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at a lower geographical level, we aggregate neighboring municipalities using the max-p-
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1 Introduction

Wildfires are becoming more frequent and severe globally. Factors such as warmer temper-

atures, an increasing frequency of drought periods, and the growing rate of deforestation

make forests and other vegetation more prone to ignition, increasing the risk of wildfires.

Bolivia is among the countries most a↵ected by wildfires, with an estimated 4.52 million

hectares (Mha) of forested and savanna areas having burned in 2020 (Bustillo et al., 2021;

Singh et al., 2022). Fire ignition in Bolivia is largely caused by slash-and-burn practices

implemented by local communities to make way for agricultural and urban expansion

(Carmenta et al., 2011; Devisscher et al., 2019). These fires often expand and become

uncontrollable, leading to large fire events that cause significant damage to ecosystems

and communities (Bustillo et al., 2021), specially to those locations with low capacity to

fight against fires or challenging geographical conditions.

In addition to their negative e↵ects on the composition, structure, and functioning

of ecosystems (Jones and McDermott, 2021), wildfires can have significant labor market

impacts on a↵ected areas. On the one hand, wildfires destroy infrastructure, crops, and

businesses, leading to job losses, migration, and reduced economic activity. On the other

hand, wildfires can lead to increased economic activity through public spending in recovery

e↵orts, creating jobs and stimulating economic growth (Nielsen-Pincus et al., 2014). While

the literature is inconclusive on the overall impact of wildfires on labor markets, a deeper

comprehension on this subject is essential for welfare improvement and fostering resilience

in areas a↵ected by this type of natural disaster. This is particularly important for Bolivia,

a country with high rates of poverty and informal labor and an economy largely dependent

on agriculture, forestry, and mining sectors, all of which can be significantly a↵ected by

wildfires.

In this paper, we investigate the poverty and labor market e↵ects of severe wildfires

in Bolivia from 2005 to 2020. A panel of annual burned areas by geographic unit is con-

structed using the NASA’s Moderate Resolution Imaging Spectro-radiometer (MODIS)

Collection-6 MCD64A1 burned area product. We combine this dataset with individual-

level socioeconomic information obtained from the Encuesta Nacional de Hogares (ENH)

conducted annually by the Bolivian Instituto Nacional de Estad́ıstica (INE). A key limi-

tation of our socioeconomic data is its lack of representativeness at the municipality level,

making it unreliable to compute aggregates at such level. To tackle this issue, we opt

for an intermediate level of geographical aggregation by clustering municipalities with
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similar burned areas and socioeconomic characteristics using the max-p-region algorithm

developed by Duque et al. (2012). Empirical evidence is provided for the validity of the

regional clusterization.

We estimate the causal e↵ects of severe wildfires on various socioeconomic outcomes,

including poverty, income, and occupation, using the counterfactual estimators for causal

inference introduced by Liu et al. (2022). This methodology allows us to compute the dy-

namic average treatment e↵ects on the treated (ATT) by directly imputing counterfactual

outcomes for treated units, with our units corresponding to geographical clusters. This

approach is particularly useful when studying wildfire treatments, because it accommo-

dates the ability to switch the treatment indicator on and o↵. However, this methodology

requires the definition of a valid treatment indicator. Directly using the proportion of

burned areas relative to the total region size is not suitable, due to the nonrandom occur-

rence of wildfires across regions. Moreover, the continuous presence of wildfires can lead

to stronger adaptation and mitigation strategies in a↵ected areas, potentially masking the

true e↵ects of wildfires on socioeconomic outcomes. To overcome this issue, we propose to

identify severe wildfire events by considering the historical evolution of wildfires in each

geographical unit. Therefore, a wildfire event is classified as severe if its deviation from

the historical mean is su�ciently high and the treatment indicator is defined accordingly.

The identifying assumption is the unexpected nature of severe wildfires: these events

are considered unforeseen and could not have been predicted in advance, enabling us to

treat the treatment variable as exogenous with respect to the socioeconomic trends in the

a↵ected region.

Our main finding reveals a significant increase in poverty following a severe wildfire

event. Poverty rises by 8 percent in the year after a wildfire and this e↵ect is 7.7 percent

after two years. However, after three years, the e↵ect becomes statistically insignificant,

indicating that the impact of wildfires is short-lived. The mechanism behind this finding is

the reduction in agricultural income, consistent with the damage to crops and agricultural

infrastructure, resulting in a decrease in individuals’ income following a severe wildfire.

The remainder of this paper proceeds as follows: section 2 describes the data sources.

Section 3 presents the methodology used for regional clusterization, the definition of the

treatment, the identifying assumptions, and the estimation of causal e↵ects. Section 4

reports the results of our empirical analysis and robustness checks. Section 5 concludes.
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2 Data

To examine how severe wildfires impact socioeconomic outcomes in Bolivia, we must

gather dependable data on (i) the extent of areas a↵ected by wildfires in specific geographic

regions, and (ii) the socioeconomic and demographic factors that serve as outcomes and

control variables in our empirical analysis. We describe the data collection and processing

in this section.

