.125 μW · cm−2 · sr−1 is added starting 

from 2017 to account for the increased noisiness in the data as discussed in Section 2, and buffer area radius values 

(in meters) in [100, 1500, 2500].  



   
 

   

 

 

Figure 2. Share of (operational) minigrid sites detected by nighttime light data.  

Notes: Each dot represents the percentage of mini-grids in the CLUB-ER database where non-zero 

NTL radiance is detected in the surroundings of the mini-grid location, net of NTL data noise-floor 

adjustment. Blue (red) dots identify countries where at least (less than) 50% of mini-grid sites are 

successfully detected by NTL. 

 

The main feature of minigrids is the ability to operate independently, which enables them 

to be set up in remote locations that the main grid does not reach. Although most installed mini-

grids in remote areas are isolated, they can also be grid-connected (SEforAll, 2020). One concern 

is that nighttime luminosity attributed to the minigrids might be due to on-grid electrification as 

some minigrids are likely to be constructed in the proximity of the distribution lines. Figure 3 

depicts minigrids installed at a maximum distance of 2-km from the grid system and more than 2 

km far away, indicated by red and green dots, respectively. Georeferenced information about the 

presence of the grid is derived from Arderne et al. (2020). As shown in the map, the majority of 

the minigrids are installed relatively far from the grid system. Figures A.2 in the appendix showing 
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the same map for selected countries, including  Kenya, DR Congo and West Africa corroborates 

this observation.    

 

  Figure 3. Minigrids installed in SSA within and outside the 2-km proximity to grid lines 

Notes: The map is produced by the authors based on Arderne et al. (2020). The green and red dots represent 

minigrids in the proximity of a grid more than 2km and within a 2km-distance far away, respectively. Note 

that grid distance data are also used in the PSM as a balancign covariate. 

 

Moreover, given that the NTL data are measured between midnight and 3 am, it is possible 

that nighttime brightness captured by satellite data might be coming from streetlights rather than 

dwellings or workplaces. To address the issue, using geo-coordinates, we merge the minigrid-NTL 

data with data from a ground-based survey carried out in Senegal by Peters at al. (2019) and 

investigate both energy access issues and availability of public lighting. About 90% of the 86 

locations covered in the survey data have at least one minigrid, which are outside the reach of a 

< 2 km from MV grid 

> 2 km from MV grid  
   



   
 

   

 

grid system. About 76% of the minigrid sites have public lighting and 34% have a streetlight 

operational at the time of the survey. Based on a two-sample t-tests, we compare the NTL radiance 

in sites with and without operational streetlights, and we find no evidence of a statistically 

significant difference of the mean (at a 95% level of significance). This finding is interpreted as 

evidence that in the context of communities served by minigrids, the presence of streetlights might 

not be determinant for light detection via NTL data10.  

Effectiveness of minigrids in increasing nighttime brightness 

Next, we analyze whether installing minigrids leads to a meaningful increase in electricity 

access and consumption density at community level. The yearly median value of the NTL radiance  

is used as a proxy for the electrification level. Considering the same OLS and FE regressions as 

described in Table 5, we find that communities become brighter by an average increase of up to 

38 percent following the electrification through mini-grids, after controlling for minigrid and 

community characteristics. The magnitude of the effect drops to 23 percent once minigrid-level 

time-constant heterogeneity is controlled (Table 5, right panel). We also check the heterogeneity 

of the results across countries. As displayed in Figure 4 (left panel), the estimated effect exhibits 

a cross-country variation, ranging from approximately 0.1 in Congo to 0.5 in Kenya. Furthermore, 

we replicate the duration analysis to estimate the impact on the NTL measure (i.e., natural 

logarithm of yearly median) following the specification introduced for Figure 1. Similar to the 

results of vegetation index, the positive impact comes with a lag but to a lesser extent. As shown 

in the right panel of Figure 4, the positive impact  starts to be seen following the first year of 

 
10 The street light data from Senegal are not publicly available, however, related calculations are available upon the 

request from the authors.  
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installation and increases over time. This finding implies that it takes about at least one year for 

communities to take up electric lighting after the minigrid was commissioned.  

