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Our framework distinguishes unobserved shocks to GPA that do not affect effort from 

preference shocks that do affect effort levels. We show that peer effects estimates 

obtained using our approach can differ significantly from classical estimates (where effort 

is approximated) if the network includes isolated students. Applying our approach to data 

on high school students in the United States, we find that peer effect estimates relying on 
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1 Introduction

In recent years, there has been a growing interest in the impact of peers on educational outcomes

(Sacerdote, 2011; Epple and Romano, 2011). As peer effects on students’ academic effort may involve

a social multiplier effect, understanding whether students are influenced by their friends and the size

of this influence is crucial for evaluating policies aimed at improving academic achievement (Man-

ski, 1993). However, estimating peer effects based on academic effort presents challenges, since effort

is generally unobserved. Consequently, many empirical studies resort to using grade point average

(GPA) as a proxy variable for effort. While microfounded models exploring the impact of peer inter-

actions on academic achievement are often focused on effort (e.g., see Calvó-Armengol et al., 2009;

Arcidiacono et al., 2012; Fruehwirth, 2013, 2014; Hong and Lee, 2017), GPA is typically employed

in the empirical analysis because measures of student effort are unavailable. Yet, this approxima-

tion overlooks that GPA is not solely influenced by effort but also by many other factors, including

unobserved student and school characteristics.

In this paper, we investigate the implications of using GPA as a proxy for academic effort on the

estimation and interpretation of peer effects. We develop a structural model of educational effort

with social interactions, in which students decide on their academic effort while taking into account

that of their peers (friends), assuming complementarity between students’ and peers’ efforts. We also

explicitly model the production function of academic achievement (GPA), which includes effort as

a key input. Without using a proxy for student academic effort, we show that the model allows for

identifying peer effects on academic effort. Furthermore, we demonstrate that the size of the effect

may differ from that estimated using GPA as a proxy for effort, because the proxy-based approach

suffers from an issue akin to an omitted variables problem. We derive a reduced-form equation for

GPA, which differs from the classical linear-in-means peer effects specification, that highlights the

need to control for two types of unobserved GPA shocks to disentangle peer effects on academic

effort from other common effects captured by GPA. First, one needs to account for common shocks

that directly influence GPA, such as improvements in teaching quality, irrespective of the effort level.

These shocks result in a GPA increase for the same level of effort and do not involve a social multiplier

effect. Second, one needs to account for common shocks affecting students’ preferences, such as

increasing motivation to value academic achievement through information, which influence both

academic effort and GPA, and may have social multiplier effects among students with friends.

We demonstrate that approximating student effort with GPA may result in biased estimates of

peer effects when some students in the network do not have friends. This is because students who

have friends are affected differently by the two types of GPA shocks mentioned above compared to

those without friends. Standard approaches using GPA as a proxy fail to differentiate between these
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two types of shocks, leading to biased estimates of peer effects when the network includes students

without friends. However, we show that in networks without isolated students, the standard model

does not produce biased estimates of peer effects. The key difference between the reduced-form of

the standard model and our framework is that while the standard model has a single intercept for

each school, our approach accounts for unobserved school-level heterogeneity based on whether a

student has friends or not. This amounts to introducing two types of fixed effects per school, one for

students with friends and one for isolated students.

We illustrate the importance of this distinction through both a Monte Carlo simulation study and

an empirical application using the National Longitudinal Study of Adolescent to Adult Health (Add

Health) data.1 Estimating peer effects through our proposed method suggests that increasing the

average GPA of peers by one point leads to a 0.856 point increase in students’ GPA. In contrast,

the standard linear-in-means model using GPA as a proxy for student academic effort estimates this

effect at 0.507. This substantial difference highlights that failing to account for two types of shocks

at the school level may yield substantially biased estimates. The intuition behind this bias is that the

standard approach misidentifies direct shocks to GPA that do not influence effort as effort shocks,

thereby overestimating their impact through a social multiplier effect. Importantly, we also find that

other plausible approaches, such as estimating a model that accounts for only one type of school-

level shock and incorporating a dummy variable for isolated students, fail to rectify the bias, as does

excluding isolated students from the sample.

Our econometric model incorporates two types of school-level unobserved shocks to GPA, which

renders the well-known reflection problem more complex.2 In the case of the standard linear-in-means

model, Bramoullé et al. (2009) provide straightforward conditions relating to the network structure

under which the reflection problem is resolved. We extend their identification analysis to our frame-

work; our main condition for identification requires that the network must include at least two stu-

dents separated by a path of distance three, which is slightly stronger than the condition in Bramoullé

et al. (2009).

We also extend our analysis to the case of endogenous networks. Network endogeneity can occur

because we do not observe certain student characteristics, such as intellectual quotient (IQ), that may

influence both students’ likelihood to form links with others and their GPA. We control for these

unobserved characteristics using a two-stage estimation approach. Our method is nonparametric as

in Johnsson and Moon (2021). We do not impose a specific parametric restriction in the relationship

between the unobserved characteristics and GPA. Our approach is similar to generalized additive
1The Add Health dataset comprises 22% of students without friends, including 11% who are not fully isolated, in the

sense that they are nominated as friends of others. Other studies reporting social network data from educational settings with
isolated students include those by Alan et al. (2021), Conti et al. (2013), and Boucher et al. (2021).

2The reflection problem arises when one cannot disentangle endogenous peer effects from exogenous contextual peer effects
(Manski, 1993)
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models (GAM), which are widely employed in the nonparametric regression literature (see Hastie,

2017).

Our structural model and econometric approach can also be applied to study peer influence on

other outcomes that depend on exerted effort. An example is the body mass index (BMI), which can-

not be directly chosen (e.g., Fortin and Yazbeck, 2015). People need to exert effort, such as developing

healthy diet habits or engaging in physical exercise to improve their BMI. Peer influences are more

related to effort than BMI. Another example is peer effects on a worker’s effort (e.g., Mas and Moretti,

2009; Cornelissen et al., 2017). The observed outcome is generally worker’s productivity, whereas

peer effects take source in effort.

Related Literature

There is a large literature studying social interactions both theoretically and empirically (Durlauf

and Ioannides, 2010; Blume et al., 2011). We follow the games in networks approach to the analysis

of social interactions (see Jackson and Zenou, 2015, for a comprehensive overview of this literature).

Ballester et al. (2006) analyze a noncooperative game with linear-quadratic utilities and strategic com-

plementarities, in which each player decides how much effort they exert. Applying a similar frame-

work to an education application, Calvó-Armengol et al. (2009) use GPA as a proxy for the exerted

effort. We contribute to this strand of the literature by explicitly modelling the production function

that captures how effort, along with other factors, translates into GPA, while distinguishing between

unobserved shocks that directly impact GPA without affecting effort, from shocks that impact both

academic effort and GPA. This leads to a reduced-form equation for GPA that differs from the stan-

dard linear-in-means peer effects specification.

This paper makes a methodological contribution to the extensive empirical literature on peer ef-

fects on educational outcomes (Sacerdote, 2011; Epple and Romano, 2011). We show both analytically

and through an empirical application using AddHealth data that approximating student effort with

GPA may result in biased estimates of peer effects, when some students in the network lack friends.

Since isolated students are a common feature in many social network datasets, this finding highlights

the limitations of using proxy variables, such as GPA, for estimating peer effects reliably.

Our paper also contributes to the econometric literature on peer effects (De Paula, 2017; Kline

and Tamer, 2020) in two ways. First, a key challenge in this field is the reflection problem (Manski,

1993). A recent wave of papers have addressed this issue by imposing conditions on the network

structure (Bramoullé et al., 2009; De Giorgi et al., 2010).3 Our contribution is to study the reflection

problem in a setting where the GPA is influenced by various types of common shocks at the school
3Other studies address the reflection problem using group size variation (Davezies et al., 2009; Lee, 2007) or imposing

restrictions on the error terms (Graham, 2008; Rose, 2017). For an overview of this literature, see Bramoullé et al. (2020).
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level, and where students may have no peers. As in Bramoullé et al. (2009), our main identification

condition involves the network structure and can be readily tested in empirical applications. Our

second contribution lies in addressing the network endogeneity issue. We allow for unobserved

attributes to influence students’ likelihood of forming links with others and their GPA (Goldsmith-

Pinkham and Imbens, 2013; Hsieh and Lee, 2016; Johnsson and Moon, 2021). Unlike many studies

that impose a strong parametric restriction between unobserved attributes and the peer effect model,

we adopt a nonparametric approach to connect GPA to these attributes. Our approach is similar to the

control function method used by Johnsson and Moon (2021), but it is adaptable to complex models.

Specifically, we employ cubic B-splines, which are commonly used in Generalized Additive Models

(GAM), to establish a smooth function linking the unobserved attributes and GPA (Hastie, 2017).

The remainder of the paper is organized as follows. Section 2 presents the microeconomic foun-

dations of the model using a network game in which students decide their academic effort. Section 3

describes the econometric model and addresses the identification and estimation of the parameters.

Section 4 presents our empirical analysis using Add Health data. Section 5 provides an extension of

our framework to endogenous networks. Section 6 concludes this paper.

2 The Structural Model

In this section, we introduce a structural model based on a game of complete information, where

students choose their effort level, which impacts their educational achievements (GPA). Students’ ef-

fort levels are also influenced by the effort exerted by their peers. This model can also be applied to

investigating peer effects on other inputs that are not typically directly observed by the econometri-

cian. For instance, it can be used to examine peer effects on (unobserved) effort in a workplace setting

where observed productivity serves as the outcome. Another application is peer effects on effort di-

rected toward improving BMI, such as adopting healthy diet habits or engaging in physical exercise,

which is more readily observable than the effort itself.

We consider S independent schools and denote by ns • 3 the number of students in the s-th

school, s P t1, . . . , Su. Let n be the total number of students, that is, n “ ∞S
s“1 ns. Each student i

in school s has a GPA denoted by ys,i and observable characteristics represented by a K-vector xs,i.

Students interact in their school through a directed network that can be represented by an ns ˆ ns

adjacency matrix As “ ras,ijsij , where as,ij = 1 if student j is i
1
s friend and as,ij “ 0 otherwise. We

assume that as,ii = 0 for all i and s so that students cannot interact with themselves. In addition,

we only consider within-school interactions; students do not interact with peers in other schools

(see Calvó-Armengol et al., 2009). We define the social interaction matrix Gs “ rgs,ijsij as the row-

normalized adjacent matrix As, that is, gs,ij “ 1{ns,i if j is a i’s friend and gs,ij “ 0 otherwise, where
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ns,i is the number of friends of student i within school s.

Student i chooses their effort es,i, which in turn affects their GPA. More precisely, GPA is a function

of student effort es,i, observable characteristics xs,i, and a random term ⌘s,i that captures unobserv-

able characteristics.4 Following Fruehwirth (2013) and Boucher and Fortin (2016), we posit that this

relationship is given by the production function:

ys,i “ ↵s ` �es,i ` x1
s,i✓ ` ⌘s,i, (1)

where � ° 0 and ↵s and ✓ are unknown parameters. The parameter ↵s captures unobserved school-

level GPA shifters, such as teacher quality, operating as fixed effects. The linear production function

is somewhat restrictive and can be generalized to a nonlinear or nonparametric production function

(e.g., see Fruehwirth, 2013). However, identification of the resulting econometric model can be in-

tractable, especially when the model allows for unobserved school heterogeneity.

The effort exerted and the GPA obtained provide students with a benefit that is captured by a

payoff function, which, as in Calvó-Armengol et al. (2009) and Boucher and Fortin (2016), takes a

linear-quadratic form:

us,ipes,i, es,´i, ys,iq “ pcs ` x1
s,i� ` gs,iXs� ` "s,iqys,i ´ e

2
s,i

2looooooooooooooooooooooooomooooooooooooooooooooooooon
private sub-payoff

` �es,igs,ieslooooomooooon
social sub-payoff

, (2)

where Xs “ pxs,1, . . . ,xs,nsq1, gs,i is the i-th row of Gs, es,´i “ pes,1, . . . , es,i´1, es,i, . . . , es,nq1, es “
pes,1, . . . , es,nsq1, the term gs,ies is the average effort of peers, and cs, �, � are unknown parame-

ters. The parameter � captures endogenous peer effects. The payoff function (2) encompasses two

components: a private sub-payoff and a social sub-payoff. The term pcs ` x1
s,i� ` gs,iXs� ` "s,iq

represents the benefit enjoyed per unit of GPA achieved, where "s,i is the student type (observable by

all students). This benefit accounts for student observed heterogeneity, as it depends on xs,i and peer

group average characteristics gs,iXs termed contextual variables (see Manski, 1993). The benefit also

accounts for school unobserved heterogeneity through the parameter cs. The second term of the pri-

vate sub-payoff, e2s,i{2 reflects the cost of exerting effort. The social sub-payoff �es,igs,ies implies that

an increase in the average peer group’s effort gs,ies influences student i’s marginal payoff if � ‰ 0.