2.1 Burned areas

We obtained data on burned areas from the MODIS Collection-6 burned area mapping

product (MCD64), as developed by Giglio et al. (2018). This product provides detailed

information about the spatial extent and estimated date of biomass burning on a global

scale, with a spatial resolution of 500 meters. It utilizes daily 500-meter MODIS surface

reflectance data and 1-kilometer MODIS active fire observations, employing a detection

algorithm to establish probabilistic thresholds for categorizing individual 500-meter grid

cells as either burned or unburned.1 These data classify burned areas through the Julian

day of the given month in each monthly GeoTIFF. Subsequently, we aggregated these

features annually, creating yearly raster data sets that were then overlaid with a shapefile

of Bolivia at the municipality level. Through this process, we constructed a panel for

burned areas in Bolivian municipalities from 2005 to 2020.

2.2 Socioeconomic data

The source of socioeconomic information for this study is the ENH conducted by the INE

in Bolivia. The ENH contains information on the socioeconomic indicators for individuals

and households across the entire country, including rural areas. The variables contained

in the ENH span the location of the households and a wide range of household members’

characteristics such as sex, age, educational attainment, occupation, sector of activity,

income, and poverty. In the ENH, a household is considered to be poor if its income is

below the poverty line. Accordingly, we use a monetary binary measure for poverty.

To have comparable variables across time, we homogenize the surveys and draw both

1
The MODIS burned area data are acquired from the University of Maryland’s website in the form of

GeoTIFF files.
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the dependent variables and the controls, which allows us to identify the e↵ect of severe

wildfires on socioeconomic outcomes. After pooling the surveys, the individual-level data

set comprises information on about 450,000 individuals over the study period 2005-2020.

It should be noted that there are no data available for 2010, because the ENH was not

conducted during that year. In our empirical analysis, we treat the year 2010 as missing.

2.3 Aggregation at the geographical level

An important limitation of the ENH data set is its cross-sectional nature, meaning that

the same individuals are not followed over time. Because most methodologies employed

to estimate the e↵ects of wildfires on socioeconomic outcomes rely on having a panel of

observations, it is necessary to aggregate our individual-level observations to a certain

geographical extent.

While the most detailed identification geographical location provided by the ENH is

the municipality of residence, the survey is representative only at the state level after

2011. Consequently, aggregating data at the municipal level and performing estimation

could potentially yield sensitive and unreliable estimates. Even though it is possible to

assess the e↵ect of wildfires at the state level, this would entail a substantial loss of

information. For instance, we would have to discard data before 2011, because those data

are not representative. Additionally, as wildfires do not occur uniformly within a state,

this approach leads to a loss of variability. To illustrate this, consider the aggregation

of small municipalities with a substantial proportion of burned areas alongside larger

municipalities where wildfires did not occur. This would result in a region with a small

proportion of burned area, leading to a loss of crucial information on the heterogeneity in

burning behavior.

To address this challenge, we opt for an intermediate level of geographical aggregation.

Specifically, we construct clusters of municipalities with similar burned areas and socioe-

conomic indicators, resulting in new regions that are smaller than a state. Geographical

units are clustered using the max-p-region algorithm proposed by Duque et al. (2012)

and described in detail in section 3.1. The validity of this aggregation is evaluated using

customary statistical tests.2

Aiming to obtain sound estimates as in Canavire-Bacarreza et al. (2016), we must

ensure that variables aggregated at the municipality level are reliable. We follow the

2
The tests are a Welch test for the di↵erence in means for continuous variables and a �2

test.
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guidelines from the INE when a potentially unrepresentative subsample is available. Their

suggestion is to check the coe�cient of variation, which is an indicator of how reliable

the resulting aggregated variables (or estimates) are. Our model takes as input averages

of the observed variables. These averages correspond to rates for binary variables (such

as occupation and poverty) and a measure of central tendency for the continuous and

multinomial ones. For every variable W , we compute the coe�cient of variation for every

municipality i and every year t, which is the standard error of the variable’s average

divided by its sample average multiplied by 100 percent

CVit

�
W

�
=

se
�
W it

�

W it

⇥ 100%.

The results are reported in Table A1. The INE states that the precision is good below

10 percent, acceptable between 10 and 20 percent, and unreliable over 20 percent. Ac-

cordingly, we drop the variables with a coe�cient of variation above 20 percent: social

security, marital status, and medical insurance. Enrollment in education is also dropped,

because its coe�cient of variation is 19 percent.

3 Methodology

3.1 Regional clusterization

Performing estimations at the municipality level could yield potentially sensitive and in-

accurate results, given that our data are not representative at such a granular level. A

potential solution is to aggregate neighboring municipalities, aiming to obtain represen-

tative data. However, this would only yield an improvement in the presence of spatial

dependence—specifically, if adjacent municipalities experienced similar forest loss in the

study period and share a similar macroeconomic environment. If adjacent municipalities

are dissimilar, the aggregation process may not enhance representativeness. This is be-

cause in such cases, both the population and the sample size increase, but the samples

would be nearly independent across municipalities, so there is no information gain.

Consider a scenario where we want to study the income in the region A (YA), which

is composed of four municipalities (1, 2, 3, and 4). We observe household income

(YA,1,YA,2,YA,3, and YA,4) at the household level for municipalities 1, 2, 3, and 4, re-

spectively, where YA,i is a vector of length ni representing the incomes of ni households
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in region i. If household income within region A is homogeneous, a smaller sample is

required. However, in the presence of heterogeneity a larger sample is needed. Accord-

ingly, if the income distribution is similar across municipalities 1 to 4, the number of

households we need to observe in region A is smaller than if it varies substantially. Con-

sequently, if the income process is similar across municipalities, we can hope that the

sample nA =
P4

i=1 ni is large enough to learn about YA and, in the best-case scenario, is

representative of the population in A.