Figure 4. Effects of minigrid electrification on nighttime brightness across SSA and over time 

Notes: Estimation is based on an OLS regression controlling for minigrid and community characteristics, 

as well as country dummies. The key regressor is post-installation, which is a time treatment binary 

indicator for years following the year of commission of the minigrid. The graph on the left hand side 

displays point estimates on the post-installation variable per country for a selected sample of countries, 

where more than a hundred minigrids are installed. The graph on the right hand side displays the results of 

the duration analysis for the entire set of 27 countries. The x-axis of the right panel shows the year difference 

between when the NTL was measured and when the minigrid was installed. While zero indicates that the 

NTL was measured in the year when minigrid was installed, a positive (negative) number refers to how 

many years after (before) the minigrid installation the NTL was measured.  

 

6.2. Robustness checks  

In this subsection, we first check the robustness of the DiD results by relying on a subset of 

matching covariates that satisfy the balancing property.  While estimating the propensity score to 

match the treated group with comparable control communities, the probabilistic model for 

receiving the treatment conditions on covariates including population density, urban dummy, 

distance to the grid, travel time to the nearest city center, cropland share, and the number of 

healthcare centers. As can be seen in Table 4, for each covariate the mean difference between 

treated and control groups, despite its statistical significance, becomes substantially lower after 



   
 

   

 

matching compared to the mean difference in the unmatched sample. The balancing property is 

not satisfied when we include all the six covariates. We replicate the DiD analysis based on a 

matched sample using a subset of matching covariates that satisfy the balancing property.11 This 

subset includes three covariates, namely an urban dummy, the number of healthcare centers, and 

cropland share. The remainder of the covariate set including population density, travel time to the 

center, and distance to the grid are used as additional control variables in the DiD specification. 

The results are shown in Table 6.  

Table 6. Effects of minigrid electrification on household welfare and agricultural employment 

DiD results on a matched sample using kernel method satisfying the balancing property 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

  

Electricity 
uptake 

Fridge 
ownership 

TV 
ownership 

Radio 
ownership 

Cash job Employed 
all year 

Employed Employed 
agriculture 

Vegetation 
index 

Dtime 0.067*** -0.034** 0.202** -0.000 0.084 0.178** 0.146 0.104 -0.006 

  (0.024) (0.013) (0.079) (0.087) (0.052) (0.075) (0.114) (0.103) (0.005) 

Dtreat 0.194*** 0.104*** 0.263*** 0.014 0.055 0.201*** -0.116 -0.150** -0.020*** 

  (0.038) (0.021) (0.050) (0.059) (0.057) (0.064) (0.088) (0.067) (0.006) 

Dtime*Dtreat 0.168*** 0.018 0.045 -0.182** 0.028 0.013 0.033 0.094 0.024*** 

  (0.050) (0.023) (0.074) (0.078) (0.070) (0.083) (0.106) (0.093) (0.009) 

Constant 0.109** -0.008 -0.028 0.598*** 0.713*** 0.341*** 0.734*** 0.417*** 0.208*** 

  (0.051) (0.028) (0.101) (0.121) (0.122) (0.131) (0.143) (0.146) (0.012) 
                    
Observations 15,067 15,076 15,074 15,076 10,215 10,221 15,043 12,704 9,743 

Notes: Estimation is retstricted to a matched sample, using weights obtained from Kernel matching method 

based on a subset of covariates that satisfy the balancing property including the urban dummy, cropland 

share, and the number of healthcare centers. Each column controls for community characteristics including 

population density, travel time to city, distance to grid; household characteristics including household size, 

age, gender, and education level of the household head; as well as country dummies. While Dtime and 

Dtreat refer to dummy variables for time and group indicators, Dtime*Dtreat is the interaction term between 

the two variables.   The covariates population density, distance to the grid, and travel time to city are scaled 

by 1/100. While the household level dependent variables presented in columns (1) to (8) are dummy 

variables, the community level dependent variable in column (9), the enhanced vegation index ranges 

within a scale of [-1, 1]. Robust standard errors clustered at community level are in parentheses. *** p<0.01, 

** p<0.05, * p<0.1 

 

 
11 This analysis makes use of the STATA program pscore, which explicitly reports whether the balancing property is 

satisfied. Among all the combinations, the subset of urban dummy, number of healthcare centers, and cropland share 

is the only one satisfying the balancing property. On the other hand, we use the program psmatch2 for the propensity 

score matching and its post-command pstest to report the mean differences and the corresponding t-test results before 

and after matching.  
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In general, the results are similar to those presented in Table 4, however the magnitude of 

the treatment effect (i.e., coefficient of the interaction term) gets smaller when the balancing 

property is satisfied. The largest drop is observed for the TV ownership (column 3) and agricultural 

employment (column 8), which turns the estimates into statistically insignificant. The statistical 

inference for the agricultural employment is also sensitive to selection of the matching algorithm. 