When � ° 0, the payoff function (2) implies complementarity between students’ and peers’ efforts,

whereas � † 0 indicates substitutability in efforts.5

The parameters ↵s and cs capture different unobserved shocks at the school level, and are concep-

tually different in terms of their policy implications. ↵s captures unobserved shocks on GPA that do
4Whether or not the random term ⌘s,i is observed by student i or their peers is inconsequential for the analysis of the game.
5An alternative specification considers the social-payoff as ´�

2 pes,i ´gs,iesq2, which represents a social cost depending on
the gap between the student’s effort level and the average peer effort. This specification leads to conformist preferences when
� ° 0. Our approach can also be extended to this alternative specification.
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not affect student effort. These shocks, such as variation in teaching quality and school management,

directly impact GPA irrespective of student effort.6 On the other hand, cs captures shocks on student

preferences, particularly on the marginal payoff. For instance, interventions aimed at making stu-

dents more aware of the returns to academic achievement could influence the marginal payoff. Such

a shock can be captured by cs and would influence effort and consequently GPA through equation

(1). We show that ↵s and cs do not impact GPA in the same way (see Section 3.1).

By substituting ys,i from Equation (1) into Equation (2), we obtain a payoff function that does not

depend on GPA (see Appendix A.1). This new payoff function defines a static game with complete

information, in which students simultaneously choose their effort levels to maximize their payoff.

The best response function for the students is given by:

es,i “ �cs ` �gs,ies ` �x1
s,i� ` �gs,iXs� ` �"s,i. (3)

In Equation (3), students’ levels of effort are expressed as a function of the average effort of their peers

gs,ies, observed students’ characteristics xs,i, and the average characteristics of peers gs,iXs (contex-

tual variables). The parameter � represents the impact of peers on a student’s effort level. A positive

value of � indicates that a student’s effort level increases if their peers put in more effort. Further-

more, Equation (3) shows that the optimal effort level (and thus the resulting GPA) is influenced by

shocks at the school level (on cs) that affect student preferences. However, shocks directly affecting

GPA through the parameter ↵s do not impact effort.

The best response function (3) in matrix form can be expressed as es “ �cs1ns ` �Gses ` �Xs� `
�GsXs�`�"s, where "s “ p"s,1, . . . , "s,nsq1 and 1ns is an ns-vector of ones. A solution of this equation

in es is a Nash equilibrium (NE) of the game. As Gs is row-normalized, the NE is unique under

Assumption 2.1 and can be expressed as es “ pIns ´�Gsq´1p�cs1ns ` �Xs�` �GsXs� ` �"sq, where

Ins is the ns ˆ ns identity matrix (see Appendix A.1).

Assumption 2.1. |�| † 1.

The condition |�| † 1 implies that students do not increase (in absolute value) their effort as much as

the increase in the effort of their peers. Put differently, when the average effort of a student’s friends

increases by one unit, the corresponding change in the student’s own effort is less than one unit in

absolute value.
6This reasoning holds because GPA is unbounded. An increase in ↵s necessarily results in a higher GPA, and thus a higher

payoff, regardless of the effort level. If we were to consider a framework where GPA is bounded, an increase in ↵s may
decrease the effort for students nearing the upper bound of GPA (e.g., see Fruehwirth, 2013). However, an increase in ↵s does
not have the same implication as an increase in cs, which is the key factor in our framework.
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3 The Econometric Model and Identification Strategy

If effort were directly observable, we could estimate the peer effect parameter from Equation (3)

following Kelejian and Prucha (1998). However, as we do not observe effort, the equation cannot be

estimated directly. Instead, we derive from this equation an estimable equation based on GPA, which

is influenced by effort. We show that this equation is econometrically different from the equation that

we obtain if we proxy effort using GPA in Equation (2). We also present an identification strategy to

identify the peer effect parameter � in the effort equation.

3.1 Reduced-Form Equation for GPA

From Equation (1), we express effort as a function of GPA and replace this expression in Equation (3).

This yields a reduced-form equation for GPA that does not directly depend on effort (see Appendix

A.2). The equation is given by

ys,i “ s,i ` �gs,iys ` x1
s,i�̃ ` gs,iXs�̃ ` p!s,i ´ �gs,iq⌘s ` �

2
"s,i, (4)

where s,i “ �
2
cs `p1´�gs,i1nsq↵s, �̃ “ �

2�`✓, �̃ “ �
2�´�✓, and !s,i is a row-vector of dimension

ns in which all the elements are zero, except the i-th element, which is one.

If instead, we proxy effort by GPA in the payoff function (2), the resulting reduced-form equation

of GPA would be:

ys,i “ c̄s ` �̄gs,iys ` x1
s,i�̄ ` �gs,iXs�̄ ` "̄s,i, (5)

where �̄ is the peer effect parameter, �̄ and �̄ measure the effects of own and contextual character-

istics, c̄s controls for unobserved school heterogeneity and "̄s,i is an error term. We will refer to this

specification as the standard (classical) model.

Let VNI
s denote the subsample of students of school s who have friends (non-isolated) and VI

s de-

note the subsample of students of school s who have no friends (isolated). As Gs is row-normalized,

we have gs,i1ns “ 1 if i P VNI
s and gs,i1ns “ 0 otherwise. Thus, s,i “ 

I
s if i P VI

s and s,i “ 
NI
s

if i P VNI
s , where 

I
s “ �

2
cs ` ↵s and 

NI
s “ �

2
cs ` p1 ´ �q↵s. If there are no isolated students in the

network, s,i would be a simple school fixed effect, and our framework would be equivalent to the

classical model.7 The difference between the standard model and our framework is that the standard

model has a single intercept term per school. In Equation (4), s,i accounts for unobserved school-

level heterogeneity depending on whether the student i has friends or not. We would have 
NI
s “ 

I
s

if and only if ↵s “ 0, � “ 0, or if every student has friends. These conditions may not hold in many
7An isolated student is a student who has no friends. However, this student may be a friend of others. We later refer to a

fully isolated student as a student who has no friends and who is not a friend of others.
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settings.

To appropriately account for the unobserved factor s,i in Equation (4), the above discussion sug-

gests that we need to incorporate both school-fixed effects and a school-specific variable indicating

whether a student has friends or not. This involves including S school dummy variables and S

dummy variables indicating whether each student has friends or not. Each of the latter dummy vari-

ables corresponds to one school and takes the value of one if the student has friends. The rationale for

this lies in the distinction between ↵s and cs, which affect GPA differently. To understand why distin-

guishing between these two shocks requires controlling for whether a student is isolated or not, it is

important to consider the implications of the two shocks. As per Equations (3) and (4), an increase in

↵s (e.g., by improving teaching quality) suggests an increase in GPA without affecting effort. Impor-

tantly, this increase does not depend on whether the student is isolated and does not involve a social

multiplier effect.8 In contrast, a preference shock on cs could result in a social multiplier effect on the

effort (according to Equation (3)), and thereby on GPA. This social multiplier effect is only present

among students who have friends. Therefore, the distinction between the two types of shocks is es-

sentially captured by the student’s social status: unlike for ↵s, the impact of cs on GPA is contingent

upon whether the student is isolated or not.

The main distinction between the standard model and Equation (4) arises due to an omitted

variables problem inherent in the standard model. These omitted variables are ´�↵sgs,i1ns , for

s “ 1, . . . , S, and may introduce a significant discrepancy between the peer effect estimates of the

two models. Following the logic of omitted variable bias (Theil, 1957), we know that the difference

between the peer effect estimate from the standard model and the estimate from our specification has

the same sign as the partial correlation between ´�↵sgs,i1ns and gs,iys. In most scenarios, it will be

the sign of ´�↵s if ys is nonnegative. This suggests that peer effects estimated using the standard

model would be underestimated compared to the estimate from our specification if �↵s ° 0.9

3.2 Identification and Estimation

As the effort es,i is not observed, not all the parameters of the structural model can be identified.

Specifically, � cannot be identified because it only appears in Equation (4) through a product with

other parameters. Similarly, ✓ and � cannot be identified separately, as they only appear in the ex-

pression of �̃. Nevertheless, we can identify the composite parameters �̃ “ �
2�`✓ and �̃ “ �

2�´�✓,
8Equation (4) implies that the variation in ys, denoted �↵ys, following an increase �↵s in ↵s is such that �↵ys “

�↵spIns ´�Gsq1ns `�Gs�↵ys. This implies that pIns ´�Gsq�↵ys “ �↵spIns ´�Gsq1ns and thus, �↵ys “ �↵s1ns .
Hence, the increase in ↵s results in the same increase in GPA for all students.

9Another difference between the standard model and Equation (4) is that the standard model does not take into account the
term p!s,i ´ �gs,iq⌘s. However, it is worth pointing out that this second difference does not lead to inconsistent estimates
if ⌘s is independent of Gs. Indeed, even in the case of correlated effects, estimating the model without controlling for these
effects leads to a consistent estimator (Kelejian and Prucha, 1998).
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which are parameters in the reduced-form equation (4) that capture the causal effects of students’

characteristics x and average friends’ characteristics x̄ on GPA. Consequently, it is not necessary to

identify � and ✓ to estimate these causal effects.10

Let nNI
s denote the number of students in school s with peers, and n

I
s the number of students in

the school s without peers. Let also `NI
s “ Gs1ns and `Is “ 1ns ´ `NI

s . Equation (4) can be written in

matrix form at the school level as

ys “ 
I
s`

I
s ` 

NI
s `NI

s ` �Gsys ` Xs�̃ ` GsXs�̃ ` pIns ´ �Gsq⌘s ` �
2"s. (6)

Note that the number of unknown parameters to be estimated in Equation (6) grows to infinity with

the number of schools (there are 2S dummy variables). This issue is known as an incidental pa-

rameter problem and may lead to inconsistent estimators (Lancaster, 2000). A common approach

to consistently estimate the model is to eliminate the fixed effects 
I
s and 

NI
s . To do so, we define

Js :“ Ins ´ 1

nI
s

`Is`
I1
s ´ 1

nNI
s

`NI
s `NI1

s and impose by convention that
1

nI
s

`Is`
I1
s “ 0 if nI

s “ 0, and that

1

nNI
s

`NI
s `NI1

s “ 0 if nNI
s “ 0. Note that `NI1

s `NI
s “ n̂s, `I1

s `
I
s “ n

I
s , `NI1

s `Is “ 0, `I1
s `

NI
s “ 0. Thus,

Js`
I
s “ Js`

NI
s “ 0. One can eliminate the term 

I
s`

I
s ` 

NI
s `NI

s by premultiplying each term of Equa-

tion (6) by the matrix Js.11 This implies that

Jsys “ �JsGsys ` JsXs�̃ ` JsGsXs�̃ ` JspIns ´ �Gsq⌘s ` �
2Js"s. (7)

The random term vs :“ JspIns ´ �Gsq⌘s ` �
2Js"s is comprised of two error vectors ⌘s and "s. To

consistently estimate  :“ p�, �̃1
, �̃1q1, we impose the following assumption.

Assumption 3.1. For any s “ 1, . . . , S, Ep⌘s|Gs,Xsq “ 0 and Ep"s|Gs,Xsq “ 0

Assumption 3.1 implies that Xs and Gs are exogenous with respect to ⌘s and "s. This suggests that

there is no omission of important variables in Xs, which are captured by ⌘s and "s. We later relax

this assumption in our approach to controlling for network endogeneity by allowing for Xs and Gs

to depend on ⌘s and "s through unobserved factors to the econometrician (see Section 5).

Identification and Estimation of  

Identification in peer effects models can be challenging, particularly due to the reflection problem

(Manski, 1993). Bramoullé et al. (2009) address this problem and provide necessary and sufficient

conditions for identification. Their main condition requires that Ins , Gs, G2
s, and G3

s are linearly
10However, the non-identification of � poses challenges for implementing certain counterfactual analyses, particularly when

examining direct shocks on GPA and preference shocks on student effort. Equation (4) suggests that an increase in cs by �cs
(preference shock) leads to a change of �2�cspIns ´ �Gsq´11ns in ys. The impact of this increase on GPA depends on �.

11By premultiplying each term by Js, we consider Equation (6) in deviation to the average within the student group, that is,
VI
s or VI

s . This eliminates the parameters I
s and NI

s .
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independent. However, their approach does not apply to our framework because their identification

results assume that there are no isolated students (see their main assumption in their Section 2.1).12

Given that existing identification results do not directly apply to our model, we extend the analysis

in Bramoullé et al. (2009). We derive easy-to-verify conditions to address the reflection problem when

the network includes students without friends.

Assumption 3.2. (i) ��̃` �̃ ‰ 0; (ii) There are students in the network separated by a link of distance three.

