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ABSTRACT

ddml: Double/Debiased Machine
Learning in Stata

We introduce the package ddml for Double/Debiased Machine Learning (DDML) in Stata.
Estimators of causal parameters for five different econometric models are supported,
allowing for flexible estimation of causal effects of endogenous variables in settings with
unknown functional forms and/or many exogenous variables. ddml is compatible with
many existing supervised machine learning programs in Stata. We recommend using DDML
in combination with stacking estimation which combines multiple machine learners into a
final predictor. We provide Monte Carlo evidence to support our recommendation.
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1 Introduction

Identification of causal effects frequently relies on an unconfoundedness assumption, re-
quiring that treatment or instrument assignment is sufficiently random given observed
control covariates. Estimation of causal effects in these settings then involves condition-
ing on the controls. Unfortunately, estimators of causal effects that are insufficiently
flexible to capture the effect of confounds generally do not produce consistent estimates
of causal effects even when unconfoundedness holds. For example, Blandhol et al. (2022)
highlight that TSLS estimands obtained after controlling linearly for confounds do not
generally correspond to weakly causal effects even when instruments are valid condi-
tional on controls. Even in the ideal scenario where theory provides a small number of
relevant controls, theory rarely specifies the exact nature of confounding. Thus, applied
empirical researchers wishing to exploit unconfoundedness assumptions to learn causal
effects face a nonparametric estimation problem.

Traditional nonparametric estimators suffer greatly under the curse of dimension-
ality and are quickly impractical in the frequently encountered setting with multiple
observed covariates.! These difficulties leave traditional nonparametric estimators es-
sentially inapplicable in the presence of increasingly large and complex data sets, e.g.
textual confounders as in Roberts et al. (2020) or digital trace data (Hangartner et al.
2021). Tools from supervised machine learning have been put forward as alternative
estimators. These approaches are often more robust to the curse of dimensionality
via the exploitation of regularization assumptions. A prominent example of a machine
learning-based causal effects estimator is Post-Double Selection Lasso (PDS-Lasso) of
Belloni et al. (2014), which fits auxiliary lasso regressions of the outcome and treat-
ment(s), respectively, against a menu of transformed controls. Under an approximate
sparsity assumption, which posits that the DGP can be approximated well by a rel-
atively small number of terms included in the menu, this approach allows for precise
treatment effect estimation. The lasso can also be used for approximating optimal in-
struments (Belloni et al. 2012). Lasso-based approaches for estimation of causal effects
have become a popular strategy in applied econometrics (e.g. Gilchrist and Sands 2016;
Dhar et al. 2022), partially facilitated by the availability of software programs in Stata
(pdslasso, Ahrens et al. 2018; StataCorp 2019) and R (hdm, Chernozhukov et al. 2016).

Although approximate sparsity is a weaker regularization assumption than assum-
ing a linear functional form that depends on a known low-dimensional set of variables,
it may not be suitable in a wide range of applications. For example, Giannone et al.
(2021) argue that approximate sparsity may provide a poor description in several eco-
nomic examples. There is thus a potential benefit to expanding the set of regularization
assumptions and correspondingly considering a larger set of machine learners includ-
ing, for example, random forests, gradient boosting, and neural networks. While the
theoretical properties of these estimators are an active research topic (see, e.g., Athey
et al. 2019; Farrell et al. 2021), machine learning methods are widely adopted in in-
dustry and practice for their empirical performance. To facilitate their application for

1. For example, the number of coefficients in polynomial series regression with interaction terms
increases exponentially in the number of covariates.
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causal inference in common econometric models, Chernozhukov et al. (2018) propose
Double/Debiased Machine Learning (DDML), which exploits Neyman orthogonality of
estimating equations and cross-fitting to formally establish asymptotic normality of
estimators of causal parameters under relatively mild convergence rate conditions on
nonparametric estimators.

DDML increases the set of machine learners that researchers can leverage for estima-
tion of causal effects. Deciding which learner is most suitable for a particular application
is difficult, however, since researchers are rarely certain about the structure of the un-
derlying data generating process. A practical solution is to construct combinations of a
diverse set of machine learners using stacking (Wolpert 1992; Breiman 1996). Stacking
is a meta learner given by a weighted sum of individual machine learners (the “base
learners”). When the weights corresponding to the base learners are chosen to maximize
out-of-sample predictive accuracy, this approach hedges against the risk of relying on
any particular poorly suited or ill-tuned machine learner.

In this article, we introduce the Stata package ddml, which implements DDML for
Stata.? ddml adds to a small number of programs for causal machine learning in Stata
(Ahrens et al. 2018, StataCorp 2019, StataCorp 2021). We briefly summarize the four
main features of the program:

1. ddml supports flexible estimators of causal parameters in five econometric models:
(1) the Partially Linear Model, (2) the Interactive Model (for binary treatment),
(3) the Partially Linear IV Model, (4) the Flexible Partially Linear IV Model, and
(5) the Interactive IV Model (for binary treatment and instrument).

2. ddml supports data-driven combinations of multiple machine learners via stacking
by leveraging pystacked (Ahrens et al. 2022), our complementary Stata frontend
relying on the Python library scikit-learn (Pedregosa et al. 2011; Buitinck et al.
2013).

3. Aside from pystacked, ddml can be used in combination with many other ex-
isting supervised machine learning programs available in or via Stata. ddml has
been tested with lassopack (Ahrens et al. 2020), rforest (Schonlau and Zou
2020), svmachines (Guenther and Schonlau 2018), and parsnip (Huntington-
Klein 2021). Indeed, the requirements for compatibility with ddml are minimal:
Any eclass program with the Stata-typical “reg y x” syntax, support for if
conditions and post-estimation predict is compatible with ddml.

4. ddml provides flexible multi-line syntax and short one-line syntax. The multi-
line syntax offers a wide range of options, guides the user through the DDML
algorithm step-by-step, and includes auxiliary programs for storing, loading and
displaying additional information. We also provide a complementary one-line
version called gddml (‘quick’ ddml), which uses a similar syntax as pdslasso and
ivlasso (Ahrens et al. 2018).

2. This article refers to version 1.2 of ddml.




Ahrens, Hansen, Schaffer & Wiemann 3

The article proceeds as follows. Section 2 outlines DDML for the Partially Linear
and Interactive Models under conditional unconfoundedness assumptions. Section 3
outlines DDML for Instrumental Variables (IV) models. Section 4 discusses how stack-
ing can be combined with DDML and provides evidence from Monte Carlo simulations
illustrating the advantages of DDML with stacking. Section 5 explains the features,
syntax and options of the program. Section 6 demonstrates the program’s usage with
two applications.

2 DDML with Conditional Unconfoundedness

This section discusses DDML for the Partially Linear Model and the Interactive Model
in turn. Both models are special cases of the general causal model

Y:fO(DaX’U)v (1)

where fj is a structural function, Y is the outcome, D is the variable of interest, X are
observed covariates, and U are all unobserved determinants of Y (i.e., other than D and
X).3 The key difference between the Partially Linear Model and the Interactive Model is
their position in the trade-off between functional form restrictions on fy and restrictions
on the joint distribution of observables (D, X ) and unobservables U. For both models,
we highlight key parameters of interest, state sufficient identifying assumptions, and
outline the corresponding DDML estimator. A random sample {(Y;, D;, X;)}"; from
(Y, D, X) is considered throughout.

2.1 The Partially Linear Model (partial)

The Partially Linear Model imposes the estimation model
Y =00D +go(X)+U (2)

where 6y is a fixed unknown parameter. The key feature of the model is that the controls
X enter through the unknown and potentially nonlinear function gg. Note that D is
not restricted to be binary and may be discrete, continuous or mixed. For simplicity,
we assume that D is a scalar, although ddml allows for multiple treatment variables in
the Partially Linear Model.

The parameter of interest is y, the causal effect of D on Y.* The key identifying
assumption is given in Assumption 1.5

3. Since in (1), (D, X,U) jointly determine Y, the model is also dubbed the “all causes model” (see,
e.g., Heckman and Vytlacil 2007). Note that the model can equivalently be put into potential
outcome notation with potential outcomes defined as Y (d) = fo(d, X,U).

4. The interpretation of fy can be generalized. For example, the results of Angrist and Krueger (1999)
imply that in the general causal model (1), 09 is a positively weighted average of causal effects (e.g.,
conditional average treatment effects) under stronger identifying assumptions. The basic structure
can also be used to obtain valid inference on objects of interest, such as projection coefficients,
in the presence of high-dimensional data or nonparametric estimation without requiring a causal
interpretation.

5. Discussions of Partially Linear Model typically show identification under the stronger assumption
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Assumption 1 (Conditional Orthogonality) E[Cov(U,D|X)] =0 .

To show identification of 6, consider the score
G(W;0,m,0) = (Y = £(X) = 0(D = m(X)) ) (D - m(X)), (3)

where W = (Y, D, X), and ¢ and m are nuisance functions. Letting mq(X) = E[D|X]
and ¢o(X) = E[Y|X], note that

E (Wb, mo, o)) =0
by Assumption 1. When in addition E[Var(D|X)] # 0, we get

E[(Y — £(X)) (D — mo(X))]

bR om0 .

Equation (4) is constructive in that it motivates estimation of 6y via a simple two-step
procedure: First, estimate the conditional expectation of Y given X (i.e., £y) and of D
given X (i.e., mg) using appropriate nonparametric estimators (e.g., machine learners).
Second, residualize Y and D by subtracting their respective conditional expectation
function (CEF) estimates, and regress the resulting CEF residuals of Y on the CEF
residuals of D. This approach is fruitful when the estimation error of the first step does
not propagate excessively to the second step. DDML leverages two key ingredients to
control the impact of the first step estimation error on the second step estimate: 1) sec-
ond step estimation based on Neyman orthogonal scores and 2) cross-fitting. As shown
in Chernozhukov et al. (2018), this combination facilitates the use of any nonparametric
estimator that converges sufficiently quickly in the first and potentially opens the door
for the use of many machine learners.

Neyman orthogonality refers to a property of score functions 1 that ensures local
robustness to estimation errors in the first step. Formally, it requires that the Gateaux
derivative with respect to the nuisance functions evaluated at the true values is mean-
zero. In the context of the partially linear model, this condition is satisfied for the
moment condition (3):

Oy {E (W3 00, m0 + r(m — mo), Lo + (£ — £0))]} |r=0 = 0,

where the derivative is with respect to the scalar r and evaluated at » = 0. Heuristically,
we can see that this condition alleviates the impact of noisy estimation of nuisance
functions as local deviations of the nuisance functions away from their true values leave
the moment condition unchanged. We refer to Chernozhukov et al. (2018) for a detailed
discussion but highlight that all score functions discussed in this article are Neyman
orthogonal.

that E[U|D,X] = 0. We differentiate here to highlight differences between the Partially Linear
Model and Interactive Model.
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Cross-fitting ensures independence between the estimation error from the first step
and the regression residual in the second step. To implement cross-fitting, we randomly
split the sample into K evenly-sized folds, denoted as Iy,...,Ix. For each fold k, the
conditional expectations £y and mg are estimated using only observations not in the kth
fold — i.e., in If = I\ I — resulting in £ r¢ and mye, respectively, where the subscript
I indicates the subsample used for estimation. The out-of-sample predictions for an
observation ¢ in the kth fold are then computed via é;; (X;) and me(X;). Repeating
this procedure for all K folds then allows for computation of the DDML estimator for
00:

5 nim (Yim U1 (X2)) (D; — gy (X)) 5
! Ly (Di — g (Xi))2 ’

where k; denotes the fold of the ith observation.®

We summarize the DDML algorithm for the Partially Linear Model in Algorithm 1:7

1 Algorithm 1. DDML for the Partially Linear Model.

Split the sample {(Y;, D;, X;)}" ; randomly in K folds of approximately equal size.
Denote Ij the set of observations included in fold k and I} its complement.
1. Foreach k€ {1,...,K}:

a. Fit a CEF estimator to the sub-sample I; using Y; as the outcome and X;
as predictors. Obtain the out-of-sample predicted values (1 (X;) for i € Ij.

b. Fit a CEF estimator to the sub-sample I; using D; as the outcome and X
as predictors. Obtain the out-of-sample predicted values m e (X;) for i € Ii.

2. Compute (5).
]
Chernozhukov et al. (2018) give conditions on the joint distribution of the data,
in particular on g9 and mg, and properties of the nonparametric estimators used for
CEF estimation, such that 6, is consistent and asymptotically normal. Standard errors
are equivalent to the conventional linear regression standard errors of Y; — / I, (X;) on

D; — e (X;). ddml computes the DDML estimator for the Partially Linear Model

using Stata’s regress. All standard errors available for linear regression in Stata are

also available in ddml, including different heteroskedasticity and cluster-robust standard

errors.®

6. We here omit the constant from the estimation stage. Since the residualized outcome and treatment
may not be exactly mean-zero in finite samples, ddml includes the constant by default in the
estimation stage of partially linear models.

7. Algorithm 1 corresponds to the ‘DML2’ algorithm in Chernozhukov et al. (2018). Chernozhukov
et al. (2018, Remark 3.1) recommend ‘DML2’ over the alternative ‘DML1’ algorithm, which fits
the final estimator by fold.

8. See help regress##vcetype for available options.
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Remark 1: Number of folds. The number of cross-fitting folds is a necessary tuning
choice. Theoretically, any finite value is admissable. Chernozhukov et al. (2018, Re-
mark 3.1) report that four or five folds perform better than only using K = 2. Based on
our simulation experience, we find that more folds tends to lead to better performance as
more data is used for estimation of conditional expectation functions, especially when
the sample size is small. We believe that more work on setting the number of folds
would be useful, but believe that setting K = 5 provides is likely a good baseline in
many settings.