To aggregate neighboring municipalities, we use the max-p-region algorithm (Duque

et al., 2012). This algorithm clusters adjacent municipalities for a given threshold, min-

imizing within-attribute heterogeneity while maximizing heterogeneity between the new

regions. To illustrate how the max-p-region algorithm works, we take the example from

Duque et al. (2012), where the objective is to group areas based on housing prices using

the number of houses in the resulting regions as a threshold. In the authors’ example,

there are nine areas for which both the average house price and the number of houses are

observed. The optimal clusterization solution for a threshold of 120 houses3 is depicted

in Figure 1. The algorithm finds two regions such that the average housing price is ho-

mogeneous within the regions and heterogeneous between both regions. Notice that in

Figure 1, the northeast region clusters areas where the price is low, and the southwest

region clusters areas with high prices.

We conduct regional clusterization to group municipalities that experienced similar for-

est loss in the study period and share a similar macroeconomic environment. This allows

us to obtain a sample for the resulting regions that is large enough to be representative.

In our framework, the max-p-region algorithm takes as inputs the 330 municipalities in

Bolivia, their spatially extensive attributes, and a specified threshold. Section 4.2.1 gives

further details.

3.2 Counterfactual estimators

Consider that we observe {{Yit,Xit, Dit}Ni=1}Tt=1 for region i at time t, where Yit represents

the outcomes of interest (poverty, income, agricultural income, and occupation), Xit

denotes aggregate observed characteristics serving as controls, and Dit is the treatment

indicator defined from the proportion of burned areas, as outlined in section 3.3. We aim

3
That is, the optimization problem includes the constraint that the resulting regions must have at

least 120 houses.
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Figure 1: Optimal solution of the max-p-region algorithm for a threshold of 120 houses
(Taken from Figure 2 in Duque et al. (2012)).

to estimate the e↵ect of severe wildfires on socioeconomic outcomes in Bolivia, so that

our object of interest is

ATTs = E [�it|Di,t�s = 0, Di,t�s+1 = ... = Di,t = 1, Ci = 1] , s > 0, (1)

where �it := Yit(1) � Yit(0) and Ci = 1 if there exist t and t0 such that Di,t = 0 and

Di,t0 = 1 and 0 otherwise. The estimand in equation (1) is the ATT at the s-th period

after the treatment’s onset (ATTs). This object captures the e↵ect of wildfires on the

outcome Yit after s periods.

Estimating the ATTs requires a methodology that accounts for the nature of a wildfire

treatment. The vast majority of causal inference methods focus on applications with

staggered adoption (Callaway et al., 2024), where a unit, once treated, remains treated

for subsequent periods. However, this is not a valid assumption in the case of wildfires.

A region exposed to a wildfire event in one period can never receive the treatment again

or become treated again after an undetermined number of periods. Therefore, we need a

methodology allowing for the switching on and o↵ of the treatment indicator, as is the

case with the counterfactual estimation methodology of Liu et al. (2022).

Given our framework and aim to utilize the maximum amount of available information,

we prefer the counterfactual estimation methodology of Liu et al. (2022) over alternative
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novel proposals. On the one hand, Sun and Abraham (2021) and Callaway et al. (2024)

allow for heterogeneous treatment e↵ects (and continuous treatment in the case of Call-

away et al. (2024)), but staggered adoption is required. On the other, De Chaisemartin

and d’Haultfoeuille (2020) allow for non-staggered adoption, but they only use observa-

tions one period before or after the treatment’s onset or exit, leading to the exclusion

of many observations in the estimation process. Moreover, the estimator of Liu et al.

(2022) provides more reliable causal estimates than conventional linear two-way fixed ef-

fects (TWFE) estimators (Imai and Kim, 2021) when treatment e↵ects are heterogeneous

and unobserved time-varying confounders are present.

The estimator of Liu et al. (2022) allows us to estimate the ATTs by directly im-

puting counterfactual outcomes for treated observations. Treatment variables within this

framework are binary and are allowed to switch back and forth. The estimator under this

framework takes observations under the treatment condition as missing, uses data under

the control condition to build models, and imputes counterfactuals of treated observations

based on the estimated models. Three estimators are allowed within this framework, i.e.,

Fixed E↵ects (FEct), Matrix Completion (MCct), and Interactive Fixed E↵ects (IFEct).

We chose the IFEct estimator base on Cross-Validation. However, our findings are robust

to the use of any of these alternatives, as well as to the variance estimator of the ATT.

To estimate equation (1) using the IFEct, we need to estimate Yit(0) for the treated

units. As proposed by Gobillon and Magnac (2016), we impute Yit(0) by estimating the

following equation:

Yit(0) = X 0
it� + ↵i + ⇠t + �ift + ✏it, i = 1, ..., N, t = 1, ..., T, (2)

where Xit represents observed characteristics; � denotes location parameters; ↵i and

⇠t are unit and period fixed e↵ects, respectively; ft represents common factors with a

heterogeneous impact on each unit captured by �i; and ✏it is the idiosyncratic error term.