Condition (i) is equivalent to stating that GPA is influenced by at least one contextual variable.13

With several characteristics in Xs, this condition can be satisfied. Condition (ii) is slightly stronger

than the assumption that Ins , Gs, G2
s, and G3

s are linearly independent. It means that there are

students who have connections to students that extend to three degrees of separation—friends of

friends of friends—who are neither directly their friends nor friends of their friends (see an illustration

in Figure 1 below). As we allow isolated students, Assumption 3.2 is not a necessary condition for

identification, as is the case in Bramoullé et al. (2009); rather, it is a sufficient condition that holds in

many cases.

Under Assumption 3.2, we show that  is identified. We estimate  using a standard GMM

approach. It is well known that the regressor JsGsys is endogenous in Equation (7). However, it

can be instrumented by JsG2
sXs, as suggested by Kelejian and Prucha (1998) and Bramoullé et al.

(2009).14 Let  ̂ be the GMM estimator of  . We have the following result.

Proposition 3.1. Under Assumptions 2.1–3.2 and A.1 (stated in Appendix A.3),  is globally identified,  ̂

is a consistent estimator, and
?
np ̂ ´ 0q dÑ N

`
0, lim

nÑ8
nVp ̂q

˘
, where  0 is the true value of  .

The consistency and asymptotic normality of  ̂ are directly derived from Kelejian and Prucha (1998).

We later discuss how the asymptotic variance of  ̂ can be estimated.

We show that the reflection problem arises within a network with links of distance three only

when variations in friends’ average characteristics have no influence on students’ outcomes, which

would directly contradict Condition (i) of Assumption 3.2.15 Below, we provide an intuition behind

our identification approach and a formal proof in Appendix A.3. Figure 1 presents an example of a

network with a link of distance three: i2 is at three nodes from i1; they are a friend of a friend of a
12Bramoullé et al. (2020) also discuss the case involving isolated students. They argue that the presence of isolated students

can help identify the peer effect parameter (see their Section 2.1.1). Recall that the two intercepts of our model are I
s “

�2cs ` ↵s and NI
s “ �2cs ` p1 ´ �q↵s. The fact that only one intercept depends on � implies that � can be identified using

isolated students if I
s “ NI

s . However, as we allow GPA shocks ↵s to be different from preference shocks cs in terms of their
impact on effort, this condition is unlikely to hold. Consequently, the presence of isolated students does not help identify � in
our case.

13See Equation A.7, which quantifies the total effect of an increase in a contextual variable on GPA.
14To avoid a weak instrument issue, the pool of instruments can also be expanded to JsrG2

sXs, . . . , Gp
sXss for some

integer p ° 2.
15Houndetoungan (2022) applies a similar approach to the case of nonlinear models.
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friend of i1. The reflection problem arises when EpJsGsys|Gs,Xsq is perfectly collinear with JsXs

and JsGsXs. For a non-isolated student, this collinearity is equivalent to saying that there exist vector

of parameters, 9� and 9�, such that Epgs,iys´y
NI
s |Gs,Xsq “ pxs,i´x̂sq1 9�`pgs,iXs´x̄NI

s q1 9�, where yNI
s ,

xNI
s , and x̄NI

s are respectively the averages of gs,iys, xs,i, and gs,iXs in VNI
s . The variables gs,iys, xs,i,

and gs,iXs are taken in deviation with respect to their average in VNI
s because of the matrix Js that

multiplies the terms of Equation (7). If we take the previous equation in difference between students

i1 and i3, we obtain

Epgs,i1ys ´ gs,i3ys|Gs,Xsq “ pxs,i1 ´ xs,i3q1 9� ` pgs,i1Xs ´ gs,i3Xsq1 9�. (8)

As i3 is i1’s only friend and i4 is i3’s only friend, we have gs,i1ys “ ys,i3 , gs,i3ys “ ys,i4 , gs,i1Xs “
xs,i3 , and gs,i3Xs “ xs,i4 . Thus Equation (8) implies y

e
i3 ´ y

e
i4 “ pxs,i1 ´ xs,i3q1 9� ` pxs,i3 ´ xs,i4q1 9�,

where y
e
i “ Epys,i|Gs,Xsq. As xs,i2 does not appear in the previous equation, we can say that yei3 ´y

e
i4

is independent of xs,i2 , conditional on xs,i1 , xs,i3 and xs,i4 . Put differently, an increase in xs,i2 (ceteris

paribus) has no impact on y
e
i3 ´ y

e
i4 , which means that the increase has either no impact on y

e
i3 and y

e
i4

or the same impact on y
e
i3 and y

e
i4 . The first implication is not possible because xs,i2 is the vector of

contextual variables for i4 and Condition (i) of Assumption 3.2 implies that GPA is influenced by at

least one contextual variable. Moreover, xs,i2 cannot influence y
e
i3 and y

e
i4 in the same way because i2

is a direct friend of i4 and not directly linked to i3. This is in contradiction to equation (8), therefore,

EpJsGsys|Gs,Xsq cannot be a linear combination of JsXs and JsGsXs.

i2 i4

i1 i3

Figure 1: Solving the reflection problem
Note: Ñ means that the node on the right side is a friend of the node on the left side.

Asymptotic variance of  ̂

We now discuss how the asymptotic variance of  ̂ can be consistently estimated. One simple ap-

proach is to use the robust estimator à la White (1980) that allows for the variance of the compo-

nent of ⌘s and "s to vary across schools. Let X̃s “ JsrXs, GsXss, Rs “ rJsGsys, X̃ss, Zs “
rJsG2

sXs, X̃ss, R1Z “ ∞S
s“1 R

1
sZs, Z1Z “ ∞S

s“1 Z
1
sZs. Let also v̂s :“ Jsys ´ Rs ̂, that is, v̂s is

the residual vector from Equation (7). We denote by diag the bloc diagonal matrix operator. The

asymptotic variance of  ̂ can be estimated by B̂´1
n D̂nB̂´1

n {n, where B̂n “ pR1ZqpZ1Zq´1pR1Zq1{n
and D̂n “ pR1ZqpZ1Zq´1 diagtZ1

1v̂1v̂
1
1Z1, . . . ,Z1

S v̂S v̂
1
SZSupZ1Zq´1pR1Zq1{n.

However, for this estimator of the asymptotic variance, we need to impose that ns is bounded,

that is, the network is composed of many bounded and independent schools. This assumption is
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important for Z1
sv̂s to be Opp1q and have a second-order moment. We also present another estimator

that does not require this condition. This estimator is based on the covariance structure of the error

term vs. For this second approach, we set the following assumptions.

Assumption 3.3. (i) Gs is uniformly bounded in column sum; (ii) � ‰ 0; (iii) p⌘s,i, "s,iq is independently dis-

tributed across i such that Ep⌘2s,i|Gs,Xsq “ �
2
⌘ ° 0, Epp�2"s,iq2|Gs,Xsq “ �

2
✏ ° 0, Ep�2"s,i⌘s,i|Gs,Xsq “

⇢�⌘�✏, and |⇢| § 1.

If both S and ns tend to infinity, Condition (i) rules out the cases where the sum of certain columns

of Gs is unbounded. This condition is also considered by (Lee, 2004) in the case of the standard

model. Condition (iii) imposes constant variances for the error terms ⌘s,i and "s,i but accounts for

their potential correlation. This is important as ⌘s,i and "s,i characterize the same student i. The

parameter ⇢ measures the correlation between ⌘s,i and "s,i. We impose no restrictions on the joint

distribution of p⌘s,i, "s,iq. The restriction � ‰ 0 of Condition (ii) is necessary for identifying �⌘ , �✏,

and ⇢. If � “ 0, the disturbance of Equation (7) would be Js⌘s ` �
2Js"s, and one cannot disentangle

�⌘ , �✏, and ⇢.

Under Assumption 3.3, we can estimate p�2
⌘, �

2
✏ , ⇢q and construct a consistent estimator for Vp ̂q.

We employ a quasi-maximum likelihood (QML) approach, where the dependent variable is the vector

of the residual vector v̂s “ Jsys ´ Rs ̂. The likelihood of v̂s is based on a multivariate normal

distribution with mean and covariance matrix equal to those of the true error term vs, where � is

replaced by its estimator �̂. Importantly, we do not require vs to be actually normally distributed. Let

p�̂2
⌘, �̂

2
✏ , ⇢̂q be the QML estimator of p�2

" , �
2
✏ , ⇢q. We establish the following result.

Proposition 3.2. Under Proposition 3.1 and Assumptions A.2–A.4 stated in Appendix A.4, p�2
✏ , �

2
✏ , ⇢q is

globally identified, and p�̂2
⌘, �̂

2
✏ , ⇢̂q is a consistent estimator.

We can now consistently estimate the asymptotic variance of  ̂ using the estimator p�̂2
⌘, �̂

2
✏ , ⇢̂q. We

denote by B “ plimpR1ZqpZ1Zq´1pR1Zq1{n, where plim stands for the limit in probability as n grows

to infinity. We also define ⌦̌ “ ∞S
s“1 Z

1
s

`
�
2
✏Js `�

2
⌘J

1
sWsW1

sJs `⇢�✏�⌘JspWs `W1
sqJsq

˘
Zs. We make

the assumption that plimpR1ZqpZ1Zq´1⌦̌pZ1Zq´1pR1Zq1{n exists and is denoted by D. As a result

lim
nÑ8

nVp ̂q “ B´1DB´1. We can obtain a consistent estimator of the variance by replacing �
2
✏ , �2

⌘ ,

and ⇢ with their estimator, and B and D with their empirical counterparts.

3.3 Simulation Study

In this section, we conduct a simulation study to illustrate the importance of controlling for sepa-

rate school fixed effects for isolated and non-isolated students. We consider a scenario with S “ 20

schools, each school having ns “ 50 students. The network is defined such that student i in school
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s has ns,i friends chosen randomly among their schoolmates. We randomly assign to ns,i a value in

t0, 1, . . . , 10u according to the probability distribution given by Ppns,i “ kq “ ⇡

p1 ` kq0.6 , where ⇡

is a constant such that
∞10

k“0 Ppns,i “ kq “ 1. This method for determining the number of friends re-

sults in 21% of students having no friends, with a maximum number of 10 friends per student. These

characteristics of the simulated networks resemble those observed in real network data, such as the

data provided by the Add Health survey (see Section 4).

We consider two exogenous variables in the matrix Xs: x1s „ NpE1s, 16q and x2s „ PoissonpE2sq,

where E1s, E2s are fixed for each school and drawn from a Uniform distribution over r0, 10s. The

distribution of these two control variables is specific to each school.

We investigate three data-generating processes (DGPs) denoted A, B, and C. For all DGPs, we

assign the following values to the parameters: � “ 0.7, � “ p1, 1.5q1, � “ p5, ´3q1, � “ 1, ✓ “ 0,

�
2
⌘ “ 6, �2

✏ “ 3, and ⇢ “ 0.4, which implies �̃ “ p�̃1, �̃2q1 “ p1, 1.5q1 and �̃ “ p�̃1, �̃2q1 “ p5, ´3q1.

We assume that p⌘s,i, "s,iq follows a bivariate normal distribution. We consider the same school

preference shock for all DGPs, defined as cs “ ´1.5q90px2sq, where qap.q represents the a-th percentile.

Generating cs in this way ensures that cs is a fixed effect because it is dependent on the control

variables. To illustrate how the nature of the shock ↵s can affect the results, we vary the definition of

↵s for each DGP. For DGP A, we set ↵s “ 0 for all s. For DGP C, we define ↵s “ 10q90px1sq. For DGP

B, we set ↵s to the average of the values of ↵1, . . . , ↵S obtained for DGP C. For both DGPs A and B,

↵s does not vary across schools. The only difference is that ↵s “ 0 for DGP A, whereas ↵s ‰ 0 for

DGP B.

We consider four estimation approaches for each DGP. The most flexible estimation approach

follows Equation (6), which can be expressed as follows:

ys,i “ 
NI
s `

NI
s,i ` 

I
sp1 ´ `

NI
s,i q ` gs,iys ` x1

s,i�̃ ` gs,iXs�̃ ` ṽs,i, (9)

where `
NI
s,i is a dummy variable indicating whether the student is not isolated, I

s “ �
2
cs ` ↵s, NI

s “
�
2
cs ` p1 ´ �q↵s, and ṽs,i “ p!s,i ´ �gs,iq⌘s ` �

2
"s,i. This specification, referred to as Model 4, is

our proposed model. Additionally, we estimate several variants of this specification that impose

constraints on cs and ↵s. These constrained specifications align with those commonly estimated in

the literature when approximating students’ efforts by their GPA:

• Model 1: Specification (9) without school fixed effects which assumes that I
s “ 

NI
s “ , where

 is a constant (cs does not vary across schools and ↵s “ 0).

• Model 2: Specification (9) with school fixed effects, which assumes that I
s “ 

NI
s “ s, where

s varies across schools (cs varies across schools, whereas ↵s “ 0).
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• Model 3: Specification (9) with school fixed effects and a dummy variable for isolated students,

which assumes that NI
s varies across schools and 

I
s “ , where  is a constant. This means

that ↵s “ ↵̄ may not be zero but does not vary across schools, whereas cs varies across schools.