The use of radius matching makes its coefficient estimate statistically insignificant (see Table A.4 

in the appendix). On the other hand, the coefficient estimate on the vegetation index is robust both 

to the choice of the matching covariates and the matching technique and remains strongly positive 

(column 9 of Table 6 & Table A.4). 

Finally, we check the robustness of the results to the choice of the treatment year. Based 

on the stylized facts in the minigrids market report, the analysis sample was restricted to the 

minigrids installed from 2010 onwards and hence the treatment time indicator was coded 1 for the 

survey years following 2010. In an alternative specification, we check the DiD results comparing 

two sub-periods before the reference year of 2010. This sample restriction reduces the number of 

observations to about one third of the entire sample size. In this case, the time dummy is coded 1 

for survey years between 2006 and 2009, and zero for earlier years between 2001 and 2005. The 

treatment group indicator is considered the same as described in the main specification of Eq. (1). 

The results presented in Table 7 show that the treatment effect is statistically insignificant when 

two pre-treatment periods are compared. The null effect from the comparison of two pre-treatment 

periods justifies the selection of the reference year of 2010 as the treatment year. 

 

 

 



   
 

   

 

Table 7. DiD results comparing two pre-treatment periods earlier to 2010 

(based on a matched sample using weights from kernel matching) 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

  

Electricity 
uptake 

Fridge 
ownership 

TV 
ownership 

Radio 
ownership 

Cash job Employed 
all year 

Employed Employed 
agriculture 

Vegetation 
index 

Dtime 0.102 0.065** -0.048 -0.360** 0.448** -0.910*** 0.311** -0.120 -0.020 

  (0.070) (0.032) (0.076) (0.152) (0.175) (0.079) (0.146) (0.102) (0.020) 

Dtreat 0.081 0.033 0.008 -0.049 0.348*** -0.138* -0.051 -0.187* 0.039* 

  (0.075) (0.032) (0.069) (0.096) (0.107) (0.082) (0.106) (0.103) (0.021) 

Dtime*Dtreat 0.107 -0.004 0.088 0.462 -0.538 0.352 -0.277 0.031 -0.044 

  (0.097) (0.052) (0.086) (0.346) (0.374) (0.213) (0.172) (0.117) (0.032) 

Constant -0.031 -0.101 0.041 0.319* -0.065 0.899*** 0.725*** 0.822*** 0.239*** 

  (0.149) (0.070) (0.119) (0.163) (0.148) (0.149) (0.155) (0.139) (0.018) 
                    
Observations 4,836 4,842 4,844 4,842 3,338 3,334 4,814 4,279 4,008 

Notes: Estimation is retstricted to a matched sample, using weights obtained from Kernel matching method 

based on covariates including population density, urban dummy, distance to the grid, travel time to city, 

cropland share, the number of healthcare centers. Each column controls for household characteristics 

including household size, age, gender, and education level of the household head in addition to the country 

dummies. While Dtime and Dtreat refer to dummy variables for time and group indicators, Dtime*Dtreat 

is the interaction term between the two variables.   The covariates population density, distance to the grid, 

and travel time to city are scaled by 1/100. While the household level dependent variables presented in 

columns (1) to (8) are dummy variables, the community level dependent variable in column (9), the 

enhanced vegation index ranges within a scale of [-1, 1]. Robust standard errors clustered at community 

level are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

7. Conclusion 

We empirically evaluate the effectiveness of minigrid systems in empowering remote communities 

in a large set of SSA countries. Our study is the first to seek a causal impact estimation of minigrid 

electrification with potential external validity, namely beyond a single case or country study. Our 

estimation results indicate that minigrids contribute to households electrification and improve 

access to low-power electrical appliances, such as a television after the minigrid installation, when 

compared to counterfactual households in pre-installation years. By contrast, we find that minigrid 

electrification does not increase the likelihood for households owning highly consuming 

appliances, such as fridges, which might be linked with the higher appliance cost or social norms. 