Remark 2: Cross-fitting repetitions. DDML relies on randomly splitting the sample
into K folds. We recommend running the cross-fitting procedure more than once using
different random folds to assess randomness introduced via the sample splitting. ddml
facilitates this using the rep (integer) options, which automatically estimates the same
model multiple times and combines the resulting estimates to obtain the final estimate.
By default, ddml reports the median over cross-fitting repetitions. ddml also supports
the average of estimates. Specifically, let éy(f) denote the DDML estimate from the rth
cross-fit repetition and §,(f) its associated standard error estimate with r = 1,...  R.
The aggregate median point estimate and associated standard error are defined as

% A R o A X R
0, = median((ﬁg)) 1) and §, = \/median<((§§f))2 + (9%74) - Qn)2) 1).

The aggregate mean point estimates and associated standard error are calculated as

R
= 1 ~ _ ~ = R
— ) 3 — a2 () 2
0,, E 6, and s, = \/hmean<((sn 2+ 60y —0n) ) 1)»

9

where hmean() is the harmonic mean.

Remark 3: Cluster-dependence and folds. Under cluster-dependence, we recommend
randomly assigning folds by cluster; see fcluster (varname).

2.2 The Interactive Model (interactive)

The Interactive Model is given by
Y =go(D,X)+U (6)

where D takes values in {0,1}. The key deviations from the Partially Linear Model are
that D must be a scalar binary variable and that D is not required to be additively

—1
9. The harmonic mean of z1,...,zy, is defined as hmean(z1,...,zn) =n ( n o1 ) . We use the

i=1 z;

harmonic mean as it is less sensitive to outlier values.
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separable from the controls X . In this setting, the parameters of interest we consider
are

8OATE = E[QO(lv X) - 90(07 X)}
05T = Elgo(1, X) — g0(0, X)|D = 1],
which correspond to the average treatment effect (ATE) and average treatment effect

on the treated (ATET), respectively.

Assumptions 2 and 3 below are sufficient for identification of the ATE and ATET.
Note the conditional mean independence condition stated here is stronger than the
conditional orthogonality assumption sufficient for identification of 6y in the Partially
Linear Model.

Assumption 2 (Conditional Mean Independence) E[U|D, X] = 0.
Assumption 3 (Overlap) Pr(D = 1|X) € (0,1) with probability 1.

Under assumptions 2 and 3, we have
E[Y|D,X] = Elgo(D, X)|D, X] + E[U|D, X] = go(D, X),
so that identification of the ATE and ATET immediately follows from their definition.'?

In contrast to Section 2.1, second-step estimators are not directly based on the
moment conditions used for identification. Additional care is needed to ensure local
robustness to first-stage estimation errors (i.e., Neyman orthogonality). In particular,
the Neyman orthogonal score for the ATE that Chernozhukov et al. (2018) consider is
the efficient influence function of Hahn (1998)

DY —g(1, X)) (1-D)(¥Y —g(0,X))

VEEW6.9.m) = —— e oy e X)—g(0,.X) 6,

where W = (Y, D, X). Similarly for the ATET,

DY —g(0, X)) _m(X)(1 = D)(Y —g¢(0, X))

ATET ’ )

W;0,9,m,p) = — — 0.

v Wi v b1~ m(X))

Importantly, for go(D, X) = E[Y|D, X|, mo(X) = E[D|X], and pg = E[D], Assump-
tions 2 and 3 imply

EpATE(W;65™, go,mo)] = 0
E[wATET(W; 90ATET5 go, m07p0>] = 07

10. In the defined Interactive Model under Assumption 2, the heterogeneity in treatment effects that
the ATE and ATET average over is fully observed since U is additively separable. Under stronger
identifying assumptions, the DDML ATE and ATET estimators outlined here also apply to the
ATE and ATET in the general causal model (1) that average over both observed and unobserved
heterogeneity. See, e.g., Belloni et al. (2017).
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and we also have that the Gateaux derivative of each condition with respect to the
nuisance parameters (go, Mo, po) is zero.

As before, the DDML estimators for the ATE and ATET leverage cross-fitting. The
DDML estimators of the ATE and ATET based on ¢2TF and ¢ATET are
GATE _ 1 i Di(Y; = grg (1, X3)) B (1= Di)(Yi — gr; (0, X))

i=1

(7)
+ g1 (1, Xi) = grg (0, Xz‘)) ;

) —grg (0, X3))  grg (0, X5)(1 = D)(Yi — rnge (X))
garer _ L Z ( - _ S (X)) > , (8)

where gre and e are cross-fitted estimators for gg and mg as defined in Section 2.1.
Since D is binary, the cross-fitted values gr¢ (1, X) and gr¢ (0, X') are computed by only

using treated and untreated observations, respectively. p = %Z?ﬂ D; is the sample
share of treated observations.

ddml supports heteroskedasticity and cluster-robust standard errors for é,ALTE and
HASTET. The algorithm for estimating the ATE and ATET are conceptually similar
to Algorithm 1. We delegate the detailed outline to Appendix A. Mean and median
aggregation over cross-fitting repetitions are implemented as outlined in Remark 2.

3 DDML with Instrumental Variables

This section outlines the Partially Linear IV Model, the Flexible Partially Linear IV
Model, and the Interactive IV Model. As in the previous section, each model is a special
case of the general causal model (1). The discussion in this section differs from the
preceding section in that identifying assumptions leverage instrumental variables Z. The
two partially linear IV models assume strong additive separability as in (2), while the
Interactive IV Model allows for arbitrary interactions between the treatment D and the
controls X as in (6). The Flexible Partially Linear IV Model allows for approximation
of optimal instruments!! as in Belloni et al. (2012) and Chernozhukov et al. (2015a),
but relies on a stronger independence assumption than the Partially Linear IV Model.

Throughout this discussion, we consider a random sample {(Y;, D;, X;, Z;)}; from
(Y,D, X, Z).

3.1 Partially Linear IV Model (iv)

The Partially Linear IV Model considers the same functional form restriction on the
causal model as the Partially Linear Model in Section 2.1. Specifically, the Partially

11. We only accommodate approximation of optimal instruments under homoskedasticity. The instru-
ments are valid more generally but are not optimal under heteroskedasticity. Obtaining optimal
instruments under heteroskedasticity would require estimating conditional variance functions.
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Linear IV Model maintains

Y = 00D+90(X)+U,

where 6 is the unknown parameter of interest.'?

The key deviation from the Partially Linear Model is that the identifying assump-
tions leverage instrumental variables Z, instead of directly restricting the dependence
of D and U. For ease of exposition, we focus on scalar-valued instruments in this sec-
tion but we emphasize that ddml for Partially Linear IV supports multiple instrumental
variables and multiple treatment variables.

Assumptions 4 and 5 below are sufficient orthogonality and relevance conditions,
respectively, for identification of 6.

Assumption 4 (Conditional IV Orthogonality) E[Cov(U, Z|X)] = 0.
Assumption 5 (Conditional Linear IV Relevance) E[Cov(D,Z|X)] # 0.

To show identification, consider the score function
GW;0,6m,7) = (Y = (X) = 6(D - m(X))) (2 - r(X)),

where W = (Y, D, X, Z). Note that for ¢,(X) = E[Y|X], mo(X) = E[D|X], and
ro(X) = E[Z|X], Assumption 4 implies E[p(W; 00, Lo, mg, )] = 0. We will also have
that the Gateux derivative of E[¢)(W'; 0y, o, mo, 0)] with respect to the nuisance func-
tions (£, mq, 7o) will be zero. Rewriting E[Y(W; 6y, £y, mo,9)] = 0 then results in a
Wald expression given by

E[(Y — to(X))(Z =~ ro(X))]

0= B0 —mo(X))(Z = 1o(X))]’

(9)

where Assumption 5 is used to ensure a non-zero denominator.
The DDML estimator based on Equation (9) is given by
. DI (Yi =t (Xz)) (Zi =71 (Xz))

"o o)

where ¢ r¢, Mg, and 7re are appropriate cross-fitted CEF estimators.

Standard errors corresponding to 0,, are equivalent to the IV standard errors where
Y, — éIL(XZ) is the outcome, D; — mre (X;) is the endogenous variable, and Z; —
fre (X;) is the instrument. ddml supports conventional standard errors available for

12. Asin Section 2.1, the interpretation of fp can be generalized under stronger identifying assumptions.
See Angrist et al. (2000).
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linear instrumental variable regression in Stata, including heteroskedasticity and cluster-
robust standard errors. Mean and median aggregation over cross-fitting repetitions are
implemented as outlined in Remark 2. In the case where we have multiple instruments
or endogenous regressors, we adjust the algorithm by residualizing each instrument and
endogenous variable as above and applying two-stage least squares with the residualized
outcome, endogenous variables, and instruments.

3.2 Flexible Partially Linear IV Model (fiv)

The Flexible Partially Linear IV Model considers the same parameter of interest as the
Partially Linear IV Model. The key difference here is that identification is based on a
stronger independence assumption which allows for approximating optimal instruments
using nonparametric estimation, including machine learning, akin to Belloni et al. (2012)
and Chernozhukov et al. (2015a). In particular, the Flexible Partially Linear IV Model
leverages a conditional mean independence assumption rather than an orthogonality
assumption as in Section 3.1. As in Section 3.1, we state everything in the case of a
scalar D.

Assumption 6 (Conditional IV Mean Independence) E[U|Z, X]| = 0.

Assumption 6 implies that for any function p(Z, X), it holds that
E[(Y = t6(X) - 0(D - mo(X))) (5(2, X) - E[3(2,X)|X] )| =0, (11)

where £y(X) = E[Y|X] and mo(X) = E[D|X]. Identification based on (11) requires
that there exists some function p such that

E [Cou(D, 5(Z, X)|X)] #0. (12)
A sufficient assumption is that D and Z are not mean independent conditional on

X. This condition allows setting p(Z, X) = E[D|Z, X] which will then satisfy (12).!3
Assumption 7 is a consequence of this non-mean independence.

Assumption 7 (Conditional IV Relevance) E[Var(E[D|Z,X]|X)] # 0.
Consider now the score function
G(W30,6,m,p) = (Y = 6(X) = 0(D —m(X))) (p(Z, X) - m(X)),

where W
po(Z, X)

(Y,D,X,Z). Note that for {o(X) = E[Y|X], mo(X) = E[D|X], and
E[D|Z,X], Assumption 6 and the law of iterated expectations imply

13. The choice p(Z, X)) = E[D|Z, X] results in the optimal instrument, in the sense of semi-parametric
efficiency, under homoskedasticity.
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E[Y(W; 00, £y, mg, po)] = 0 and the Gateaux differentiability condition holds. Rewriting
then results in a Wald expression given by

o — E[(Y—EO(X))(po(ZyX)—mo(X))] (13)
"7 EB[(D = mo(X)) (po(Z, X) —mo(X))]’

where Assumption 7 ensures a non-zero denominator.

The DDML estimator based on the moment solution (13) is given by

5 _ i (V= g (X)) (b, (2 X0) — v (X)) "
" 3 (Di - mrg. (X)) (ﬁl,‘ji (Z;, X;) — g (X3))’

where ¢ 1¢, Mre, and pre are appropriate cross-fitted CEF estimators.

In simulations, we find that the finite sample performance of the estimator in (14)
improves when the law of iterated expectations applied to E[po(Z,X)] = mo(X) is
explicitly approximately enforced in estimation. As a result, we propose an intermediate
step to the previously considered two-step DDML algorithm: Rather than estimating
the conditional expectation of D given X directly, we estimate it by projecting first-
step estimates of the conditional expectation of po(Z, X) onto X instead. Algorithm 2
outlines the LIE-compliant DDML algorithm for computation of (14).

2 Algorithm 2. LIE-compliant DDML for the Flexible Partially Linear IV Model.
Split the sample {(Y;, D;, X, Z;)}_; randomly in K folds of approximately equal size.
Denote 1), the set of observations included in fold k and Ij its complement.
1. For each k € {1,...,K}:
a. Fit a CEF estimator to the sub-sample I7 using Y; as the outcome and X;
as predictors. Obtain the out-of-sample predicted values (¢ (X;) for i € Ij.
b. Fit a CEF estimator to the sub-sample Ij using D; as the outcome and
(Zi, X) as predictors. Obtain the out-of-sample predicted values pre (Z;, X;)
for i € I, and in-sample predicted values pre (Z;, X;) for i € If.
c. Fit a CEF estimator to the sub-sample I;; using the in-sample predicted

values ﬁlﬁ (Z;,X;) as the outcome and X; as predictors. Obtain the out-of-
sample predicted values 7 re (X;) for i € Iy.

2. Compute (14).
]

Standard errors corresponding to 6, in (14) are the same as in Section 3.1 where
the instrument is now given by pre (Zi, X;) — e (X;). Mean and median aggregation
over cross-fitting repetitions are as outlined in Remark 2.
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3.3 Interactive IV Model (interactiveiv)
The Interactive IV Model considers the same causal model as in Section 2.2; specifically
Y=9o(D,X)+U

where D takes values in {0,1}. The key difference from the Interactive Model is that
this section considers identification via a binary instrument Z.

The parameter of interest we target is
00:E[QO(LX)*QO(OvX”pO(LX) >pO(OaX)]7 (15)

where po(Z, X) = Pr(D = 1|Z, X). Here, 6 is a local average treatment effect (LATE).
Note that in contrast to the LATE developed in Imbens and Angrist (1994), “local” here
does not strictly refer to compliers but instead observations with a higher propensity
score — i.e., a higher probability of complying.'*

Identification again leverages Assumptions 6 and 7 made in the context of the Flex-
ible Partially Linear IV Model. In addition, we assume that the propensity score is
weakly monotone with probability one, and that the support of the instrument is inde-
pendent of the controls.

Assumption 8 (Monotonicity) po(1, X) > po(0, X) with probability 1.
Assumption 9 (IV Overlap) Pr(Z = 1/X) € (0,1) with probability 1.

