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The kidney allocation system aims to distribute kidneys from deceased donors in an 

equitable and potential-life optimising manner. This is a difficult task, not least because 

intrinsic biological differences, such as a person’s ABO blood type, influence the allocation. 

This paper begins by presenting a curious and undocumented empirical fact: candidates on 

the kidney transplant waitlist with blood types implying they will more rapidly be offered a 

kidney display lower pre-transplant survival. The paper investigates whether this difference 

in pre-transplant survival is due to biological, behavioural, or spurious selection. To that 

end, we promote a two-in-one randomization design which allows us to credibly fit our 

empirical setting within a dynamic potential outcomes framework. Using this framework, 

drawing from economic theory, and noting problematic financial and legal market 

incentives, the paper systematically evaluates different explanations for pre-transplant 

survival patterns. Our analysis establishes a small set of behavioural explanations which 

directly inform debates about how to reduce the excessive discard of viable kidneys in the 

US transplant market.
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1 Introduction

Healthy donated organs for transplantation are under-supplied. In the United States,

there are around 140,000 candidates on the kidney transplant waitlist, with around 40,000

added each year but only 25,000 removed after a successful transplantation (Lentine et al.,

2023). Because of this under-supply, the existing allocation system goes to great lengths

in trying to ensure an optimal and equitable distribution of available kidneys. One of

the di�culties in devising an optimal distribution strategy is navigating the problem of

intrinsic biological inequalities.

Underlying the feasibility of a kidney transplant is the need for compatibility between

the donor and the recipient’s ABO-blood type and human leukocyte antigen (HLA) tissue

type. Without su�ciently high compatibility on both, a donated organ will generate an

immune response and result in graft failure.1 As a result, candidates with di↵erent blood

types and HLA-tissue types can face stark di↵erences in their likelihood of rapidly finding

a suitable donated kidney.2

The di↵erences are particularly pronounced in the case of blood types. AB-blood

candidates, who are universal recipients, have the highest hazard of receiving a transplant

at any time in the first four years on the kidney transplant waitlist and, as a result, have

a higher overall probability of receiving a transplant than any other blood type. This

di↵erence is clear in Figures 1a-1b for kidney transplants from deceased donors,3 when

comparing AB-blood type to O-blood type candidates who can only receive a transplant

from other O blood type donors.

Di↵erences in transplant hazard rates are paired with curious pre-transplant trends

in survival. Figure 1c plots the probability of survival for AB-types and O-types when

censoring the duration to death at the moment a candidate receives a kidney transplant.

We see that over the first 4-5 years on the waitlist, the AB-type candidates have a signif-

icantly lower survival rate than O-type candidates prior to receiving a kidney transplant.

Several explanations are consistent with this empirical pattern. First, there may

simply be di↵erences in survival for candidates of di↵erent blood-types, possibly due

to correlated socio-economic or biological factors. Second, di↵erences in pre-transplant

survival may be directly related to biological or behavioural selection of the individuals

receiving a transplant. For example, it may be that candidates with better health are

more likely to be o↵ered and/or accept a kidney. If this were the case, a larger share of

high potential survival patients would be censored for the AB blood group in Figure 1c.

As a result, di↵erences in pre-treatment mortality would be largely due to selection on

1ABO incompatible transplants are possible but remain rare (de Weerd and Betjes, 2018).
2Another important determinant is a candidate’s immune sensitisation (cPRA), which is a measure

of how likely, based on existing antigens, a candidate’s body is to reject a transplant.
3Much of the early interest in allocation systems from economists focused on kidney transplant ex-

change programs among living donors (Roth et al., 2004, 2007; Agarwal et al., 2019). These exchange
programs, along with the larger market for living donor kidneys, represent a minority of recorded trans-
plantations. The majority, over 70%, of kidneys available for transplant are from deceased donors.
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(a) Transplant Hazard (b) Transplant Probability

(c) Pre-Transplant Survival (d) Survival

Figure 1: Survival of candidates on the kidney transplant waitlist
Based on selected sample of Scientific Registry of Transplant Recipients data described in Appendix B.
Observations: NO = 134, 730, NAB = 10, 544.

observed or unobserved biological factors. A relevant, and related, question is whether

the bias towards healthy candidates receiving transplants is mainly driven by candidate or

transplant center decisions. Selection could also take other behavioural forms. In line with

search models, candidates, in consultation with clinicians, may integrate the kidney o↵er

rate in their decision making process. In particular, it may be that candidates with worse

health characteristics respond di↵erently to a higher kidney o↵er rate than candidates

with better health. The observed pre-transplant patterns can arise if candidates with

worse health are relatively more selective about which kidneys to accept when facing

a high kidney o↵er rate. We also cannot exclude that candidates waiting for a kidney

become less diligent about their personal health in response to a higher kidney o↵er rate,

moral hazard which may increase the possibility of a negative health shock and lead to the

observed empirical pre-transplant patterns. Without a systematic empirical assessment

of assumptions pertaining to each theory, it is not possible to appraise the plausibility of

each explanation.

This paper investigates the source of pre-transplant di↵erences in survival by combin-

ing a dynamic potential outcomes framework with a detailed discussion of unobserved con-

founders and selection drawing from economic theory. More specifically, as our baseline

framework, we use a dynamic treatment e↵ect model which combines the G-computation
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identifying assumptions of Robins (1986) with the decomposition of causal e↵ects pro-

posed in Abbring and Van den Berg (2005) for settings with an endogenous intermediate

treatment and final outcome which are both duration variables. In addition, to sepa-

rate competing hypotheses, we call on economic insights including those from theoretical

search models in economics. We further relate our discussion to the complex financial

and legal incentives influencing kidney allocations and acceptance.

Understanding processes of selection on transplant waitlists is central to current re-

forms in the US transplant system. These reforms are attempting to address the long-

standing and increasing discard of suitable donated kidneys (Senate hearing: UNOS).4

The central market failure driving this loss is that poorer health individuals who could

benefit from suboptimal kidneys, both in quality and quantity of life, fail to receive them.

Despite the persistence and severity of this issue, it is unclear whether this market failure

is mainly due to candidates refusing to accept suboptimal kidneys, or whether misaligned

financial incentives bias transplant centers to refuse suboptimal kidneys. With a view

to future policy changes, the analysis allows us to rule out certain hypotheses for the

source of this selection problem. It further outlines which assumptions are required for

the remaining hypotheses to explain the selection problem, relates these assumptions

to agents’ financial and legal incentives, and underlines the role of unobserved factors,

including biases in expectations, in decision making processes.5

The paper begins by presenting a two-in-one randomization design with a wider appeal

for experimental and non-experimental evaluations of information e↵ects with duration

variables. It is inspired, among others, by the literature on threat e↵ects in active labour

market settings (Black et al., 2003; Arni et al., 2022).6 We consider a situation in which

individuals are randomized to a specific type of regime upon entering a state at time 0.

This regime is a special type of randomization which conveys information and dictates

a stochastic propensity for the timing of a future treatment among agents, as opposed

to a specific treatment time. Thereafter, at di↵erent moments in time and depending

upon their regime, surviving agents are randomized to actually receive treatment. In

general, the design circumvents a common di�culty in empirical applications of dynamic

treatment e↵ect models by ensuring that the sequential unconfoundedness assumption

holds by construction.7

In our case, the regime randomization is a candidate’s blood type which prescribes

a blood-type specific hazard for kidney o↵ers, but does not determine exactly when a

4In 2021, the percentage of deceased donor kidneys that were retrieved but not utilized for transplan-
tation increased to 24.6%, a rise from the 17.9% in 2011 (Lentine et al., 2023).

5Our discussion also relates to endogenous attrition in longitudinal panel studies and the use of
instruments in settings with dynamic treatment assignment.

6The literature on pre-treatment e↵ects has also touched on several fields of public policy. Early areas
of focus include anticipation e↵ects of tax reforms (Mertens and Ravn, 2012), and sorting in the housing
market to evaluate the value of school facility investments (Cellini et al., 2010).

7This design can readily be extended to experimental setups in which the researcher is interested in
how expectation or other placebo-type e↵ects alter the e↵ect of a treatment.
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suitable kidney will be o↵ered. In addition, we observe all health related variables used

in the allocation of kidney o↵ers. Within our dynamic treatment e↵ect framework, we

explain that if the variables determining kidney o↵ers and accepted kidneys were to co-

incide perfectly, we would be able to identify pre-transplant regime e↵ects and ex-post

transplant e↵ects depending on candidates’ blood type. Because we cannot guarantee this

assumption holds, and we only observe accepted kidneys, not o↵ered kidneys, we do not

focus on obtaining causal ex-post transplant e↵ects.8 Instead, we focus on pre-transplant

e↵ects and leverage the dynamic decomposition framework to separate our discussion of

selection into two parts. A first part relates to selection on the health-related variables

determining kidney o↵ers which are used by OPTN/SRTR and the prominent ones de-

termining survival on the waitlist, the US transplant network organisation, and which

we observe in our data. The second part relates to selection on other unobserved health-

related variables. Separating these parts speaks directly to policy questions concerning

variables, in particular behavioural ones, outside the current scope of OPTN/SRTR.

Using a semi-parametric proportional hazard model,9 we show that over the first 5

years on the kidney transplant waitlist, AB blood type candidates have a 6-7 percentage

point higher pre-transplant probability of death relative to the O blood types baseline of

about 24 percent probability of death. These pre-transplant e↵ects appear across various

model specifications and in various subsamples, including males and females, white and

non-white people, a sample which includes candidates who receive kidney transplants

from living donors and candidates entering the waitlist before and after a reform in

the allocation mechanism in December 2014. The results suggest that pre-transplant

di↵erences in survival are due to selection or confounding on variables outside the kidney

o↵er mechanism set, and outside additional prominent ones held by the Scientific Registry

of Transplant Recipients (SRTR).

Our analysis thereafter assesses the various forms of selection and confounding on

unobserved variables which can plausibly give rise to the pre-transplant empirical pat-

terns. First, we assess whether the pre-transplant e↵ect is due to unobserved confounding

variables correlated to ABO blood type groups. We argue this hypothesis to be unlikely

due to the one-to-one ordinal relation in the data between the kidney transplant rates by

blood type and pre-transplant survival by blood type.

In a second part we turn to incentive-based explanations for the observed pre-transplant

patterns. To start, we present a theoretical search model with forward looking optimising

agents who can only adjust their pre-transplant reservation survival threshold (ie. phys-

ical health) in response to changes in the kidney o↵er rate. We show both theoretically

and in simulations that the empirical patterns under a standard search model can only be

reproduced if we assume transplants produce a negative health shock. Thus, if lifestyle

8Agarwal et al. (2020) o↵er a comprehensive ex-post analysis focusing on patient life-years from
kidney transplants where they exploit instrumental variation in o↵ers and a continuous shifter of choices
to achieve identification.

9We present simulation results to assess the performance of our estimator.
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and health adjustments are to explain the pre-transplant survival patterns, then they are

to be explained by important moral hazard. Although this hypothesis cannot be entirely

excluded, there is no existing evidence for strong moral hazard responses to di↵erences

in kidney o↵er rates.

A third hypothesis is that agents with di↵ering unobserved health change their kidney

acceptance threshold asymmetrically in response to an increase in the kidney o↵er rate.

More specifically, we explain that the empirical patterns in the data are consistent with a

model in which, when facing a higher kidney o↵er rate, candidates with worse health are

relatively more selective about which kidneys they accept than candidates with better

health. This selection theory o↵ers a testable prediction for the transplant decision in

the first period on the waitlist. It also o↵ers a testable prediction for the relative e↵ect of

a transplant across blood type regimes for those who accept a kidney in the first period.

We show that, on the face of it, both of these period one results suggest that di↵erences

in pre-transplant survival can be attributed to candidate-clinicians’s behavioural changes

resulting from di↵erences in the kidney o↵er rate.

In a last part, we question this behavioural response to di↵erences in the kidney of-

fer rate. We first show that the observed pre-transplant patterns in Figure 1c will arise

mechanically if kidney acceptance and pre-transplant survival are both increasing in un-

observed health, and kidney o↵ers are higher in the AB-blood type group. However, these

assumptions alone do not predict the previously mentioned first period results. We ex-

plain that the first period results can only arise in a setting without behavioural responses

to changes in the kidney o↵er rate under certain conditions. If the main decision-maker

is the clinician/transplant center, then a su�cient set of additional assumptions is that

the quality of o↵ered kidneys is independent of blood type, that transplant centers o↵er

more kidneys to higher health candidates, and that transplant centers make simultane-

ous decisions over several viable kidney o↵ers in a non-null amount of cases. If the main

decision-maker is the candidate, then the observed patterns can arise if two conditions

replace the assumption that transplant centers o↵er more kidneys to higher health can-

didates. The first is that the distribution of o↵ered kidneys in terms of quality is right

skewed, with more low-quality than high quality o↵ers. The second is that lower health

candidates are more likely to reject a kidney than higher health candidates.

Existing studies and recent policy changes support both sides of these di↵erent as-

sumptions. In terms of transplant center incentives, OPTN performance evaluations of

transplant centers are currently expanding to include additional measures. Prior to July

2023, performance evaluations were based on a 1-year post transplant risk-adjusted can-

didate survival score. Post-2023, assessment scores for transplant centers have expanded

to include an o↵er-to-acceptance ratio score as well as a survival score for candidates on

a transplant center’s waitlist. These adjustments are explicitly aimed at reducing the

waste of viable kidneys. What is less clear is whether theses performance evaluation
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adjustments are meant to achieve this goal by o↵setting other financial incentives10 or

re-center clinicians’ misunderstanding of risk adjustment in the 1-year post-transplant

survival model. Anecdotal reports suggest the latter is important, leading clinicians

to base acceptance decisions on the simpler heuristic of 1-year post-transplant survival

rather than the risk-adjusted measure (Mohan et al., 2018; Kimberly et al., 2018).11

On the side of candidates, they must be informed by law when o↵ered certain sub-

optimal kidneys (OPTN Final rule 121.11(b)(iV)). This signal is susceptible to trig-

ger excessive rejections among less healthy candidates who, because they have a lower

potential-life expectancy, are more likely to receive such o↵ers. In addition, existing lit-

erature (Zhang, 2010) suggests that lower quality kidneys rejected by many candidates

and o↵ered to lower health candidates are more likely to be rejected based on the bad

signal rather than the objective kidney quality.