Table 1 presents a summary of our Monte Carlo results across 1,000 replications. Model 1 yields

biased estimates for all GPAs, which is expected due to the absence of fixed effects in this model.

Although the bias of the peer effect estimate is not substantial for DGP A, estimates for other param-

eters, particularly �̃2 and �̃2, exhibit notable biases. This is because DGP A features preference shocks

cs, generated from x2s, which Model 1 fails to account for.

Model 2 is the standard model commonly employed in the literature, especially when GPA ap-

proximates effort. This model demonstrates strong performance with DGP A, despite the presence

of 21% isolated students. Interestingly, this result suggests that the dummy variable for isolated

students might not be relevant, even when the network includes students without friends. As this

dummy variable accounts for GPA shocks without influencing effort, its absence in DGP A (because

↵s “ 0) does not compromise the validity of estimates. However, Model 2 leads to biased estimates

for DGPs B and C, where ↵s ‰ 0. Importantly, these biases carry substantial policy implications. For

instance, while the true value of the social multiplier effect, measured by 1{p1 ´ �q for non-isolated

students, stands at 3.33, Model 2 underestimates it at 1.93 for DGP B and 1.73 for DGP C.

Model 3 incorporates a dummy variable for isolated students but assumes a constant coefficient

associated with this variable across all schools. Adding this dummy variable means that ↵s is a

constant that may not be zero. This resolves the bias observed for DGP B but still results in biased

estimates for DGP D. This is because DGP D assumes variability in ↵s across schools.

Model 4, which is the most flexible specification, performs well across all DGPs. The simulation

results also suggest that we can consistently estimate the covariance structure parameters �2
✏ , �2

⌘ , and

⇢, as stated in Proposition 3.2. Yet, it is worth noting that the standard deviations of the estimates for

DGPs A and B are higher in Model 4 compared to Model 3. This is because both models are suitable

for these DGPs, whereas Model 4 is overparameterized. One can address this issue by comparing

Model 3 to Model 4 using a Hausman specification test (Hausman, 1978). If the null hypothesis that

the parameter  is the same for Models 3 and 4 is not rejected, then Model 3 would be preferred over

Model 4.

4 Empirical Illustration

In this section, we provide an empirical illustration of our econometric approach to estimating peer

effects using a unique and now widely-used dataset from the National Longitudinal Study of Ado-

lescent to Adult Health (Add Health). Specifically, our main objective in this section is to compare
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Table 1: Simulation results

Model 1 Model 2 Model 3 Model 4
Mean Sd Mean Sd Mean Sd Mean Sd

DGP A
� “ 0.7 0.727 0.011 0.700 0.012 0.700 0.012 0.701 0.018
�̃1 “ 1 0.917 0.061 1.001 0.047 1.001 0.047 1.001 0.047
�̃2 “ 1.5 0.633 0.110 1.500 0.083 1.500 0.083 1.499 0.083
�̃1 “ 5 5.018 0.099 4.999 0.091 5.000 0.096 5.003 0.098
�̃2 “ ´3 ´3.542 0.109 ´3.004 0.090 ´3.002 0.124 ´2.997 0.172
�
2
✏ “ 8 9.354 5.266 9.122 5.216

�
2
⌘ “ 15 15.752 6.105 15.329 6.024

⇢ “ 0.4 0.448 0.513 0.459 0.511

DGP B
� “ 0.7 0.569 0.035 0.483 0.033 0.700 0.012 0.701 0.018
�̃1 “ 1 1.655 0.151 0.979 0.103 1.001 0.047 1.001 0.047
�̃2 “ 1.5 2.413 0.286 1.424 0.174 1.500 0.083 1.499 0.083
�̃1 “ 5 3.862 0.312 3.719 0.313 5.000 0.096 5.003 0.098
�̃2 “ ´3 ´8.343 0.413 ´7.673 0.524 ´3.002 0.124 ´2.997 0.172
�
2
✏ “ 8 9.354 5.266 9.122 5.216

�
2
⌘ “ 15 15.752 6.105 15.329 6.024

⇢ “ 0.4 0.448 0.513 0.459 0.511

DGP C
� “ 0.7 0.651 0.038 0.422 0.021 0.536 0.023 0.701 0.018
�̃1 “ 1 2.995 0.337 0.976 0.087 0.992 0.059 1.001 0.047
�̃2 “ 1.5 3.069 0.730 1.437 0.149 1.490 0.107 1.499 0.083
�̃1 “ 5 4.026 0.374 3.464 0.310 4.308 0.163 5.003 0.098
�̃2 “ ´3 ´9.189 0.504 ´6.719 0.344 ´3.365 0.442 ´2.997 0.172
�
2
✏ “ 8 9.135 8.653 9.122 5.216

�
2
⌘ “ 15 26.975 10.576 15.329 6.024

⇢ “ 0.4 0.198 0.661 0.459 0.511

Model 1 disregards school heterogeneity (i.e., cs is constant across schools and ↵s “ 0), while Model 2 accounts for
it (with ↵s “ 0). Model 3 includes a single fixed effect per school with a dummy variable capturing isolated stu-
dents (i.e., ↵s may not be zero but is constant across schools, whereas cs varies). Model 4 is our structural model.

the estimate of peer effects obtained using our approach (equation 4) to that obtained using the clas-

sical linear-in-means peer effects specification (equation 5), in a context where isolated students are

present.

4.1 Data

We use the Wave I in-school Add Health data, collected between September 1994 and April 1995.

This is a dataset of a nationally representative sample of 90,118 students (7th to 12th grade) from 145

middle, junior high, and high schools across the US. It includes information on the social and demo-

graphic characteristics of students as well as their friendship links–in particular, their best friends, up
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to 5 females and up to 5 males.

After removing observations with missing data, the sample used for our empirical analysis en-

compasses 68,430 students from 141 schools. The number of students per school ranges widely from

18 to 2,027, with an average of 485 per school. On average, each student reports having 3.4 friends

(1.6 male friends and 1.9 female friends). Moreover, there are 14,900 (22%) students who have no

peers (isolated students), including 7,655 (11%) who are not fully isolated, that is, they are nominated

by others. Only 1% of students nominate 10 friends. This suggests that the top coding issue resulting

from students’ inability to nominate more than 10 friends (Griffith, 2022) is not a serious concern here.

The dependent variable, GPA, is the average grade across four subjects: mathematics, science,

English/language arts, and history or social science. GPA is calculated on the basis of students’

grades in these four subjects, which we recoded as follows: A = 4, B = 3, C = 2, and D = 1. In our

analysis, we include controls for several potential factors that may influence GPA (Duncan et al., 2001;

Lin, 2010). These factors include sex, age, Hispanic ethnicity, race, living arrangements (whether the

student lives with both parents), duration of attendance at the current school, participation in school

clubs, mother’s education level, and mother’s profession. We also control for contextual variables

associated with the student’s social network by including the average of friends’ control variables.

Table 2 provides definitions of the variables included in the empirical analysis and presents sum-

mary statistics. The average GPA of students is 2.8, while the average GPA of their friends is 2.9.

On average, students are approximately 15 years old and have attended their current school for 2.5

years. In terms of demographic composition, the sample includes 48.7% boys, 16.4% Hispanics, 64.7%

whites, 16.8% Blacks, 7% Asians, and 9.5% from other racial backgrounds. Furthermore, 74.1% of the

students live with both parents. Regarding maternal education, about 30.6% of students’ mothers

have attained a high school (HS) education level, while 16.9% have education levels beyond HS,

and 41.9% have education levels below HS. In terms of mothers’ occupations, 20.2% of the students’

mothers work in professional occupations (such as teachers, doctors, lawyers, and executives), 20%

are homemakers or do not work, and 43.5% hold other jobs.16

As an important feature of the proposed method is to account for whether students are isolated or

not isolated, we also present summary statistics for the subsample of students who have no friends.

The average GPA for this group is slightly lower than that of students who have friends. We also

observe that students who have no peers are more likely to be males and are often from minority

groups, such as Hispanics, Blacks, and Asians.
16Add Health provides a detailed list with more than 15 categories. We combine these occupations into four broader cate-

gories along with a missing indicator.
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4.2 Main Results

We consider the same specifications as in the simulation study and present our main empirical results

in Table 3.17 Estimation results for Model 4 suggest that a one-point increase in the average GPA of

one’s peers results in a 0.856-point increase in own GPA. This finding is aligned with the empirical

literature, highlighting the importance of peers as determinants of student performance (Sacerdote,

2011; Epple and Romano, 2011). Importantly, this peer effect estimate derived from our preferred

specification is 60% larger compared to the size of the coefficient in the standard models that we es-

timate: 0.502 in Model 1 without unobserved school heterogeneity and 0.507 in Model 2 when we

allow for unobserved school heterogeneity. Note that school heterogeneity does not appear to signif-

icantly influence the endogenous peer effect parameter in the standard specification, as the estimates

are similar for Models 1 and 2. As argued in Section 3.1, the classical specification leads to a biased

estimate of peer effects because it does not distinguish between the common shock parameters ↵s and

cs. This distinction is important, as it affects the causal interpretation of the peer effect parameters.

In Model 3, when in addition to school fixed effects we control for whether a student is isolated or

not, we obtain a larger peer effects estimate of 0.751, albeit one that is still smaller than the one we ob-

tain in Model 4. It is noteworthy that the parameter associated with the dummy variable "Has friends"

in Model 3 is negative, however, this does not represent the causal effect of being a non-isolated stu-

dent. This is because if we look at Equation (9), the coefficient associated with this dummy variable

is ´�↵̄, which captures the GPA shock in Equation (1). The fact that this coefficient is significant

suggests the presence of shocks that directly affect GPA, irrespective of effort.

Moreover, the negative estimate indicates that �↵̄ ° 0, which is in line with the negative bias

in Models 1 and 2. Indeed, as argued in Section 3.1, peer effects estimated using standard models

would be biased downward if �↵s ° 0. The intuition behind this bias is as follows: the standard

model (Model 2) only accounts for effort shocks (cs) and wrongly classifies direct shocks to GPA that

do not influence effort as effort shocks, leading to an overestimation of their impact through a social

multiplier effect. Since co-movements in students’ and their peers’ GPA are either peer effects or

common shock effects at the school level, overestimating one type of effect reduces the second type

of effect.

Note also that the weak instrument test suggests that the specifications do not suffer from a weak

instrument issue. However, the Sargan-Hansen test of overidentifying restrictions suggests that in

Models 1–3 not all instruments are valid, which is not the case with Model 4, indicating that the issue

is addressed when we allow for additional heterogeneity. Indeed, since Models 1–3 are misspeci-

fied, the instruments used for the average friends’ GPA are not exogenous. These instruments are
17Replication codes are available at https://github.com/ahoundetoungan/PeerEffectsEffort.
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correlated to the omitted variables ´�↵sgs,i1ns .

We also find that several characteristics of students and contextual variables significantly influ-

ence their GPA. Female students score 0.165 grade points higher than male students. Older students

tend to do worse, while students who have been in the current school for longer periods tend to do

better. Regarding race and ethnicity, Black and students of other races score 0.121, and 0.026 points

lower than white students, respectively, whereas Asian students score 0.194 points higher than white

students. Hispanics also fare worse than non-Hispanics. Students who participate in club activi-

ties and who live with both parents score 0.138 and 0.091 points higher, respectively. Furthermore,

mother’s education is an important determinant of student GPA.

Finally, a number of contextual variables have significant coefficients. For example, a student’s

GPA increases with the mean age of their peers or when their peers are Black and Hispanic. On

the other hand, the student’s GPA decreases when their peers are female, Asian, participate in club

activities, and when their peers’ mother’s job is professional.

4.3 Counterfactual analysis

We use the estimated models to simulate policy interventions, such as enhancing teacher or school

quality while maintaining students’ effort levels and raising students’ awareness of the importance

of academic achievement. Improving school quality while holding students’ effort levels constant

can be achieved by increasing ↵s in the production equation (1). Introducing a preference shock to

raise students’ awareness of their academic performance involves increasing cs. However, Models 2

and 3 are unable to isolate these shocks; instead, they confound them into a common school shock by

increasing cs (akin to an increase in c̄s in Equation (5) for the standard model).