In addition,  minigrid electrification improves vegetation health over cropland surrounding the 

mini-grid community (a proxy for agricultural productivity), and in turn, also increases agricultural 

employment. These two agricultural impact estimates are consistently positive for both the 



   
 

36 

 

remotely-sensed and the survey-based outcomes, rendering the finding more robust. Yet, the effect 

on vegetation health shows a great heterogeneity across countries.   

We do not find minigrid electrification to play a statistically robust role in changing the 

overall employment probability and earning type of households. This finding is consistent with the 

struggle to find statistically robust evidence of structural socio-economic transformations 

following rural electrification in Africa (e.g., Bensch et al., 2011; Peters & Sievert, 2016), and in 

India (e.g., Burlig & Preonas, 2016). This finding highlights that further conditions beyond the 

availability of electricity are likely needed to unleash community-wide structural change. 

Similarly, minigrid electrification is estimated to be unassociated with the choice of cooking fuels.  

An array of robustness checks raises confidence about the reliability of the results, which 

are robust to different matching algorithms as well as to the choice of the treatment year. We are 

confident that the satellite-based nighttime data are a satisfactory proxy for electrification levels, 

despite their limitations. Although we account for self-selection and country differences, we still 

interpret the results with caution for a causal inference, given the potential confounding factors 

arising from the location and timing of minigrid installation, as well as the inability to control for 

time-variant macro-economic and regional characteristics due to  data unavailability. Yet, the 

present work provides important evidence, first of its kind, in evaluating the effectiveness of 

minigrid electrification across countries of SSA. We encourage future data collection efforts and 

further research evaluating welfare consequences of minigrid electrification.  
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Appendix  

1. Figures  

 

Figure A.1. Minigrids installed in sub-Saharan Africa within and outside the 2-km proximity to 

grid lines 

Source: The map is produced by the authors based on (Arderne et al., 2020) 
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2. Tables  

 

Table A.1. Power requirements of selected income-generating appliances 

Sector  Appliance  Power required (kW) 

Primary industries 
(agriculture, fishing) 

Egg incubator 80 to 160 W 

Grinder for pulses and beans 5.2 kW 

Water irrigation pump  3.7 to 22.4 kW 

Sterilizer (for dairy processing) 3 to 6 kW 

Packager  250 W to 3 kW 

Light manufacturing  

Electronic welding machine  3 to 7.5 kW 

Jigsaw 400 W 

Electric drilling machine 400 W 

Popcorn maker 1.5 to 2.1 kW 

Commercial and retail 
activities 

Computer 15 to 100 W 

Printer/scanner 0.5 to 2 kW 

Sewing machine  200 W 

Television for local cinemas 
and bars (including decoder) 

50 to 200 W 

 Source: (AMDA, 2020: 40) 

 

Table A.2. Tier system for measuring energy access      

        (according to Global Tracking for SE4ALL) 

Energy access  Basic Advanced 

Attributes Tier 1 Tier 2 Tier 3 Tier 4 Tier 5 

Services Task light & phone 
charging  

General lighting & 
television & fan  

Tier-2 & any low-
power appliances  

Tier-3 & any 
medium power 
appliances 

Tier-4 & any higher 
power appliances 

Peak available capacity 
(Watts) 

> 1 W > 20W/50W > 200W/500W > 2000 W > 2000 W 

Duration (hours) > 4 hours > 4 hours > 8 hours > 16 hours  > 22 hours 

Evening supply (hours) > 2 hours  > 2 hours > 2 hours > 4 hours  > 4 hours  

Affordability   Yes Yes Yes Yes 

Formality (Legality)     Yes Yes Yes 

Quality (Voltage)     Yes Yes Yes 

Indicated minimum 
technology 

Nano-grids/micro-
grids, pico-PV/solar 
lantern 

Micro-grids/mini-
grids, rechargeable 
batteries, solar 
home systems 

Micro-grids, mini-
grids, home 
systems  

Mini-grids & grid Mini-grids & grid 

Source: (EUEI PDF, 2014: 24) 