Assumptions 6-9 imply that

E (1, X) — £o(0, X)]

% = B loo(1.X) — po(0, X))’

(16)

where ¢o(Z, X ) = E[Y|Z, X], verifying identification of the LATE 6y. Akin to Section
6, however, estimators of 6, should not directly be based on Equation (16) because the
estimating equations implicit in obtaining (16) do not satisfy Neyman-orthogonality.
Hence, a direct estimator of 6y obtained by plugging nonparametric estimators in for
nuisance functions in (16) will potentially be highly sensitive to the first step nonpara-
metric estimation error. Rather, we base estimation on the Neyman orthogonal score
function
Z(Y —((1,X)) (1-2)(Y - £0,X))
W;6,¢ = — (1, X)—¢(0,X
BW30,6pr) = S T LX) 0, X)
Z(D—-p(1,X)) (1-2)(D—p(0, X))

r(X) - 1—r(X) +p(1,X) —p(0,X)| x0

14. Identification of the conventional complier-focused LATE is achieved under stronger conditional
independence and monotonicity assumptions. Under these stronger assumptions, the DDML LATE
estimator outlined here targets the conventionally considered LATE parameter.
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where W = (Y,D,X,Z) . Note that under Assumptions 6-9 and for ¢y(Z,X) =
E|Y|Z,X],p0(Z,X) = E[D|Z, X], and ro(X) = E[Z| X], we have E[¢)(W; 00, o, po,70)] =
0 and can verify that its Gateaux derivative with respect to the nuisance functions local

to their true values is also zero.

The DDML estimator based on the orthogonal score v is then

0, =
Z;(Yi—lre (1,X:)) (1-Z)(Yi—bre (0,X) . 5
1 i L
w2 < X gy g (LX) — L, (O’Xi)) (17)
Zi(Di—pre (L,X:))  (1=Z)(Di—pre (0.X:)) . ’
%Zi ( 7“1,2,(13(1:) o 1—?12.(;(11') +p11§i(1’Xi’) —Pr, (O7Xi)>

where ¢ 1¢, Prg, and 7re are appropriate cross-fitted CEF estimators. Since Z is binary,
the cross-fitted values é;;(l,X) and pre (1, X), as well as @12 (0, X) and pre (0, X) are
computed by only using treated and untreated observations, respectively.

ddml supports heteroskedasticity and cluster-robust standard errors for 0,,. Mean
and median aggregation over cross-fitting repetitions are implemented as outlined in
Remark 2.

4 The choice of machine learner

Chernozhukov et al. (2018) show that DDML estimators are asymptotically normal when
used in combination with a general class of machine learners satisfying a relatively weak
convergence rate requirement for estimating the CEFs. While asymptotic properties of
common machine learners remain an highly active research area, recent advances provide
convergence rates for special instances of many machine learners, including lasso (Bickel
et al. 2009; Belloni et al. 2012), random forests (Wager and Walther 2016; Wager and
Athey 2018; Athey et al. 2019), neural networks (Schmidt-Hieber 2020; Farrell et al.
2021), and boosting (Luo et al. 2022). It seems likely that many popular learners will
fall under the umbrella of suitable learners as theoretical results are further developed.
However, we note that currently known asymptotic properties do not cover a wide range
of learners, such as very deep and wide neural networks and deep random forests, as
they are currently implemented in practice.

The relative robustness of DDML to the first-step learners leads to the question
of which machine learner is the most appropriate for a given application. It is ex
ante rarely obvious which learner will perform best. Further, rather than restricting
ourselves to one learner, we might want to combine several learners into one final learner.
This is the idea behind stacking generalization, or simply “stacking”, due to Wolpert
(1992) and Breiman (1996). Stacking allows one to accommodate a diverse set of base
learners with varying tuning and hyper-tuning parameters. It thus provide a convenient
framework for combining and identifying suitable learners, thereby reducing the risk of
misspecification.
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We introduce stacking for DDML in Section 4.1. Section 4.2 demonstrates the
performance of DDML in combination with stacking using a simulation.

4.1 Stacking

Our discussion of stacking in the context of DDML focuses on the Partially Linear Model
in (2), but we highlight that DDML and stacking can be combined in the same way for
all other models supported in ddml. Suppose we consider J machine learners, referred
to as base learners, to estimate the CEFs {o(X) = E[Y|X] and mo(X) = E[D|X].
The set of base learners could, for example, include cross-validated lasso and ridge with
alternative sets of predictors, gradient boosted trees with varying tree depth and feed-
forward neural nets with varying number of hidden layers and neurons. Generally, we
recommend considering a relatively large and diverse set of base learners, and including
some learners with alternative tuning parameters.

We randomly split the sample into K cross-fitting folds, denoted as I,...,Ix. In
each cross-fitting step %k, we define the training sample as If = T}, comprising all
observations excluding the cross-fitting hold-out fold k. This training sample is further
divided into V cross-validation folds, denoted as T} 1,...,7T),v. The stacking regressor
fits a final learner to the training sample T} using the cross-validated predicted values
of each base learner as inputs. A typical choice for the final learner is constrained least
squares (CLS) which restricts the weights to be positive and sum to one. The stacking
objective function for estimating ¢o(X) using the training sample T}, is then defined as:

2

J J
: 7(7)
. min E Y; — E waﬁT’? (’_)(Xi) , s.t. wy,; >0, E lwg,;| =1,
k,15--, Wk, J ’LeTk j=1 ’ j=1

where wy, ; are referred to as stacking weights. We use Kgfc) (X;) to denote the cross-

k,v(i)

validated predicted value for observation 4, which is obtained from fitting learner j on
the sub-sample T} (i) = Ty \ Tyu(i), i.e., the sub-sample excluding the fold v(i) which

observation i falls into. The stacking predicted values are obtained as }, wk,jéﬁj )(Xl)
where each learner j is fit on the step-k training sample 7). The objective function for
estimating mgo(X) is defined accordingly.

CLS frequently performs well in practice and facilitates the interpretation of stacking
as a weighted average of base learners (Hastie et al. 2009). It is, however, not the
only sensible choice of combining base learners. For example, stacking could instead
select the single learner with the lowest quadratic loss, i.e., by imposing the constraint
wg,; € {0,1} and 37, jwy; = 1. We refer to this choice as “single best” and include
it in our simulation experiments. We implement stacking for DDML using pystacked
(Ahrens et al. 2022).

Short-stacking. Stacking relies on cross-validation. In the context of DDML we can
also exploit the cross-fitted predicted values directly for stacking. That is, we can di-
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rectly apply CLS to the cross-fitted predicted values for estimating €o(X) (and similarly
mo(X)):

J

n J
. 7(3) _
W Do\ YVem Dowliy (X0 | sty 20,3 gl =1
i= j= j=

We refer to this form of stacking that utilizes the cross-fitted predicted values as short-
stacking as it takes a short-cut. This is to contrast it with regular stacking which
estimates the stacking weights for each cross-fitting fold k. The main advantage of
short-stacking is the lower computational cost. Short-stacking also produces a single
set of weights for the entire sample, rather than a different set of weights in each cross-fit
fold and thus facilitates interpretation. Algorithm A.4 in the Appendix summarizes the
short-stacking algorithm for the Partially Linear Model.!®

4.2 Monte Carlo simulation

To illustrate the advantages of DDML with stacking, we generate artificial data based
on the Partially Linear Model

Y = 00D; + cyg(X;) + oy (D, X;)e; (18)
D; = cpg(Xi) + op(Xi)u; (19)

where both ¢; and u; are independently drawn from the standard normal distribution.
We set the target parameter to 6y = 0.5 and the sample size to either n = 100 or
n = 1000. The controls X; are drawn from the multivariate normal distribution with
N(0,%) where 3;; = (0.5)=7l. The number of controls is set to p = dim(X;) = 50,
except in DGP 5 where p = 7. The constants cy and cp are chosen such that the R?
in (18) and (19) are approximately equal to 0.5. To induce heteroskedasticity, we set

(1+6oD; + g(X3))*
LS (1 +60D; + g(X:))?

(1+g(X,))*
Ly (1 +g(Xy))°

op (Xl) = and Oy (DZ,XI) =

The nuisance function g(X;) is generated using five exemplary DGPs, which cover linear
and nonlinear processes with varying degrees of sparsity and varying number of observed

15. While short-stacking can be applied in a similar fashion to other conditional expectations, a com-
plication arises in the Flexible Partially Linear IV Model where the cross-fitted predicted values of
E[D|X] depend on E[D|X, Z]. We describe the algorithm that accounts for this in the Appendix;
see Algorithm A.5.
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covariates:
DGP 1: ¢g(X;) = Zj 0.9 X;;
DGP 2: g(X;) = XX+ XE5+XiuXis+XieXir+Xis Xio+ X0+ X7+ X2 X3
DGP 3: ¢(X;) =1{Xy >0.3}1{X;» >0}1{X;3 > —1}
DGP 4: ¢(X;) =X + /[ Xs| +sin(Xis) + 0.3XisXs5 + Xig + 0.3X2
DGP 5: ¢(X;) =sameas DGP 4 withp=7

DGP 1 is a linear design involving many negligibly small parameters. While not exactly
sparse, the design can be approximated well through a sparse representation. DGP 2
is linear in the parameters and exactly sparse, but includes interactions and second-
order polynomials. DGPs 3-5 are also exactly sparse but involve complex nonlinear and
interaction effects. DGP 4 and 5 are identical, except that DGP 5 does not add nuisance
covariates which are unrelated to Y and D.

We consider DDML with the following supervised machine learners for cross-fitting
the CEFs:'6

1.-2. Cross-validated lasso & ridge with untransformed base controls
3.-4. Cross-validated lasso & ridge with 5th-order polynomials of base controls but no
interactions (referred to as ‘Poly 5’)
5.-6. Cross-validated lasso & ridge with second-order polynomials and all first order
interaction terms (referred to as ‘Poly 2 + Inter.’)
7. Random forests (RF) with low regularization: base controls, maximum tree depth
of 10, 500 trees and approximately ,/p features considered at each split
8. RF with medium regularization: same as 7., but with maximum tree depth of 6
9. RF with high regularization: same as 7., but with maximum tree depth of 2
10. Gradient boosted trees (GB) with low regularization: base controls, 1000 trees
and a learning rate of 0.3. We enable early stopping which uses a 20% validation
sample to decide whether to stop the learning algorithm. Learning is terminated
after 5 iterations with no meaningful improvement in the mean-squared loss of the
validation sample.!”
11. GB with medium regularization: same as 10., but with learning rate of 0.1
12. GB with high regularization: same as 10., but with learning rate of 0.01
13. Feed-forward neural net with base controls and two layers of size 20

We use the above set of learners as base learners for DDML with stacking approaches.
Specifically, we estimate DDML using stacking regression with CLS, stacking with
single-best learner, and short-stacking with CLS. We set the number of folds to K = 20
if n =100, and K = 5 if n = 1000. For comparison, we report results for OLS using the
base controls, PDS-Lasso with the base controls, PDS-Lasso with Poly 5, PDS-Lasso
with Poly 2 4 Interactions, and an oracle estimator using the full sample.!® The oracle

16. All base learners have been implemented using pystacked. We use the defaults of pystacked for
parameter values and settings not mentioned here.

17. We use a tolerance level of 0.01 to measure improvements.

18. The PDS-Lasso estimators set tuning parameters using the default in pdslasso.
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estimator presumes knowledge of the function g(X), and obtains estimates by regressing
Y on the two variables D and g(X).

We report simulation median absolute bias (MAB) and coverage rates of 95% con-
fidence intervals (CR) for DGPs 1-3 in Table 1. We delegate results for DGPs 4 and 5,
including a brief discussion, to Appendix B. DDML estimators leveraging stacking or
short-stacking perform favorably in comparison to individual base learners in terms of
bias and coverage. The relative performance of stacking approaches seems to improve
as the sample size increases, likely reflecting that the stacking weights are imprecisely
estimated in very small samples. For n = 1000, the bias of stacking with CLS is at least
as low as the bias of the best-performing individual learner under DGP 1-2, while only
gradient boosting and neural net yield a lower bias than stacking under DGP 3.

Results for coverage are similar with stacking based estimates being comparable with
the best performing feasible estimates and the oracle when n = 1000. With n = 100,
coverage of confidence intervals for stacking-based estimators are inferior to coverages
for a small number of the individual learners but still competitive and superior than
most learners. Looking across all results, we see that stacking provides robustness to
potentially very bad performance that could be obtained from using a single poorly
performing learner.

There are overall little performance differences among the four stacking approaches
considered. There is some evidence that the single-best selector outperforms CLS in
very small sample sizes in DGPs 2-3, but not in DGP 1 (and also not in DGPs 4-5, see
Table B.1). We suspect that the single-best selector works better in scenarios where
there is one base learner that clearly dominates.

The mean-squared prediction errors (MSPE) and the average stacking weights, which
we report in Tables B.2 and B.3 in the Appendix, provide further insights into how
stacking with CLS functions. CLS assigns large stacking weights to base learners with
a low MSPE, which in turn are associated with a low bias. Importantly, stacking
assigns zero or close-to-zero weights to poorly specified base learners such as the highly
regularized random forest, which in all three DGPs ranks among the individual learners
with highest MSPE and highest bias. The robustness to misspecified and ill-chosen
machine learners, which could lead to misleading inference, is indeed one of our main
motivations for advocating stacking approaches to DDML.