Our main policy suggestion following the analysis of this paper is to develop a sta-

tistical system which, for each o↵ered kidney, predicts the expected amount of time any

given candidate within a transplant center can expect to wait until receiving a kidney at

least as good as the proposed one. This type of system can easily be built adjacent to

the current score models and conveyed to transplant centers and candidates alike with a

view to adjusting misaligned expectations.

The discussion and results in this paper contribute to several fields. The method-

ological setup in this paper builds on a rich history of dynamic treatment e↵ects work

in economics (Ham and LaLonde, 1996; Abbring and Van den Berg, 2003; Heckman and

Navarro, 2007; Heckman et al., 2016; Han, 2021). The paper also adds to a growing field

addressing expectation e↵ects in economics (see Haaland et al. (2023) for a survey). Our

results also contribute to the literature on transplants in general and kidney transplants

in particular, with notable recent work focused on optimal allocation mechanisms for the

deceased donor waitlist given candidate-clinician discretion to reject o↵ers (Zhang, 2010;

Agarwal et al., 2018, 2021, 2020). Finally, the results also relate to research underlining

the relevance of market dynamics in the supply of kidneys (Dickert-Conlin et al., 2019;

Teltser, 2019).

The remainder of the paper proceeds as follows. We begin in the next section by

briefly introducing the kidney transplant allocation system. Section 3 introduces the po-

tential outcomes framework, describes causal e↵ects of interest, discusses the identifying

assumptions in relation to our kidney transplant setting and describes our estimation

approach. Section 4 describes our data and Section 5 presents our empirical results.

10Some studies suggest the financial cost of transplants for lower health candidates are higher in
absolute and marginal terms after medicare compensation (Axelrod et al., 2017, 2018).

11If well understood, the risk adjustment model, which accounts for donor, candidate, and donor-
candidate interaction variables, should not have incentivized transplant centers to ignore lower quality
kidneys or unhealthy candidates.
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2 Kidney Transplant Allocation System

Transplantation is the most e↵ective method to treat end-stage renal disease. Dialysis, the

main alternative, is associated with higher mortality and higher overall costs (Axelrod

et al., 2018). In the United States, the allocation of deceased kidneys to candidates

on the waitlist is designed, coordinated, and administered by the Organ Procurement

and Transplantation Network (OPTN). A person is allowed to register on the kidney

transplant waitlist and start accruing time when their kidney function falls below 20%.12

Upon entering the waitlist, OPTN collects in-depth information about the candidate’s

health conditions, immunological profile, and any other characteristic needed to ascertain

kidney compatibility.

When a potential kidney becomes available, OPTN gather extensive biological infor-

mation about the kidney and the donor’s medical history. Through its automated UNet

system, OPTN then calculate a priority order for any candidate who is compatible with

the potential kidney. The kidney o↵er process balances equity and e�ciency, prioritising

candidates on the waitlist following strict criteria. Unlike some other organs, such as

livers and hearts, priority is also not given to candidates who need a transplant most

urgently.

Prior to December 2014, the main prioritisation criteria were the compatibility of

blood and tissue types, the age of the candidate, the time a candidate had been on

the waitlist, and their geographic proximity to the center holding the deceased donated

kidney (Smith et al., 2012).

This allocation system was deemed to result in excessive amounts of unutilised kid-

neys, lost graft years,13 high re-transplant rates, and inequity in distribution for minori-

ties. In an e↵ort to address these issues, and update a system which had not undergone

significant change in 20 years, a new allocation system was introduced in December 2014.

Some of the changes included adding points for patients with high levels of antibodies,

and giving priority to healthier candidates for the highest potential longevity kidneys.

This prioritization is computed using an Estimated Post-Transplant Survival (EPTS)

score which is a function of age, diabetes status, whether the candidate is on dialysis,

the number of years they have been on dialysis, and whether they previously received

a transplant. Under the new allocation rules, less emphasis is placed on waiting time

and geographical location.14 In terms of ABO blood type prioritisation, B and O blood

type candidates are prioritised for identical blood type kidneys unless perfect tissue com-

patibility (zero-antigen HLA) exists with AB blood types (Israni et al., 2014). This

prioritisation, which existed both before and after the reform, attempts to adjust for the

12More precisely when the Glomerular Filtration Rate (GFR) is 20 or below.
13Candidates with shorter life expectancy may receive kidneys with the potential to function longer.
14In 2021, the geographic criteria was further adjusted to attribute points, on a linearly decreasing

scale with notches, based on the distance between a candidate’s listed transplant center and the donor
hospital (Potluri and Bloom, 2022).
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lower supply of B and O blood type kidneys. Key to our future assumptions, the UNet

mechanism determining a kidney o↵er is a function of observed variables of which all

health related ones are available to us in our data.

There also exists some discretion on the part of candidates and their clinicians concern-

ing which kidney they are willing to accept. Most kidneys will be rejected automatically

based on age, health, and kidney function criteria set by candidates and their physicians

upon entering the waitlist. These criteria choices are available in our data. Other kidneys

will still be rejected after passing the initial screenings (Gordon et al., 2020). Looking at

data o↵ers between January 1, 2010 and December 31, 2013, Agarwal et al. (2018) show

that, among kidneys passing screening criteria, only 0.9% of kidney o↵ers are accepted

and only 70% of those are actually transplanted.15 This low acceptance rate is largely due

to relatively undesirable kidneys being o↵ered to several thousand patients.16 Decisions

to reject o↵ers have no bearing on future o↵ers. As a result of rejected o↵ers, close to

25% of kidneys are never transplanted.17 It is an open question, and one we return to in

our discussion, whether the central decision maker for these rejections is more often the

candidate or the clinician and transplant center.

3 Evaluation Framework

In this section we first introduce the potential outcomes notation and present our eval-

uation framework, underlining which assumptions identify causal e↵ects and what these

assumptions imply in our kidney transplant waitlist setting.

3.1 Potential Outcomes and Treatment E↵ects

The decomposition framework presented in this section combines the G-computation

identifying assumptions of Robins (1986) with the decomposition of causal e↵ects pro-

posed in Abbring and Van den Berg (2005) and also draws on work from Lechner (2009)

and Heckman et al. (2016). Our potential outcomes notation combines the dynamic

presentation of Abbring and Heckman (2007) with the more familiar notation in static

treatment and mediation analyses (Angrist et al., 1996; Imai et al., 2010).

15This last discrepancy is due to final crossmatch blood screenings which predict high chances of kidney
graft failure. Throughout the text, we abstract from this discrepancy and often refer to transplanted
kidneys as accepted kidneys, since the last crossmatch stage occurs after the main behavioural decisions
focused on in the paper.

16Several factors determine a kidney’s quality in general. These include the donor’s general health
prior to death, their gender and age, as well as their kidney function and anatomy. Some donors die with
infectious diseases which the candidate may contract if they proceed with a transplant. See Danovitch
(2012) for a comprehensive review of kidney biology.

17There is also a substantial amount of variation in kidney-acceptance rates among the 250 transplant
centers (Wey et al., 2017).
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3.1.1 Regime and Potential Treatment Duration

We follow each agent from the moment of entering an initial state which is set as t = 0. In

our empirical setting this will be the moment an individual enters the kidney transplant

waitlist, but in other settings it could be the moment of contracting an illness, becoming

unemployed, or advertising a new product on the market. At t = 0, agents are randomized

to one of two regimes denoted by the random variable Z (we suppress the subscript i for

convenience). Z is observed by the econometrician and may be partially or fully known

by the agents. We focus on the most simple setting in which agents can either be assigned

to a baseline regime Z = 0 or to an alternative regime Z = 1.

The regime is a special type of two-in-one randomization which has received little

attention in the literature. It is a variable which introduces administrative or other

constraints which changes the hazard rate to treatment, but does not determine a specific

time for the future treatment. Although the framework allows a general interpretation

of the regime randomization, it can find particularly interesting applications when being

considered as an information randomization on expectations or beliefs. In our kidney

transplant setting, Z = 0 for AB blood type individuals who face a high probability of

rapidly finding a suitable kidney. Z = 1 for O blood type individuals who have a lower

probability of rapidly finding a suitable kidney.

To define durations to treatment we use a potential outcomes notation. We allow

time to be discrete or continuous when defining potential outcomes and causal e↵ects of

interest. Let the random variable Sz be the potential duration to treatment, or equiva-

lently the treatment time, had an agent been subject to regime Z = z. The treatment

time can take on any value s > 0.

We consider the simplified setting in which there is only a single binary treatment

which, once allocated, remains permanently thereafter. In our kidney transplant setting,

s is the duration of time on the waitlist until an individual receives a kidney transplant.

One important peculiarity about the timing of treatment is that it is stochastic from the

point of view of the agent. A person may know that they have a low probability of finding

a suitable kidney, but will not know the exact time s at which they will receive a kidney

transplant.

3.1.2 Potential Exit Duration

We further define the potential outcome T z,s as the duration to exit had the agent been

subject to regime Z = z, and been treated at Sz = s. In our example, T 1,6 months would

be the potential time to death for a person on the kidney transplant waiting list with O

blood type (Z = 1), and who (would have) received a kidney transplant after 6 months on

the waitlist (S1 = 6 months). Several comparisons can be made based on this notation.

In this paper, our object of interest is the probability of survival past a period ⌧ given

treatment at s. Any comparison therefore requires formulating counterfactual potential
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outcomes of the form Pr(T z,s > ⌧).18

The usual problem with formulating causal comparisons with this potential outcome

is that counterfactuals are never observed. On top of the usual static selection problems,

there is dynamic selection in the sense that unobserved variables will influence the timing

of exit, and some agents will exit before ever receiving treatment. Within this context,

we use the shorthand notation T z,1 to define the potential non-treated outcome. It

represents the duration to exit had the agent been exposed to regime Z = z and had not

received treatment in finite time (s ! 1), or, more concretely, by the time ⌧ at which

the outcome is evaluated.

3.1.3 Regime and Treatment E↵ect Decomposition

Using this notation, we can already define our relevant decomposition for a given treat-

ment time s:

Pr(T z,s
> ⌧) = �0 + �zz + �s 1(S = s) + �zsz 1(S = s)

with �0 = Pr(T 0,1
> ⌧)

�z = [Pr(T 1,1
> ⌧)� Pr(T 0,1

> ⌧)]

�s = [Pr(T 0,s
> ⌧)� Pr(T 0,1

> ⌧)]

�zs = [(Pr(T 1,s
> ⌧)� Pr(T 1,1

> ⌧))� (Pr(T 0,s
> ⌧)� Pr(T 0,1

> ⌧))]

(1)

This decomposition is a reformulation of one first proposed in Abbring and Van den

Berg (2005). It parallels the well known decomposition when evaluating heterogenous

treatment e↵ects.

As in a heterogeneity decomposition, �0 represents the average probability of survival

past ⌧ had all candidates been of AB blood type and had none of them received a

kidney transplant. �z represents the pre-treatment di↵erence in survival and is the central

parameter of interest in our study. It represents the di↵erence in the probability of survival

past ⌧ were a candidate to be of O blood type instead of AB blood type, withholding

any e↵ects of actually receiving a kidney transplant. �s represents the di↵erence in the

probability of survival past ⌧ were candidates to be of blood type AB and receive a kidney

transplant at s compared to their probability of survival were they not to receive a kidney

transplant by ⌧ . �zs represents the additional di↵erence in the probability of survival past

⌧ were candidates to be of O blood type and receive a kidney transplant at s relative to

�s.19

18In this paper our outcome of interest is the probability of survival instead of the expected exit
duration E[T z,s]. Focusing on the expected duration to exit may be hampered by the fact that in many
duration settings, as is the case in our application, a large fraction of exit outcomes are censored so the
right tail of the exit distribution will be poorly approximated. Also, the expected potential exit duration
outcomes can all be expressed as functions of the probability to exit, Pr(T z,s  ⌧) = 1 � Pr(T z,s

> ⌧).
Alternatively, some studies focus on the relative e↵ects of the potential hazard as causal e↵ects. The
drawback of focusing directly on the hazard to infer about causal e↵ects is that its magnitude is di�cult
to interpret for cost-benefit analyses without transforming it into a survivor function.

19In some cases, the above formulation may not be the most policy relevant decomposition. A more
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3.2 Assumptions and Identification of Causal E↵ects

In this section, we discuss the nonparametric identification of dynamic treatment e↵ects

originally formulated in Robins (1986). The evaluation framework will be presented in

discrete time with exits and treatment times t 2 N and s 2 N to intuitively parallel

assumptions from the static causal inference setting. To reduce notational burden, we

assume the observed period interval is the smallest discrete unit of time.

For each agent, when T � S, we observe the joint distribution (Z, S, T,X) where

Z is the regime assignment, S the time to treatment, T the time to exit, and X is a

set of baseline covariates at t = 0. Since identification is non-parametric, we leave the

conditioning on observed baseline (t = 0) covariatesX implicit for notational convenience.

However, we do refer to covariates when discussing the problems of intermediate or time-

varying covariates.

3.2.1 Dynamic Unconfoundedness Assumption

The first identification requirement is that the regime is randomized and that treatments

are randomized on survivors. For this we invoke the following dynamic unconfoundedness

assumptions first proposed by Robins (1986) and introduced into the economics literature

by Lechner (2009),

Assumption A.I: Dynamic Unconfoundedness: For z = 0, 1, s 2 N, t 2 N, s � t,

denote by {T z,s}, {Sz} the sets of all potential variables, then,

(i) ({T z,s}, {Sz}) ?? Z

(ii) {T z,s} ?? 1(S = s) | S � t, T � t, Z = z

In the context of our study, the first assumption states that the blood type is randomized

at t = 0 with respect to the potential time to death and potential time until receiving

a kidney transplant. The second assumption says that receiving a kidney transplant is

randomized for the survivors on the waitlist who did not yet receive a kidney transplant.