For notation purposes, let Uit := ↵i + ⇠t + �ift.

The three underlying assumptions in equation (2) are the following:

Yit(0) = f(Xit) + h(Uit) + ✏it, (3)

f(Xit) = X 0
it�, (4)

h(Uit) = ↵i + ⇠t + �ift, (5)

✏it ? {Djs,Xjs,Ujs} 8i, j 2 {1, ..., N}, s, t 2 {1, ..., T}, (6)
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where f(·) and h(·) are known parametric functions. Equation (3) implies additive separa-

bility, while equation (4) assumes linearity of f(·). Equation (5) requires a low-dimensional

decomposition of h(Uit) : h(Uit) = ⇤F , with rank(⇤F ) << min{N, T}, while equation

(6) represents the strict exogeneity assumption, translating into quasi-randomization con-

ditional on X and U .

The proposal of Liu et al. (2022) consists of the following four steps: (i) estimate

equation (2) on the subset of untreated observations with the linear factor method from

Bai (2009) and obtain (�̂, ↵̂i, ⇠̂t, �̂i, f̂t); (ii) compute Ŷit(0) for each treated unit in equation

(2) using the previous estimates; (iii) estimate the individual treatment e↵ect �̂it = Yit(1)�
Ŷit(0); and (iv) estimate the ATTs in equation (1) as

ˆATT s =
1

|S|
X

i,t2S

�̂it, (7)

where S = {(i, t)|Di,t�s = 0, Di,t�s+1 = ... = Di,t = 1}, and |S| is the cardinality of S.

3.3 Treatment definition

The counterfactual estimation methodology proposed by Liu et al. (2022) requires a bi-

nary treatment variable. Defining a proper treatment indicator proves challenging in the

context of our study. Directly using the proportion of burned areas relative to the total

region size is unsuitable, due to the nonrandom occurrence of wildfires. Wildfires tend to

be geographically concentrated in the northern and northeastern regions of Bolivia, with

minimal incidence in the south. Moreover, the continuous presence of wildfires can lead

to stronger adaptation and mitigation strategies in a↵ected areas, potentially masking the

true e↵ects of wildfires on socioeconomic outcomes if these strategies are not accounted

for.

To overcome this issue, we propose identifying severe wildfire events by considering

the historical evolution of wildfires in each geographical unit in the spirit of Fingado and

Poelhekke (2023).4 Specifically, we construct a Wildfire Index (WI) that relates current

deviations (with respect to the historical mean) in burned areas in year t in location i

(burnedi,t �meani) to the maximum (maxi) and minimum values (mini) ever observed

4
These authors use a similar approach to define severe droughts in Africa based on the normalized

di↵erence vegetation index (NDVI).
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at that location:5

WIi,t =
burnedi,t �meani

maxi �mini
. (8)

A wildfire event (WEit) in location i at time t is classified as severe if its deviation from

the historical mean is su�ciently high, i.e., if its corresponding Wildfire Index (WIi,t)

exceeds a certain threshold, �. Accordingly, a unit i experiencing a severe wildfire at time

t is considered treated. Given that the treatment switches on and o↵ for certain units,

a potential concern is the violation of the no-carryover e↵ects assumption, which posits

that the potential outcome could be influenced by its treatment status in earlier periods.

To address this issue, and considering the dynamic nature of the e↵ects of wildfires on

socioeconomic outcomes, we assume that after a severe wildfire, the unit remains treated

for the next k periods. For example, if a severe wildfire event is identified in 2015 and

k = 2, we assume that the treatment variable for the unit takes the value of 1 in 2015,

2016, and 2017 and becomes 0 afterward. In our baseline specification, we set � = 0.8 and

k = 2. We report the robustness of our results concerning these parameters in section 4.3.

3.4 Identification

The identification of the causal e↵ects of wildfires on the socioeconomic outcomes of

interest relies on the unexpected nature of severe wildfires. In our definition of severe

wildfires, we disregard predictable fluctuations in burned areas within a region and focus

on specific events that significantly deviate from the historical norm. Therefore, we assume

these events are unexpected and could not have been predicted in advance, allowing us to

consider the treatment variable as exogenous. Anticipation of such events could prompt

regions to invest more in adaptation or mitigation strategies to fight fires, potentially

mitigating the impact on socioeconomic outcomes. In this scenario, the estimated e↵ects

would represent a conservative lower bound of the actual e↵ect.

A potential challenge to identification arises from the primary source of ignition in

Bolivia. As discussed in Bustillo et al. (2021) and Devisscher et al. (2019), wildfires in

Bolivia often originate from the slash-and-burn agricultural practice, which can escalate

and lead to uncontrolled fires. Additionally, other human activities, such as pasture

management, waste burning, and hunting, contribute to the overall wildfire risk. This

scenario suggests that areas with fewer institutional resources to combat fires, less skilled

5
Eq. (8) is a standard normalization technique, where instead of subtracting the minimum from each

observation, we subtract the mean, as we are interested in substantial deviations from the normal wildfire

conditions, considering the shock as unexpected.
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farmers to contain them, or more challenging geographical and climatic conditions may

experience worse outcomes and are more likely to be treated. By defining the treatment as

deviations from the historical norm we partially address this source of bias, in the sense

that idiosyncratic factors that influence typical absolute outcomes in specific locations

are removed. Our focus lies on particularly severe events that are unexpected given the

wildfire history of the location and the current economic conditions. Moreover, to enhance

the robustness of our analysis, we include in the vector of control variables X controls

as years of education, literacy rates, age, and spoken language, ensuring an additional

degree of conditional exogeneity in our assumptions.