DDML with stacking approaches also compare favorably to conventional full-sample
estimators. In the relatively simple linear DGP 1, DDML with stacking performs simi-
larly to OLS and the infeasible oracle estimator—both in terms of bias and coverage—for
n = 100 and n = 1000. In the more challenging DGPs 2 and 3, the bias of DDML with
stacking is substantially lower than the biases of OLS and the PDS-Lasso estimators.
While the bias and size distortions of DDML with stacking are still considerable in com-
parison to the infeasible oracle for n = 100, they are close to the oracle for n = 1000. The
results overall highlight the flexibility of DDML with stacking to flexibly approximate
a wide range of DGPs provided a diverse set of base learners is chosen.
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Table 1: Bias and Coverage Rates in the Linear and Nonlinear DGPs

DGP 1 DGP 2 DGP 3
n = 100 n = 1000 n = 100 n = 1000 n = 100 n = 1000
MAB CR. MAB CR MAB CR MAB CR MAB CR MAB CR
Full sample:
Oracle 0.109 0.909 0.041  0.927 0.101  0.889 0.032 0.942 0.114 0.905 0.038 0.933
OLS (Base) 0.126  0.879  0.040 0.925 0.276  0.392 0.289 0. 0.212 0.637 0.207 0.015
PDS-Lasso (Base) 0.119 0.850 0.042 0.918 0.289 0.309 0.289 0. 0.220 0.607 0.207 0.011
PDS-Lasso (Poly 5) 0.144 0.776  0.042 0.919 0.215 0.491 0.105 0.304 0.219 0.594 0.198 0.026
PDS-Lasso (Poly 2 + Inter.) 0.155 0.760 0.042 0.912 0.203  0.543 0.033 0.931 0.219 0.595 0.175  0.059
DDML methods:
Base learners
PDS-Lasso (Poly 2 + Inter.) 0.155 0.760 0.042 0.912 0.203  0.543 0.033  0.931 0.219 0.595 0.175  0.059
OLS 0.140  0.710 0.041  0.900 0.283 0.241 0.290 0. 0.215 0.423 0.207 0.013
Lasso with CV (Base) 0.116 0.890 0.042 0.932 0.278 0.338 0.289 0. 0.212  0.621  0.208 0.012
Ridge with CV (Base) 0.119 0.880 0.040 0.904 0.286 0.324 0.291 0. 0.234 0.573 0.218 0.006
Lasso with CV (Poly 5) 0.129  0.872  0.042  0.923 0.128  0.745 0.096  0.436 0.197 0.662 0.192 0.029
Ridge with CV (Poly 5) 0.137 0.805 0.050 0.824 0.180 0.621  0.129 0.173 0.256  0.516  0.220  0.008
Lasso with CV (Poly 2 + Inter.) 0.247  0.667 0.065  0.806 0.173  0.720 0.085 0.634 0.238 0.619 0.238  0.009
Ridge with CV (Poly 2 + Inter.) 0.318 0.356 0.076 0.633 0.137 0.751 0.083 0.458 0.134 0.762 0.068 0.684
Random forest (Low) 0.178 0.733  0.100 0.541 0.246 0.434 0.196 0.016 0.223 0.612 0.110 0.457
Random forest (Medium) 0.182 0.720 0.129  0.330 0.243  0.420 0.224  0.004 0.225 0.612 0.139 0.217
Random forest (High) 0.237 0.586 0.229  0.011 0.266 0.368 0.271 0. 0.251 0.542  0.230  0.005
Gradient boosting (Low) 0.107 0.932 0.040 0.901 0.129 0.783 0.082  0.560 0.113 0.885 0.036 0.936
Gradient boosting (Medium) 0.124  0.851  0.047  0.857 0.199 0.566 0.144 0.119 0.131  0.855 0.044  0.900
Gradient boosting (High) 0.233  0.553 0.154  0.150 0.272  0.346 0.259  0.002 0.189 0.693 0.078  0.707
Neural net 0.149 0.782 0.152  0.169 0.105 0.845 0.075  0.528 0.116 0.864 0.039 0.854
Meta learners

Stacking: CLS 0.115 0.902 0.042 0.928 0.169 0.675 0.036 0.915 0.165 0.756  0.046  0.866
Stacking: Single best 0.116  0.896  0.042 0.933 0.147  0.745 0.036 0.918 0.154 0.792 0.044 0.894
Short-stacking: CLS 0.113  0.898  0.041  0.928 0.171  0.662  0.037  0.907 0.163  0.766  0.044  0.892
Short-stacking: Single best 0.110 0.902 0.042 0.932 0.134 0.734 0.035 0917 0.148 0.825 0.042 0.910

Notes: The table reports median absolute bias (MAB) and coverage rate of a 95% confidence interval (CR). We employ standard errors robust
to heteroskedasticity. For comparison, we report the following full sample estimators: infeasible Oracle, OLS, PDS-Lasso with base and two dif-
ferent expanded sets of covariates. DDML estimators use 20 folds for cross-fitting if n = 100, and 5 folds if n = 1000. Meta-learning approaches
rely on all listed base learners. Results are based on 1,000 replications. Results for DGPs 4 and 5 can be found in Table B.1 in the Appendix.
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5 The program

In this section, we provide an overview of the ddml package. We introduce the syntax and
workflow for the main programs in Section 5.1. Section 5.2 lists the options. Section 5.3
covers the simplified one-line program qddml. We provide an overview of supported
machine learning programs in Section 5.4. Finally, Section 5.5 adds a note on how to
ensure replication with ddml.

5.1 Syntax: ddml

The ddml estimation proceeds in four steps.

Step 1: Initialize ddml and select model.

ddml init model [ , mname (name) vars(varlist) kfolds (integer)

fcluster(varname) foldvar (varlist) reps(integer) tabfold vars(wvarlist) ]

where model selects between the Partially Linear Model (partial), the Interactive
Model (interactive), the Partially Linear IV Model (iv), the Flexible Partially Lin-
ear IV Model (fiv), and the Interactive IV Model (interactiveiv). This step creates
a persistent Mata object with the name provided by mname(name) in which model
specifications and estimation results will be stored. The default name is m0.

At this stage, the user-specified folds for cross-fitting can be set via integer-valued
Stata variables (see foldvar (varlist)). By default, observations are randomly assigned
to folds and kfolds (integer) determines the number of folds (the default is 5). Cluster-
randomized fold splitting is supported (see fcluster(varname)). The user can also
select the number of times to fully repeat the cross-fitting procedure (see rep (integer)).

Step 2: Add supervised machine learners for estimating conditional expectations.

In this second step, we select the machine learning programs for estimating CEF's.

ddml cond_ezp [ , mname (name) vname(varname) learner(name) vtype (string)

predopt (string) } : command depvar vars [, cmdopt ]

where cond_exp selects the conditional expectation to be estimated by the machine
learning program command. At least one learner is required for each conditional expec-
tation. Table 2 provides an overview of which conditional expectations are required by
each model. The program command is a supervised machine learning program such as
cvlasso or pystacked (see compatible programs in Section 5.4). The options cmdopt
are specific to that program.
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cond_exp | partial interactive iv fiv late
E[YIX] ! ! !

E[YIX,D] !

E[YIX,Z] I
E[D|X] ! ! Pl

E[D|Z,X] Lo
E[Z]X] ! I

Table 2: The table lists the conditional expectations which need to be specified for each
model.

Step 3: Perform cross-fitting.

This step implements the cross-fitting algorithm. Each learner is fit iteratively on train-
ing folds and out-of-sample predicted values are obtained. Cross-fitting is the most
time-consuming step, as it involves fitting the selected machine learners repeatedly.

ddml crossfit [, mname (name) shortstack ]

Step 4: Estimate causal e! ects.

In the last step, we estimate the parameter of interest for all combination of learners
added in Step 2.

ddml estimate [, mname (name) robust cluster(varname) vce(vcetype) att

trim spec(string) rep(string) ]

To report and post selected results, we can use ddml estimate with the replay option:

ddml estimate [, replay mname(name) spec(integer or string) rep(integer or

string) fulltable notable allest ]

5.2 Options

Step 1 options: Initialization.

mname (name) name of the DDML model. Allows to run multiple DDML models simul-
taneously. Defaults to m0.

kfolds (integer) number of cross-fitting folds. The default is 5.

fcluster (varname) cluster identifiers for cluster randomization of folds.
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foldvar (varlist) integer variables to specify custom folds (one per cross-fitting repeti-
tion).

reps (integer) number of cross-fitting repetitions, i.e., how often the cross-fitting pro-
cedure is repeated on randomly generated folds.

tabfold prints a table with frequency of observations by fold.

Step 2 options: Adding learners.

vname (varname) name of the dependent variable in the reduced form estimation. This
is usually inferred from the command line but is mandatory for the fiv model.

learner (varname) optional name of the variable to be created.

vtype (string) optional variable type of the variable to be created. Defaults to double.
none can be used to leave the type field blank. (Setting vtype (none) is required
when using ddml with rforest.)

predopt (varname) predict option to be used to get predicted values. Typical values
could be xb or pr. Default is blank.

Step 3 options: Cross-fitting.

shortstack asks for short-stacking to be used. Short-stacking runs constrained least
squares on the cross-fitted predicted values to obtain a weighted average of several
base learners.

Step 4 options: Estimation.

spec (string) select specification. This can either be the specification number, mse for
minimum-MSE specification (the default) or ss for short-stacking.

rep(string) select cross-fitting repetitions. This can either be the cross-fit repetition
number, mn for mean aggregation or md for median aggregation (the default).
See Remark 2 for more information.

robust report SEs that are robust to the presence of arbitrary heteroskedasticity.
cluster (varname) select cluster-robust variance-covariance estimator.

vece (type) select variance-covariance estimator, e.g. vce(hc3) or vce(cluster id).
See help regress##vcetype for available options.

trim(real) trimming of propensity scores for the Interactive and Interactive IV models.
The default is 0.01 (that is, values below 0.01 and above 0.99 are set to 0.01 and
0.99, respectively).
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atet report average treatment effect of the treated (default is ATE).

noconstant suppress constant term in the estimation stage (only relevant for partially
linear models).

5.3 Short syntax: qddml

The ddml package includes the wrapper program qddml which provides a one-line syntax
for estimating a ddml model. The one-line syntax follows the syntax of pdslasso and
ivlasso (Ahrens et al. 2018). The main restriction of qddml compared to the more
flexible multi-line syntax is that qddml only allows for one user-specified machine learner
(in addition to regress, which is added by default).

Syntax for Partially Linear and Interactive Model

qddml depvar treatment_vars (controls), model (partiall|interactive) [ options ]

Syntax for IV models

qddml depvar (controls) (treatment_vars=excluded_instruments) ,

model (iv|latel|fiv) [ cmd (string) cmdopt (string) ddml_options noreg ]

where ddml_options options are listed in Section 5.2 and are internally passed on to
the ddml sub-routines. cmd(string) selects the machine learning command to be used
and cmdopt (string) allows to pass options to the estimation command. qddml adds by
default regress to the user-specified learner; this behavior can be disabled with noreg.
See the qddml help file for a full list of options.

5.4 Supported machine learning programs

ddml is compatible with any supervised ML program in Stata that supports the typical
“reg y x” syntax, comes with a post-estimation predict and supports if statements.
We have tested ddml with the following programs:

¥ lassopack implements regularized regression, e.g. lasso, ridge, elastic net (Ahrens
et al. 2020).

¥ pystacked facilitates the stacking of a wide range of machine learners including
regularized regression, random forests, support vector machines, gradient boosted
trees and feed-forward neural nets using Python’s scikit-learn (Ahrens et al. 2022;
Pedregosa et al. 2011; Buitinck et al. 2013). In addition, pystacked can also be
used as a front-end to fit individual machine learners.

¥ rforest is a random forest wrapper for WEKA (Schonlau and Zou 2020; Frank
et al. 2009).
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¥ svmachines allows for the estimation of support vector machines using libsvm
(Chang and Lin 2011; Guenther and Schonlau 2018).

¥ The program parsnip of the package mlrtime provides access to R’s parsnip
machine learning library through rcall (Huntington-Klein 2021; Haghish 2019).
Using parsnip requires the installation of the supplementary wrapper program
parsnip2.19

Stata programs that are currently not supported can be added relatively easily using
wrapper programs (see parsnip?2 for an example).

5.5 Inspecting results and replication

In this section we discuss how to ensure replicability when using ddml. We also discuss
some tools available for tracing replication failures. First, however, we briefly describe
how ddml stores results.

ddml stores estimated conditional expectations in Stata’s memory as Stata variables.
These variables can be inspected, graphed and summarized in the usual way. Fold ID
variables are also stored as Stata variables (by default named mO_fid_r, where mO is the
default model name and r is the cross-fitting repetition). ddml models are stored on
Mata structs and using Mata’s associative arrays. Specifically, the ddml model created
by ddml init is an mStruct, and information relating to the estimation of conditional
expectations are stored in eStructs. Results relating to the overall model estimation
are stored in associative arrays that live in the mStruct, and results relating to the
estimation of conditional expectations are stored in associative arrays that live in the
corresponding eStructs.

Replication tips:

¥ Set the Stata seed before ddml init. This ensure that the same random fold
variable is used for a given data set.

¥ Using the same fold variable alone is usually not sufficient to ensure replication,
since many machine learning algorithms involve randomization. That said, note
that the fold variable is stored in memory and can be reused for subsequent esti-
mations via the foldvar (varlist) option.

¥ Replication of ddml results may require additional steps with some programs
that rely on randomization in other software environments, e.g., R or Python.
pystacked uses a Python seed generated in Stata. Thus, when ddml is used
with pystacked, setting the seed before ddml init also guarantees that the same
Python seed underlies the stacking estimation. Other programs relying on ran-
domization outside of Stata might not behave in the same way. Thus, when using
other programs, check the help files for options to set external random seeds. Try
estimating each of the individual learners on the entire sample to see what settings
need to be passed to them for their results to replicate.

19. Available from https://github.com/aahrensi/parsnip2.
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¥ The ddml extract utility can be used to retrieve and inspect a wide range of
intermediate results and statistics from Mata structures. This can be useful for
trying to track down estimation errors and replication anomalies.

¥ Beware of changing samples. Fold splits or learner idiosyncracies may mean that
sample sizes vary slightly across learners, estimation samples and/or cross-fitting
repetitions. Note that ddml stores sample indicators for cross-fitting repetitions
as Stata variables; ddml extract with the show(n) option will report sample sizes
by learner and fold. See the ddml extract help file for more information.

¥ The ddml export utility can be used to export the estimated conditional expec-
tations, fold variables and sample indicators to a CSV format file for examination
and comparison in other software environments.