Assumption A.Ii implies and is implied by the ‘no-anticipation’ assumption of Abbring

and Van den Berg (2003), Pr(T z,s > ⌧) = Pr(T z,s
0
> ⌧) for all s, s0 > ⌧ .20

In an experimental setup involving a regime changing expectations, the most obvious

direct strategy to ensure these assumptions hold would be to randomize individuals at

relevant decomposition may require averaging e↵ects over a treatment time interval, such as treatment
before period s. When producing the decomposition relative to treatment in regime Z = 1, the average
e↵ects over the treatment interval (0, s] are given by

Ps
t=0 ·Pr(S1 = s) Pr(T z,s

> ⌧). Our average policy
parameters of interest would then be �0, �z, �(0,s] =

Ps
t=0 Pr(S

1 = s) · �s and �z(0,s] =
Ps

t=0 Pr(S
1 =

s) · �zs.
20Assumption A.I implicitly contains structural assumptions concerning the timing of causes and e↵ects

within a period. In our formulation of the conditioning set, S � t, we allow treatment at period t to
influence exit in the same period. So, receiving a kidney transplant can influence survival immediately.
If there is censoring in the sample, one can add a similar dynamic unconfoundedness condition under
which right censored observations are dynamically missing (completely) at random.
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baseline to two groups: one which is told they have a low chance to receive a future treat-

ment, another which is told that they have a high chance to receive a future treatment.

Both groups could also be told their chances (or hazards) between (0, 1) of receiving

treatment to enquire into (mis-)perceptions of probabilities. The advantage of this type

of randomization strategy in dynamic settings is twofold. First, it can be easily imple-

mented. Second, it satisfies both unconfoundedness assumptions of Assumption A.I by

wrapping two randomizations into one. This randomization design would find particu-

lar use for researchers interested in how expectation, information or other placebo-type

e↵ects alter the e↵ect of a treatment in a context with duration variables.

When it comes to kidney transplants, ethical concerns preclude manipulating people’s

expectations or randomising the allocation of kidneys. Also, because the central focus of

this paper is explaining di↵erences in pre-transplant survival between blood types, we will

not appeal to arguments conditional on covariates alone when it comes to ascertaining

Assumption A.I. For A.Ii in our study, a conditional on covariates assumption would

impose that a person’s blood type is independent of their potential duration to death

and transplant. ABO blood types have been identified as risk factors in specific disease

processes such as vascular disease and malignancy (Wu et al., 2008; Sun et al., 2015;

Abegaz, 2021) as well as for a small number of infectious diseases (Cooling, 2015). How-

ever, on the whole, there is no clear evidence that some ABO blood types consistently

lead to higher overall mortality in combination with diseases. That being said, certain

ABO blood types are known to be correlated with particular races. These associations are

related to other drivers of mortality. As such, our empirical examination of assumption

A.Ii proceeds in two parts. We first produce additional specifications with added baseline

covariates, including race, biological sex and previous malignancies, among others. These

results ascertain the robustness of the estimated pre-transplant e↵ect �z to some leading

choices of confounders and known drivers of mortality. Thereafter, we exploit the four

variations of blood type and present subsample results which, taken together, render it

di�cult to argue that di↵erences in pre-transplant survival operate through pre-existing

di↵erences in candidates blood type, rather than di↵erent processes of selection over the

waitlist.

Assumption A.Iii should be questioned in observational dynamic settings. OPTN,

through the UNet system, allocate kidney o↵ers to candidates on the waitlist purely

based on candidate and donor characteristics, and registered restrictions. As discussed in

section 2, although we observe all health related variables held by OPTN, candidates in

consultation with clinicians, or clinicians and transplant centers independently, are likely

selecting which kidney o↵ers to accept. These decisions may be based on variables outside

the set determining the allocation of o↵ers, and possibly outside the additional ones

available in our data. This selection problem is our main reason for not focusing on post

transplant e↵ects �s and �zs in the paper.21 However, an important contribution of our

21See Agarwal et al. (2020) for a dedicated discussion to ex-post e↵ect in the context of kidney trans-
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paper is explaining how a violation of assumption Iii, while biasing the ex-post transplant

e↵ects, does not prevent us from developing behavioural and policy relevant insights

concerning the pre-transplant e↵ect �z. Under certain conditions, we can leverage the

structure of assumption A.Iii to separate out pre-transplant selection due to prominent

variables held and currently used by OPTN, as opposed to other variables.

One condition is that there is no predetermined time from the point of view of candi-

dates or surgeons at which candidates will be o↵ered a suitable kidney. This likely holds

as OPOs gather consent from people or relatives of people who experienced severe brain

bleeding, have been declared brain dead, or for whom cardiac death is imminent. Re-

trieved kidneys are then transplanted within 24-48 hours. These time constraints imply

that it is di�cult to predict well in advance when a new and compatible donated kidney

will be brought forward.

In addition, when it comes to kidney o↵ers, we need to justify a source of exogenous

randomization in the allocation system. Two such sources are assumed: regional di↵er-

ences in kidney availability and di↵erences in donor-recipient tissue-type compatibility

criteria (HLA-type). In terms of tissue compatibility, for two candidates similar on all

measures, the one with a higher HLA tissue type compatibility is more likely to receive

a kidney transplant.22 Geographic location also introduces several layers of random vari-

ation in kidney o↵ers. Prior to December 2014, large di↵erences in allocation stemmed

from regional di↵erences in kidney availability (Ata et al., 2020; Massie et al., 2011). Due

to the limited time between a kidney being made available and the time of transplant, few

candidates are listed in multiple Donation Service Areas (Dickert-Conlin et al., 2019). As

a result, among surviving agents who are similar on all measures, the one living within

the same donation service area as that which procured the kidney would be prioritized.

Prior to the December 2014 reform, one relevant condition under which some regional

prioritization criteria could be ignored is if there was a perfect compatibility on blood

and tissue type (zero-antigen mismatch) for a candidate in another donation area. When

this occurred, and a kidney was transferred to another donation service area, the service

area obtaining the kidney incurred a payback debt which required relinquishing the next

available donated kidney with a similar ABO blood type. This debt payback system

adds additional exogenous variation to the geographic and tissue compatibility dimen-

sion. Because this additional layer of variation was dropped in the new kidney allocation

implemented in December 2014, our initial analysis focuses on pre-2015 data. As we will

show, the results and insights from the pre-2015 analysis carry over to the new kidney

allocation mechanism, which continues to display large geographic variation in deceased

donor kidney availability (King et al., 2020).

plants
22HLA tissue types are not known to be correlated to blood types (Erikouglu et al., 2011).
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3.2.2 Overlapping Support Assumption

In addition, we impose that regimes, treatments, and the decomposition can be evaluated,

Assumption A.II: Overlapping Support: For z = 0, 1, t 2 (0, s], s 2 N, t 2 N,

(i) 0 < Pr(Z = z) < 1

(ii) 0 < Pr(S = t|S � t, T � t, Z = z) < 1

This overlapping support assumption guarantees first, A.II(i), that we observe agents

under both regimes. A.II(ii) provides that there is no time before period s at which the

treatment is allocated to all, or none, of the untreated survivors.

3.2.3 SUTVA Assumption

We add to these two assumptions Rubin’s Stable Unit Treatment Value Assumption (Ru-

bin, 1980) which we rejoin with Robins’ consistency assumption (Robins, 1997; Murphy,

2003) in the following,

Assumption A.III: SUTVA: For z = 0, 1, s 2 N,

Sz = S if Z = z

T z,s = T if S = s, Z = z

In our empirical setting, this assumption states that the potential duration until an

individual receives a kidney transplant and the potential time to death equal their cor-

responding observed duration to transplant and duration to death in our sample. The

usual interpretation of the above is that potential outcomes for an agent do not depend

on the observed or counterfactual outcomes of any other agent. However, since our data

includes the universe of candidates on the waitlist in the US, and our main goal is to

diagnose which forms of pre-transplant selection may be at play for that population, the

questions of spillovers and extrapolation when rolling-out a treatment are of second order

importance since the data were collected from the hypothetical causal setting of interest.

3.2.4 Identification of Regime and Treatment E↵ects

Under A.I � A.III, we can present the well-known identification result for the separate

components of the causal decomposition in equation 1.
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�0 =
⌧Y

t=0

Pr(T > t|S > t, T � t, Z = 0)

�z =
⌧Y

t=0

Pr(T > t|S > t, T � t, Z = 1)�
⌧Y

t=0

Pr(T > t|S > t, T � t, Z = 0)

�s =
⌧Y

t=0

Pr(T > t|S = s, T � t, Z = 0)�
⌧Y

t=0

Pr(T > t|S > t, T � t, Z = 0)

�zs =
⌧Y

t=0

Pr(T > t|S = s, T � t, Z = 1)�
⌧Y

t=0

Pr(T > t|S > t, T � t, Z = 1)� �s

where we use a shorthand notation,
⌧Y

t=0

Pr(T > t|S = s, T � t, Z = z) ⌘

⌧Y

t=s

Pr(T > t|S = s, T � t, Z = z) ·
s�1Y

t=0

Pr(T > t|S > t, T � t, Z = z)

(2)

We can also identify the probability of treatment at period s under regime z,

↵z = Pr(Sz = s) = Pr(S = s|S � s, T � s, Z = z) ·
s�1Y

t=0

Pr(S > t|S � t, T � t, Z = z)

The above equations are adapted versions of Robins (1986) and Gill and Robins (2001)

“g-computation formula” which also admits non-binary and non-permanent treatments

as well as non-duration outcomes. As in the general formula, our version allows for

causal dependence of treatment histories on outcomes but also of outcome histories on

the treatment. Our main parameter of interest throughout the results is �z representing

pre-transplant e↵ects.

3.3 Estimation Approach

We use a simple estimation method which builds on a semi-parametric proportional

hazard model.23 We write the joint exit and treatment hazards in the proportional

hazard specification,

✓
T

t (x, z, s) = �
T

t (z,1(s  t)) exp(x0�T )

✓
S

t (x, z) = �
S

t (z) exp(x
0
�
S)

For the estimation, we first parameterize the duration dependence functions �T

t
(z,1(s 

t)) and �S

t
(z) as separate piecewise constant baseline hazards depending on Z and whether

23We choose a continuous time estimator rather than a discrete time one mainly for computational
reasons. Also, for settings in which identifying assumptions are likely to hold and time intervals are
small, continuous and discrete time estimators produce similar results in treatment e↵ect duration models
(Kastoryano and van der Klaauw, 2022). The latter also provide non-parametric discrete time duration
estimators adaptable to our setting and discuss the tradeo↵s between discrete and continuous time
estimation approaches.
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treatment occurred 1(s  t). We then estimate the parameters of the joint density of the

above by Maximum Likelihood.24

Each treated causal e↵ect taking the form
Q

⌧2

t=⌧1
Pr(T > t|S = s, T � t, Z = z) is

then computed as,

X

{i}

ŵi(s) exp(�
Z

⌧2

⌧1

✓̂T
t
(xi, z, s)dt) =

X

{i}

ŵi(s) exp(�
Z

⌧2

⌧1

�̂T

t
(zi,1(si  t)) exp(x0

i
�̂T )dt)

While non-treated causal e↵ects taking the form
Q

⌧2

t=⌧1
Pr(T > t|S > t, T � t, Z = z) are

computed as,

X

{i}

ŵi(s) exp(�
Z

⌧2

⌧1

✓̂T
t
(xi, z, S > ⌧2)dt) =

X

{i}

ŵi(s) exp(�
Z

⌧2

⌧1

�̂T

t
(zi, 0) exp(x

0
i
�̂T )dt)

with weights given by,

ŵi(s) =
✓̂S
s
(xi, 1) exp(�

R
s

0 ✓̂S⌧ (xi, 1)d⌧)P
{i} ✓̂

S
s
(xi, 1) exp(�

R
s

0 ✓̂S⌧ (xi, 1)d⌧)

Finally, we use the delta method to compute standard errors around the causal e↵ects of

interest.25

In appendix E we provide some simulation results assessing the robustness of our

estimation method on simulated data generated from a dynamic discrete choice search

model. We also briefly discuss how the parameters of the above estimation relate to our

identifying assumptions and to the search model. Our estimator performs well when the

underlying data generating process is not excessively non-linear.

4 Data

This study used data from the Scientific Registry of Transplant Recipients (SRTR). The

SRTR data system includes data on all donor, wait-listed candidates, and transplant re-

cipients in the US, submitted by the members of the Organ Procurement and Transplan-

tation Network (OPTN). The Health Resources and Services Administration (HRSA),

U.S. Department of Health and Human Services provides oversight to the activities of

the OPTN and SRTR contractors.

The dataset we use contains detailed information on candidate characteristics, as well

as information on the date a candidate enters the waitlist, when they receive a kidney

transplant, and the date of death. In our initial analysis we include all candidates who

entered the waitlist between June 1st 2002 and December 1st 2014, the month in which

24R programming code is available at www.skastoryano.com.
25To obtain the expected value of the e↵ects over an interval of treatment times [1, s], one should replace

the denominators in the weights with a sum over t = 1, . . . , s,
Ps

t=1

P
{i} ✓̂

S
t (xi, 1) exp(�

R t
0 ✓̂

S
⌧ (xi, 1)d⌧).
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the new kidney allocation system was implemented. We exclude any candidate who was

scheduled to receive multiple transplants and candidates who were under 18 years of age,

as both of these groups follow special allocation rules. In our baseline analysis, we also

exclude candidates who receive a transplant from a living donor since those candidates

e↵ectively jump the line based on unobservables.26 Finally, we only include first spells

on the waitlist thereby excluding repeated observations for candidates who experience

graft failure or renewed kidney failure. We exclude from the analysis a limited group of

candidates with rare subgroup blood types. In the analysis, we also exclude the small

fraction of immune sensitised candidates with a first cPRA score above 0 given that these

candidates face special allocation rules. Appendix B provides a full description of our

data selection and the fraction of dropped observations at each step.

In our main decomposition estimation, we take the unit of time to be two months.