 



   
 

   

 

Table A.3. Effects of minigrid electrification on household welfare and agricultural productivity 

DiD results based on matched sample using weights from radius matching method 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

  

Electricity 
uptake 

Fridge 
ownership 

TV 
ownership 

Radio 
ownership 

Cash job Employed 
all year 

Employed Employed 
agriculture 

Vegetation 
index 

Dtime 0.047 0.075 0.090 -0.018 0.180** 0.037 0.312*** -0.198** -0.042*** 

  (0.088) (0.080) (0.080) (0.070) (0.089) (0.086) (0.085) (0.087) (0.010) 

Dtreat 0.200*** 0.035 0.134** 0.089 0.183** 0.019 -0.074 -0.337*** -0.019** 

  (0.065) (0.034) (0.059) (0.068) (0.085) (0.062) (0.077) (0.080) (0.008) 

Dtime*Dtreat 0.344*** 0.030 0.159** -0.100 -0.034 0.173* -0.133 0.126 0.048*** 

  (0.081) (0.067) (0.076) (0.072) (0.097) (0.094) (0.088) (0.086) (0.013) 

Constant 0.084 -0.199** 0.109 0.362*** 0.459*** 0.457*** 0.544*** 0.859*** 0.238*** 

  (0.134) (0.093) (0.130) (0.125) (0.146) (0.131) (0.126) (0.125) (0.009) 
                    

Observations 14,834 14,843 14,844 14,843 10,106 10,112 14,810 12,552 9,733 

Notes: Estimation is retstricted to a matched sample, using weights obtained from Radius matching 

method based on covariates including population density, urban dummy, distance to the grid, travel time 

to city, cropland share, the number of healthcare centers. Each column controls for household 

characteristics including household size, age, gender, and education level of the household head in 

addition to the country dummies. While Dtime and Dtreat refer to dummy variables for time and group 

indicators, Dtime*Dtreat is the interaction term between the two variables.   Robust standard errors 

clustered at community level are in parentheses. *** p<0.01, ** p<0.05, * p<0.1                                                                              
 

Table A.4. Effects of minigrid electrification on household welfare and agricultural productivity 

DiD results on a matched sample using radius method satisfying the balancing property 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

  

Electricity 
uptake 

Fridge 
ownership 

TV 
ownership 

Radio 
ownership 

Cash job Employed all 
year 

Employed Employed 
agriculture 

Vegetation 
index 

Dtime 0.076*** -0.042*** 0.147** -0.016 0.034 0.065 0.080 0.112 -0.010** 

  (0.023) (0.012) (0.060) (0.078) (0.051) (0.067) (0.090) (0.095) (0.004) 

Dtreat 0.185*** 0.098*** 0.235*** 0.002 0.041 0.136** -0.146** -0.159** -0.021*** 

  (0.037) (0.019) (0.045) (0.051) (0.055) (0.058) (0.068) (0.063) (0.005) 

Dtime*Dtreat 0.145*** 0.032 0.004 -0.182*** 0.045 0.106 0.094 0.102 0.022*** 

  (0.051) (0.022) (0.066) (0.070) (0.070) (0.082) (0.087) (0.089) (0.008) 

Constant 0.139*** 0.010 0.067 0.605*** 0.721*** 0.562*** 0.748*** 0.464*** 0.204*** 

  (0.046) (0.025) (0.087) (0.113) (0.113) (0.097) (0.130) (0.124) (0.011) 
                    
Observations 15,067 15,076 15,074 15,076 10,215 10,221 15,043 12,704 9,761 

Notes: Estimation is retstricted to a matched sample, using weights obtained from Radius matching method 

based on a subset of covariates that satisfy the balancing property including urban dummy, cropland share, 

the number of healthcare centers. Each column controls for community characteristics including population 

density, travel time to city, distance to grid; household characteristics including household size, age, gender, 

and education level of the household head; as well as country dummies. While Dtime and Dtreat refer to 

dummy variables for time and group indicators, Dtime*Dtreat is the interaction term between the two 

variables.  Robust standard errors clustered at community level are in parentheses. *** p<0.01, ** p<0.05, 

* p<0.1 
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