Figure 2 illustrates the implications of these shocks, represented by a one-unit increase in the fixed

effects parameters. The results reveal social multiplier effects in Models 2 and 3, with the magnitude

of these effects varying based on students’ centrality (see Calvó-Armengol et al., 2009). For students

without friends, the increase in GPA is one, indicating the absence of social multiplier effects. How-

ever, for connected students, the effects can reach 2 with Model 2 and 4 with Model 3. Note that

the effects are higher in Model 3, as this model partially addresses the issue of biased peer effect

estimates. The main issue regarding these results is that it is unclear what they capture, as Models

2 and 3 fail to separate GPA shocks that do not affect effort from preference shocks. By addressing

this problem in Model 4, we observe that GPA shocks yield no social multiplier effects; the increase

in GPA remains one for all students, irrespective of their centrality. In contrast, preference shocks

can indeed lead to social multiplier effects, ranging from one for isolated students to seven for the

most connected students. It is important to highlight that, in the absence of our structural model, if a

20



Table 3: Estimation results

Model 1 Model 2 Model 3 Model 4
Coef Sd Err Coef Sd Err Coef Sd Err Coef Sd Err

Peer Effects 0.502 0.025 0.507 0.028 0.751 0.041 0.856 0.044
Has friends ´2.266 0.141

Own effects

Female 0.183 0.006 0.176 0.006 0.165 0.006 0.165 0.006
Age 0.007 0.003 ´0.015 0.003 ´0.044 0.003 ´0.043 0.003
Hispanic ´0.110 0.010 ´0.101 0.010 ´0.099 0.010 ´0.091 0.010
Race

Black ´0.144 0.012 ´0.131 0.012 ´0.141 0.012 ´0.121 0.013
Asian 0.206 0.013 0.218 0.013 0.204 0.013 0.194 0.014
Other ´0.024 0.011 ´0.026 0.011 ´0.028 0.011 ´0.026 0.011

Lives with both parents 0.116 0.008 0.107 0.007 0.097 0.007 0.091 0.008
Years in school 0.023 0.003 0.033 0.003 0.029 0.003 0.027 0.003
Member of a club 0.166 0.013 0.157 0.012 0.146 0.012 0.138 0.012
Mother’s education

† High ´0.076 0.009 ´0.076 0.009 ´0.071 0.009 ´0.068 0.009
° High 0.163 0.007 0.151 0.007 0.131 0.008 0.124 0.008
Missing 0.032 0.013 0.031 0.012 0.026 0.012 0.026 0.012

Mother’s job
Professional 0.044 0.009 0.039 0.009 0.036 0.009 0.032 0.009
Other ´0.041 0.007 ´0.040 0.007 ´0.037 0.008 ´0.037 0.008
Missing ´0.083 0.011 ´0.078 0.011 ´0.073 0.011 ´0.070 0.011

Contextual effects

Female ´0.138 0.012 ´0.108 0.012 ´0.103 0.013 ´0.123 0.013
Age ´0.067 0.003 ´0.073 0.004 0.023 0.005 0.024 0.006
Hispanic 0.033 0.016 0.050 0.017 0.096 0.019 0.087 0.020
Race

Black ´0.001 0.015 ´0.007 0.015 0.076 0.018 0.070 0.020
Asian ´0.051 0.019 ´0.043 0.021 ´0.109 0.025 ´0.135 0.027
Other ´0.048 0.020 ´0.046 0.020 ´0.013 0.021 ´0.001 0.022

Lives with both parents ´0.040 0.017 ´0.040 0.016 ´0.006 0.017 ´0.019 0.018
Years in school 0.003 0.004 0.028 0.004 ´0.011 0.005 ´0.009 0.006
Member of a club ´0.175 0.029 ´0.142 0.028 ´0.052 0.028 ´0.084 0.029
Mother’s education

† High ´0.044 0.017 ´0.050 0.016 0.016 0.018 0.025 0.019
° High 0.062 0.016 0.027 0.017 ´0.021 0.020 ´0.032 0.021
Missing ´0.057 0.025 ´0.070 0.024 ´0.034 0.025 ´0.031 0.026

Mother’s job
Professional ´0.058 0.018 ´0.056 0.018 ´0.022 0.019 ´0.034 0.020
Other ´0.131 0.014 ´0.105 0.014 ´0.021 0.016 ´0.022 0.016
Missing ´0.144 0.022 ´0.116 0.021 0.003 0.024 0.008 0.024

�2
⌘ 0.285 0.286

�2
✏ 0.515 0.503 0.107 0.046

⇢ 0.230 0.605

Weak instrument F 141 202 117 120
Sargan test prob. 0.000 0.000 0.014 0.223
Number of schools 141 141 141 141
Number of students 68,430 68,430 68,430 68,430

Model 1 disregards school heterogeneity (i.e., cs is constant across schools), while Model 2 accounts for it. Model 3 in-
cludes a single fixed effect per school with a dummy variable capturing isolated students (i.e., ↵s may not be zero but
is constant across schools, whereas cs varies). Model 4 is our structural model. The columns "Coef" report the coeffi-
cient estimates, followed by their corresponding standard errors in the "Sd Err" columns.
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researcher were to estimate a reduced-form specification with two types of fixed effects, as specified

in Equation (9), they would then carry out policy analysis by associating the two types of shocks with

changes in the fixed effects 
NI
s and 

I
s . Consequently, they would erroneously conclude that both

shocks would yield social multiplier effects among students with friends. However, our structural

model allows us to distinguish between the two types of shocks by clearly demonstrating how the

two fixed effects are connected to the unobserved factors ↵s and cs.

To summarize, these simulations highlight that performing policy analysis using the standard

model may lead to misleading conclusions. It may falsely attribute multiplier effects to shocks that

do not generate them, or it may produce biased estimates of multiplier effects for shocks that indeed

generate them.

Model 4: Shock on cs

Model 4: Shock on αs

Model 3: Shock on cs

Model 2: Shock on cs

1 2 3 4 5 6 7
GPA increase

Figure 2: Effects of Shocks on the GPA
This figure presents the distribution of the increase in the GPA subsequent to a one-unit increase in ↵s and �2cs for the student
sample (n = 68,430). Since � is not identified, the shock on cs is scaled by �2 because the parameter cs in our specification (9)
is multiplied by �2. However, it is important to note that regardless of the value of �, increasing ↵s will still have the same
influence on all students, whereas the implication of an increase in cs will vary depending on centrality.

4.4 Excluding Isolated Students

We next examine the performance of the various models estimated above when we exclude isolated

students from our analysis. Note that in our main Add Health sample, 22% of the students have not

nominated any friends. Among them, half (11% of the full sample) are not fully isolated, meaning

they are nominated as friends by others, while the other half is fully isolated, having neither nomi-

nated friends nor being nominated by others.

Excluding the 22% isolated students from the sample will result in missing values in the network

dataset, because the 11% of students who are not fully isolated have been nominated as friends by

others. As demonstrated by Boucher and Houndetoungan (2022), this can lead to biased estimates of

peer effects. In contrast, the exclusion of the “fully isolated" students allows us to conduct a robust-
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ness analysis, as it does not involve a missing network data issue. We thus define a new subsample by

excluding the “fully isolated" students from our main sample, resulting in a subsample comprising

61,183 students from 139 schools.

Results are presented in Table 4. The peer effect estimate using the structural model (Model 4)

is slightly larger at 0.878 after excluding fully isolated students. Similarly, the estimates using the

standard linear-in-means model are also higher at 0.561 (Model 2) and 0.788 (Model 3).

This robustness analysis indicates that the bias in the estimation of peer effects when using the

standard approach persists even after removing fully isolated students. This is because removal of

fully isolated students still leaves in the sample some students who did not nominate any friends but

were nominated by others. If we remove these students as well (Model 21), we still find that the peer

effect estimate using the standard approach is downward biased. This is likely because, as mentioned

above, removal of the partially isolated students creates missing values in the network dataset.

Table 4: Estimation results after excluding isolated students

Excluding fully isolated Excluding no friends
Model 2 Model 3 Model 4 Model 21

Coef Sd Err Coef Sd Err Coef Sd Err Coef Sd Err

Peer Effects 0.561 0.030 0.788 0.042 0.878 0.044 0.581 0.034

Weak instrument F 160 100 105 112
Sargan test prob. 0.000 0.095 0.493 0.000
Number of schools 139 139 139 139
Number of students 61,183 61,183 61,183 53,529

Models 2, 3, and 4 are estimated using the subsample excluding fully isolated students (students who nominate
no friends and who have not been nominated by others), whereas Model 21 is estimated using the sample exclud-
ing all students who do not nominate any friends. Model 2 controls for unobserved school heterogeneity but do
not include dummy variables capturing isolated students i.e., ↵s “ 0 and cs varies across schools). Model 3 in-
cludes a single fixed effect per school with a dummy variable capturing isolated students (i.e., ↵s may not be zero
but is constant across schools, whereas cs varies). Model 4 is our structural model. The columns "Coef" report the
coefficient estimates followed by their corresponding standard errors in the columns "Sd Err". Full results with
the estimates of the coefficients associated with other variables in Table B.1.

5 Extension to Endogenous Networks

5.1 Method

The fact that certain characteristics of students that are unobserved might influence both educational

outcomes and their social connections calls into question the assumption of an exogenous network.

For instance, a student’s IQ or level of extroversion are likely to affect both their GPA and their choice

of friends. Because these student characteristics are typically not observed by the econometrician,

they would not be included in Xs and would instead be captured by the error terms ⌘s and "s, giving

rise to an omitted variables bias (network endogeneity).
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Specifically, Equation (9) can now be written as:

ys,i “ 
NI
s `

NI
s,i ` 

I
sp1 ´ `

NI
s,i q ` gs,iys ` x1

s,i�̃ ` gs,iXs�̃ ` hs,i ` ṽs,i, (10)

where hs,i captures missing variables correlated with GPA that may also explain link formation in

the social network. Treating the problem of network endogeneity as an omitted variables problem

is a common approach in the literature (Goldsmith-Pinkham and Imbens, 2013; Hsieh and Lee, 2016;

Johnsson and Moon, 2021; Jochmans, 2023). To address this problem, we rely on a two-stage method

similar to the control function approach proposed by Johnsson and Moon (2021). We first estimate

the omitted factors using a network formation model. In the second stage, we add them to our model

as additional explanatory variables.

We consider a network formation model with degree heterogeneity (see Graham, 2017; Dzemski,

2019; Yan et al., 2019).18 In this model, the conditional probability of observing a link from student i

to student j (that is, i declares that j is a friend) within the same school s is denoted as

Ppas,ij “ 1|:xs,ij , µ
out
s,i , µ

in
s,jq “ �p:x1

s,ij
:� ` µ

out
s,i ` µ

in
s,jq, (11)

where � is either the normal or logistic distribution function, depending on whether the model fol-

lows a probit or logit specification; :xs,ij is a vector of observed dyad-specific variables, such as the

distance between the characteristics of students i and j, which influence the probability of forming

a friendship link; µout
s,i and µ

in
s,j account for unobserved heterogeneity affecting student i’s likelihood

of initiating friendships (outdegree) and student j’s likelihood of receiving friendship nominations

(indegree), respectively. For instance, a student with a high IQ may be nominated as a friend by many

classmates, resulting in a large indegree µ
in
s,i. However, because the network is directed, this student’s

outdegree can be low, if µout
s,i is low.

In Equation (11), there are more than 2ns parameters to be estimated per school. However, Yan

et al. (2019) show that the standard logit estimators of µout
s,i and µ

in
s,j are consistent if the network is

dense.19 In this logit model, µout
s,i and µ

in
s,j are treated as fixed effects, that is, they can be correlated

to the observed dyad-specific variables. We refer the interested reader to Yan et al. (2019) for a for-

mal discussion of the model, including its identification and consistent estimation. Alternatively, a

Bayesian probit model based on the data augmentation technique can be used to simulate the poste-

rior distributions of µout
s,i and µ

in
s,j (see Albert and Chib, 1993). However, this approach treats µout

s,i and

µ
in
s,j as random effects.

18See De Paula (2020) for a recent review.
19Assuming that the network is dense requires each school’s size to increase to infinity with the number of schools. Using

simulations, Yan et al. (2019) also claims that the logit model performs quite well even if the network is sparse.
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As in Johnsson and Moon (2021) and Houndetoungan (2022), we use a nonparametric approach

to connect hs,i in Equation (10) to the unobserved factors µ
out
s,i and µ

in
s,i. We impose that hs,i “

h
outpµout

s,i q `h
inpµin

s,iq, where h
out and h

in are continuous functions. This specification is more flexible

than the assumption that hs,i is a linear function of µout
s,i and µ

in
s,i, as imposed by Goldsmith-Pinkham

and Imbens (2013) and Hsieh and Lee (2016). We approximate h
out and h

in using cubic B-splines

as in generalized additive models (Hastie, 2017). The key idea behind this approach stems from the

Weierstrass theorem, which states that any continuous function defined on a compact interval can be

well approximated using polynomials. Specifically, we approximate h
outpµout

s,i q by cubic polynomials

on ten different intervals covering the range of µout
s,i . The intervals are defined so that each comprises

approximately the same share of observations. We also apply this approach to h
inpµin

s,iq. Given the

number of intervals and the degree of the polynomials, this approach results in approximating hs,i by

a combination of 26 variables, called bases, that are computed from the estimates of µout
s,i and µ

in
s,i.20

In the second stage, we use these new 26 variables as additional explanatory variables in the

GPA model. Note that our identification analysis outlined in Section 3.2 is also valid here, under the

assumption that µout
s,i and µ

in
s,i are well identified in the first stage. In contrast, achieving asymptotic

normality in this two-stage estimation process becomes more complicated and cannot be generalized

without new restrictions. In general, one needs the first-stage estimator to converge as fast as possible

so that its approximation error does not influence the second-stage estimator asymptotically (see OA

C.4). Alternatively, a bootstrap approach can be used to approximate the asymptotic distribution of

the second-stage estimator.