6 Applications

We demonstrate the ddml workflow using two applications. In Section 6.1, we apply the
DDML estimator to estimate the effect of 401(k) eligibility on financial wealth following
Poterba et al. (1995). We focus on the Partially Linear Model for the sake of brevity, but
provide code that demonstrates the use of ddml with the Interactive Model, Partially
Linear IV Model and Interactive IV Model using the same application in Appendix C.
Additional examples can also be found in the help file. Based on Berry et al. (1995),
we show in Section 6.2 how to employ ddml for the estimation of the Flexible Partially
Linear IV Model which allows both for flexibly controlling for confounding factors using
high-dimensional function approximation of confounding factors and for estimation of
optimal instrumental variables.

6.1 401(k) and financial wealth

The data consists of n = 9915 households from the 1991 SIPP. The application is
originally due to Poterba et al. (1995), but has been revisited by Belloni et al. (2017),
Chernozhukov et al. (2018), and Wiithrich and Zhu (2021), among others. Following
previous studies, we include the control variables age, income, years of education, family
size, as well as indicators for martial status, two-earner status, benefit pension status,
IRA participation, and home ownership. The outcome is net financial assets and the
treatment is eligibility to enroll for the 401(k) pension plan.

We load the data and define three globals for outcome, treatment and control vari-
ables. We then proceed in the four steps outlined in Section 5.1.

. use "sipp1991.dta", clear

. global Y net_tfa

. global X age inc educ fsize marr twoearn db pira hown
. global D e401
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Step 1: Initialize ddml model.

We initialize the ddml model and select the Partially Linear Model in (2). Before
initialization, we set the seed to ensure replication. This should always be done before
ddml init, which executes the random fold assignment. In this example, we opt for
four folds to ensure the readability of some of the output shown below, although we
recommend considering a larger number of folds in practice.

. set seed 123
. ddml init partial, kfolds(4)

Step 2: Add supervised machine learners for estimating conditional expectations.

In this step, we specify which machine learning programs should be used for the es-
timation of the conditional expectations E[Y|X] and E[D|X]. For each conditional
expectation, at least one learner is required. For illustrative purposes, we consider
regress for linear regression, cvlasso for cross-validated lasso and rforest for ran-
dom forests. When using rforest, we need to add the option vtype(none) since the
post-estimation predict command of rforest does not support variable types.

. *x* add learners for E[Y|X]
. ddml E[YIX]: reg $Y $X
Learner Y1_reg added successfully.

. ddml E[Y|X]: cvlasso $Y c.($X)##c.($X), lopt postresults
Learner Y2_cvlasso added successfully.

. ddml E[Y|X], vtype(none): rforest $Y $X, type(reg)
Learner Y3_rforest added successfully.

. *x* add learners for E[D|X]
. ddml E[DIX]: reg $D $X
Learner D1_reg added successfully.

. ddml E[D|X]: cvlasso $D c.($X)##c.($X), lopt postresults
Learner D2_cvlasso added successfully.

. ddml E[D|X], vtype(none): rforest $D $X, type(reg)
Learner D3_rforest added successfully.

The flexible ddml syntax allows specifying different sets of covariates for different
learners. This flexibility can be useful as, for example, linear learners such as the lasso
might perform better if, for example, interactions are provided as inputs, whereas tree-
based methods such as random forests may detect certain interactions in a data-driven
way. Here, we use interactions and second-order polynomials for cvlasso, but not for
the other learners.

This application has only one treatment variable, but ddml does support multiple
treatment variables. To add a second treatment variable, we would simply add a state-
ment such as ddml E[D|X]: reg D2 $X where D2 would be the name of the second
treatment variable. An example with two treatments is provided in the help file.

The auxiliary ddml sub-command describe allows to verify that the learners were
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correctly registered:

. ddml describe

Model:
Dependent variable (Y
net_tfa learners:
D equations (1):

e401 learners:
Specifications:

partial, crossfit folds k=4, resamples r=1

): net_tfa

Y1i_reg Y2_cvlasso Y3_rforest

e401

D1_reg D2_cvlasso D3_rforest

9 possible specs

Step 3: Perform cross-fitting.

ddml

The third step performs cross-fitting, which is the most time-intensive process. The
shortstack option enables the short-stacking algorithm of Section 4.1.

. ddml crossfit, shor
Cross-fitting E[ylX]
Cross-fitting fold 1
Cross-fitting E[D|X]
Cross-fitting fold 1

tstack
equation: net_tfa

2 3 4 ...completed cross-fitting...completed short-stacking

equation: e401

2 3 4 ...completed cross-fitting...completed short-stacking

Six variables are created and stored in memory which correspond to the six learners
specified in the previous step. These variables are called Y1_reg_1, Y2_cvlasso_1,
Y3_rforest_1,D1_reg_1,6D2_cvlasso_1 and D3_rforest_1. Y and D indicate outcome
and treatment variable. The index 1 to 3 is a learner counter. reg, cvlasso and rforest
correspond to the name of the commands used. The _1 suffix indicates the cross-fitting
repetition.

| After cross-fitting, we can inspect the mean-squared prediction errors by fold and
earner:

. ddml desc, crossfit

Model:
Dependent variable (Y
net_tfa learners:
D equations (1):

e401 learners:
Specifications:

Crossfit results (det

Cond. exp. Learner

net_tfa Y1i_reg
Y2_cvlasso
Y3_rforest
shortstack

e401 D1_reg
D2_cvlasso
D3_rforest
shortstack

partial, crossfit folds k=4, resamples r=1

): net_tfa

Y1_reg Y2_cvlasso Y3_rforest

e401

D1_reg D2_cvlasso D3_rforest

9 possible specs
ail):
A1l
MSE
3.1e+09
2.9e+09
3.3e+09
2.9e+09
0.20
0.20
0.22
0.20

H
0]
o

N

By fold:

1
3.0e+09
2.5e+09
3.3e+09
2.5e+09

0.21
0.20
0.22
0.20

2
3.5e+09
3.0e+09
3.7e+09
3.0e+09

0.19
0.19
0.21
0.19

3
4.0e+09
4.0e+09
4.0e+09
4.0e+09

0.20
0.20
0.22
0.20

4
2.0e+09
1.9e+09
2.0e+09
1.9e+09

0.20
0.19
0.21
0.19
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Step 4: Estimate causal e! ects.
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In this final step, we obtain the causal effect estimates. Since we requested short-stacking
in Step 3, ddml shows short-stacking result which relies on the cross-fitted values of
each base learner. In addition, the specification that corresponds to the minimum-MSE
learners is listed at the beginning of the output (denoted as opt).

. ddml estimate, robust

DDML estimation results:

spec r Y learner D learmer b
opt 1 Y2_cvlasso D2_cvlasso 9788.185(1343.
ss 1 [shortstack] [ss] 9739.060(1330.

opt = minimum MSE specification for that resample.
Shortstack DDML model

SE
972)
268)

y-ElylX] = net_tfa_ss_1 Number of obs = 9915
D-E[DIX,Z]= e401_ss_1
Robust
net_tfa | Coefficient std. err. z P>|z]| [95% conf. intervall]
e401 9739.06 1330.268 7.32 0.000 7131.782 12346.34
_cons 85.81494 534.6987 0.16 0.872 -962.1753 1133.805

Since we have specified three learners per conditional expectation, there are in
total 9 specifications relying on the base learners (since we can combine Y1_reg_1,
Y2_cvlasso_1 and Y3_rforest_1 with D1_reg_1, D2_cvlasso_1 and D3_rforest_1).

To get all results, we add the allcombos option:

. ddml estimate, robust allcombos

DDML estimation results:

spec T Y learner D learner b
11 Yi_reg D1_reg 5986.657(1523.
2 1 Yi_reg D2_cvlasso 9700.519(1393.
3 1 Yi_reg D3_rforest 8659.141(1258.
4 1 Y2_cvlasso Di_reg 9189.396(1370.

* 5 1 Y2_cvlasso D2_cvlasso 9788.185(1343.
6 1 Y2_cvlasso D3_rforest 8496.965(1199.
7 1 Y3_rforest D1_reg 9044.071(1485.
8 1 Y3_rforest D2_cvlasso 10081.930(1430.
9 1 Y3_rforest D3_rforest 9528.450(1293.
ss 1 [shortstack] [ss] 9739.060(1330.

* = minimum MSE specification for that resample.

Shortstack DDML model

SE
694)
963)
982)
593)
972)
668)
073)
001)
485)
268)

y-ElylX] = net_tfa_ss_1 Number of obs = 9915
D-E[DI|X,Z]= e401_ss_1
Robust
net_tfa | Coefficient std. err. z P>zl [95% conf. intervall
e401 9739.06 1330.268 7.32 0.000 7131.782 12346.34
_cons 85.81494 534.6987 0.16 0.872 -962.1753 1133.805
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We can use the spec(string) option to select among the listed specifications. string
is either the specification number, ss to get the short-stacking specification or mse for
the specification corresponding to the minimal MSPE. In the example above, spec(1)
reports in full the specification using regress for estimating both E[Y|X] and E[D|X].
The spec(string) option can be provided either in combinations with allcombos, or
after estimation in combination with the replay option, for example:

. ddml estimate, spec(l) replay

DDML estimation results:

spec T Y learner D learner b SE
opt 1 Y2_cvlasso D2_cvlasso 9788.185(1343.972)
ss 1 [shortstack] [ss] 9739.060(1330.268)

opt = minimum MSE specification for that resample.

DDML model, specification 1

y-ElylX] = Yi_reg_1 Number of obs = 9915
D-E[DIX,Z]= Di_reg_1

Robust
net_tfa | Coefficient std. err. z P>zl [95% conf. intervall]
e401 5986.657 1523.694 3.93 0.000 3000.271 8973.042
_cons 10.74706 561.2911 0.02 0.985 -1089.363 1110.857

Manual final estimation.

In the background, ddml estimate regresses Y1_reg_1 against D1_reg_1 with a con-
stant. We can verify this manually:

. reg Yl_reg Di_reg, robust

Linear regression Number of obs = 9,915
F(1, 9913) = 15.44
Prob > F = 0.0001
R-squared = 0.0023
Root MSE = 55891

Robust
Yi_reg_1 | Coefficient std. err. t P>t [95% conf. intervall
Di_reg_1 5986.657  1523.694 3.93 0.000 2999.906 8973.407
_cons 10.74706  561.2911 0.02 0.985 -1089.498 1110.992

Manual estimation using regress allows the use of postestimation regression tools
such as avplot.
One-line syntax.

qddml provides a simplified and convenient one-line syntax. The main constraint of
qddml is that it only allows for one user-specified learner. For demonstration, we use
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cvlasso:

. set seed 123

. qddml $Y $D (c.($X)##c.($X)), model(partial) ///
> cmd(cvlasso) cmdopt(lopt postresults) ///
S kfolds(4) ///
> robust ///
> noreg
DDML estimation results:

spec r Y learner D learmer b SE

opt 1 Y1_cvlasso Di_cvlasso 9788.185(1343.972)

opt = minimum MSE specification for that resample.

Min MSE DDML model

y-ElylX] = Y1_cvlasso_1 Number of obs = 9915
D-E[DI|X,Z]= Di_cvlasso_1

Robust
net_tfa | Coefficient std. err. z P>zl [95% conf. intervall
e401 9788.185 1343.972 7.28 0.000 7154.048 12422.32
_cons 84.7435 534.6942 0.16 0.874 -963.2378 1132.725

qddml always includes linear regression (regress) as an additional learner. The option
noreg disables this default behavior.

Using pystacked with single learners

The above example relying on cvlasso and rforest runs relatively slowly at 380 sec-
onds. We can substantially improve the speed by using the lasso and random forests
implementation offered by pystacked, which calls the Python library scikit-learn. This
reduces the total computational time to only 29 seconds.

. *x* add learners for E[Y|X]
. ddml E[YIX]: reg $Y $X
Learner Y1_reg added successfully.

. ddml E[Y|X]: pystacked $Y c.($X)##c.($X), type(reg) m(lassocv)
Learner Y2_pystacked added successfully.

. ddml E[Y|X]: pystacked $Y $X, type(reg) m(rf)

Learner Y3_pystacked added successfully.

. *x* add learners for E[D|X]
. ddml E[DIX]: reg $D $X
Learner D1_reg added successfully.

. ddml E[DIX]: pystacked $D c.($X)##c.($X), type(reg) m(lassocv)
Learner D2_pystacked added successfully.

. ddml E[D|X]: pystacked $D $X, type(reg) m(rf)
Learner D3_pystacked added successfully.

Note that, despite its name, pystacked does not execute stacking regression in this
example, since only one learner is specified in each call to pystacked.
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Stacking

We next demonstrate DDML with stacking. To this end, we exploit the stacking regres-
sor implemented in pystacked. pystacked allows to combine multiple base learners
with learner-specific settings and covariates into a final meta learner. The learners are
separated by ||. method(name) selects the learner, xvars(varlist) specifies learner-
specific covariates (overwritting the default covariates $X) and opt (string) passes op-
tions to the learners. In this example, we use OLS, cross-validated lasso and ridge,
random forests and gradient boosting. We furthermore use parallelization with 5 cores.
A detailed explanation of the pystacked syntax can be found in Ahrens et al. (2022).

. *x*x add learners for E[Y|X]

. ddml E[YIX]: pystacked $Y $X 77/
> method (ols) 177/
> m(lassocv) xvars(c. ($X)##c. ($X)) /77
> m(ridgecv) xvars(c.($X)##c. ($X)) 77/
> m(rf) pipe(sparse) opt(max_features(5)) 77/
> m(gradboost) pipe(sparse) opt(n_estimators(250) learning_rate(0.01)) , ///
> njobs(5)

Learner Y1_pystacked added successfully.

. *x* add learners for E[D|X]

. ddml E[D|X]: pystacked $D $X 77/
> method (ols) 77/
> m(lassocv) xvars(c.($X)##c. ($X)) L ///
> m(ridgecv) xvars(c. ($X)##c. ($X)) L /77
> m(rf) pipe(sparse) opt(max_features(5)) 177/
> m(gradboost) pipe(sparse) opt(n_estimators(250) learning_rate(0.01)) , ///
> njobs(5)

Learner D1_pystacked added successfully.