Our empirical analysis addresses another potential sources of bias and endogeneity. To

account for unobserved heterogeneity and control for time-invariant characteristics, the

counterfactual estimators include region fixed e↵ects in the regression equations. These

fixed e↵ects capture any time-invariant di↵erences across geographical locations that may

influence both the occurrence of wildfires and the outcomes we are examining. Time-

varying heterogeneity is controlled by the inclusion of time fixed e↵ects. Measurement

error is another potential concern when using remote-sensing data to measure the extent

of burned areas. While there may be some errors in the measurement of burned areas

generated by mistakes in the algorithm classifying areas as either burned or not burned,

we do not expect these errors to be systematically correlated with the economic conditions

of the municipalities. Therefore, any measurement errors are likely to be non-di↵erential

and should not bias our estimated e↵ects.

4 Results

4.1 Wildfires over time and space

On average, between 2005 and 2020, the period of analysis, approximately 3.71 Mha

burned annually in Bolivia, equivalent to 3.5 percent of the country’s territory. Total

burned areas for the entire country and each department vary considerably across time

and space. The year 2010 was particularly severe, with a record 9.32 Mha burned, 8.7

percent of the territory. Other years with severe wildfires include 2005 and 2019, with

total burned areas exceeding 5 Mha. As depicted in Figure 2, Beni and Santa Cruz are

the departments most severely a↵ected by wildfires. These departments are located in

northern and northeastern Bolivia, respectively, and contain three of the country’s main
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ecoregions: the Bolivian Amazon, the Beni Savanna, and the Chiquitano seasonally dry

tropical forest. All of these ecoregions lie at the southwestern edge of the Amazon basin.

Notably, Beni experienced wildfires that a↵ected approximately 22.3 percent of its terri-

tory in 2010 and 18.8 percent in 2005. In Santa Cruz, the proportion of burned areas has

historically been smaller than in Beni, but it can still reach high values, such as 10.45

percent in 2010 and 9.53 percent in 2019. According Bustillo et al. (2021), the primary

cause of fire ignition in the area is human-made, primarily attributed to the common

practice of slash-and-burn. This practice involves cutting trees, low vegetation, and agri-

cultural residuals, followed by burning the biomass to clear land for various purposes such

as agriculture, livestock, or logging. The inherent risk lies in the potential for this practice

to get out of control and give rise to the large fires.

(a) Annual burned areas (Mha) (b) Proportion of burned areas

Figure 2: Evolution of wildfires in Bolivia 2005–2020

Figure 3 depicts the proportion of burned areas at the municipality level for every

year in the study period. Consistent with our earlier observations, the maps reveal a clear

pattern: municipalities with more than 10 percent of their land area burned are predom-

inantly located in the northern and northeastern regions of the country, while municipal-

ities in the south show very limited instances of wildfires. These visual representations

highlight the regional concentration of wildfires in Bolivia, with certain municipalities ex-

periencing significant burning each year and others remaining largely una↵ected. Figure

4 allows us to contrast the maps of burned areas by municipalities with Unsatisfied Basic

Needs vulnerability maps from 2012. We observe that municipalities with limited or no

instances of wildfires tend to have medium to high vulnerability, while municipalities with

more-frequent wildfires exhibit medium to low vulnerability levels, with some exceptions.
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Figure 3: Annual burned areas as a proportion of municipality extension, 2005–2020

4.2 Wildfires and poverty: Baseline specification

4.2.1 Regional clusterization

We need to ensure that our data set is suitable for clustering, which happens if the

attributes are similar between neighboring municipalities. To check this, two di↵erent

statistical tests are performed: a Welch test for the di↵erence in means for continuous

variables, and a �2 test to compare the empirical cumulative distribution functions (cdf)

for multinomial variables. The intuition behind both tests is that if we fail to reject

that the averages are di↵erent between neighbors and the empirical cdfs are not di↵erent,

we have evidence that neighboring municipalities share similar characteristics, making

regional clustering reasonable. The results are reported in Tables A2 and A3.

For continuous variables, most neighboring municipalities have di↵erent average ages,

years of education, and per capita incomes, with rejection rates at a 5 percent significance

level being 0.40, 0.58, and 0.72, respectively. The rejection rate is calculated as the

proportion of times we could not reject the null hypothesis of di↵erent means for a pair

of neighbors. Table A3 indicates that for all neighboring municipalities, we could not

reject the null hypothesis of di↵erences between the classes in the samples, that is, we

find that the distributions of the multinomial variables are similar across neighboring

municipalities. Comparing the attributes of neighboring municipalities indicates how

similar they are. However, two neighboring municipalities will not be clustered if they

have di↵erent attributes. The previous exercise suggests that it is reasonable to make
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Figure 4: Vulnerability in Unsatisfied Basic Needs in Bolivia 2012

the clusterization. Nonetheless, what we require is that the clustered municipalities have

similar attributes, which is why we perform the same exercise for municipalities in the

same cluster once the clusterization is done. The results are reported in Tables A2 and

A3, and find very similar results. Consequently, we perform the clusterization.