5.2 Empirical Results

Table 5 presents the estimation results of peer effects, accounting for network endogeneity. Full re-

sults, including coefficients associated with other variables, can be found in Appendix B. We explore

two approaches for estimating the unobserved factors µout
i and µ

in
i : a fixed effects logit model (Mod-

els 2a, 3a, and 4a) and a random effects Bayesian model (Models 2b, 3b, and 4b). In all specifications,

the new 26 regressors are globally significant, indicating the endogeneity of the network (we do not

present the estimates for these new regressors).

In our preferred specifications (models 4a and 4b), the endogeneity does not significantly affect

the estimate of peer effects. This result aligns with many other findings on the Add Health data

arguing that the endogeneity of the network does not involve a substantial bias in the peer effects

(e.g., Hsieh and Lee, 2016; Hsieh and Lin, 2017). Similar to those studies, we observe a slight decrease
20Normally, applying a cubic polynomial with ten intervals would result in 40 bases for each µout

s,i and µin
s,i. However,

constraints are imposed on the coefficients of many variables for the approximation to be a continuous function and to avoid
a problem of multicollinearity. Given the constraints, each approximation is ultimately a combination of 13 variables. The
detailed method for the construction of these bases can be found in Hastie (2017).
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in the peer effect estimate (from 0.856 to 0.828). This decline occurs because of unobserved factors

such as IQ that are positively correlated with GPA. For instance, an exogenous shock to IQ would

simultaneously influence both students’ and peers’ GPAs. Accounting for the endogeneity helps

disentangle true peer effects from these co-movements in GPA.

In the standard models (Models 2a and 2b), controlling for network endogeneity through the fixed

effect approach significantly increases the peer effect estimate from 0.507 to 0.672. This control also

mitigates the overidentification problem. The Sargan test probability increases from 0.000 to 0.039.

Overidentification can occur due to the endogeneity of the network, which is likely to be the case

in the standard model because the error term includes dummy variables for isolated students. By

accounting for network endogeneity, the bias stemming from the omission of these variables is re-

duced. However, the Bayesian random effect approach still yields biased estimates. This is because

this method only captures unobserved factors µout
i and µ

in
i that are independent of the regressions in

xs,i. For example, this approach cannot control for the omission of the IQ because the latter would be

corrected with xs,i. For the standard models with a dummy variable for isolated students (Model 3a,

3b), controlling for network endogeneity does not significantly influence the peer effects. Nonethe-

less, it effectively resolves the issue of overidentification.

Table 5: Estimation results controlling for network endogeneity

Model 2a Model 2b Model 3a Model 3B Model 4a Model 4b
Coef Sd Err Coef Sd Err Coef Sd Err Coef Sd Err Coef Sd Err Coef Sd Err

Peer Effects 0.672 0.036 0.478 0.029 0.729 0.042 0.717 0.042 0.828 0.044 0.826 0.044

Weak instrument F 131 190 113 113 114 114
Sargan test prob. 0.039 0.000 0.076 0.090 0.447 0.453
Number of schools 141 141 141 141 141 141
Number of students 68,430 68,430 68,430 68,430 68,430 68,430

Models 2a, 3a, and 4a use logit fixed effects estimations for µout
s,i and µin

s,i in the first stage, whereas Models 2b, 3b, and 4c consider a Bayesian
probit random effects estimate. In Models 2a and 2b, unobserved school heterogeneity is controlled for, but dummy variables capturing isolated
students are not included (↵s “ 0 and cs varies across schools). Models 3a and 3b include a single fixed effect per school with a dummy variable
capturing isolated students (i.e., ↵s may not be zero but is constant across schools, whereas cs varies). Models 4a and 4b are specified according to
our structural model. The columns "Coef" report the coefficient estimates followed by their corresponding standard errors in the "Sd Err" columns.
Full results with the estimates of the coefficients associated with other variables are presented in Appendix Table B.2.

6 Conclusion

This paper proposes a peer effect model in which students choose their level of academic effort, which

in turn impacts their academic achievement (GPA). Unlike standard models used in the literature to

estimate peer effects on GPA, our structural model accounts for two types of common shocks at the

school level and allows for identifying peer effects on effort itself, even though effort is unobserved.

We introduce common shocks that directly influence GPA, irrespective of effort levels, and common

shocks affecting both students’ effort and their GPA.
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We show that these two types of shocks have different impacts on GPA. Shocks exerted directly

on GPA without influencing academic effort do not involve a social multiplier, whereas preference

shocks that affect both academic effort and GPA may involve a social multiplier effect. We also show

that failure to differentiate the two types of shocks results in a biased estimate of peer effects, when

there are isolated students. Practically, accounting for the difference between the shocks amounts to

controlling for student heterogeneity on the basis of whether they have friends or not.

Our model leads to an econometric specification that poses identification challenges. This occurs

in particular because of the presence of unobserved school heterogeneity and students with no peers

in the network. We derive conditions for identification and propose a multi-stage estimation strategy

that combines the GMM and QML approaches. Our approach yields a consistent estimator, and

we establish asymptotic normality. We also extend the estimation strategy and examine the case of

endogenous networks.

We present an empirical illustration using Add Health data. We find that increasing the average

GPA of peers by one point results in a 0.856 point increase in a student’s GPA. The peer effect esti-

mate obtained using standard models is 40% lower than that obtained from our proposed approach.

Controlling for network endogeneity in the standard models reduces the bias.

More generally, our framework can be used to study peer effects on activities that cannot be di-

rectly observed. An example is body mass index (BMI), which cannot be directly chosen. People need

to exert effort, such as developing healthy diet habits, engaging in physical exercise, and avoiding

fast food, to improve their BMI. Peer influence is more related to effort than BMI. Another example

is peer effects on workers’ effort. The observed outcome is generally worker’s productivity, whereas

peer effects stem from effort.
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A Appendix: Proofs

A.1 Uniqueness of the Nash Equilibrium

By replacing the GPA with its expression given by Equation (1), we obtain a new payoff function

ûs,ipes,i, es,´iq that does not depend on the GPA. The new payoff function is

ûs,ipes,i, es,´iq “ pcs ` x1
s,i� ` gs,iXs� ` "s,iqp↵s ` x1

s,i✓ ` �es,i ` ⌘s,iq ´ e2s,i
2 ` �es,igs,ies. (A.1)

The first-order condition of the maximization of ûs,ipes,i, es,´iq with respect to the effort es,i gives

es,i “ �cs ` �gs,ies ` �x1
s,i� ` �gs,iXs� ` �"s,i. (A.2)

If we write Equation (A.2) at the school level, we get the best response functions of all students:

es “ �cs1ns ` �Gses ` �Xs� ` �GsXs� ` �"s, (A.3)

where 1ns is an ns-vector of ones and "s “ p"s,1, . . . , "s,nsq1. Equation (A.3) is a system of ns linear

equations in the effort. This system has a unique solution if |Ins ´ �Gs| ‰ 0, where Ins is the ns ˆ ns

identity matrix. The condition |Ins ´ �Gs| ‰ 0 is equivalent to saying that 1 is not an eigenvalue for

�Gs. As Gs is a row-normalized matrix, the eigenvalues of �Gs are in the closed interval r´|�|, |�|s.21

Thus, if |�| † 1, then |Ins ´ �Gs| ‰ 0 and the solution of Equation (A.3) is

es “ pIns ´ �Gsq´1p�cs1ns ` �Xs� ` �GsXs� ` �"sq. (A.4)

As a result, the game described by the payoff function (A.1) has a unique NE given by (A.4).

A.2 Reduced form equation of the GPA

Let ⌘s “ p⌘s,1, . . . , ⌘s,nsq1 be the vector of the idiosyncratic error terms in Equation (1). Let also

ys “ pys,1, . . . , ys,nsq1 be the GPAs’ vector. From Equation (1), we have es,i “ pys,i´↵s´x1
s,i✓´⌘s,iq{�.

By replacing this expression in Equation (A.2), we get

ys,i ´ ↵s ´ x1
s,i✓ ´ ⌘s,i

�
“ �gs,ipys ´ ↵s1ns ´ Xs✓ ´ ⌘sq

�
` �pcs ` x1

s,i� ` gs,iXs� ` "s,iq,

ys,i “ s,i ` �gs,iys ` x1
s,i�̃ ` gs,iXs�̃ ` p!s,i ´ �gs,iq⌘s ` �

2
"s,i,

21This is a direct implication of the Gershgorin circle theorem (Horn and Johnson, 2012).
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where s,i “ �
2
cs `p1´�gs,i1nsq↵s, �̃ “ �

2�`✓, �̃ “ �
2�´�✓, and !s,i is a row-vector of dimension

ns in which all the elements are equal to zero except the i-th element, which is one.

A.3 Proof of Proposition 3.1

We show that the reflection problem is addressed under Conditions (i) and (ii) of Assumption 3.2.

Assume that EpJsGsys|Gs,Xsq is perfectly collinear with JsXs and JsGsXs. For any i P VNI
s , we

have Epgs,iys ´ y
NI
s |Gs,Xsq “ px1

s,i ´ xNI1
s q 9� ` pgs,iX1

s ´ x̄NI1
s q 9�, where y

NI
s , xNI

s , and x̄NI
s are the

respectively averages of gs,iys, xs,i, and pgs,iXsq1 within VNI
s , and 9�, 9� are unknown parameters.

The variables gs,iys, xs,i, and gs,iXs are taking in deviation with respect to their average in VNI
s

because of the matrix Js that multiplies the terms of Equation (7). Let us take the previous equation

in difference between two students i1, j from VNI
s , where j is i1’s friend. This implies:

ȳ
e
s,i1 ´ ȳ

e
s,j “ px1

s,i1 ´ x1
s,jq 9� ` px̄1

s,i1 ´ x̄1
s,jq 9�, (A.5)

where ȳ
e
s,i “ Epgs,iys|Gs,Xsq and x̄1

s,i “ gs,iXs for all i. Assume an increase in xl for all l that

is separated from i1 by a link of distance three, ceteris paribus. Such an l exists by Condition (ii) of

Assumption 3.2. As j is i1’s friend, l cannot be j’s friend, otherwise, it would be possible to find a

link of distance two from l to i1. Thus, an increase in any xl has no influence on x1
s,i1 , x1

s,j , x̄1
s,i1 , and

x̄1
s,j . Therefore, the right-hand side (RHS (A.5) would not be influenced and we would have

�l
ȳ
e
s,i1 ´ �l

ȳ
e
s,j “ 0, (A.6)

where the operator �l measures the variation after the increase in xl.

Using a proof by contradiction, we will now show that the condition �l
ȳ
e
s,i1 “ �l

ȳ
e
s,j for all j

who is i1’s friend is not possible. By applying the operator �l to every term of Equation (6), we have

�lys “ �Gsp�lysq ` p�lXsq�̃ ` Gsp�lXsq�̃. This implies that �lys “ pI ´ �Gsq´1
`
p�lXsq�̃ `

Gsp�lXsq�̃
˘
. As pI ´ �Gsq´1 “ ∞8

k“0 �
kGk

s , we can also write

�lys “ p�lXsq�̃ ` ∞8
k“0 �

kGk`1
s p�lXsqp��̃ ` �̃q. (A.7)

Equation (A.7) implies the GPA is influenced by the contextual variables if and only if ��̃ ` �̃ ‰ 0.

By premultiplying (A.7) by gs,i1 and taking the expectation conditional on Gs and Xs, we have

�l
ȳ
e
s,i1 “ gs,i1

∞8
k“1 �

kGk`1
s p�lXsqp��̃ ` �̃q. (A.8)

Indeed gs,i1p�lXsq “ 0 and gs,i1Gsp�lXsq “ 0 (since l is separated from i1 by a link of distance
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three, l is not i1’s friend, nor i1’s friend’s friend).

By premultiplying each term of Equation (A.7) by �Gs, we obtain
∞8

k“1 �
kGk`1

s p�lXsqp��̃` �̃q “
�Gs�lys ´ �Gsp�lXsq�̃. By replacing the previous equation in (A.8), we get

�l
ȳ
e
s,i1 “ �gs,i1Gs�

lys, (A.9)

because gs,i1Gsp�lXsq “ 0. As Gs�lys “ p�l
ȳ
e
s,1, . . . ,�

l
ȳ
e
s,ns

q1, the term gs,i1Gs�lys in the RHS of

Equation (A.9) is the average of �l
ȳ
e
s,j among students j who are i1’s friends. If Equation (A.6) holds

true, that is, if �l
ȳ
e
s,j “ �l

ȳ
e
s,i1 for any j who is i1’s friend, this would mean that gs,i1Gs�lys “ �l

ȳ
e
s,i1

and Equation (A.9) would imply that �l
ȳ
e
s,i1 “ ��l

ȳ
e
s,i1 . This is where the contradiction would come

from. Indeed, the previous equation is not compatible with Equation (A.6) since � ‰ 1 by Assumption

2.1, and �l
ȳ
e
s,i1 ‰ 0 because ��̃ ` �̃ ‰ 0 (see Equation (A.7)). As a result, the model does not suffer

from the reflection problem.