After cross-fitting, we can obtain the MSE and stacking weights averaged over folds:

. qui ddml crossfit
. ddml extract, show(pystacked)

mean pystacked weights across folds/resamples for D1_pystacked (e401)
learner mean_weight

ols 1 .01244342
lassocv 2 .11013228
ridgecv 3 .41958367

rf 4 .0309631
gradboost 5 .42687753

mean pystacked MSEs across folds/resamples for D1_pystacked (e401)
learner mean_MSE

ols 1 .20041698
lassocv 2 .19618448
ridgecv 3 .19647461

rf 4 .21506883
gradboost 5 .19659169

mean pystacked weights across folds/resamples for Y1_pystacked (net_tfa)
learner mean_weight

ols 1 .1001147
lassocv 2 .61233119
ridgecv 3 .16437072

rf 4 .09763384
gradboost 5 .02910359
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mean pystacked MSEs across folds/resamples for Y1_pystacked (net_tfa)
learner mean_MSE

ols 1 3.342e+09
lassocv 2 3.081e+09
ridgecv 3 3.095e+09
rf 4  3.428e+09
gradboost 5 3.325e+09

By adding the detail option, the user can display the stacking weights for each
fold. Finally, we retrieve the results of DDML with stacking:

. ddml estimate, robust

DDML estimation results:

spec T Y learner D learner b SE
opt 1 Y1 _pystacked D1_pystacked 9396.124(1300.402)
opt = minimum MSE specification for that resample.

Min MSE DDML model

y-ElylX] = Y1_pystacked_1 Number of obs = 9915
D-E[D|X,Z]= D1_pystacked_1

Robust
net_tfa | Coefficient std. err. z P>zl [95% conf. intervall]
e401 9396.124 1300.402 7.23 0.000 6847.384 11944.86
_cons 139.9994 535.8003 0.26 0.794 -910.1499 1190.149

The run time of this example is 83 seconds, which despite its computational complexity
is faster than using ddml with cvlasso and rforest.

6.2 The market for automobiles

For this demonstration, we follow Chernozhukov et al. (2015b) who estimate a stylized
demand model using instrumental variables based on the data from Berry et al. (1995).
The authors of the original study estimate the effect of prices on the market share of
automobile models in a given year (n = 2217). The controls are product characteristics
(a constant, air conditioning dummy, horsepower divided by weight, miles per dollar,
vehicle size). To account for endogenous prices, Berry et al. (1995) suggest exploiting
other products’ characteristics as instruments. Following Chernozhukov et al. (2015b),
we define the baseline set of instruments as the sum over all other products’ charac-
teristics, calculated separately for own-firm and other-firm products, which yields 10
baseline instruments. Chernozhukov et al. (2015b) also construct an augmented set of
instruments, including first-order interactions, squared and cubic terms. In the analysis
below, we extend Chernozhukov et al. (2015b) by applying DDML with stacking and a
diverse set of learners including OLS, lasso, ridge, random forest and gradient boosted
trees. We use the augmented set of controls for all base learners and OLS, which we
include for reference.

We load and prepare the data:
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. use BLP_CHS.dta, clear

. global Y y

. global D price

. global Xbase hpwt air mpd space
. global Xaug augX*

. global Zbase Zbasex*

. global Zaug Zaug*

Step 1: Initialize ddml model.

. set seed 123
. ddml init fiv, kfolds(4) reps(5)

Note that in the ddml init step, we include the option reps(5) which will result
in running the full cross-fitting procedure five times, each with a different random split
of the data. Replicating the procedure multiple times allows us to gauge the impact of
randomness due to the random splitting of the data into subsamples.

Step 2: Add supervised machine learners for estimating conditional expectations.
Estimation of a fiv model requires us to add learners for E[Y|X], E[D|X, Z] and
E[D|X]. Compared to the other models supported by ddml, there is one complication
that arises because, in order to estimate E[D|X], we exploit fitted values of E[D|X, Z]
to impose LIE-compliance. Since these fitted values have not yet been generated, we
use the placeholder {D} that in the cross-fitting stage will be internally replaced with
estimates of F[D|X, Z]. We use the learner (string) option to match one learner for
E[D|X] with a learner for F[D|X, Z], and vname (varname) to indicate the name of
the treatment variable.

. *x*x add learners for E[Y|X]

. ddml E[YIX], learner(Ypystacked): pystacked $Y $Xaug 177/
> method (ols) xvars($Xbase) 1777
> m(lassocv) 177/
> m(ridgecv) 177/
> m(rf) opt(n_estimators(200) max_features(None)) 77/
> m(rf) opt(n_estimators(200) max_features(10)) 1777
> m(rf) opt(n_estimators(200) max_features(5)) 177/
> m(gradboost) opt(n_estimators(800) learning rate(0.01)) 77/
> m(gradboost) opt(n_estimators(800) learning_rate(0.1)) 1777
> m(gradboost) opt(n_estimators(800) learning_rate(0.3)) ., 11/
> njobs(4)

Learner Ypystacked added successfully.

. ddml E[DIX,Z], learner(Dpystacked): pystacked $D $Xaug $Zaug 177/
> method(ols) xvars($Xbase $Zbase) 177/
> m(lassocv) 177/
> m(ridgecv) 1777
> m(rf) opt(n_estimators(200) max_features(None)) 177/
> m(rf) opt(n_estimators(200) max_features(10)) 177/
> m(rf) opt(n_estimators(200) max_features(5)) 177/
> m(gradboost) opt(n_estimators(800) learning_ rate(0.01)) 77/
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> m(gradboost) opt(n_estimators(800) learning rate(0.1)) 77/
> m(gradboost) opt(n_estimators(800) learning_rate(0.3)) , 11/
> njobs(4)

Learner Dpystacked added successfully.

. ddml E[DIX], mname(m0) learner(Dpystacked) vname($D): ///

> pystacked {D} $Xaug 177/
> method(ols) xvars($Xaug) 177/
> m(lassocv) 177/
> m(ridgecv) 1777
> m(rf) opt(n_estimators(200) max_features(None)) 1777
> m(rf) opt(n_estimators(200) max_features(10)) 77/
> m(rf) opt(n_estimators(200) max_features(5)) 77/
> m(gradboost) opt(n_estimators(800) learning_rate(0.01)) 177/
> m(gradboost) opt(n_estimators(800) learning_rate(0.1)) 177/
> m(gradboost) opt(n_estimators(800) learning rate(0.3)) , 11/
> njobs(4)

Learner Dpystacked_h added successfully.

Steps 3-4: Perform cross-fitting (output omitted) and estimate causal e! ects.

. qui ddml crossfit
. ddml estimate, robust

DDML estimation results:

spec T Y learner D learner b SE DH learner
opt 1 Ypystacked Dpystacked -0.108 ( 0.010) Dpystacked_h
opt 2 Ypystacked Dpystacked -0.123 ( 0.010) Dpystacked_h
opt 3 Ypystacked Dpystacked -0.110 ( 0.011) Dpystacked_h
opt 4 Ypystacked Dpystacked -0.127 ( 0.011) Dpystacked_h
opt 5 Ypystacked Dpystacked -0.127 ( 0.012) Dpystacked_h
opt = minimum MSE specification for that resample.
Mean/med. Y learner D learner b SE DH learner
mse mn [min-mse] [mse] -0.119 ( 0.013) [mse]
mse md [min-mse] [mse] -0.123 ( 0.013) [mse]
Median over min-mse specifications
y-ElylX] = Ypystacked Number of obs = 2217
E[DIX,Z] = Dpystacked
E[DIX] = Dpystacked_h
Orthogonalised D = D - E[D|X]; optimal IV = E[D|X,Z] - E[DIX].
Robust
y | Coefficient std. err. z P>|z| [95% conf. intervall
price -.1227476 .0125741 -9.76 0.000 -.1473924 -.0981028
Summary over 5 resamples:
D eqn mean min p25 p50 P75 max
price -0.1190 -0.1271 -0.1269 -0.1227 -0.1102 -0.1079

Manual final estimation. We can obtain the final estimate manually. To this end,
we construct the instrument as E[D|X, Z] — E[D|X] and the residualized endogenous
regressor as D — E[D\X ]. The residualized dependent variable is saved in memory.
Here we obtain the estimate from the first cross-fitting replication. We could obtain the
estimate for replication r by changing the “_1” to “_r”.




34 ddml

. gen optiv = Dpystacked_1 - Dpystacked_h_1
. gen dtilde = $D - Dpystacked_h_1
. ivreg Ypystacked_1 (dtilde=optiv), robust

Instrumental variables 2SLS regression Number of obs = 2,217
F(1, 2215) = 110.22
Prob > F = 0.0000
R-squared = 0.0888
Root MSE = .96503
Robust
Ypystacked_1 | Coefficient std. err. t P>|t] [95% conf. intervall
dtilde -.1078928 .0102771  -10.50  0.000 -.1280465 -.087739
_cons .006487 .0205013 0.32 0.752 -.0337168 .0466908

Instrumented: dtilde
Instruments: optiv

One-line syntax (output omitted).

. qui qddml $Y ($Xaug) ($D = $Zaug), model(fiv) cmd(pystacked)
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A Algorithms

1 Algorithm A.1. DDML for the Interactive Model.
Split the sample {(Y;, D;, X;) bier with I = {1,...,n} in K folds of approximately equal
size. Denote I, the set of observations included in fold k and I = I'\ I}, its complement.
1. Estimate conditional expectations. For each k:

a. Fit the CEF estimator to observations in the sub-sample I}, for which D; =1
using Y; as the outcome and X; as predictors to estimate the conditional
expectation go(1,X) = E[Y|X, D = 1]. Obtain the out-of-sample predicted
values glgi (1, X;) for i € Ij,. Proceed in the same way to obtain §(0, X).

b. For each k, fit the CEF estimator to the sub-sample Iy using D; as out-
come and X; as predictors to estimate the conditional expectation m(X) =
E[D|X]. Obtain the out-of-sample predicted values 7re (X;) for i € I.

2. Compute the ATE and ATET using (7) and (8).

1 Algorithm A.2. DDML for the Partially Linear IV Model.
Split the sample {(Y;, D;, X;)}ier with I = {1,...,n} in K folds of approximately equal
size. Denote I} the set of observations included in fold k and I§ = I'\ Ij, its complement.
1. Estimate conditional expectations. For each k:

a. Fit the CEF estimator to the sub-sample I} using Y; as outcome and X as
predictors to estimate the conditional expectation ¢y(X) = E[Y|X]. Obtain
the out-of-sample predicted values /¢ I (X;) for i € Ij.

b. Fit the CEF estimator to the sub-sample Iy using D; as outcome and X
as predictors to estimate the conditional expectation mo(X) = E[D|X].
Obtain the out-of-sample predicted values e (X;) for i € Iy.

c. Fit the CEF estimator to the sub-sample I} using Z; as outcome and X as
predictors to estimate the conditional expectation ro(X) = E[Z|X]. Obtain
the out-of-sample predicted values 77¢ (X;) for i € Ij.

2. Compute (10).

1 Algorithm A.3. DDML for the Interactive IV Model.

Split the sample {(Y;, D;, X;)}icr with I = {1,...,n} in K folds of approximately equal
size. Denote I, the set of observations included in fold k and I = I'\ I}, its complement.

1. Estimate conditional expectations. For each k:




a. Fit the CEF estimator to observations in the sub-sample I}, for which Z; =1
using Y; as outcome and X; as predictors to estimate the conditional expec-
tation £p(1, X)) = E[Y|X, Z = 1]. Obtain the out-of-sample predicted values
l@;i (1, X;) for i € Ij,. Proceed in the same way for the estimation of £4(0, X).

b. Fit the CEF estimator to observations in the sub-sample I}, for which Z; =
1 using D; as outcome and X; as predictors to estimate the conditional
expectation pg(1,X) = Pr(D = 1|X,Z = 1). Obtain the out-of-sample
predicted values pre (1, X;) for i € Iy. Proceed in the same way for the
estimation of po (0, X)

c. Fit the CEF estimator to the sub-sample I}, using D; as outcome and X; as
predictors to estimate the conditional expectation r(X) = E[Z|X]. Obtain
the out-of-sample predicted values Frg. (X;) for i € I.

2. Compute (17).

1 Algorithm A.4. DDML with short-stacking for the Partially Linear Model.

Split the sample {(Y;, D;, X;)}ier with I = {1,...,n} in K folds of approximately equal
size. Denote Ij, the set of observations included in fold k and I} =1 \ I}, its complement.
Select a set of J base learners with J > 2.

1. Estimate conditional expectations. For each k and base learner j:
a. Fit a CEF estimator j to the sub-sample I} using Y; as the outcome and X;
as predictors. Obtain the out-of-sample predicted values lfgjg)(XZ) for i € Ij.
b. Fit a CEF estimator j to the sub-sample I} using D; as the outcome and X;
as predictors. Obtain the out-of-sample predicted values mg) (X;) for i € Iy.
2. Short-stacking;:
a. Apply constrained regression of Y; against éi)(X,L . ,gg‘g)(XZ) using the
full sample I, which yields the short-stacked predicted values £*(X;).

b. Apply constrained regression of D; against mi) (X5),... ,m%)(xl) using the

full sample I, which yields the short-stacked predicted values m*(X;).
3. Compute the short-stacked DDML esitmator using

_ w (Y= (X)) (Di — (X))
Ly (D — (X))

n

2 Algorithm A.5. DDML with short-stacking for the Flexible IV Model.

Split the sample {(Y;, D;, X;)}icr with I = {1,...,n} in K folds of approximately equal
size. Denote Iy, the set of observations included in fold k and I§ = I'\ I, its complement.
Select a set of J base learners with J > 2.