Our outcome duration T of interest is the time from the moment a candidate with kid-

ney failure enters the waitlist until the time of death, if observed. In the SRTR data,

information on the date of death is obtained from social security records (Massie et al.,

2014)

The duration to treatment S is the time until a candidate receives a kidney transplant.

The regime randomization Z in our baseline analysis is the biological randomization to

a blood type AB or O. We purposively choose these two groups to draw inference from

pre-transplant di↵erences in survival. As illustrated in A1a of Appendix C, AB blood

type candidates, who are universal recipients, have the highest hazard to transplant over

the first 3 years on the waitlist among all ABO blood types. O blood type candidates and

B blood types, as we will discuss later, have the lowest propensity to receive a transplant,

while A blood type candidates have a propensity lying between that of AB types and the

others.

In our main specification, we control for every health related variable relevant to the

o↵er allocation mechanism and other prominent variables related to a candidate’s health

which do not contain excessive amounts of missing values. Given our sample selection,

only the candidate age variable is relevant to o↵er allocations prior to the 2014 reform.

In the post-2015 analysis, the only o↵er relevant variable in our selected sample is the

Estimated Post Transplant Survival (EPTS) score, which is the candidate health score

used to match donors to candidates.27 In addition, we include time t = 0 variables

for: age, diabetes status, whether the candidate is on dialysis, whether they previously

received a transplant, BMI, biological sex, race, whether they previously had a malignant

tumour, whether they would accept a kidney from a hepatitis B positive donor, and

26Note that this data selection may be endogenous to the blood type if candidates with a di↵erent
propensity to finding a suitable kidney have di↵erent propensities to seeking out living donors. We return
to this point in our results.

27EPTS scores are calculated as follows: EPTS = 0.047 · max(Age � 25, 0) � 0.015 · Diabetes ·
max(Age� 25, 0) + 0.398 ·PriorOrganTransplant� 0.237 ·Diabetes ·PriorOrganTransplant+0.315 ·
log(Y earsonDialysis+ 1)� 0.099 ·Diabetes · log(Y earsonDialysis+ 1) + 0.130 · (Y earsonDialysis =
0)� 0.348 ·Diabetes · (Y earsonDialysis = 0) + 1.262 ·Diabetes.
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whether they would accept a kidney from an HCV positive donor.28 At no point do we

control for intermediate variables which require stringent assumptions to be considered

exogenous.

The main set of variables for each blood type are described with summary statistics

in appendix B columns 1-4. The average age of candidates on the waitlist is just under 52

years of age 40% of which are women. Most candidates are on dialysis upon entering the

waitlist (> 90%) and slightly over a third of them have diabetes upon entering the waitlist.

In general, di↵erent blood types are comparable along all available health measures, but

are not balanced on race. The O and A blood type groups have lower shares of minorities,

with a relatively larger share of Black people in the B blood type group, and higher share

of Asian people in the AB and B blood type groups.

5 Empirical assessment of pre-transplant selection

Our results discuss the specific hypotheses consistent with the patterns observed in Fig-

ures 1a and 1c of the introduction, as well as additional tests on the data. We then

relate these hypotheses and their necessary assumptions to the current discussions about

reforms to the organ transplantation system in the US.

5.1 Selection on kidney o↵er variables

A first point we need to inspect is how much of the di↵erence in pre-transplant survival

displayed in Figure 1c can be explained by selection on variables used in the allocation of

kidney o↵ers or other prominent health variables. Figure 2a presents the pre-transplant

e↵ect, �z in our decomposition, on survival past one to five years when excluding any

covariates. Figure 2b presents these same e↵ects when adding covariates which are rele-

vant in the allocation of kidney o↵ers.29 Prior to 2015, and given our data selection, this

includes only age which we introduce into the model as a series of age bracket indicators.

Our results indicate that O-blood types have a higher survival in all three specifications,

but the pre-transplant e↵ect is larger and significant at traditional levels only when in-

cluding covariates.30 In contrast to static settings, this di↵erence in e↵ects depending

on whether covariates are included does not necessarily suggest that assumption A.Ii

is violated and blood-types are non-random at t = 0. This is because in our dynamic

28We do not include other relevant variables which present a large fraction of missing values: hyperten-
sion (26% missing), creatinine measure of candidate (33% missing). We also drop in our main analysis
the limited (6.7%) of candidates who state they would accept a kidney from Hepatitis C donor.

29We present in Table A2 of Appendix D the full set of parameter e↵ects from our decomposition for
each column.

30In the estimation, we specify the segments of the duration dependence terms to be one year each.
This choice is guided by the desire to calibrate our model on the observed patterns of Figure 1c in our
estimation without covariates. The estimate of �z in 2a approximates well the observed patterns in
Figure 1c.
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setting, covariates also serve the purpose of adjusting for selection on observed variables

relevant to being o↵ered, and accepting, a kidney transplant at any time t > 0.

Our point estimates in Figures 2b indicate that the di↵erence in pre-transplant sur-

vival of candidates with O blood type relative to AB blood types increases to 5.0 percent-

age points over the first 5 years on the waitlist. Given the decreasing baseline survival

of the AB blood group observable in Figure 1c, the di↵erence in survival in percentage

terms between both blood groups increases from 2 percent to 7 percent over the first five

years on the waitlist. Figure 2c adds all additional t = 1 baseline covariates related to

candidate’s health in order to inspect how much remaining variation can be captured by

major health risk factors. We do not find that the additional set of covariates substan-

tially a↵ect our pre-transplant estimates. Hereafter, all modelled pre-transplant e↵ects

include all covariates.

As previously noted, the kidney allocation system was adjusted in December 2014.

The main change relevant to our analysis sample included giving priority to healthier

candidates for the highest potential longevity kidneys through the EPTS measure.31 Fig-

ure 2d considers whether pre-transplant e↵ects changed for candidates who entered the

waitlist under the new system. We find the pre-transplant e↵ects follow the same patterns

pre- and post-2015.

Taken together, the results from Figures 2a-2d show a pre-transplant e↵ect which

cannot be readily explained by selection into treatment on the basis of variables used when

allocating kidney o↵ers nor on the basis of other major risk factor variables influencing

survival. Figure A3 of Appendix C shows that these e↵ects appear for White people

and minorities, and on both sexes, albeit noticeably lower for females. The results also

remain robust to including the potentially non-random candidates who receive a living

donor kidney transplant. We therefore proceed to test several hypothesis for selection on

unobserved variables outside the set included in our specifications.

5.2 Unobserved blood-type correlated variables hypothesis

When it comes to selection on unobserved variables, several options present themselves.

A first possibility is that there are unobserved baseline variables correlated to people’s

blood types which a↵ect survival. As discussed previously, evidence for overall di↵erences

in mortality across blood types is lacking, but may be di↵erent for the specific populations

on the transplant waitlist.

We do not find the argument of correlated baseline confounding to be convincing

on the basis of pre-transplant survival patterns in relation to transplant rates across

blood-types. To illustrate this argument, Figures 3a-3b present di↵erences in transplant

probabilities alongside di↵erences in pre-transplant survival. Figure 3c further shows the

modelled pre-transplant e↵ect of O vs B blood types and 3d shows that same e↵ect for

31More specifically, there was an emphasis on matching kidneys from the top 20% healthiest donors
(KDPI< 20%) to the candidates in the top 20% of estimated post-transplant survival potential.
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(a) No covariates (b) O↵er Covariates

(c) All Covariates (d) Post-2015

Figure 2: Pre-transplant di↵erence in survival e↵ect �z

Based on selected sample of Scientific Registry of Transplant Recipients data described in Appendix B.
(a) includes no covariates, (b) includes o↵er covariates: age bracket dummies, (c-d) include all variables presented in
Appendix Table A1. Observations (c): NO:no�Tr = 93, 922, NO:Tr = 35, 989, NAB:no�Tr = 5125, NAB:Tr = 5032.
Observations (d): NO:no�Tr = 43, 338, NO:Tr = 11, 698, NAB:no�Tr = 2241, NAB:Tr = 2176.
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O vs A blood types. Taken together, we notice there is a one-to-one ordinal relation

between the transplant probabilities, pre-transplant survival rates, and modelled e↵ects.

The higher the transplant probability, the lower the pre-transplant survival probability.

These di↵erences cannot be attributed to di↵erences in racial compositions between blood

types since, as presented in Figure A2 of Appendix C, the results on the sample of White

people follow the same patterns.

For this relation over the duration on the waitlist to be causally determined by intrinsic

characteristics of candidates with di↵erent blood types, we would need to make a strong

assumption. We would need to assume that these period t = 0 baseline unobserved vari-

ables simultaneously a↵ect variation in transplant rates and covariation in pre-transplant

survival rates. This seems unlikely due to the source of variation in transplant rates.

In most cases, kidneys from deceased donors are gathered, after family consent, from

people who experienced severe brain bleeding, have been declared brain dead, or for whom

cardiac death is imminent. While not impossible, it seems di�cult to find convincing

arguments why, even within racial groups, certain blood types are more prone to specific

accidents making them eligible for kidney donation, more prone to die of natural deaths

while waiting for a kidney, and that these distinct forms of death form a one-to-one

ordinal relation with respect to blood type in the data. A more likely explanation is that

di↵erences in transplant rates across blood types are influencing the type and share of

candidates receiving a transplant. This selection in turn determines which candidates

remain on the waitlist which influences the measured pre-transplant survival. We explore

di↵erent hypotheses along these lines in the remaining results.

5.3 Lifestyle change behavioural hypothesis

In the remaining sections we turn to incentive-based explanations for the observed pre-

transplant patterns. In this section, we assume optimising forward looking agents within

a standard dynamic discrete choice search model (Mortensen, 1986). In this first model,

we assume candidates will accept a kidney if its quality is above an individual specific

threshold, and also assume this threshold is invariant to the kidney o↵er rate. We exten-

sively discuss features of the model in appendix E. In short, candidates wish to survive

each period but face biological pressures. These pressures can be influenced to some

degree by adopting a more or less healthy lifestyle. Each rational candidate forms a

reservation survival value before receiving a transplant which is a function of their ob-

served and unobserved (health) types, the mental and physical costs of remaining alive,

the arrival rate of health shocks, the probability of receiving a transplant and the rational

expected benefit of receiving a transplant. Also, while candidates know the distribution

of health shocks they receive each period, they do not perfectly foresee or control these

health shocks. A candidate’s life ends upon receiving a negative health shock above their

reservation survival threshold. From the setup of the model, it follows that poor health
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(a) Transplant Probability (b) Pre-Transplant Survival

(c) Pre-Transplant: O vs. B (d) Pre-Transplant: O vs. A

Figure 3: Treatment probability and Pre-transplant survival e↵ects �z for A and B blood
type candidates
Based on selected sample of Scientific Registry of Transplant Recipients data described in Appendix B.
(c-d) include all variables presented in Appendix Table A1. Observations (c): NO:no�Tr = 93, 922, NO:Tr = 35, 989,
NB:no�Tr = 28, 432, NB:Tr = 10, 303. Observations (d): NO:no�Tr = 93, 922, NO:Tr = 35, 989, NA:no�Tr = 50, 005,
NA:Tr = 31, 637.
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candidates are more likely to succumb to a strong negative health shock.

In the model discussed in this section, we assume di↵erences in the kidney o↵er

rate across blood types and changes in the o↵er rate over the duration on the waitlist

only a↵ect candidate’s survival by changing their reservation survival threshold. This

can be understood as agents adapting their health lifestyle in response to the signalled

availability of kidneys. We show in appendix E that if candidates on the waitlist foresee

a kidney transplant to improve their utility of surviving, and they have a high probability

of rapidly receiving a kidney transplant (AB blood type), then they will take on a more

healthy lifestyle in order to stay alive before receiving the transplant.

As can be observed in the simulated results of Figures 4a-4c, the model predicts a

higher pre-transplant survival rate for AB blood-types (Z1), which is contrary to the

observed patterns in the data. The pre-transplant survival and overall survival patterns

in the data can, in fact, only be reproduced in the model if we assume a negative shock

from the transplant which is foreseen by candidates, as shown in Figures 4a-4c. Thus,

neo-classical assumptions must be replaced by behavioural ones if lifestyle and health

adjustments are to explain the pre-transplant survival patterns. For instance, moral

hazard in response to higher kidney o↵er rates could explain the lower pre-transplant

survival among AB-blood types. While we cannot exclude some lifestyle adjustments to

di↵erences in o↵er rates, we show in the following section that the assumptions presented

in this section alone cannot explain certain survival patterns for candidates who receive

a transplant.

(a) Treatment Probability (b) Pre-Treatment Survival (c) Survival

(d) Treatment Probability (e) Pre-Treatment Survival (f) Survival

Figure 4: Simulations with (a-c) positive and (d-f) negative treatment e↵ects
Data generating process and simulation details presented in Appendix E. Observations (a-c): NZ=1:no�Tr = 1657,
NZ=1:Tr = 822, NZ=0:no�Tr = 738, NZ=0:Tr = 1783. Observations (d-f): NZ=1:no�Tr = 1919, NZ=1:Tr = 560,
NZ=0:no�Tr = 1488, NZ=0:Tr = 1033.
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5.4 Kidney quality threshold change behavioural hypothesis

In this section we turn to an alternative incentive-based explanation based on di↵erential

changes in kidney quality thresholds. This explanation can operate alongside the lifestyle

adjustment hypothesis but can also explain the pre-transplant results in the absence of

any moral hazard. We can show that the pre-transplant di↵erences displayed in Figure 1

will arise if candidates with lower health are relatively more selective about which kidneys

to accept than candidates with higher health when facing a higher kidney o↵er rate.

To illustrate this mechanism, consider a forward looking agent model as described in

the previous section, but assume reservation survival thresholds do not change in response

to di↵erences in the kidney o↵er rate. Instead, we assume only that candidates’ kidney

quality acceptance thresholds change, and allow this change to be di↵erent depending on

underlying unobserved health. Because there is uncertainty around what size a health

shock a candidate will receive each period, their decisions must balance a tradeo↵. At time

t, a candidate would like to select the kidney at time t or later which ensures the longest

post-transplant longevity while acknowledging that their probability of succumbing to

a negative health shock increases the longer they remain on the waitlist. This optimal

stopping problem is the object of study in Agarwal et al. (2021).