Let X̃s “ JsrXs, GsXss, Rs “ rJsGsys, X̃ss, Zs “ rJsG2
sXs, X̃ss, R1Z “ ∞S

s“1 R
1
sZs, and

Z1Z “ ∞S
s“1 Z

1
sZs. We set the following identification conditions.

Assumption A.1. The matrices R1Z{n and Z1Z{n converge to full rank matrices as S grows to infinity.

Moreover,
∞S

s“1 Z
1
sppIns ´ �Gsq⌘s ` `�

2"sq{n “ opp1q.

The first half of Assumption A.1 suggests that the columns of design matrix R “ rR1
1, . . . ,R

1
Ss1 and

those of the instrument matrix Z “ rZ1
1, . . . ,Z1

Ss1 are linearly independent for large S. The second

condition of the assumption comes from the exogeneity of Xs and Gs with respect to ⌘s and "s.

Under Assumptions 2.1, 3.1, 3.2, and A.1, the design matrix of Equation (7) is full rank for large n,

and the identification of  follows.

A.4 Proof of Proposition 3.2

In this section, we use different notations for the parameters and their true values; that is their values

in the data-generating process. We denote by  0, �0⌘ , �0✏, and ⇢0 the true values of  , �⌘ , �✏, and ⇢,

respectively.

However, the log-likelihood cannot be written directly because the transformation we apply to

eliminate the fixed effects NI
s and 

I
s makes the covariance matrix Epvsv1

s|Gsq singular (for example,

we have 11
ns
vs “ 0). In other words, we cannot invert the covariance matrix Epvsv1

s|Gsq, which is a

necessary task to write the log-likelihood. To address this issue, we use a similar approach to that of

Lee et al. (2010). Let rFs, `
I
s{

a
nI
s, `

NI
s {

a
nNI
s s be the orthonormal matrix of Js, where the columns

in Fs are eigenvectors of Js corresponding to the eigenvalue one.22 To ease the notational burden, we
22The eigenvalues of Js are zero and one. The multiplicity of the eigenvalue one is nr ´2 if the school s has students in both

VI
s and VNI

s , and nr ´ 1 if s has students in either VI
s or VNI

s .
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assume the school s has students in both VI
s and VNI

s . We have FsF1
s “ Js and F1

sFs “ Ins´2. As

Fs does not depend on unknown parameters, maximizing the log-likelihood of v̂s is equivalent to

maximizing that of F1
sv̂s.23 The log-likelihood of F1

sv̂s is given by

L̂p�2
⌘,�

2
✏ , ⇢q “ ´ ∞S

s“1
ns´2

2 logp�2
✏ q´ 1

2

∞S
s“1 log|⌦sp�̂, ⌧, ⇢q|´∞S

s“1
1

2�2
✏
v̂1
sFs⌦

´1
s p�̂, ⌧, ⇢qF1

sv̂s, (A.10)

where ⌦sp�̂, ⌧, ⇢q “ Ins´2`⌧
2F1

sWsW1
sFs`⇢⌧F1

spWs`W1
sqFs, Ws “ Ins ´�̂Gs, and ⌧ “ �⌘{�✏. The

first-order conditions of the maximization of (A.10) imply that �2
✏ can be substituted with �̃

2
✏ p⌧, ⇢q “

∞S
s“1

v̂1
sFs⌦

´1
s p�̂,⌧,⇢qF1

sv̂s

n´2S . This leads to a simpler concentrated log-likelihood that does not depend on

�
2
✏ and is easier to maximize. We also define the following log-likelihood by replacing v̂s and �̂ in

L̂p�2
⌘,�

2
✏ , ⇢q with their true value:

Lp�2
⌘,�

2
✏ , ⇢q “ ´ ∞S

s“1
ns´2

2 logp�2
✏ q ´ 1

2

∞S
s“1 log|⌦sp�0, ⌧, ⇢q| ´ ∞S

s“1
1

2�2
✏
v1
sFs⌦

´1
s p�0, ⌧, ⇢qF1

svs,

where vs “ JspIns´�0Gsq⌘s`�
2Js"s. Let ⇡minp.q be the smallest eigenvalue and ⇡maxp.q be the largest

eigenvalue. The operator k.k2 applied to a matrix is the operator norm induced by the `
2-norm. We

also denote by ⇥ the space of p�2
⌘, �

2
✏ , ⇢q.

The proof is done in several steps.

Step 1

We show that 1
n´2S pL̂p�2

⌘,�
2
✏ , ⇢q ´ Lp�2

⌘,�
2
✏ , ⇢qq converges in probability to zero uniformly in ⇥. This

proof would imply that we can focus on Lp�2
⌘,�

2
✏ , ⇢q for the identification and consistency instead of

L̂p�2
⌘,�

2
✏ , ⇢q. To do so, we set the following assumptions.

Assumption A.2. (i) ⇥ is a compact subset of R3
and (ii) limSÑ8 ⇡minp⌦sp�̂, ⌧, ⇢qq ° 0 for any s.

Assumption A.3. (i) Ep⌘4s,i|Gs,Xsq, Ep"4s,i|Gs,Xsq, and Ep⌘2s,i"2s,i|Gs,Xsq exist; (ii) maxs,i|⌘s,i| “ Opp1q,

maxs,i|"s,i| “ Opp1q, and maxs,ikxs,ik2 “ Opp1q.

Condition (i) of Assumption A.2 is required in many econometric models. It allows for generalizing

pointwise convergences to uniform convergences. Condition (ii) of Assumption A.2 generalizes the

nonsingularity of the matrix ⌦sp�̂, ⌧, ⇢q to large samples (when S grows to infinity). Assumption

A.3 sets further conditions regarding the distribution of p⌘s,i, "s,iq1 and ensures that xs,i and the i-th

component of vs are bounded.

Because Gs is row-normalized and bounded in column sum (Assumption 3.3), then for all ⌧

and ⇢, ⌦̃sp�̂, ⌧, ⇢q :“ Ins ` ⌧
2WsW1

s ` ⇢⌧pWs ` W1
sq is also absolutely bounded in both row and

23Unlike for vs, the covariance matrix of F1
svs is not singular. Indeed, EpF1

svsv1
sFs|Gsq “ F1

sJsEpṽsṽ1
s|GsqJsFs, where

ṽs “ pIns ´ �Gsq⌘s ` �2"s. For any ns ´ 2 vector us ‰ 0, u1
sF

1
sJsEpṽsṽ1

s|GsqJsFsus ° 0 because JsFsus “ Fsus ‰ 0
and Epṽsṽ1

s|Gsq is positive definite (except for special cases where ⌘s and "s are collinear).
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column sums, and ⇡maxp⌦̃sp�̂, ⌧, ⇢qq † 8.24 Moreover, as ⌦sp�̂, ⌧, ⇢q “ F1
s⌦̃sp�̂, ⌧, ⇢qFs, we have

⇡maxp⌦sp�̂, ⌧, ⇢qq § ⇡maxp⌦̃sp�̂, ⌧, ⇢qq † 8. Thus, 1
n´2S

∞S
s“1 log|⌦sp�̂, ⌧, ⇢q| † 8 for all �2

⌘ , �2
✏ , and ⇢.

As a result, 1
n´2S

∞S
s“1 log|⌦sp�̂, ⌧, ⇢q| ´ 1

n´2S

∞S
s“1 log|⌦sp�0, ⌧, ⇢q| “ opp1q (because the determinant

is continuous).

Besides, v̂s “ vs ` �v̂s, where �v̂s “ Rsp 0 ´  ̂q. As maxs,ikxs,ik2 “ Opp1q and p 0 ´  ̂q “
Oppn´1{2q, then each component of �v̂s is Oppn´1{2q and k�v̂sk2 “ Opppns{nq1{2q. On the other hand,

as maxs,i|⌘s,i| “ Opp1q and maxs,i|"s,i| “ Opp1q, we have kvsk2 “ Oppn1{2
s q. We also have

v̂1
sFs⌦

´1
s p�̂, ⌧, ⇢qF1

sv̂s “ v1
sFs⌦

´1
s p�̂, ⌧, ⇢qF1

svs`2�v̂1
sFs⌦

´1
s p�̂, ⌧, ⇢qF1

svs`�v̂1
sFs⌦

´1
s p�̂, ⌧, ⇢qF1

s�v̂s.

The submultiplicativity property of the operator norm implies that
∞S

s“1|�v̂1
sFs⌦

´1
s p�̂, ⌧, ⇢qF1

svs| “
Oppn1{2q and

∞S
s“1|�v̂1

sFs⌦
´1
s p�̂, ⌧, ⇢qF1

s�v̂s| “ Opp1q because kFsk2 “ 1 and k⌦´1
s p�̂, ⌧, ⇢qk2 “

Opp1q (Assumption A.2). Thus, 1
n´2S pv̂1

sFs⌦
´1
s p�̂, ⌧, ⇢qF1

sv̂s´v1
sFs⌦

´1
s p�̂, ⌧, ⇢qF1

svsq “ opp1q. We also

have 1
n´2S pv̂1

sFs⌦
´1
s p�̂, ⌧, ⇢qF1

sv̂s ´ v1
sFs⌦

´1
s p�0, ⌧, ⇢qF1

svsq “ opp1q because v1
sFs⌦

´1
s p�̂, ⌧, ⇢qF1

svs is

a continuous function of �̂.

As a result, 1
n pL̂p�2

⌘,�
2
✏ , ⇢q ´ Lp�2

⌘,�
2
✏ , ⇢qq “ opp1q. The convergence is uniform because the log-

likelihoods can be expressed as a polynomial function in p�2
⌘, �

2
✏ , ⇢q. We can now focus on the log-

likelihood Lp�2
⌘,�

2
✏ , ⇢q for the identification and the consistency of p�2

0✏, ⌧0, ⇢0q, where ⌧0 “ �0⌘{�0✏.

Step 2

The first-order conditions (foc) of the maximization of Lp�2
⌘,�

2
✏ , ⇢q imply that �2

✏ can be replaced with

�̂
2
✏ p⌧, ⇢q “ ∞S

s“1
v1
sFs⌦

´1
s p�0,⌧,⇢qF1

svs

n´2S . This leads to a concentrated log-likelihood given by Lcp⌧, ⇢q “
´n´2S

2 �̂
2
✏ p⌧, ⇢q ´ 1

2

∞S
s“1 log|⌦sp�0, ⌧, ⇢q| ´ n´2S

2 that does not depend on �
2
✏ . Let L

˚p�2
⌘,�

2
✏ , ⇢q “

E
`
Lp�2

⌘,�
2
✏ , ⇢q|G1, . . . ,GS

˘
. As for Lp�2

⌘,�
2
✏ , ⇢q, we can also replace �

2
✏ with E

`
�̂
2
✏ p⌧, ⇢q|G1, . . . ,GS

˘
.

Ep�̂2
✏ p⌧, ⇢q|G1, . . . ,GSq “ �2

0"
n´2S

∞S
s“1 EpTrpv1

sFs⌦
´1
s p�0, ⌧, ⇢qF1

svsq|G1, . . . ,GSq,

Ep�̂2
✏ p⌧, ⇢q|G1, . . . ,GSq “ �2

0"
n´2S

∞S
s“1 EpTrp⌦´1

s p�0, ⌧, ⇢qF1
svsv1

sFsq|G1, . . . ,GSq,

Ep�̂2
✏ p⌧, ⇢q|G1, . . . ,GSq “ �2

0"
n´2S

∞S
s“1 Trp⌦´1

s p�0, ⌧, ⇢qEpF1
svsv1

sFs|G1, . . . ,GSqq,

Ep�̂2
✏ p⌧, ⇢q|G1, . . . ,GSq “ �2

0"
n´2S

∞S
s“1 Trp⌦´1

s p�0, ⌧, ⇢q⌦0,sq, (A.11)

where ⌦0,s “ ⌦sp�0, ⌧0, ⇢0q.

We obtain the concentrated log-likelihood L
˚
c p⌧, ⇢q “ ´n´2S

2 �̃
2˚
✏ p⌧, ⇢q´ 1

2

∞S
s“1 log|⌦sp�0, ⌧, ⇢q|´n´2S

2 ,

where �̃
2˚
✏ p⌧, ⇢q “ �2

0"
n´2S

∞S
s“1 Tr

`
⌦´1

s p�0, ⌧, ⇢q⌦0,s

˘
. We show that 1

n pLcp⌧, ⇢q ´ L
˚
c p⌧, ⇢qq converges

to zero uniformly.