1. Estimating conditional expectations ¢o(X) = E[Y|X]:

a. For each £ and base learner j, fit the CEF estimator to the sub-sample I}
using Y; as outcome and X; as predictors. Obtain the out-of-sample predicted

values égjz)(Xl) for i € Ij.

b. Fit a constrained regression of Y; against EA%)(X,), e ,fg;)(X,) over the full

sample I. The fitted values are the short-stacking estimates £*(X;).
2. Estimating conditional expectations po(X, Z) = E[D|X, Z|:

a. For each £ and base learner j, fit the CEF estimator to the sub-sample I}
using D; as outcome and (X;, Z;) as predictors. Obtain the out-of-sample
predicted values ﬁg?(Xi, Z,;) for i € Iy, and the in-sample predicted values
5 (Xi, Z:) = 55 (Xy, Z) for i € I

b. For each k, fit a constrained regression of D, against in-sample predicted
values ﬁl(gl)(Xi, Z),... ,ﬁ,(cj)(Xi, Z;) over the sample I} to obtain the out-of-
sample short-stack predicted values ﬁ}i (X, Z;) for i € I.

c. Fit a constrained regression of D; against ﬁ%) (X, Zy), ... ,ﬁ(fg) (X, Z;) over
the full sample I. The fitted values are the short-stacking estimates p*(Z;, X;).
3. Estimating conditional expectations mo(X) = E[D|X]:
a. For each k and base learner j, fit the CEF estimator to the sub-sample I} us-

ing in-sample fitted values ﬁ;cj )(Xi, Z,;) as the outcome and X; as predictors.
Obtain the out-of-sample predicted values ﬁzgzp)(XZ) for i € Ij.

b. Apply a constrained regression ofﬁ’;]5 (X, Z;) against m%)(xl), . ,m(fg) (X3)
over the full sample I. The fitted values are the short-stacking estimates
m*(X;).

4. Compute

5 Ly (Y- é*(Xi)) (p*(Z;, X;) — m*(X,))
v i (Di =1 (X)) (9(Zi, Xi) — 1~ (X5))




B Additional simulation results

We briefly summarize the results for DGPs 4 and 5 shown in Table B.1. The stacking
weights and MSPEs of the individual learners are reported in Tables B.2 and B.3,
respectively.

The bias of DDML with stacking is relatively robust to the inclusion of additional
noisy covariates. For n = 100, DDML with stacking performs at least as well as feasible
full-sample estimators. For n = 1000, DDML with stacking outperforms OLS and PDS-
Lasso, and exhibits a bias that is only slightly above the infeasible oracle estimator.

Table B.1: Bias and Coverage Rates in the Linear and Nonlinear DGPs

DGP 4 DGP 5
n = 100 n = 1000 n = 100 n = 1000
MAB Cov. MAB Cov. MAB Cov. MAB Cov.
Full sample:
Oracle 0.104 0.903 0.031  0.953 0.109 0.912 0.035 0.945
OLS (Base) 0.137  0.847 0.076  0.613 0.118 0.859 0.080 0.602
PDS-Lasso (Base) 0.116 0.839 0.077 0.624 0.120 0.837 0.080  0.605
PDS-Lasso (Poly 5) 0.116  0.811 0.046  0.835 0.116  0.833 0.044 0.851
DDML methods:
Base learners
PDS-Lasso (Poly 2 + Inter.) 0.123  0.799 0.047 0.818 0.118 0.840 0.038 0.899
OLS 0.145 0.637 0.078  0.596 0.120  0.827 0.080  0.605
Lasso with CV (Base) 0.113 0.829 0.080 0.614 0.121  0.841 0.081  0.605
Ridge with CV (Base) 0.154 0.730 0.078  0.597 0.113 0.855 0.080  0.605
Lasso with CV (Poly 5) 0.118 0.838  0.037  0.902 0.130 0.846  0.039  0.920
Ridge with CV (Poly 5) 0.161  0.667 0.102  0.403 0.139 0.796 0.044 0.873
Lasso with CV (Poly 2 + Inter.) 0.176  0.811  0.094 0.598 0.121  0.872 0.038 0.921
Ridge with CV (Poly 2 + Inter.) 0.188 0.547 0.100 0.265 0.111  0.886 0.035 0.932
Random forest (Low) 0.187 0.639 0.118 0.304 0.116 0.852 0.048 0.816
Random forest (Medium) 0.191  0.628 0.140 0.138 0.119 0.845 0.068 0.682
Random forest (High) 0.232  0.519 0.223  0.002 0.167 0.729 0.169 0.044
Gradient boosting (Low) 0.096 0.897 0.031  0.939 0.107 0.886 0.038 0.936
Gradient boosting (Medium) 0.120 0.850 0.049 0.853 0.106 0.898 0.042 0.866
Gradient boosting (High) 0.200 0.586  0.124  0.230 0.163 0.746  0.115  0.319
Neural net 0.100 0.879 0.125 0.177 0.119 0.868 0.036  0.932
Meta learners

Stacking: CLS 0.115 0.850 0.036  0.902 0.115 0.860 0.037 0.932
Stacking: Single best 0.112 0.851  0.036  0.906 0.117 0.873 0.036  0.929
Short-stacking: CLS 0.117  0.867  0.037  0.903 0.106  0.882 0.037 0.934
Short-stacking: Single best 0.107 0.867 0.035 0.911 0.109 0.884 0.037  0.939

Notes: The table reports median absolute bias (MAB) and coverage rate of a 95% confidence interval
(CR). We employ standard errors robust to heteroskedasticity. For comparison, we report the following
full sample estimators: infeasible Oracle, OLS, PDS-Lasso with base and two different expanded sets of co-
variates. DDML estimators use 20 folds for cross-fitting if n = 100, and 5 folds if n = 1000. Meta-learning
approaches rely on all listed base learners. Results are based on 1,000 replications. Results for DGPs 1-3
can be found in Table 1 in the main text.




"000T = u pue OQT = u jo sdzis s[dures 10} pue ‘[x|q]a pue [x|A]H jo uoryewiss oy 10§ s)ySlom Funpde)s oYy
110doI 9 "IoUIRS] 9SB( [ORS I0] SUOITRIDT SUI)I-SSOI1d pue drIlsj00( IOA0 podeiosr sJSom SUINOR)S oY) SMOYS S[qe) SIY ], :SSI0N

FOT'0  $ET'0 ¥20°0  LPO0  TI0°0  €F0°0 €000  SPO'0  0€0°0  890°0 10U [eInoN
‘0 9000 ‘0 €00°0  €€0°0 000 ‘0 1200 ‘0 5000 (uoryezirendor ySiy) Surs00q JuULIPeID
11000 3200  Tg0'0 €800 GEL0  TELO 0 V00 0100 1200  (uoneziremnsor wnIpay) SUISO0( JULBIPRID
¥€0°0 G500 0S0°0 9200  291°0 I6I°0 OO0 9900 ¥T0'0  €S0°0 (uorgeziremn8or morT) Burysooq juoIpRID
‘0 LT0°0 ‘0 €000 ‘0 L2000 ‘0 2eoo ‘0 €000 (uoryezirens8ax ySIH) 5010] Wopuey
T00°0  8€0°0 ‘0 LT00 0 LL00 0 ¥50°0 ‘0 ST0°0 (uoryeziren8or WNIPSIN) $$9I0§ WOPURY
0%0°0  ¥.0°0 1000 100  9%0°0 0600 0 8400 G000  ¥EO0 (uoryeziren8a1 mor) 3s010j WOpURY
960°0  €¥0°0 1000 09070 ‘0 980°0 1000 1.0°0 GIO0  ¥60°0 (~1e9uy + g A[0d) AD Um 03pry
gee’0 0600 TOE0  8L0°0 L0000 IL00 GF6'0 0820 1800 LE0O (-1equy + g A[0d) AD Yim osser]
$S0°0  9.000  TO00  TZ00 ‘0 CTO0 G000  FTI0  SFO0  LFOO (g £10d) AD uym 98pry
T80 G600 8SS°0  TFLO 0 9900 ¥¥00 ©TT0 1900  SS0°0 (g £10d) AD UM osser]
1100 €500 €100 %200 ‘0 G100 ‘0 €000 I€0°0  09€0 (osedg) AD UM 98pry
100 LIT'0 G100 0%F0 ‘0 €810 ‘0 GI00 6790  89T0 (eseg) AD YIm osser]
1100 6LT°0  ¥I0°0 FP0'0  T000  €£0°0 0 LTO0  ETT0 9300 ST0
(Ixlala o uonewns3
g60°0  0ST'0  ¥T0'0  ¥F0'0 TIO0  SPO'0  ¥00'0 SO0 630°0  TLOO Jou [eInoN
‘0 000 ‘0 €000 TLO0 9200 ‘0 1200 ‘0 G000 (uoryezirengor ySiH) Surysooq jusIpeL
€100 30’0 0300 L£0°0 6890 6110 ‘0 TPO'0  TIO0 0300  (uonezlremnSes wnIpoly) SuIls00q JULIPRID
T€0°0  €S0°0  6%0°0 LL0°0 9ST'0  98T°0 @000 ¥S0°0 €300 LS00 (uoryeziremnSor mo]) SuIsOOq JUSIPRID
‘0 €100 ‘0 1000 ‘0 TT00 0 G100 ‘0 1000 (uoryezirenSax ySiy) $s910§ wopuey
€00°0  €¥0°0 ‘0 %300 ‘0 LL0°0 ‘0 ¥90°0 ‘0 8100 (uoryezirenSor WNIPSTN) 3S0I0] WoOpURY
¥S0°0  0L0°0 ‘0 8300 T90°0 9800 ‘0 00T°0 G000  €£0°0 (uoryezIIRINSal MOT) 389105 WOPURY
¥60°0  €v0°0 1000 ¥S0°0 ‘0 880°0 1000 0900 ITO0 9600 (~1e9ur + g £[0d) AD WM 08prYy
PPE’0 1800  L0€0 0800 6000 S90°0 FF6'0  LZT0 G800 6£0°0 (103Ul + g A1od) AD yym osser
2S00 LL0°0  T000  ST00 ‘0 FI0°0 L0000 9IT0  ¥H00  FFO0 (g £10d) AD UM 98pry
¥LT0  L60°0 €990  PETO ‘0 1900 TIFO'0  13T0  8S0°0  TS0°0 (S £10d) AD yym osse]
€100  TS0'0 €100 L300 ‘0 9100 ‘0 T000 6800 L¥EO (oseq) AD UMM 98pry
100 I€T°0 L1000 Gav0 ‘0 ¢IT0 ‘0 CI00  2E9'0 €810 (esed) AD UM osser]
gI0°'0  ¥ST'0 GI0°0  SPO'0  TO00  ¥E0°0 ‘0 8100 02T'0  1£0°0 ST0
[x1AlZ 10 uonewns3
000T 00T 000T 001 000T 00T 000T 00T 000T 00T U SUOIYRAIDSAQ
g dDa ¥ dDd € dHd ¢ dHa 1.d9d

SUOI}OUNJ UOTR)02dXd [RUOIHIPUOD JO UOIYRUI)SS 91} I0] sjySrom Sunpoels :g g 9[qel,




‘000T = u pue QT = u jo sozis o[dwres I10j pue
‘x|ala pue [x|A]F jo uoryewiryse oY) 10j 10118 10301paid parenbs-ueswt o1} 4I0dal oA\ SIOJRUINSS UOIOUN] UOIPR)OadXe [eUOor)
-IPU0D PoYSI[ 9} I0j suoryerd)l derlsjooq I0A0 poSerase 10110 UorpIpald porenbs-ueowl pojjy-sSOId Y} SMOYS 9[qe} SIY], :S9JON

690'T  8P€'T  ¥60°T LT CPI'T  T69'T €60°T €I6'T €F0T  FLET jsoq-o[Sulg :Sunjorlg
Z90'T  0LZ'T 1601 OIFT 9PT'T 99T 960'T %281 8F0'T  L6T'T ST :Bunpelg
6c1°T LPE'T 1981 681'C  S9¢¢c  619C 188'C S99C €L9T 1€8°1 JoU [RINON
SPE'T  0L9T €481  T1€8°T G0T'T LPLT @881 6I10C S9F'T 1281 (uoryezirengor ySi) Surysooq juaIpel
86T'T 0IST S2'T 6991 TIPT'T  TL9T €481 ¥€0'C  OFgT 899’1  (uoryezirenS8e1 wmipe]y) Suijsooq jusIpels)
LT T €SS°T  S92°'T  €ILT  8LT'T  6LLT  ¥LS'T  L8T'C  T6C'T 9891 (uorjezirendor morT) BuIIsOOq JuUSIPRIL)
80V'T  IPP'T 0691 90T ¥09'T TI€LT LPS'T 06T 199°T 839’1 (uorgezirendor ySiy) jso10§ wopuey
691°T 02¢T €21 8481 TI€T 69T O0F9'T 6981 ¥LET  OLF'T (uoryezrrengor WNIPSJN) 38910] WOpULY
PPI'T QIST  PLTT TLST 6VET  6F9T  0SS'T  SS8'T  GQIET  6SHT (uoryezrrengor MoT) 48910f WOpUERY
G60'T  ¥6E'T GE9'T €0V'c G881 IFET  €eST  ¥09T  0SHT 98T (r109u] + g £0d) AD Ypm 98pry
€90'T  L6Z'T L60'T 68S°T S¥P'T  I6LT €601 S28T ¥60T 9091 (1o9u] + g A[0d) AD Ym osser]
9L1'T  6SP'T  ¥6T'1 €461 899'T GI0C 18’1 &l0G QST'T  ASL'T (g £10d) AD ymm o8pry
€L0'T  9€9°'T  T160'T 69S°T 00S'T 0881 @Lz’T 8V0'C ¢LOT  GOL'T (g £10d) AD Um osser|
€9T'T  ¥0€'T 08T €51  ¥HI9T 88T 966’1 1.0 9L0°T S€T'T (eseg) AD UM 03pry
19T'T @981  691°T ¢Se'T  FEST LT  T96°T €L0C THO'T  LST'T (esed) AD UM osser]
€9T'T  9L2'T 08’1  0FPSe LI9T LIgE 080C 6¥¢%F L90'T  GLT'G ST10
Ixlala o uonewns3
See'T  869'T  $9¢'T 908'T ¢&hb'T  TIT'c  ¥9€T @eee 908’1  8L9'T soq-o[Sulg :Surjoe)g
06e'T  ¥6S°T  ©9e'T €9LT  9¥F'T  6%0C L98T 01gc gIel T1€9°1 STO :Bunyels
607’1  ¥L9T $0e'C 8.8°C LI6'C OIT'€ Q0LC LST'S GLOG LLT'C Jou [eanoN
169°'T  €40¢  €89'T 9%¢'c L6F'T  681°C LS¢'G 0SF'c G081 TIEG (uoryezirengor ySiH) Surysooq jusIpeL
G6Y'T 68T T1€S'T ¢80 SEP'T  OIT'c  OF6'T  89%'c €997 ¢€gl'c  (uorpeziren8e1 wnipe]y) Suijsooq jusIpels
629°T  GE6'T 88S'T 821’  6SV'T €92 196’17  ¥S9'C  S8€9'T  €ALT'C (uoryezirensor mo) Surlsooq jusIpely)
8GL'T 8081 646’1 90T'Z 800 691°C ¥95°C¢ Se€c 186’1 T80T (uoryezrrensor ySIH) 3s010§ wWopueY
197’1  6%V9'T 199°T 9%6'T ¥¥9'T  ¥90'c 910C ¥Sc'c 1197 €L8°T (uorjeziren8or WINIPLIN) $$010§ WOpURY
8zv'T  IP9'T  L8S'T  Fe6'T €9¢'T ¢90c S06'T  L¥e'c 69T  $98'1 (uorjezirendor MorT) 010§ WoOpPURY
08€'T  L29T 69T S06'T 6081 L¥ee ¥9e'T TEL'c 0LE'T  L¥0'C (~109u] + g £[0d) AD UM 98pry
0L8'T SPL'T 8€0'C 866'C 8SE'C TL8T 906’1 TET'S %281  6%0°€ (-e3ur + g A1od) AD Ym osser]
6L7'T  Te8'T €191  Teh'e  L80'C  LIST  €ILT  6¥PC  0SPT  €81°C (¢ £10d) AD ymm o8pry
ere' T I6LT 1981 096’1 GL8'T €63C @891  928C¢  9ve'l  6%I'C (g £10d) AD yym osser]
€SVl TP9'T €891 I8S'T  LI0°C  8L%T  ohbe VIS SveT 1991 (esed) AD UM 28pry
ISH'T 0681  LSP'T  899'T  916'T L80°C 10¥'c 619¢ ¥0eT  SI9T (esed) AD UM osser]
€Sv'T 019'T €691 ATT'S  020c  SE€T'Vy  8%S'C  291'S 98T  ¥TLT STO
[x1x]la 1o uomewns3
0001 001 0001 00T 0001 00T 000T 001 000T 00T U SUOIYRAISSIQ
g dDa ¥ dDd € dDd ¢ dDda 1 dbd