In general, facing a higher kidney o↵er rate, rational candidates will become more

selective about the quality of the kidney they are willing to accept. This change can be

modelled as a rise in the kidney quality threshold in response to an increase in the kidney

o↵er rate. It will also lead to an average decrease in the acceptance to o↵er ratio. A

priori, however, it is unclear whether the acceptance to o↵er ratio will decrease more for

higher or lower health candidates. Facing a higher o↵er rate, higher health candidates

can reliably wait longer for a high quality kidney than lower health candidates. However,

if the marginal returns to a higher quality kidney are larger for low health candidates,

meaning they will in expectation benefit more from an equal time wait than good health

candidates, then lower health candidates may have a larger decrease in their acceptance

to o↵er ratio.

For the empirical patterns in Figure 1 of the introduction to arise in the forward

looking agent model described in this section, the second stated dynamic must be more

prevalent. Facing a higher o↵er rate, lower health candidates become relatively more

selective about which kidneys to accept compared to good health candidates. If we

assume expectations and choices are rational, this results, on average, in higher overall

(transplanted + non-transplanted) survival among low health candidates in the AB-blood

type regime than in the O-blood type regime. This average increase in survival is driven by

kidney transplant recipients who delayed their decision to accept a kidney but eventually

found a higher quality kidney than they would have had they been in the lower kidney

o↵er rate regime. This delayed decision, however, also carries the risk of mortality which

translates into a lower pre-transplant survival in the AB regime than in the O-regime
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despite a higher overall survival.32

5.4.1 Testing di↵erential survival e↵ects for transplanted at t = 1

The above theory leads to some testable implications in our setting. Recall that, con-

ditional on kidney allocation mechanism variables, assumption A.Ii implies that kidney

o↵ers are distributed equally among higher and lower health candidates. As such, if the

acceptance to o↵er ratio is lower for poor health candidates, the distribution of health

among candidates accepting a transplant in the first months on the waitlist should be

more skewed towards healthier candidates in the AB-blood type group than in the O-

blood type group. Relatively more healthy candidates receiving a transplant in the AB-

blood regime should in turn lead to higher survival among those transplanted early in

the AB-blood type regime. This conclusion rests on one of two assumptions concerning

information acquisition. If we assume candidates are the main decision makers of which

kidney to accept, then we must assume candidates rapidly integrate the o↵er rate into

their decision making process. If clinicians and transplant centers are the central decision

makers on which kidney to accept, then we must assume they are aware and integrate

di↵erences in o↵er rates depending on a candidate’s blood type when accepting kidneys.

We test the theory of non-uniform selection into receiving a transplant using a simple

linear probability model on the sample of candidates who receive a transplant within the

first month(s) on the waitlist.

Yi = ↵ + � Zi +�X+ui (3)

In this model, Yi is an indicator for survival past a certain duration ⌧ . Zi is the blood

type indicator with Zi = 1 for a O-type candidates and Zi = 0 for AB-type candidates. X,

depending on the specification, includes all variables relevant to the transplant allocation

mechanism, as well as other prominent mortality related variables. The parameter of

interest, � represents the di↵erence in the probability of survival past ⌧ for candidates

receiving a transplant within the first month(s) on the waitlist. Note that we cannot

compare treated across regimes at later time periods since, due to the previously described

dynamic selection, there will be relatively fewer surviving positively selected AB blood

type candidates than O blood type candidates remaining on the waitlist. Appendix

B columns 5-6 present descriptive statistics for the O and AB blood type candidates

receiving a transplant. Based on the age and diabetes covariates, we already note selection

on observed variables in line with the hypothesis that unhealthier candidates in the AB

32It is worth noting that if the probability of accepting a kidney is decreasing in unobserved health,
then the observed pre-transplant patterns of Figure 1c can only arise if the decrease in the acceptance
to o↵er ratio for lower health candidates relative to that of higher health candidates is su�ciently large
to o↵set the scale e↵ect of more lower health candidates receiving a transplant in the higher o↵er rate
regime. As we discuss in our results later in this section, this issue is irrelevant in our setting since
the probability of accepting a kidney appears to be increasing in unobserved health (see results section
5.4.2).
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group are more likely to wait for a kidney.

Figures 5a-5b show results from this model using di↵erent time intervals for defining

an early transplant. Figure 5a presents results when defining the treatment window as all

people who receive a transplant within the first month on the waitlist. Figure 5b defines it

as those receiving a transplant within the first three months. As theoretically predicted,

the results show that AB-blood types receiving a transplant in the first month(s) on the

waitlist have a higher probability of surviving than O-blood types over a 4-5 year time

horizon. These results therefore support the theory of that kidney acceptance thresholds

for low and high health candidates change do not change uniformly when facing di↵erences

in the kidney o↵er rate.

(a) Treatment in month 1 on waitlist (b) Treatment in month 1-3 on waitlist

Figure 5: Di↵erence in survival between AB and O blood types at di↵erent time intervals
for candidates treated in first 1 to 3 months on the waitlist
Based on selected sample of Scientific Registry of Transplant Recipients data described in Appendix B.
(without cov) includes no covariates, (with base cov) includes o↵er covariates: age bracket dummies, (with ext. cov) includes
all variables presented in Appendix Table A1. Observations (a): NO = 2089, NAB = 463. Observations (b): NO = 3757,
NAB = 955.

5.4.2 Testing di↵erential probability of transplant at t = 1

In this section we further test the theory of more selective kidney acceptance among poor

health candidates. To do so, we make use of a proxy for poor unobserved health which

is not included in the set used to determine kidney allocations. This chosen proxy is

whether a candidate’s primary reason for needing a kidney transplant is due to Type-

II diabetes. As shown in Figure 6a-6b, candidates with Type-II diabetes have a lower

pre-treatment survival and a lower overall survival than other candidates on the waitlist.

With this proxy, we can estimate the probability of receiving a transplant in the first

three months on the waitlist using the following linear probability heterogenous e↵ect

model,

Di = �0 + �Z Zi +�W Wi +�ZW Zi ·Wi +�X X+ui (4)

where Di is a transplant indicator, with Di = 1 for a candidate receiving a transplant in the

first month(s) and Di = 0 otherwise. Wi is a Type-II diabetes indicator with Wi = 1 for

candiates with Type-II diabetes listed as the main reason for a transplant upon entering
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(a) Pre-Transplant Survival (b) Survival

Figure 6: Survival of candidates on the kidney transplant waitlist depending on Type-II
diabetes status
Based on selected sample of Scientific Registry of Transplant Recipients data described in Appendix B. Observations:
Nt�IIDiab = 104, 490, Nnot�IIDiab = 39, 805.

(a) Old kidney allocation system (b) New kidney allocation system

Figure 7: Heterogenous e↵ects of blood type and type-II diabetes on probability of trans-
plant within first 3 months on the waitlist
Based on selected sample of Scientific Registry of Transplant Recipients data. Selected sample is described in section 4.
(without cov) includes no covariates, (with base cov) includes o↵er covariates: age bracket dummies pre-2015, and dummies
for all EPTS variables post-2015. (with ext. cov) includes all variables presented in Appendix Table A1. Observations (a):
NO:no�Tr = 93, 922, NO:Tr = 35, 989, NB:no�Tr = 28, 432, NB:Tr = 10, 303. Observations (b): NO:no�Tr = 93, 922,
NO:Tr = 35, 989, NA:no�Tr = 50, 005, NA:Tr = 31, 637.

the waitlist, Wi = 0 otherwise. In the model we control for all variables relevant in the

kidney o↵er allocation mechanism. Because of this, under A.Ii and given the results

of section 5.2, blood-types can be considered randomly allocated and we can credibly

interpret the di↵erences in the acceptance of kidney transplants as causal across blood-

type regimes. �0 represents the probability of transplant in the first three months on the

waitlist for AB-type candidates without type-II diabetes. �Z represents the di↵erence

in transplant probability for O-types without type-II diabetes. �W is the di↵erence in

transplant probability for AB-types with type-II diabetes relative to AB-types without

type-II diabetes. �ZW measures any additional di↵erence in the transplant probability

for O-types with type-II diabetes relative O-types without type-II diabetes.

The hypothesis in this section predicts that �Z should be negative since, given the

lower kidney o↵er rate, the probability of transplant should also be lower for O-blood
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types. It also predicts that �W should be negative if unhealthier candidates with type-

II diabetes are more selective about which kidney to choose and therefore delay their

decision to accept a kidney. And, finally, the behavioural hypothesis put forward also

predicts that �ZW will be positive if, given the lower o↵er rate in their regime, unhealthy

O-type candidates with type-II diabetes are relatively less selective about which kidney to

accept than unhealthy AB-type candidates with type-II diabetes. All of these predictions

are supported by the results presented in Figure 7.

Taking all the results from this section and previous ones together, our study appears

to strongly corroborate with theories of forward looking behavioural changes in response

to di↵erences in the o↵er rate. Were these to be true, they would have important im-

plications on the optimal redesign of kidney transplant mechanisms given the observed

di↵erences in pre-transplant survival across blood-type groups. Despite the seemingly am-

ple evidence for the o↵er-rate response behavioural explanation, the next section shows

that these same pre-transplant and period t = 1 results can arise mechanically without

any adaptive forward looking adjustment to di↵erences in the kidney o↵er rate.

5.5 Unobserved mechanical selection hypothesis

A final hypothesis which can explain pre-transplant e↵ects does not require any di↵eren-

tial responses to the kidney o↵er rate depending on unobserved variables. We can show

that the observed pre-transplant patterns will arise under particular statistical conditions,

which are likely to arise in the US kidney transplant setting.

Let us first assume agents are not sophisticated, meaning they do not adjust their

behaviour in response to changes in the kidney o↵er rate as in the previous two sections.

Thus, the kidney quality acceptance threshold is invariant to the o↵er rate across blood-

type regimes. We further assume that pre-transplant survival is increasing in variables

not relevant in the kidney allocation mechanism. As discussed in previous sections, these

may be unobserved health factors known by the candidate and their clinicians, but not

relevant in the kidney o↵er allocation mechanism or held as major mortality variables.

Under this assumption, the pre-transplant empirical patterns documented in Figure 1

of the introduction and the modelled e↵ects of Figure 2 will only arise if the probability

of accepting a transplant is also increasing (for early stages on the waitlist) in unobserved

health variables.

Table 1 presents a simple stylised one period example to gain intuition for these

survival dynamics. For each blood type, there are 5 high unobserved health (h) and 5

low unobserved health (l) candidates. In all scenarios we assume survival is increasing

in good health by imposing that h-types who receive a transplant always survive while

l-types only survive if they receive a transplant. In the upper panel, we present the

scenario in which the probability of accepting a kidney is higher for h-types than for

l-types by assuming h-types always accept an o↵ered kidney while l-types only accept
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an o↵ered kidney with a 1/3 probability. Further assume that 6 kidneys are randomly

o↵ered in the AB-blood type regime but only 2 are o↵ered in the O-blood type regime.

In this setting, for the AB-blood type regime there will be 2 h-types and, in expectation,

4 l-types who do not receive a transplant. Of these only the h-types survive. As such,

the pre-transplant survival will be 2/6 in the AB-blood regime. A similar calculation

shows that the pre-transplant survival rate in the O-blood regime is 4/9. As such, the

di↵erence in the pre-transplant survival �z = 1/9 is higher in the O-blood regime as in

our empirical results.

A similar exercise is presented in the second panel in which we assume h-types and

l-types have the same 1/3 probability to accept an o↵ered kidney. In this scenario, and

holding all other previous assumptions, the pre-transplant survival remains the same in

the O-type and AB-type regime. In the last panel we present the case in which h-types

are assumed to have a lower probability of accepting an o↵ered kidney than l-types. This

scenario results in higher pre-transplant survival in the AB-blood regime than in the O-

blood regime. We see that only the first case are compatible with the observed empirical

patterns in our kidney setting and our main results.

Table 1: Survival Dynamics in Di↵erent Acceptance/O↵er Scenarios

cand. o↵ered accepted pre-transpl. pre-transpl. �z

kidneys kidneys survival survival ratio

@ Pr(accept kidney|U = u)/@u > 0

AB
5h 3 3 2h/2h

2/6
1/9

5l 3 1 0l/4l

O
5h 1 1 4h/4h

4/95l 1 0 0l/5l

@ Pr(accept kidney|U = u)/@u = 0

AB
5h 3 1 4h/4h

4/8
0

5l 3 1 0l/4l

O
5h 1 0 5h/5h

5/105l 1 0 0l/5l

@ Pr(accept kidney|U = u)/@u < 0

AB
5h 3 1 4h/4h

4/6
-1/9

5l 3 3 0l/2l

O
5h 1 0 5h/5h

5/95l 1 1 0l/4l

5.5.1 Alternative justification for e↵ects of transplanted at t = 1

The hypothesis in this section can also give rise to the transplant e↵ect di↵erences in

Figure 5 and the heterogenous treatment e↵ect results in Figure 7. Given the above
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described selection, and as noted in Table 1, AB and O blood type populations in both

regimes are only comparable in terms of unobservables at t = 0. For t > 0 there will

be relatively fewer surviving positively selected AB blood type candidates than O blood

type candidates on the waitlist due to dynamic selection.33 However, even if candidates

are comparable in terms of unobservables, we can show that the results in Figure 5 can

be explained without assuming candidates or clinicians adapt to changes in the o↵er rate.

Assuming candidates and/or clinicians make a simultaneous decision over several kid-

ney o↵ers, and that there are fewer kidney o↵ers in the O-blood type regime, then the

expected value of the chosen maximum quality kidney will be lower in the O-blood type

regime. A simple proof for this result in presented in Appendix F. These dynamics will

give rise to the negative e↵ects documented in Figure 5 simply because O-blood candi-

dates are less likely to be o↵ered, and accept, higher quality kidneys. Based on Agarwal

et al. (2021), a crude estimate for the average number of kidney o↵ers per candidate a

month is around 17-18. If the trend in the transplant hazards in Figure 1a are a close

proxy to the trend in kidney o↵er rates on the waitlist, the average numbers are slightly

higher in initial months. Because candidates and/or transplant centers receive o↵ers some

days in advance, it is indeed likely some decisions are made jointly over multiple kidneys.