Municipalities are clustered based on both the dependent and independent variables

considered in the empirical analysis. In our baseline specification, the clustering algorithm

is employed by imposing a minimum of 6 municipalities per cluster, resulting in a total of

48 clusters corresponding to the panel units in our application. In Figure 5 we depict the

resulting clusters from the max-p region algorithm. A panel of burned areas at the cluster

level from 2005 to 2020 is constructed. Similarly, socioeconomic variables are aggregated

using the available individual-level data for the municipalities encompassing each cluster.

Because wildfires predominantly occur in rural areas, we remove the data associated with

individuals living in the capital of each department before aggregation.
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Figure 5: Regional clusterization from max-p region algorithm

4.2.2 Econometric estimates

Severe wildfire events are defined as those that exceed a value of 0.8 in the index outlined

in equation (8). Approximately 3 percent of the recorded wildfires can be classified as

severe under this threshold. It is important to remember that these wildfire events are

not necessarily the events with the highest absolute magnitudes, but rather the ones

with more pronounced deviations with respect to the historical evolution of wildfires in

a given geographical cluster. For the treatment definition, we assume that the e↵ects on

socioeconomic outcomes persist for at least two years following a severe wildfire event.

Therefore, the treatment variable at the cluster level is an indicator, taking the value

of 1 for the year in which a severe wildfire occurs and for the subsequent two years

and 0 otherwise. The control group is defined by imposing a clean-control condition.

Specifically, in each period there might be clusters with positive values on the index,

indicating burned areas exceeding their historical mean, that are not classified as treated

because their index is below the defined threshold of 0.8. These observations ’close to

being treated’ are removed from the analysis, because their substantial burned areas

make them unsuitable for comparison with the treated units.

The estimated e↵ects of wildfires on the main socioeconomic outcomes in our baseline
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Figure 6: E↵ect of wildfire events on socioeconomic outcomes

specification are shown in Figure 6. The results are presented in the form of dynamic

ATTs using an IFE estimator. We also report 95 percent confidence intervals, computed

with 500 bootstrap replications. Our primary outcome of interest is aggregate poverty

at the cluster level. Estimates indicate that severe wildfire events lead to a significant

increase in poverty within the a↵ected clusters (see top left panel of Figure 6). In the

year following a wildfire, poverty increases by approximately 8 percent; two years later

this e↵ect is 7.7 percent. After three years, the e↵ect becomes non-statistically di↵erent

from 0, indicating that the impact of wildfires is short-lived. Importantly, at least 10

observations were used in the computation of these ATTs to ensure the reliability of the

estimates and the confidence intervals.

To explore the mechanisms behind the positive e↵ects of wildfires on poverty, we in-

vestigate the e↵ects on other socioeconomic variables determining poverty. Starting with

aggregate per-capita household income, as shown in the top right panel of Figure 6, we

observe a significant reduction of approximately 84 Bolivianos (Bs) one year after a wild-

fire event. The point estimates in the top right panel of Figure 6 suggest a short-term

e↵ect on total income, as it decreases and the e↵ect starts to vanish. We classify work-

ers as employed in the agricultural and nonagricultural sectors and construct aggregate

variables for per-capita agricultural and nonagricultural income, respectively. The e↵ect

of wildfires on agricultural income is illustrated in the left bottom panel of Figure 6. The
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estimates reveal that in the year following a wildfire event, agricultural income decreases

by approximately 121 Bs. This e↵ect escalates to around 186 Bs two years later.6 The

timing and direction of these e↵ects allow us to infer that the observed increase in poverty

is driven mainly by the reduction in agricultural income. This observation is rationalized

by the damage to crops and agricultural infrastructure, resulting in a reduction of individ-

uals’ income following a severe wildfire. We also examine the e↵ect on occupation status,

formality, and forest loss. Our results indicate that wildfires do not lead to the creation

or destruction of jobs in the a↵ected areas.

4.2.3 Diagnosis

The plausibility of the identifying assumptions is analyzed. A first visual inspection of the

estimated ATTs in Figure 6 suggests no pretrends: the estimates are statistically equal

to zero for all dependent variables at horizons s  0. This evidence is complemented

using the F -test for the null of no pretrends proposed by Liu et al. (2022). According to

the p-values reported in column (1) of Table 1, the null hypothesis of no pretrends is not

rejected in our application. Additionally, we conduct a placebo test, assuming that the

treatment starts two periods earlier than its actual onset for each unit in the treatment

group. The estimated dynamic ATTs applying the same IFE counterfactual estimator as

before are close to zero. The p-values of the corresponding F -test, reported in column

(2) of Table 1, indicate that we cannot reject the null hypothesis that the placebo e↵ect

is zero. Finally, we test for the presence of carryover e↵ects by hiding three periods right

after the treatment ends and predicting the counterfactual outcome in those periods. The

p-values, reported in column (3) of Table 1, suggest that there are no carryover e↵ects,

given that the average prediction errors in those periods are statistically zero. The results

of the three tests in Table 1 support the validity of our identifying assumptions.