SUOI)OUNJ UOTR)02dXd [RUOIIIPUOD JO UOIYRUII}SS 91} 10119 uor3orpald parenbs-uesy :¢¢ 9[qeRT,




C Applications

Here we continue the 401(k) application from the main text to illustrate estimation of
the interactive model and IV models. We use the same data and variables as outlined
in the main text. For the IV models, we use eligibility to enroll for the 401(k) pension
plan as the instrument and treat participation in a 401(k) as the endogenous variable.

C.1 Interactive Model (interactive)

We allow for heterogenous treatment effects using the interactive model. To this end,
the conditional expectation of $Y given $X is fit separately for D = 1 and D = 0. We
also use reps(5). This will execute the ddml estimation three times using different
random folds. This reduces dependence on a specific fold.

. *%% initialize

. set seed 123
. ddml init interactive, kfolds(5) reps(5)

. **%* add learnmers for E[Y|X,D=0] and E[Y|X,D=0]

. ddml E[Y|X,D]: pystacked $Y $X 177/
> method (ols) 77/
> m(lassocv) xvars(c.($X)##c. ($X)) L ///
> m(ridgecv) xvars(c.($X)##c. ($X)) L7/
> m(rf) pipe(sparse) opt(max_features(5)) 77/
> m(gradboost) pipe(sparse) opt(n_estimators(250) learning _rate(0.01)) , ///
> njobs(5)
Learner Y1_pystacked added successfully.

. *x* add learners for E[D|X]

. ddml E[D|X]: pystacked $D $X 177/
> method (ols) 177/
> m(lassocv) xvars(c. ($X)##c. ($X)) 77/
> m(ridgecv) xvars(c.($X)##c.($X)) 77/
> m(rf) pipe(sparse) opt(max_features(5)) 77/
> m(gradboost) pipe(sparse) opt(n_estimators(250) learning_rate(0.01)) , ///
> njobs(5)
Learner D1_pystacked added successfully.

. ddml estimate
DDML estimation results (ATE):

spec T YO learner Y1 learner D learner b SE

opt 1 Y1 pystacked Y1_pystacked D1_pystacked 8026.896(1126.459)

opt 2 Y1_pystacked Y1_pystacked D1_pystacked 7879.894(1122.244)

opt 3 Y1_pystacked Y1_pystacked D1_pystacked 8049.652(1119.661)

opt 4 Y1 _ pystacked Y1 _pystacked D1_pystacked 8157.735(1113.299)

opt 5 Y1_pystacked Y1_pystacked D1_pystacked 7753.944(1138.377)

opt = minimum MSE specification for that resample.

Mean/med. YO learner Y1 learner D learner b SE

mse mn [min-mse] [mse] [mse] 7973.624(1132.547)

mse md [min-mse] [mse] [mse] 8026.896(1126.459)

Median over 5 min-mse specifications (ATE)

El[y|X,D=0] = Y1_pystacked Number of obs = 9915

E[ylX,D=1] =

Y1_pystacked




E[DIX] = D1_pystacked

Robust
net_tfa | Coefficient std. err. z P>zl [95% conf. intervall]
e401 8026.896 1126.459 7.13 0.000 5819.077 10234.72

Warning: 5 resamples had propensity scores trimmed to lower limit .01.

Summary over 5 resamples:
D eqn mean min p25 p50 P75 max
e401  7973.6244 T7753.9438 7879.8940 8026.8965 8049.6523 8157.7354

One-line syntax (output omitted).

. qui qddml $Y $D ($X), model(interactive) cmd(pystacked)

C.2 IV model (iv)

. use "sipp1991.dta", clear

. global Y net_tfa

. global X age inc educ fsize marr twoearn db pira hown
. global Z e401

. global D p401

Step 1: Initialize ddml model.

. set seed 123
. ddml init iv

Step 2: Add supervised machine learners for estimating conditional expectations.

. #kx E[Y[X]

. ddml E[Y|X]: pystacked $Y $X 177/
> method(ols) 77/
> m(lassocv) xvars(c.($X)##c. ($X)) L///
> m(ridgecv) xvars(c. ($X)##c. ($X)) /77
> m(rf) pipe(sparse) opt(max_features(5)) 177/
> m(gradboost) pipe(sparse) opt(n_estimators(250) learning_rate(0.01)) , ///
> njobs(4)

Learner Y1_pystacked added successfully.

. **x E[DIX]

. ddml E[D|X]: pystacked $D $X 77/
> method (ols) 177/
> m(lassocv) xvars(c. ($X)##c. ($X)) 77/
> m(ridgecv) xvars(c.($X)##c. ($X)) 77/
> m(rf) pipe(sparse) opt(max_features(5)) 177/
> m(gradboost) pipe(sparse) opt(n_estimators(250) learning_rate(0.01)) , ///




Step

> njobs (4

)

Learner D1_pystacked added successfully.

**xx E[Z]|X]

. ddml E[Z|X]: pystacked $Z $X 177/
> method(ols) 177/
> m(lassocv) xvars(c.($X)##c. ($X)) L///
> m(ridgecv) xvars(c.($X)##c. ($X)) 77/
> m(rf) pipe(sparse) opt(max_features(5)) 177/
> m(gradboost) pipe(sparse) opt(n_estimators(250) learning rate(0.01)) , ///
> njobs(4)

Learner Z1_pystacked added successfully.

3: Perform cross-fitting.

. ddml crossf
Cross-fitting
Cross-fitting
Cross-fitting
Cross-fitting
Cross-fitting
Cross-fitting

it

ElylX]
fold 1
E[DIX]
fold 1
E[ZIX]:
fold 1

e
2
e
2

2

quation: net_tfa
345 ...completed cross-fitting
quation: p401

3 45 ...completed cross-fitting
e401
3 4 5 ...completed cross-fitting

. ddml extract, show(pystacked)

mean pystacked weights across folds/resamples for Z1_pystacked (e401)

learner mean_weight

ols 1 .02435374

lassocv 2 5.963e-19

ridgecv 3 .48160664

rf 4 .03685229

gradboost 5 .45718733

mean pystacked MSEs across folds/resamples for Z1_pystacked (e401)

learner mean_MSE
ols 1 .20042018
lassocv 2 .19661349
ridgecv 3 .19661916
rf 4 .21495839
gradboost 5 .19662694

mean pystacked weights
learner mean_weight

across folds/resamples for Y1_pystacked (net_tfa)

ols 1 .0948191
lassocv 2 .13620045
ridgecv 3 .68323138

rf 4 .07307122
gradboost 5 .00888029
mean pystacked MSEs across folds/resamples for Y1_pystacked (net_tfa)
learner mean_MSE

ols 1 3.256e+09
lassocv 2 2.991e+09
ridgecv 3 2.988e+09

rf 4 3.418e+09
gradboost 5 3.280e+09

mean pystacked weights across folds/resamples for D1_pystacked (p401)
learner mean_weight

ols
lassocv
ridgecv

1
2
3

.06282466
.13679104
.4428182




rf 4 .06142842
gradboost 5 .29613768

mean pystacked MSEs across folds/resamples for D1_pystacked (p401)
learner mean_MSE

ols 1 .17196874
lassocv 2 .17048203
ridgecv 3 .17061646

rf 4 .18560235
gradboost 5 .17094582

Step 4: Estimate causal e! ects.

. ddml estimate

DDML estimation results:

spec T Y learner D learner b SE Z learner
opt 1 Y1 pystacked D1_pystacked 13528.643(1726.023)

opt = minimum MSE specification for that resample.

Min MSE DDML model

y-ElylX] = Yi_pystacked_1 Number of obs = 9915
D-E[D|X,Z]= D1_pystacked_1

Z-E[Z|X] = Z1_pystacked_1

net_tfa | Coefficient Std. err. z P>zl [95% conf. intervall]
p401 13528.64 1726.023 7.84 0.000 10145.7 16911.59
_cons -42.68924 531.132 -0.08 0.936 -1083.689 998.3104

One-line syntax.

. qui qddml $Y ($X) ($D = $Z), model(iv) cmd(pystacked)

C.3 Interactive IV Model interactiveiv

. use "sipp1991.dta", clear

. global Y net_tfa

. global X age inc educ fsize marr twoearn db pira hown
. global Z e401

. global D p401

Step 1: Initialize ddml model.

. set seed 123

. ddml init interactiveiv




Step 2: Add supervised machine learners for estimating conditional expectations.

. * add learners for E[Y|X,Z=0] and E[Y|X,Z=0]

. ddml E[Y|X,Z]: pystacked $Y $X 177/
> method (ols) 177/
> m(lassocv) xvars(c. ($X)##c. ($X)) 177/
> m(ridgecv) xvars(c.($X)##c.($X)) 77/
> m(rf) pipe(sparse) opt(max_features(5)) 77/
> m(gradboost) pipe(sparse) opt(n_estimators(250) learning rate(0.01)) , ///
> njobs(4)

Learner Y1_pystacked added successfully.
. * add learners for E[D|X,Z=0] and E[DI|X,Z=0]

. ddml E[DI|X,Z]: pystacked $D $X 77/
> method (ols) 77/
> m(lassocv) xvars(c. ($X)##c. ($X)) 177/
> m(ridgecv) xvars(c. ($X)##c. ($X)) 177/
> m(rf) pipe(sparse) opt(max_features(5)) 177/
> m(gradboost) pipe(sparse) opt(n_estimators(250) learning rate(0.01)) , ///
> njobs(4)

Learner D1_pystacked added successfully.
. * add learnmers for E[ZIX,]

. ddml E[Z|X]: pystacked $Z $X 177/
> method(ols) 77/
> m(lassocv) xvars(c.($X)##c. ($X)) 77/
> m(ridgecv) xvars(c. ($X)##c. ($X)) 177/
> m(rf) pipe(sparse) opt(max_features(5)) 77/
> m(gradboost) pipe(sparse) opt(n_estimators(250) learning _rate(0.01)) , ///
> njobs(4)

Learner Z1_pystacked added successfully.

Step 3: Perform cross-fitting.

. ddml crossfit

Cross-fitting E[y|X,Z] equation: net_tfa

Cross-fitting fold 1 2 3 4 5 ...completed cross-fitting
Cross-fitting E[D|X,Z] equation: p401

Cross-fitting fold 1 2 3 4 5 ...completed cross-fitting
Cross-fitting E[Z|X]: e401

Cross-fitting fold 1 2 3 4 5 ...completed cross-fitting

Step 4: Estimate causal e! ects.

. ddml estimate
DDML estimation results (LATE):
spec T YO learner Y1 learner DO learner D1 learner b
opt 1 Y1_pystacked Y1_pystacked D1_pystacked D1_pystacked 11568.523(1613.59
opt = minimum MSE specification for that resample.

El[y|X,D=0] = Y1_pystackedO_1 Number of obs = 9915
ElylX,D=1] = Y1_pystackedi_1
E[D|X,Z=0] = D1_pystackedO_1
E[DI|X,Z=1] = Di_pystackedl_1
E[Z|X] = Z1_pystacked_1
Robust

net_tfa | Coefficient std. err. z P>zl [95% conf. intervall]

SE
4)

Z learner
Z1_pystacked




p401 11568.52 1613.594 7.17  0.000 8405.938 14731.11

Warning: 13 propensity scores trimmed to lower limit .01.

One-line syntax.

. qui qddml $Y ($X) ($D=$Z), model(late) cmd(pystacked)
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