5.5.2 Alternative justification for probability of transplant at t = 1

We can also show that the results on the probability of accepting a kidney at t = 1 in

Figure 7 will arise in both previously discussed scenarios without behavioural reactions

to changes in the kidney o↵er rate. Take first the scenario in which clinicians are more

likely to o↵er a kidney to higher health candidates than lower health candidates. The

consequence of this skewed distribution can be illustrated with the kidney acceptance

numbers in Table 1 for the relevant case in which the probability of accepting a kidney

is increasing in unobserved health (top frame). �Z , the di↵erence in the probability of

accepting a kidney between O-blood and AB-blood type candidates with high health (no

type-II diabetes) is given by 1h/5h�3h/5h = �2/5. �W , the di↵erence in the probability

of accepting a kidney between low health (type-II diabetes) and high health (no type-II

diabetes) candidates in the AB-blood type regime is also for our stylised numbers given

by 1h/5h � 3h/5h = �2/5. �ZW , the additional di↵erence between low health (type-II

diabetes) and high health (no type-II diabetes) candidates in the AB-blood type regime

is given by (0l/5l� 1l/5l)� (1h/5h� 3h/5h) = 1/5. These results replicate the patterns

estimated in Figure 7.

In appendix F.1 we further show that the same coe�cient signs for �Z , �W and

�ZW can arise for the second scenario in which clinicians do not o↵er more kidneys

to higher health candidates but lower health candidates are more likely to reject o↵ered

33Recall that we assume treatment occurs before exit each period t. Thus, this statement holds as
long as we assume a finite population of candidates on the waitlist. Also, in contrast to the previous
section, this selection is not linked to selection due to changing responses to a higher kidney o↵er rate.
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kidneys. Interestingly, an additional requirement to replicate coe�cient patterns in Figure

7 for this scenario is that the distribution of o↵ered kidneys in terms of quality is right

skewed, meaning there are more undesirable than desirable kidneys. Evidence for this

phenomenon is well known and outlined in (Agarwal et al., 2018, 2020).

All in all, this section shows that under certain conditions, the pre-transplant survival

di↵erences, and di↵erences in e↵ects documented in Figures 5 and 7 can result directly

from positive selection in who receives a kidney transplant. These results do not require

candidates to react di↵erently to higher or lower o↵er rates.

5.6 Which hypothesis does the data generating process and in-

stitutional setting support?

The previous section suggests several explanations consistent with the pre-transplant

empirical patterns. In contrast to previous behavioural explanations, these hypotheses

concerning candidate and clinician or transplant center decisions also imply some con-

straints on the data generating process.

The first two assumptions to appraise are whether lower health candidates are more

likely to reject o↵ers and whether clinicians o↵er more kidneys to higher health candidates.

Several features of the kidney waitlist suggest both to be true in the current design of

the US transplant system. In particular, candidates must be informed by law if they

are being o↵ered certain sub-optimal kidneys (OPTN Final rule 121.11(b)(iV)). Because

the new kidney allocation system after 2014 prioritizes longer potential life candidates,

unhealthier candidates are more likely to be o↵ered, and therefore informed, these sub-

optimal kidneys. If we assume, as seems plausible, that being informed about an o↵er

of a sub-optimal kidney leads to higher rejection independent of underlying health, we

would expect a higher rejection rate from low-health individuals.

From the side of transplant centers, the financial cost of transplants for lower health

candidates have been shown to be higher in absolute and marginal terms after medicare

compensation (Axelrod et al., 2017, 2018). Financial incentives also create a chain re-

action. If transplant centers are less likely to accept sub-optimal kidneys, then the 56

organ procurement organizations - government-chartered nonprofits that collect, test and

disseminate organs in their regions - also have lower financial incentives to retrieve these

kidneys (Kimberly et al., 2018). This reinforcing process would lead to more kidney o↵ers

for higher health individuals.

Beyond these tangible incentives, there is also suggestive evidence of bias in decision-

making on behalf of candidates and clinicians in transplant centers. A first piece of

evidence is from Zhang (2010) who shows that, for two kidneys from a same donor, the

probability of rejecting a kidney increases with the amount of previous rejections when

one kidney was randomly rejected more often in initial o↵ers. This suggests the number

of rejections, rather than the actual quality of a kidney, is sometimes erroneously used as
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a heuristic for rejection decisions by either the patient, the transplant center, or both.

Lastly, recent changes in the measures used to evaluate transplant center performance

and initiate o�cial enquiries also pre-suppose a bias in the decision making process for

transplant acceptance on behalf of clinicians or transplant centers. Prior to July 2003,

transplant center assessments were solely based on a 1-year post-transplant risk-adjusted

candidate survival score. This score indicated the relative survival success of transplanted

candidates over one year post-transplant adjusting for the donor kidney quality, the

candidate health, and the interaction between the two. Because the risk-adjustment

score is conditional on donor quality and candidate health, it should not, in principle,

have incentivized transplant centers to favour healthier kidneys or healthier candidates.

Yet, since July 2023, publicly displayed performance reviews and o�cial enquiries for

transplant centers are additionally based on a risk-adjusted o↵er acceptance rate. In

addition, after July 2024 an additional score will be implemented based on the pre-

transplant mortality of candidates on a transplant center’s waitlist.34

These developments, explicitely focused on reducing the excessive waste of viable

kidneys, suggest OPTN is attempting to nudge transplant centers to focus more on the

mortality and outcomes of less healthy candidates.35 While the adjustments may partially

be attempting to counterbalance other financial incentives, there is also reason to believe

they are attempting to counteract behavioural biases in the understanding of the 1-

year risk adjustment scores. When it comes to candidate and clinician decisions based

on observed metrics, evidence suggests, unsurprisingly, that both are partial to healthy

kidneys (Mohan et al., 2018; King et al., 2023).36 More problematically, anecdotal reports

suggest clinicians misinterpret the risk-adjusted 1-year survival score and replace it with

the simpler notion of a 1-year survival score (Mohan et al., 2018; Kimberly et al., 2018),

which would erroneously incentivize transplant centers to favour healthier kidneys and

healthier candidates. As yet, there exists no literature on candidate and clinician decision

making and behavioural biases in the context of transplants.

6 Conclusion

Kidney discard rates in the US, nearing 25%, far exceed those of other high-income

countries. France had a kidney discard rate of 9.1% from 2004-2014, the United Kingdom

has a rate ranging from 10% to 12% and Eurotransplant, a consortium of eight countries

including Germany, reported a rate of about 8% (Aubert et al., 2019; Bernstein, 2023).

Part of the reason for this discrepancy is the unusual transparency in the US system,

leaving room for discretion in deciding which organs to accept in the hands of transplant

34We further discuss the risk adjusted score model and some of its potential pitfalls in appendix G.
35See discussion of the Membership and Professional Standards Committee here and formal information

guidelines about change here.
36There is also existing evidence of transplant centers attempting to game UNOS/SRTR evaluations

(Stith and Hirth, 2016).
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centers and candidates on waitlists (Rasmussen et al., 2018).

The results in this paper outline di↵erent hypotheses of selection and, in the process,

underline which behaviours of clinicians and candidates can realistically be driving the

excess discard of viable kidneys. Little is known about which of these behaviours is

the leading cause, and important insights could be gained from behavioural research

on decision making among the two groups. A common theme does, however, seem to

emerge from our research, which is that large amounts of viable kidneys are lost due

to misaligned expectations of clinicians and/or candidates, and poor financial incentives

for transplant centers. An important policy proposal emerging from this work would

be to develop a statistical system in order to re-align expectations. This model could,

for each o↵ered kidney, outline the expected amount of time any given candidate within

a transplant center can expect to wait until receiving a kidney at least as good as the

proposed one.37 This type of system can easily be built adjacent to the current score

models and conveyed to transplant centers and candidates alike. Such new measures,

alongside the new performance scores introduced by OPTN in 2023-2024, and other

adjustments to the kidney allocation system (Senate hearing: UNOS), may also go to

some length in counterbalancing any financial disadvantages of focusing on less health

kidneys or candidates.

Our AB vs. O analysis also o↵ers a new insight independently of the question of

excess kidney discards and the main cause driving di↵erences in pre-transplant survival.

When it comes to the equity of the kidney allocation mechanism, our results indicate

that the higher o↵er rate for AB-blood type candidates allows them to receive higher

quality kidneys in the first months on the waitlist which results in longer post-transplant

survival.
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APPENDIX

A Identification of Causal E↵ects

In our derivation of identification results we maintain the overlap assumptions in A.II

throughout and apply SUTVA/consistency A.III whenever converting potential variables

to observed variables. All identification results remain the same when there is censoring

if we assume censoring always occurs before treatment and exit at time t, and censored

observations are dynamically missing at random. We derive e↵ects in discrete time t 2 N
and s 2 N.

Proof of Proposition 1 and Corollary 1 :

Using the dynamic unconfoundedness assumption A.I, we can straightforwardly derive

all causal e↵ects from the general form:

Pr(T z,1
> ⌧) = Pr(T z,1

> ⌧ |S > ⌧, Z = z)

=
⌧Y

t=0

Pr(T > t|S > t, T � t, Z = z)

Pr(T 1,s
> ⌧) = Pr(T z,s

> ⌧ |S = s, Z = z)

=
⌧Y

t=s

Pr(T > t|S = s, T � t, Z = z) ·
s�1Y

t=0

Pr(T > t|S > t, T � t, Z = z)

Pr(Sz = s) = Pr(Sz = s|Z = z)

= Pr(S = s|S � s, T � s, Z = z) ·
s�1Y

t=0

Pr(S > t|S � t, T � t, Z = z)

Proof of Proposition 2 :

Under assumptions A.I-A.IV, with T 1,1 � T 0,1, Pr(T 0,1 > ⌧ |css) = Pr(T 0,s >

⌧ |css) = 0 and all probabilities for never-survivors are equal to 0. We then have that,

�0 = Pr(T 0,1
> ⌧) = Pr(T 0,1

> ⌧ |ass) · Pr(ass)

=
⇣ ⌧Y

t=s

Pr(T > t|S > t, T � t, Z = 0)
⌘
· Pr(ass)

�s = [Pr(T 0,s
> ⌧)� Pr(T 0,1

> ⌧)] = [Pr(T 0,s
> ⌧ |ass)� Pr(T 0,1

> ⌧ |ass)] · Pr(ass)

=
⇣ ⌧Y

t=s

Pr(T > t|S = s, T � t, Z = 0)�
⌧Y

t=s

Pr(T > t|S > t, T � t, Z = 0)
⌘
· Pr(ass)

Pr(ass) = Pr(T 1,1 � s, T
0,1 � s) =

s�1Y

t=0

Pr(T > t|S > t, T � t, Z = 0)

Pr(css) = Pr(T 1,1 � s, T
0,1

< s) =
s�1Y

t=0

Pr(T > t|S > t, T � t, Z = 1)� Pr(ass)

Pr(nss) = 1� Pr(ass)� Pr(css)

(5)
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In these derivations it is useful to note that, for example,
Q

s�1
t=0 Pr(T > t|S > t, T �

t, Z = 0) = 1 for always-survivors.

Under the additional exclusion restriction A.V we have that Pr(T 1,s > ⌧ |ass) =

Pr(T 0,s > ⌧ |ass) from which we can identify Pr(T 1,s > ⌧ |css) = [Pr(T 1,s > ⌧)�Pr(T 1,s >

⌧ |ass) · Pr(ass)]/Pr(css). In addition, assuming that for complier-survivors defined at s,

T 1,1 < ⌧ if ⌧ >> s, it follows that Pr(T 1,1 > ⌧ |css) = 0. Under these restrictions, we

can identify all remaining e↵ects,

�z = [Pr(T 1,1
> ⌧)� Pr(T 0,1

> ⌧)] = [Pr(T 1,1
> ⌧ |ass)� Pr(T 0,1

> ⌧ |ass)] · Pr(ass)

=
⇣ ⌧Y

t=s0

Pr(T > t|S > t, T � t, Z = 1)�
⌧Y

t=s

Pr(T > t|S > t, T � t, Z = 0)
⌘
· Pr(ass)

�zs = [(Pr(T 1,s
> ⌧)� Pr(T 1,1

> ⌧))� (Pr(T 0,s
> ⌧)� Pr(T 0,1

> ⌧))]

= Pr(T 1,s
> ⌧ |css)] · Pr(css)� [Pr(T 1,1

> ⌧ |ass)� Pr(T 0,1
> ⌧ |ass)] · Pr(ass)

=
⌧Y

t=s

Pr(T > t|S > t, T � t, Z = 1)�
⌧Y

t=s

Pr(T > t|S > t, T � t, Z = 0) · Pr(ass)� �z

(6)
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B Descriptive Statistics and Data selection

Table A1: Descriptive Statistics

Pre-treatment Analysis Treated at t = 1

O AB B A O AB

Age 51.32 51.91 51.56 51.90 49.07 51.31
(13.06) (13.02) (12.83) (13.08) (13.94) (13.57)

Transp 0.10 0.12 0.09 0.12 0.11 0.09
(0.30) (0.32) (0.29) (0.32) (0.31) (0.29)

Diabetes 0.35 0.37 0.37 0.36 0.25 0.32
(0.48) (0.48) (0.48) (0.48) (0.43) (0.47)

Dialysis 0.92 0.94 0.92 0.93 1.00 1.00
(0.27) (0.24) (0.27) (0.26) (0.04) (0.06)

BMI 28.41 28.40 28.37 28.47 27.44 27.81
(5.73) (5.85) (5.80) (5.75) (5.49) (5.54)

Female 0.39 0.38 0.38 0.38 0.39 0.36
(0.49) (0.49) (0.49) (0.48) (0.49) (0.48)

PrevMalign 0.06 0.06 0.05 0.07 0.06 0.06
(0.24) (0.24) (0.23) (0.25) (0.24) (0.24)

AcptHepB 0.56 0.54 0.57 0.54 0.48 0.47
(0.50) (0.50) (0.49) (0.50) (0.50) (0.50)