4.2.4 Limitations

Our analysis has certain limitations that are worth mentioning. First, based on the

available data, it is not possible for us to identify migration decisions due to wildfires.

6
The dependent variable is expressed in levels of (total and agricultural) household per-capita income.

Although applying a log-transformation led to similar conclusions, we chose to present the results for

the outcomes in levels. This decision is motivated by the scale dependency of this class of models, as

discussed in Athey and Imbens. (2006), which may invalidate identification assumptions after applying

transformations.
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Table 1: Diagnosis tests

Outcome Pretrends Placebo Carry-over

Poverty 0.866 0.695 0.955
Income 0.750 0.893 0.721
Agricultural income 0.542 0.596 0.396
Occupation 0.742 0.636 0.271

Note: The table contains the p-values of the F -tests for the nulls of no-

pretrends (column 1), no-placebo e↵ects (column 2), and no-carry-over

e↵ects (column 3).

If migration is adopted as an adaptation decision, then wildfires occurring in a certain

municipality could have e↵ects in other una↵ected places, and our construction of the

control group is challenged. Regional clusterization helps us to partially alleviate this

concern. If we assume that migration is costly and individuals who migrate tend to

move to neighboring locations with similar economic conditions, our estimated causal

e↵ect at the cluster level would weight the local e↵ects in both the origin and destination

municipalities. Second, there is no total guarantee that the data are representative at

the cluster level. However, if we want to exploit the regional variation in burned areas,

grouping similar municipalities is a valid alternative and aggregates can be computed

with a higher level of confidence. Thirdly, our identification relies on the unexpected

nature of severe wildfires. If anticipation of such events occurs, regions are more prone

to invest in adaptation or mitigation strategies to fight fires. As mentioned earlier, under

this scenario the estimated e↵ects would represent a conservative lower bound of the

actual e↵ect. Finally, one threat to the stable unit treatment values assumption (SUTVA)

assumptions is the smoke e↵ect on neighboring regions of a severe wildfire. If this e↵ect

is non-negligible, the potential outcome of the control units would be a↵ected by the

occurrence of a severe wildfire, potentially tainting our causal estimates.

4.3 Robustness

In this section, we study the robustness of our findings to the threshold defined for classi-

fying severe wildfires (�), the minimum number of municipalities in each cluster (m), the

aggregation level (at the municipality or cluster-level), and the treatment persistence (k).
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4.3.1 Severe wildfire threshold

In our baseline specification, a wildfire event is classified as ’severe’ if the WI exceeds 0.8.

To study the robustness of our findings, we consider a grid of alternative threshold values

from 0.7 to 0.9 in 0.05 steps. For this robustness check, we allow the ATT to be estimated

with less than 10 observations, in order to obtain estimates for the higher thresholds.

Results are reported in Figure A1. We find that the direction of the e↵ect is the same

for all the socioeconomic outcomes. Moreover, the magnitudes of the ATTs are similar to

the baseline of 0.8, except for � = 0.9, which overestimates the e↵ect and presents much

more uncertainty. This result is consistent with the fact that for such a high threshold,

only a few observations are considered to be treated (high uncertainty) and are those that

experience the most severe wildfires, which might have a bigger impact on socioeconomic

outcomes (overestimation of the e↵ect). We find that the magnitude of the e↵ects is

sensitive to the definition of the threshold for the Wildfire Index. Nonetheless, defining

a smaller or bigger threshold does not translate into substantial deviations, because the

point estimates are close to the baseline ones. Even though our qualitative results are

robust to the threshold for the Wildfire Index, we find that the magnitudes depend on it.

Accordingly, the policy implications derived from our results remain the same.

4.3.2 Minimum number of municipalities in a cluster

A critical step in our methodology is regional clusterization, particularly the parameter

m, which determines the minimum number of municipalities per cluster imposed in the

max-p algorithm. In our baseline specification, we set m = 6, resulting in 48 clusters

of municipalities. Here, we report results for considering m from 2 to 8. The results in

Figure A2 closely resemble those in our baseline specification, suggesting an increase in

poverty and decreases in income and agricultural income following severe wildfire events.

The magnitudes of the dynamic ATTs remain similar. Nonetheless, the significance of

the e↵ects changes substantially. On the one hand, m being small reflects the lack of

representativeness of the data. On the other hand, for bigger values of m the spatial

dependence vanishes as more municipalities are aggregated. Consequently, it is highly

unlikely to find an e↵ect, as we are clustering units with very heterogeneous wildfire

events and socioeconomic outcomes. This exercise suggests that to e↵ectively capture the

e↵ects of wildfires on socioeconomic outcomes, a higher level of granularity in defining

regional units is required to prevent aggregation from obscuring the potential impact of
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those events. In summary, the choice of m significantly influences the observed e↵ects of

severe wildfires on socioeconomic outcomes.

4.3.3 Aggregation level

The motivation for the regional clusterization is the lack of representativeness at the

municipality level, which potentially makes the results unreliable if data is aggregated

at such level. If it were the case that our results are robust to aggregating data at the

municipality level, we could perform the analysis without the max-p region algorithm

clusterization. We compare the results of our baseline specification (Figure 6) with those

resulting from aggregating at the municipality level in Figure A3. We find that none of the

e↵ects are significant anymore. Moreover, the point estimates substantially change, except

for occupation which remains non-significant with similar and negligible point estimates.