AcptHCV + 0.06 0.05 0.07 0.05 0.09 0.07
(0.24) (0.21) (0.25) (0.22) (0.29) (0.25)

White 0.62 0.55 0.45 0.70 0.78 0.68
(0.48) (0.50) (0.50) (0.46) (0.42) (0.47)

Asian 0.05 0.12 0.12 0.05 0.03 0.07
(0.22) (0.32) (0.33) (0.22) (0.17) (0.26)

Black 0.30 0.32 0.41 0.23 0.18 0.24
(0.46) (0.47) (0.49) (0.42) (0.39) (0.43)

Other 0.02 0.01 0.02 0.02 0.01 0.01
(0.15) (0.12) (0.12) (0.13) (0.11) (0.09)

Means for each group presented with standard deviations in parenthesis. We mark in bold any normalized di↵erence
relative to the O blood-type group greater or equal to 0.1. Full sample includes 159,150 observations. Age: Candidate age
at listing, Transp: Received previous transplant (other than kidney transplant), Diabetes: Had Diabetes upon entering
the waitlist, Dialysis: On Dialysis upon entering the waitlist, BMI, Female, , PrevMalign: Any previous Malignancy,
AcptHepB : Will accept an Hepatitis B Core Antibody Positive Donor?, AcptHCV +: Will accept an HCV Positive donor?,
White: Race-White, Asian: Race-Asian, Black: Race-Black, Other: Race-Other Non-White

Main analysis data selection:

Our initial data contains 1,010,051 observations. We remove candidates with no activation

date (954,406), and select only people set to receive a kidney transplant (894,372). We

then select for our initial analysis only candidates entering the waitlist between June

1st 2002 and December 1st 2014 (440,926). Among these we only keep the first observed

kidney transplant (360,171), for candidates who are over 18 (349,831). We further remove

candidates with unusual A1, A2, A1B, A2B blood types (344,882). In the AB vs. O blood

types analysis, we also remove the A and B blood types (182,394). We drop candidates

with a positive cPRA (170,966) and drop candidates who received a transplant from a

living donor (145,274). All remaining reductions in sample for the analysis with covariates

result from missing values in the covariate matrix. These in one or the other specification

include: < 1% of missing values for education, < 0.01% of missing values for BMI, < 2.8%

of missing values for previous malignancy. We take December 1st 2014 as the 2014 reform

cuto↵ date.
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(a) Hazard rate for all blood types (b) Survival for all blood types

Figure A1: Hazard and overall survival for di↵erent blood types
Based on selected sample of Scientific Registry of Transplant Recipients data described in Appendix B. Observations:
NO = 134, 730, NAB = 10, 544, NB = 40, 217, NA = 84, 929.

C Additional Figures on subgroups
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(a) Transplant Hazard (b) Transplant Probability

(c) Pre-Transplant Survival (d) Survival

Figure A2: Hazard, transplant and survival probabilities for di↵erent blood types condi-
tional on being White
Based on selected sample of Scientific Registry of Transplant Recipients data described in Appendix B. Observations:
NO = 80, 058, NAB = 5385, NB = 16, 830, NA = 56, 877.
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(a) Survival including living donors (b) E↵ects including living donors

(c) Survival for white people (d) E↵ects for white people

(e) E↵ects for non-white people (f) Survival for non-white people

(g) Survival for males (h) E↵ects for males

(i) Survival for females (j) E↵ects for females

Figure A3: Pre-transplant survival and e↵ect �z for di↵erent subsamples. Based on selected
sample of Scientific Registry of Transplant Recipients data described in Appendix B.
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D Robustness Checks

Table A2: Causal E↵ect Decomposition

(1) (2) (3) (4) (5)

�0 0.690 0.679 0.760 0.733 0.713
(0.043) (0.150) (0.104) (0.133) (0.138)
[0.000] [0.000] [0.000] [0.000] [0.000]

�z 0.053 0.065 0.073 0.011 0.024
(0.013) (0.010) (0.019) (0.013) (0.010)
[0.000] [0.000] [0.000] [0.365] [0.015]

�s 0.171 0.187 0.130 0.101 0.126
(0.020) (0.075) (0.050) (0.042) (0.050)
[0.000] [0.013] [0.009] [0.016] [0.012]

�zs -0.094 -0.108 -0.099 -0.021 -0.046
(0.014) (0.043) (0.038) (0.011) (0.019)
[0.000] [0.012] [0.009] [0.062] [0.017]

NZ=0:no�Tr 5125 5125 2241 28,432 50,005
NZ=0:Tr 5032 5032 2176 10,303 31,637
NZ=1:no�Tr 93,922 93,922 43,338 93,922 93,922
NZ=1:Tr 35,989 35,989 11,698 35,989 35,989

Standard errors in parenthesis. P-values in brackets. E↵ect is estimated over 5 years (⌧). Each column presents ex-post
transplant e↵ects values �s=1 and �z,s=1 for transplant in the first two months. Column (1) presents pre Dec. 2014
decomposition with Z = 0: AB-blood types, Z = 1: O-blood types, without covariates. Column (2) presents pre Dec. 2014
decomposition with Z = 0: AB-blood types, Z = 1: O-blood types, with all covariates. Column (3) presents post Dec.
2014 decomposition with Z = 0: AB-blood types, Z = 1: O-blood types, with all covariates. Column (4) presents pre Dec.
2014 decomposition with Z = 0: B-blood types, Z = 1: O-blood types, with all covariates. Column (5) presents pre Dec.
2014 decomposition with Z = 0: A-blood types, Z = 1: O-blood types, with all covariates.
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E Dynamic discrete choice model of candidate be-

haviour

To relate our dynamic treatment e↵ect model to the literature on dynamic discrete choice

models we present in this appendix a standard job search model. We then extend it to

include a treatment. We loosely adapt the discussion of the search model to our kidney

transplant application. For expositional purposes, the model is solved under simplistic

assumptions. We then explain how the dynamic discrete choice model relates to the

parameters in our proportional hazard model in Section 3.3. Thereafter we describe the

data generating process and present simulation results for our estimator.

E.1 Standard dynamic discrete choice model

Consider an agent who enters an initial state at time t = 0 and assume that time is

discrete. In each subsequent period the agent faces the choice of staying within this

state or leaving. Whenever he is in the initial state, the agent derives utility w0. In our

application, t = 0 is the moment a candidate enters the kidney transplant waitlist and

each period the candidate, which we consider as a unit combined of psychological and

biological factors, puts in a certain amount of e↵ort to remain alive. w0 represents the

combined psychological and biological utility of staying alive.

Next, with probability � the agent receives an o↵er to leave the state. An o↵er can

be interpreted as a negative health shock on the body due to kidney failure. The agent

also faces a cost c corresponding to the necessary biological e↵ort to prevent a health

shock, with lower costs corresponding to higher e↵ort. Once the agent receives an o↵er,

he has to decide immediately whether or not to accept it. An o↵er is characterized by

its instantaneous utility w drawn from the distribution G(w). Upon accepting an o↵er,

the agent derives the same instantaneous utility w for each subsequent period. So once a

candidate’s biological constitution receives a health shock beyond what it can fight, they

die and receive the (perceived) utility of death thereafter.

We assume the agent optimization behaviour follows a dynamic discrete choice model

which nests search models and optimal stopping models. The agent forms expectations

over future instantaneous utilities. Denoting by ⇢ the discount rate, the present dis-

counted combined psychological and biological value of remaining alive at the start of

period t, V0,t, can be described by the Bellman equation,

V0,t = w0 � c+ ⇢�E[max{V1(w), V0,t+1}] + ⇢(1� �)V0,t+1

V1(w) is the discounted value that the agent would acquire by failing to fight o↵ a health

shock, dying as a consequence, and reaping instantaneous biological utility w. The agent

follows a stationary reservation utility strategy where w⇤ is the minimum o↵er of w re-

quired to induce the agent to exit in the following period. In terms of our study, w⇤
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represents the utility associated to the limit at which someone’s biological constitution

prefers to stop functioning, rather than exert the continued e↵ort to keep a person alive,

despite the psychological desire to remain alive. For a healthy person with a well func-

tioning immune system, we would expect w⇤ to be very high, since only an extreme

negative health shock (large w) would induce someone’s biological functions to give in.

A lower w⇤ implies, all else equal, that a person’s health is worse, making lower utilities

from death w more appealing. Under a reservation utility strategy, we can reformulate

the Bellman equation as

V0,t = w0 � c+ ⇢�

Z 1

w⇤
(V1(w)� V0,t+1) dG(w) + ⇢V0,t+1

We can augment this model to include a treatment prescribed by a regime. Let us

assume that the agent knows that he has been assigned to a certain regime z which allo-

cates future treatment. For simplicity we consider in this section a stochastic assignment

regime where the agent faces the same probability ⇡ to receive treatment at each period.

So each regime z is fully characterized by its value of ⇡. This type of randomization can

correspond as in our empirical setting to a randomization set by nature but may also

be a rule imposed by a policymaker. In our empirical setting, it can best be interpreted

as a situation in which agents receive di↵erent signals of how likely they are to receive

treatment, and interpret this signal as a constant hazard ⇡ to treatment each period.

In principle, we could model ⇡ from an additional search process of by specifying

a search model of o↵ered kidneys for the accepted kidney. We do not add this layer

of complexity since we wish to convey insights for setting of section 5.3 in which the

acceptance/o↵er rates are invariant to the number of o↵ers.

In our application, candidates on the waitlist were randomized at birth to have an

AB blood type or a B/O blood type. This blood type, while inconsequential during most

peoples’ lives, is an important determinant to the time a candidate must wait until re-

ceiving a kidney transplant, which is the treatment in our setting. From the point of view

of a candidate, their blood type may be the most salient feature determining the duration

until they receive a transplant, but is not the only factor influencing the timing of a kid-

ney transplant. Given the many factors determining the waiting time until a match, the

blood type randomization can be seen as a stochastic treatment assignment mechanism

since it influences the chances of finding a kidney match but does not determine the exact

date a candidate will receive the transplant. Receiving a kidney transplant would likely

reduce the arrival of health shocks (�), change the e↵ort a candidate needs to put into

their general health upkeep (search costs c), or change the distribution of the (perceived)

utility from death (G(w)).

To simplify the exposition, assume treatment only a↵ects the distribution of the (per-

ceived) utility from death by prescribing a higher mean to Gtr(w) relative to G(w) for an

agent upon receiving the treatment. Allowing agents to form expectations over treatment
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outcomes, the alive value functions before receiving a kidney transplant, V0,t, and after

receiving a kidney transplant, V tr

0,t, are given by,

V0,t = w0 � c+ ⇢�E[max{V1(w), (1� ⇡)V0,t+1 + ⇡V tr

0,t+1}] + ⇢(1� �)[(1� ⇡)V0,t+1 + ⇡V tr

0,t+1]

V tr

0,t = w0 � c+ ⇢�E[max{V tr

1 (w), V tr

0,t+1}+ ⇢(1� �)V tr

0,t+1

We can solve this model for the reservation utilities after and before treatment,38

w⇤(⇡) =
(1� ⇢)(1� ⇡)

1� ⇢+ ⇢⇡
(w0 � c) +

⇢�(1� ⇡)

(1� ⇢)(1� ⇢+ ⇢⇡)

Z 1

w⇤
(1�G(w)) dw +

⇡

1� ⇢+ ⇢⇡
wtr⇤

wtr⇤ = w0 � c+
⇢�

1� ⇢

Z +1

wtr⇤

�
1�Gtr(w)

�
dw

Under the assumption that V tr

0,t > V0,t one can demonstrate that the pre-treatment reser-

vation utility w⇤(⇡) is increasing in ⇡. This means that if agents foresee positive e↵ects of

receiving treatment on the w o↵er distribution, and are in a regime with higher chances

to receive treatment, then they will remain for longer in the initial state if they are not

yet treated. In terms of our empirical application, this implies that if candidates on the

waitlist foresee a kidney transplant to improve their biological utility of life, and they

have a high probability of rapidly receiving a kidney transplant (AB blood type), then

they will exert more e↵ort each period to stay alive before receiving the transplant. Our

empirical findings are not consistent with this prediction. They show that candidates

with a higher probability of receiving a kidney transplant display a higher pre-transplant

mortality. One way to consolidate our empirical results with the biological predictions

of the model is to allow a candidate’s behaviour to asymmetrically influence their bio-

logical functions in response to their probability of receiving a future kidney transplant.

In particular, we must assume candidates with a high probability of treatment pay less

attention to their general health, leading to lower survival.

It is worth considering the interpretation of parameters in our model of subsection

3.3 under di↵erent treatment assignment mechanisms prescribed by the regime. If the

regime enforces a constant treatment hazard each period and there is full compliance,

then ✓S
t
(z) = ⇡S(z). If in addition agents know the regime, do not vary their search

strategy over time, and the expected value of future variables over intermediate shocks

is constant over time, then �T

t
(z) will be constant. This constant is then interpreted as

the e↵ect on the exit hazard of a constant treatment hazard regime. This is the setting

considered in our dynamic discrete choice search model above.

38Full derivation of solutions are presented in subsection E.4
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E.2 Data Generating Process

The data generating process for the simulation data follows the dynamic discrete choice

model presented in the above section with the following specifications,

Uno�exit

it
= w0it � cit

U exit

it
= wit

cit = �c

a
· ai + �c

e
· ei

wit = �w

a
· ai + �w

s
· I(s < t) + ⇠it ⇠it ⇠ N (0, �2

⇠
)

w0it = 0.75 · �w

a
· ai

where Uno�exit

it
and U exit

it
are the instantaneous utilities when the agent chooses to remain

in the initial state or exit. �it follows a Poisson distribution with mean ��

a
· ai + ��

e
· ei.

The treatment outcome for the group under regime Z = 1 is drawn each period from a

binary distribution with probability ⇡Z=1 = Pr(S = s|S � s, Z = 1) = 0.03. The regime

assignment for the Z = 0 group is ⇡Z=0 = Pr(S = s|S � s, Z = 0) = 0.01. We impose

that the treatment takes place before the exit decision in period t.

Using this model we generate the treatment durations, exit durations, and accepted

o↵ers for a population of 5000 agents over 5000 periods. Within this population, ai
and ei assume discrete values in the intervals [1, 6] and [1, 3] respectively. The initial

randomization assigns half of the population to each regime Z = 0 or Z = 1. As

in the discussion above, we choose to focus on a situation where the treatment a↵ects

only the o↵er distribution G(w; a). The treatment e↵ect is negative and is calibrated to

equal one standard deviation of the o↵er distribution, �w, with �w

s
= 0. The full choice of

parameters for each policy setting is presented below. To estimate the stationary solution

for the accepted o↵er we simulate expectations of wit over 1000 draws and iterate over

the value function until convergence.

Table A3: Parameter choices in simulations

µw 13.762, µc 0.893, µ� 0.092, ⇢ 0.995
�w 5.497, �c 0.257, �� 0.031, �⇠ 3
�w

a
4, �c

a
0.2, ��

a
0.5/21, ⇡Z=0 0.01

�w

s
5.497, �c

e
0.1, ��

e
0.1/21, ⇡Z=1 0.03

E.3 Simulation Results and Discussion

To apply the continuous time methods under study in this paper, it is preferable to have

a large dataset where the unit of time represents a relatively short period. In practice, if

the unit of time is too large it may be challenging to account for dynamic selection and
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for the simultaneity of treatment and exit outcomes within a period. In the estimation,

we treat e↵ort ei as an unobserved characteristic for the researcher, and fully stratify ai.

The researcher observes individual treatment and exit duration outcomes, ability, w0it,

an indicator Z for the regime assignment, and an indicator if the observation is right

censored. After generating the dynamic discrete choice data we censor all observations

greater than t = 60 (⇠ 43.7%) and apply random right censoring to ⇠ 6.3% of the

remaining observations. We present descriptive survival curves and hazards in Figure

A4 in the case of a positive treatment e↵ect and in Figure A5 in the case of a negative

treatment e↵ect.

(a) Transplant Probability (b) Transplant Hazard

(c) Pre-Transplant Survival (d) Survival

Figure A4: Results from simulation with positive treatment e↵ects
Based on selected sample of Scientific Registry of Transplant Recipients data. Selected sample is described in section 4.
NZ=0:no�Tr = 1013, NZ=0:Tr = 453, NZ=1:no�Tr = 441, NZ=1:Tr = 1093.

Table A4 shows the results when applying our estimation method. We present the

average e↵ects for �0, �z, �(0,s], �z(0,s] over the treatment times s = 1,. . . ,30 when specify-

ing the duration dependence to six 10 period intervals. The estimator performs relatively

well with all sample sizes observed. Figure A6 provide further descriptions on the per-

formance of our estimator. They present the estimates of �0, �z, �s, �zs with ⌧ fixed at

60 over the first 30 periods using a sample of 3000 observations from the full population

of 5000. The estimator seems to fit the data very well for all causal estimates, and in the

case of �0, �s, �zs, also match closely the DGP values.
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(a) Transplant Probability (b) Transplant Hazard

(c) Pre-Transplant Survival (d) Survival

Figure A5: Results from simulation with negative treatment e↵ects
Based on selected sample of Scientific Registry of Transplant Recipients data. Selected sample is described in section 4.
NZ=0:no�Tr = 1013, NZ=0:Tr = 453, NZ=1:no�Tr = 441, NZ=1:Tr = 1093.

Table A4: Simulation results of dynamic discrete choice model, s from 1,. . . ,30 and s+4
fixed at 90

Estimates Bias Variance MSE

N=5000

�0 0.590 0.001 0.006 0.006
�z 0.170 -0.043 0.000 0.002
�(0,s] -0.297 0.040 0.002 0.003
�z(0,s] -0.180 -0.021 0.004 0.004

N=3000

�0 0.593 0.002 0.006 0.006
�z 0.175 -0.039 0.000 0.002
�(0,s] -0.337 0.000 0.002 0.002
�z(0,s] -0.144 0.057 0.005 0.008

N=1000

�0 0.618 0.027 0.005 0.006
�z 0.177 -0.036 0.000 0.002
�(0,s] -0.322 0.014 0.003 0.003
�z(0,s] -0.211 -0.010 0.004 0.004

N=500

�0 0.602 0.011 0.006 0.006
�z 0.203 -0.011 0.001 0.001
�(0,s] -0.324 0.013 0.003 0.003
�z(0,s] -0.251 -0.050 0.007 0.010
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(a) �0 e↵ect (b) �z e↵ect

(c) �s e↵ect (d) �zs e↵ect

Figure A6: Assessing performance of empirical evaluation model
Based on selected sample of Scientific Registry of Transplant Recipients data. Selected sample is described in section 4.
NZ=0:no�Tr = 1013, NZ=0:Tr = 453, NZ=1:no�Tr = 441, NZ=1:Tr = 1093.

E.4 Reservation utilities in dynamic discrete choice model

Consider the post-treatment Bellman equations from the setting described in section E.

V0,t = w0 � c+ ⇢�Ew[max{V1(w), (1� ⇡)V0,t+1 + ⇡V tr

0,t+1}] + ⇢(1� �)[(1� ⇡)V0,t+1 + ⇡V tr

0,t+1]

V tr

0,t = w0 � c+ ⇢�Ewtr [max{V tr

1 (w), V tr

0,t+1}+ ⇢(1� �)V tr

0,t+1

This second equation can be written as,

V tr

0,t = w0 � c+ ⇢�

Z 1

wtr⇤

�
V1(w

tr)� V tr

0,t+1

�
dGtr(w) + ⇢V tr

0,t+1

Since all parameters and distributions in the model are time independent, we have a

stationary reservation utility strategy. In a stationary strategy V tr

0,t = V tr

0,t+1 = V tr

0 for all

t > 0 Furthermore, the reservation utility wtr⇤ is such that the agent would refuse any

o↵er below it and accept any o↵er above it so V1(w) =
w

1�⇢
if w � wtr⇤, V tr

0 if wtr < wtr⇤,

and V1(wtr⇤) = w
tr⇤

1�⇢
= V tr

0 if w = wtr⇤. It follows that,

V tr

0 = w0 � c+ ⇢�

Z 1

wtr⇤

�
V1(w

tr)� V tr

0

�
dGtr(w) + ⇢V tr

0

= w0 � c+
⇢�

1� ⇢

Z 1

wtr⇤

�
w � wtr⇤� dGtr(w) +

⇢wtr⇤

1� ⇢

Replacing again V tr

0 = w
tr⇤

1�⇢
, rearranging this equation and using integration by parts we

obtain the post-treatment reservation utility,

wtr⇤ = w0 � c+
⇢�

1� ⇢

Z 1

wtr⇤

�
1�Gtr(w)

�
dw

Note that this reservation utility does not depend on the regime ⇡.
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Now consider the reservation utility before treatment with a treatment assignment

policy ⇡. Since the problem is still stationary, the agent will again accept any value of w

higher than his reservation w⇤. We can therefore rewrite

Ew[max{V1(w)� (1� ⇡)V0,t+1 � ⇡V tr

0,t+1, 0}] =
R1
w⇤ w�w⇤dG(w) + (1� ⇡)V0,t+1 � ⇡V tr

0,t+1

which results in the same V0 value function,

V0 = w0 � c+
⇢�

1� ⇢

Z 1

w⇤
w � w⇤dG(w) + ⇢[(1� ⇡)V0 + ⇡V tr

0 ]

Since the agent will accept any value of w higher than his reservation w⇤ we know that

V1(w⇤) = V0 =
w

⇤

1�⇢
which we replace in the above equation and rearrange to get,

w⇤ =
1� ⇢

1� ⇢+ ⇢⇡
(w0 � c) +

⇢�

1� ⇢+ ⇢⇡
(

Z +1

w⇤(⇡)

w � w⇤dG(w)) +
⇢⇡

1� ⇢+ ⇢⇡
wtr⇤

We can further show prove that w⇤ is increasing in ⇡ if V tr

0 > V0:

First we rewrite the previous equation to isolate
R +1
w⇤ w � w⇤dG(w),

Z +1

w⇤
w � w⇤dG(w) =

1� ⇢

⇢�
[c� w0 +

1� ⇢(1� ⇡)

1� ⇢
w⇤ � ⇢�⇡ + ⇢(1� �)⇡

1� ⇢
wtr⇤]

Let us hold w⇤ constant in the previous equation. wtr⇤ is also constant because it does

not depend on ⇡. If we increase ⇡, the derivative of the right-hand side with respect to

⇡ is
1� ⇢

⇢�
[

⇢

1� ⇢
w⇤ � ⇢

1� ⇢
wtr⇤] $ 1� ⇢

�
[(V0 � V tr

0 )]

The last equation is negative when V0�V tr

0 < 0, so when the value of treatment is higher

than that of no-treatment. Therefore,
R +1
w⇤ w�w⇤dG(w) is decreasing in ⇡. Furthermore,

written as a function of ⇡,with w⇤ = w⇤(⇡), it is also decreasing in w⇤ which implies that

w⇤ increases in ⇡. The agent is more willing to wait for treatment.
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F Proof that accepted kidney quality is increasing

with non-sequential kidney o↵ers

Our goal is to prove that the expected accepted kidney quality will be increasing in the

number of kidneys simultaneously o↵ered to candidates (in consultation with clinicians).

We can translate this problem into the following. Say we have an urn with balls labelled

i 2 1, ..., 100. There are an infinite amount of balls for each label i. We want to prove that

the expected value of the maximum labelled ball is increasing in the number of draws.

Let Xn be a random variable representing the maximum labelled ball after n draws.

We can express Pr(Xn  k) as the product of the probabilities of each individual draw

being less than or equal to k:

Pr(Xn  k) =
nY

i=1

Pr(Drawi  k)

Since there are an infinite number of balls for each label, the probability of drawing

a ball with label i or less is i/100 for each individual draw so Pr(Drawi  k) = k

100 .

Substituting this into the expression for Pr(Xn  k), we get

Pr(Xn  k) =

✓
k

100

◆n

It follows that we can express the probability mass function of Xn as:

Pr(Xn = k) = Pr(Xn  k)� Pr(Xn  k � 1) =

✓
k

100

◆n

�
✓
k � 1

100

◆n

The expected value of Xn is then given by:

E[Xn] =
100X

k=1

k · P (Xn = k) = E[Xn] =
100X

k=1

k

✓
k

100

◆n

�
✓
k � 1

100

◆n�

From which it follows straightforwardly that E[Xn] is increasing in n since the nth power

terms for larger k dominate those for smaller k. As a result, the expected value of the

maximum labelled ball is increasing in the number of draws. The result can even more

simply be shown in the non-infinite case.

F.1 Replicating patterns of Figure 7 when higher and lower

health candidates have di↵erent o↵er to acceptance rates

We wish to show here that the same coe�cient signs for �Z , �W and �ZW can arise for the

second scenario in which clinicians do not o↵er more kidneys to higher health candidates

but lower health candidates are more likely to reject o↵ered kidneys.
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Figure A7: Distribution of o↵ered kidney scenarios

Consider the case in which 2 kidneys are o↵ered in the O-blood regime and 4 are

o↵ered in the AB-blood regime. Assume as well for simplicity that clinicians randomly

allocate these kidneys regardless of candidate health. As such, higher and lower health

candidates can each expect to receive half the kidneys o↵ered. Higher health candidates

will further accept any kidney above the threshold kh while lower health candidates are

more selective only accepting kidneys above some threshold kl. These thresholds can

be thought as normalised with respect to the quality of kidneys o↵ered. So, even if in

absolute terms both higher and lower health candidates may have the same rejection

threshold, the di↵ering thresholds can reflect the lower average quality kidneys o↵ered to

lower health candidates. Also assume that when multiple kidneys are o↵ered, they are

o↵ered simultaneously.

Take first the case of a right skewed distribution as described in Figure A7. In

expectation, O-type higher health candidates will accept 1
2 o↵ers while AB-type higher

health candidates will accept 3 · 12 ·
1
2 = 3

4 o↵ers. Similarly, O-type lower health candidates

will accept 1
4 o↵ers while AB-type lower health candidates will accept 2 · 14 ·

3
4 +

1
4 ·

1
4 = 1.75

4

o↵ers. As a result, we would obtain �Z = 2
4 � 3

4 = �1
4 , �W = 1.75

4 � 3
4 = �1.25

4 and

�ZW = (14 �
2
4)� (1.754 � 3

4) =
0.25
4 . As we can see, the coe�cient patterns follow those in

Figure A7. Similar calculations will show that in the zero-skew case e↵ects are 0 and in

the left-skewed case the coe�cient patterns are inversed.

G SRTR risk adjusted score model

The SRTR risk adjustment models are based on Bayesian methods (Bayesian Methods

for Assessing Transplant Program Performance). In the case of the 1-year post-transplant
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survival, the model produces survival predictions using the previous 2.5 years of data and

adjusting for a set of donor and candidate characteristics, as well as their interactions

(Developing Statistical Models to Assess Transplant Outcomes Using National Registries:

The Process in the United States). Given the amount of included variables and the

amount of missing variables, some adjustments are necessary. First, some lower threshold

of national events are imposed (over 25 events), then a chained equation mean matching

algorithm is used to impute values when missing, and last LASSO is used for variable

selection. For the o↵er-acceptance risk adjustment score, any kidney which was never

accepted does nto enter the calculation.

Some systematic issues raise concern about the precision of these predictive scores.

As remarked in the following o�cial Q&A:How can my program have 0 graft failures,

but still be ranked as a tier 4 program?, some transplant centers with 0 graft failures

receive scores of 4 out of 5 in their performance evaluation. SRTR’s explanation for

this seeming anomaly is that it results from transplant centers o↵ering very healthy

kidneys to very healthy candidates. Since the expected graft failure is very low for this

combination, transplant centers receive reduced scores. While the final outcome may be

desirable, reducing incentives for transplant centers to ignore lower health patients, the

fact that the predictive statistical model itself, which is purely a function of candidate

and donor characteristics, down-ranks transplant centers with perfect 1-year graft records

is concerning for the reliability of the model.
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