This result motivates the use of regional clusterization in the absence of representative

data in our case study.

4.3.4 Treatment persistence

To capture the dynamics in the e↵ects of severe wildfires on socioeconomic outcomes and

mitigate concerns regarding carryover e↵ects, we initially assumed that a unit remains

treated for up to k = 2 years following a severe wildfire. We now define alternative values

for the parameter k and assess the robustness of our baseline findings. In Figure A4, we

present the dynamic ATTs on poverty, considering values of k from 0 to 8. Notice that

larger values of k imply that the treatment adoption is closer to a staggered adoption

setup. Whenever an ATT is not observed for a particular k, this is because there are less

than 10 observations to estimate it. As observed, our estimates for every socioeconomic

outcome remain virtually the same. Consequently, we find that our results are robust to

the assumed persistence of the treatment.

5 Conclusion

Combining satellite data on burned areas with household surveys during the period 2005—

2020 in Bolivia, we estimate the causal e↵ects of severe wildfires on poverty and other

aggregate socioeconomic outcomes. Our analysis reveals a significant short-term increase
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in poverty and an insignificant e↵ect in the medium term. The mechanism that explains

this e↵ect is a decline in household per-capita income and, more specifically, a fall in the

agricultural labor income in the years following a wildfire event. We find that our results

are robust to the assumed persistence of the treatment. Moreover, our qualitative results

remain the same when we define the minimum number of municipalities in each cluster

(m) and the threshold that defines whether a wildfire is considered severe (�). Even

though the magnitudes of the ATTs change with m and �, they do not deviate much from

the baseline estimates. Accordingly, the policy implications from our results remain the

same.

This is the first paper that documents the e↵ects of wildfires on poverty in Bolivia,

which allows the identification of the locational e↵ects enhancing the government’s ability

to respond promptly to the dire situations faced by the most economically disadvan-

taged communities. Our findings carry significant policy implications, shedding light on

the magnitude and duration of the wildfire e↵ect. This information is crucial for under-

standing the welfare e↵ects of severe wildfire events and gauging the potential damage to

household incomes.

Addressing the implications of wildfires on impoverished communities requires a com-

prehensive strategy that extends beyond immediate relief e↵orts. It involves a dual focus

on short-term interventions and long-term resilience-building initiatives. Beyond address-

ing urgent needs, such as providing immediate relief and e↵ective disaster response, at-

tention must be given to bolstering education, healthcare, and economic opportunities.

This holistic approach aims not only to alleviate the immediate impact of wildfires but

also to create sustainable solutions for reducing vulnerability in these regions.

Moreover, our results emphasize the importance of implementing policies that stabi-

lize household incomes and consumption, particularly in the aftermath of a fire event.

Prioritizing short-term direct transfers to a↵ected families, especially those engaged in

small-scale agriculture – as our study identifies them as particularly vulnerable to such

shocks – can serve as a practical tool to mitigate the negative economic impact. Addition-

ally, by identifying the agricultural sector as the underlying mechanism exacerbating the

vulnerability of communities to wildfires, our research facilitates the design of targeted

public policies. This targeted approach allows the government to tailor interventions to

the specific needs of the a↵ected sector, potentially maximizing the e�ciency and impact

of mitigation e↵orts.
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Appendix: Tables and Figures

Table A1: Summary of coe�cient of variation

Variable Mean Median
Years of education 10.17 9.86
Literacy 5.56 4.96
Attendance in the education system 13.92 5.59
Age 9.23 9.72
Sex 12.82 12.68
Native tongue 16.81 8.17
Members 5.19 4.86
Occupation 9.13 8.40
Poverty by income 12.07 9.16
Economically active population 8.55 7.96
Medical insurance 22.03 18.60
Urban 4.15 0.42
Per-capita income 12.54 10.99
Marital status 21.77 19.91
Social security 53.39 48.48
Enrollment in education 19.13 17.38

Table A2: Summary results for t� test at a 5% significance level

(a) Neighboring municipalities

Variable Rejection rate
Age 0.40
Years of education 0.58
Per-capita income 0.72

(b) Municipalities in the same cluster

Variable Rejection rate
Age 0.43
Years of education 0.65
Per-capita income 0.56

Table A3: Summary results for �2 test at a 5% significance level

(a) Neighboring municipalities

Variable Rejection rate
Literacy 0.00
Education 0.00
Sex 0.00
Native tongue 0.00
Members 0.00
Occupation 0.00
Poverty by income 0.00
Economically active 0.00
Urban 0.00

(b) Municipalities in the same cluster

Variable Rejection rate
Literacy 0.00
Education 0.00
Sex 0.00
Native tongue 0.00
Members 0.00
Occupation 0.00
Poverty by income 0.00
Economically active 0.00
Urban 0.00
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Figure A1: E↵ect of wildfire events on socioeconomic outcomes varying the Wildfire Index
threshold

Figure A2: E↵ect of wildfire events on socioeconomic outcomes varying the minimum
number of municipalities in a cluster
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Figure A3: E↵ect of wildfire events on socioeconomic outcomes changing the aggregation
level

Figure A4: E↵ect of wildfire events on socioeconomic outcomes varying the persistence of
the treatment
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