Although E
`
�̂
2
✏ p⌧, ⇢q|G1, . . . ,GS

˘
“ �̃

2˚
✏ p⌧, ⇢q, this does not implies that plim �̂

2
✏ p⌧, ⇢q “ �̃

2˚
✏ p⌧, ⇢q.

24We state and show in OA C.1 basic properties used throughout the paper. See properties P.5 and P.6.
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We also need to show that the variance of �̂
2
✏ p⌧, ⇢q converges to zero as S grows to infinity. This

is especially important in our framework because the components of vs are connected through the

network and also because ns is not necessarily bounded. This is why we impose that fourth-order

moments of ⌘s,i and "s,i exist in Assumption A.3. In fact, the variance of �̂2
✏ p⌧, ⇢q involves up to the

fourth power of the components of vs. We provide the proof in OA C.2. The uniform convergence of
1
n pLcp⌧, ⇢q ´ L

˚
c p⌧, ⇢qq to zero directly follows.

Step 3

To establish the identification of the consistency, we need to show L
˚
c p⌧, ⇢q is maximized at a single

point which is p⌧0, ⇢0q (see Newey and McFadden, 1994). We set the following assumption.

Assumption A.4. If p⌧, ⇢q ‰ p⌧0, ⇢0q, then

lim
nÑ8

p∞S
s“1plog|�̃2˚

✏ p⌧, ⇢q⌦sp�0, ⌧, ⇢q| ´ log|�2
0"⌦0,s|q

n ‰ 0.

The intuition of Assumption A.4 is as follows. After replacing �
2
✏ with �̃

2
✏ p⌧, ⇢q in Equation (A.10),

the variable part of the concentrated log-likelihood is proportional to 1
n

∞S
s“1 log|�̃2

✏ p⌧, ⇢q⌦sp�̂, ⌧, ⇢q|,
which is asymptotically equivalent to 1

n

∞S
s“1 log|�̃2˚

✏ p⌧, ⇢q⌦sp�̂, ⌧, ⇢q|. Assumption A.4 implies that

the value of 1
n

∞S
s“1 log|�̃2˚

✏ p⌧, ⇢q⌦sp�̂, ⌧, ⇢q| at p⌧0, ⇢0q cannot be reached at another point as S grows

to infinity. This assumption adapts Assumption 9 of Lee (2004) or Assumption 5.1 of Lee et al. (2010)

to our framework.25

Let pesqs be a process normally distributed of zero mean and covariance matrix �
2
0✏⌦sp⌧0, ⇢0q.

Let L0p�2
⌘,�

2
✏ , ⇢q “ ´ ∞S

s“1
ns´2

2 �
2
✏ ´ 1

2

∞S
s“1 log|⌦sp�0, ⌧, ⇢q| ´ ∞S

s“1
1

2�2
✏
e1
sFs⌦

´1
s p�0, ⌧, ⇢qF1

ses. By

Jensen’s inequality, we have EpL0p�2
⌘,�

2
✏ , ⇢q ´ L

0p�2
0⌘,�

2
0✏, ⇢0q|G1, . . . ,GSq § 0. This suggests that

p⌧0, ⇢0q is a global maximizer of plim 1
nL

˚
c p⌧, ⇢q. The uniqueness of the maximizer is guaranteed by

Assumption A.4. If p⌧0, ⇢0q is not the unique maximizer, then there would be another p⌧`, ⇢`q P
⇥ such that plim 1

n

∞S
s“1 log|�̃2˚

✏ p⌧0, ⇢0q⌦sp�0, ⌧0, ⇢0q| “ plim 1
n

∞S
s“1 log|�̃2˚

✏ p⌧`, ⇢`q⌦sp�0, ⌧`, ⇢`q|.
This would violate Assumption A.4. As a result, p⌧0, ⇢0q is globally identified and p⌧̂ , ⇢̂q is a consistent

estimator of p⌧0, ⇢0q. The consistency of �̂2
⌘ comes from Equation (A.11). We have plim �̂

2
✏ p⌧̂ , ⇢̂q “

Ep�̂2
✏ p⌧0, ⇢0q|G1, . . . ,GSq “ �

2
0✏; thus, plim �̂

2
⌘ “ ⌧

2
0�

2
0✏ “ �

2
0⌘ .

B Supplementary Results on the Application

Table B.1 presents detailed estimation results when we exclude isolated students. Table B.2 presents

detailed estimation results controlling for network endogeneity.
25Although we cannot connect Assumption A.4 to the fundamental elements of the model, we can explain why the covari-

ance matrix of vs conditionally on Gs captures much nonlinearity to allow identifying p�2
0✏, ⌧0, ⇢0q. As shown in online

Appendix (OA) C.3, a crucial requirement for identification is that Js, JspGs ` G1
sqJs, and JsGsG1

sJs are linearly indepen-
dent. This holds under the following two conditions: (1) there are four students who have friends in a certain school, those
students are not directly linked and only two of them have common friends; (2) there are four students who have friends in
a certain school and only two of them are linked. We present an example of a common network structure under which the
conditions are verified (see Figure C.1).
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Table B.1: Detailed estimation results after excluding isolated students

Model 2 Model 3 Model 4 Model 21

Coef Sd Err Coef Sd Err Coef Sd Err Coef Sd Err

Peer Effects 0.561 0.030 0.788 0.042 0.878 0.044 0.581 0.034
Has friends ´2.449 0.145

Own effects

Female 0.182 0.006 0.165 0.007 0.165 0.007 0.186 0.007
Age ´0.008 0.004 ´0.047 0.004 ´0.045 0.004 ´0.009 0.004
Hispanic ´0.096 0.011 ´0.094 0.011 ´0.086 0.011 ´0.092 0.012
Race

Black ´0.113 0.013 ´0.124 0.013 ´0.102 0.015 ´0.076 0.016
Asian 0.199 0.014 0.183 0.015 0.173 0.015 0.175 0.015
Other ´0.030 0.011 ´0.032 0.011 ´0.029 0.012 ´0.023 0.012

Lives with both parents 0.098 0.008 0.088 0.008 0.083 0.008 0.098 0.008
Years in school 0.032 0.003 0.025 0.003 0.023 0.003 0.027 0.003
Member of a club 0.169 0.013 0.158 0.013 0.150 0.013 0.182 0.015
Mother’s education

† High ´0.072 0.009 ´0.066 0.009 ´0.062 0.009 ´0.072 0.010
° High 0.146 0.008 0.125 0.008 0.118 0.008 0.132 0.008
Missing 0.017 0.013 0.012 0.013 0.013 0.013 0.007 0.014

Mother’s job
Professional 0.040 0.009 0.037 0.010 0.034 0.010 0.029 0.010
Other ´0.035 0.008 ´0.032 0.008 ´0.031 0.008 ´0.041 0.008
Missing ´0.070 0.012 ´0.064 0.012 ´0.061 0.012 ´0.078 0.013

Contextual effects

Female ´0.122 0.012 ´0.111 0.013 ´0.127 0.013 ´0.137 0.012
Age ´0.082 0.004 0.029 0.005 0.028 0.006 ´0.075 0.005
Hispanic 0.049 0.017 0.094 0.019 0.086 0.021 0.023 0.017
Race

Black ´0.010 0.017 0.067 0.019 0.055 0.021 ´0.040 0.019
Asian ´0.051 0.022 ´0.111 0.026 ´0.129 0.028 ´0.052 0.023
Other ´0.040 0.020 ´0.008 0.021 ´0.001 0.022 ´0.028 0.019

Lives with both parents ´0.047 0.016 ´0.011 0.017 ´0.021 0.018 ´0.023 0.016
Years in school 0.032 0.004 ´0.010 0.005 ´0.008 0.006 0.039 0.005
Member of a club ´0.160 0.028 ´0.065 0.028 ´0.091 0.029 ´0.180 0.029
Mother’s education

† High ´0.043 0.016 0.020 0.018 0.026 0.019 ´0.022 0.016
° High 0.014 0.017 ´0.026 0.020 ´0.036 0.021 0.022 0.016
Missing ´0.068 0.024 ´0.033 0.026 ´0.031 0.026 ´0.046 0.023

Mother’s job
Professional ´0.062 0.018 ´0.026 0.019 ´0.036 0.020 ´0.037 0.017
Other ´0.103 0.014 ´0.021 0.016 ´0.021 0.016 ´0.070 0.014
Missing ´0.110 0.021 0.004 0.024 0.010 0.024 ´0.089 0.020

�2
⌘ 0.296 0.292

�2
✏ 0.493 0.099 0.047 0.480

⇢ 0.168 0.485

Weak instrument F 160 100 105 112
Sargan test prob. 0.000 0.095 0.493 0.000
Number of schools 139 139 139 139
Number of students 61,183 61,183 61,183 53,529

Models 2, 3, and 4 are estimated using the subsample excluding fully isolated students (students who nominate no
friends and who have not been nominated by others), whereas Model 21 is estimated using the sample excluding any
isolated friends (students who nominate no friends). Models 2 and 21 control for unobserved school heterogeneity but
do not include dummy variables capturing isolated students (i.e., ↵s “ 0 and cs varies across schools). Model 3 in-
cludes a single fixed effect per school with a dummy variable capturing isolated students (i.e., ↵s may not be zero but
is constant across schools, whereas cs varies). Model 4 is our structural model. The columns "Coef" report the coeffi-
cient estimates followed by their corresponding standard errors in the columns "Sd Err".
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Table B.2: Detailed estimation results controlling for network endogeneity

Model 2a Model 2b Model 3a Model 3b Model 4a Model 4b
Coef Sd Err Coef Sd Err Coef Sd Err Coef Sd Err Coef Sd Err Coef Sd Err

Peer Effects 0.672 0.036 0.478 0.029 0.729 0.042 0.717 0.042 0.828 0.044 0.826 0.044
Has friends ´2.164 0.164 ´2.250 0.141

Own effects

Female 0.173 0.006 0.178 0.006 0.171 0.006 0.167 0.006 0.169 0.006 0.167 0.006
Age ´0.032 0.003 ´0.016 0.003 ´0.044 0.003 ´0.045 0.003 ´0.043 0.003 ´0.044 0.003
Hispanic ´0.099 0.010 ´0.101 0.010 ´0.101 0.010 ´0.100 0.010 ´0.092 0.010 ´0.091 0.010
Race

Black ´0.123 0.012 ´0.120 0.012 ´0.119 0.012 ´0.128 0.012 ´0.107 0.014 ´0.109 0.013
Asian 0.210 0.013 0.217 0.013 0.201 0.013 0.203 0.013 0.194 0.014 0.194 0.014
Other ´0.029 0.011 ´0.033 0.011 ´0.034 0.011 ´0.035 0.011 ´0.031 0.011 ´0.033 0.011

Lives with both parents 0.097 0.007 0.105 0.007 0.095 0.007 0.095 0.007 0.090 0.007 0.090 0.007
Years in school 0.029 0.003 0.031 0.003 0.026 0.003 0.027 0.003 0.024 0.003 0.024 0.003
Member of a club 0.151 0.013 0.167 0.012 0.143 0.013 0.160 0.012 0.149 0.014 0.150 0.012
Mother’s education

† High ´0.068 0.009 ´0.072 0.009 ´0.067 0.009 ´0.068 0.009 ´0.064 0.009 ´0.065 0.009
° High 0.142 0.008 0.156 0.007 0.138 0.008 0.138 0.008 0.130 0.008 0.129 0.008
Missing 0.028 0.012 0.030 0.012 0.026 0.012 0.025 0.012 0.027 0.012 0.025 0.012

Mother’s job
Professional 0.035 0.009 0.036 0.009 0.034 0.009 0.034 0.009 0.030 0.009 0.030 0.009
Other ´0.040 0.008 ´0.044 0.007 ´0.040 0.008 ´0.041 0.008 ´0.039 0.008 ´0.040 0.008
Missing ´0.075 0.011 ´0.081 0.011 ´0.075 0.011 ´0.076 0.011 ´0.071 0.011 ´0.073 0.011

Contextual effects

Female ´0.108 0.012 ´0.101 0.012 ´0.099 0.013 ´0.096 0.013 ´0.118 0.013 ´0.117 0.013
Age ´0.015 0.004 ´0.072 0.004 0.023 0.005 0.023 0.005 0.024 0.006 0.025 0.006
Hispanic 0.078 0.017 0.044 0.017 0.092 0.018 0.094 0.019 0.081 0.020 0.081 0.020
Race

Black 0.048 0.017 ´0.004 0.015 0.077 0.018 0.077 0.017 0.076 0.020 0.069 0.020
Asian ´0.087 0.023 ´0.033 0.021 ´0.101 0.025 ´0.095 0.024 ´0.127 0.027 ´0.126 0.027
Other ´0.026 0.020 ´0.046 0.020 ´0.013 0.021 ´0.012 0.021 ´0.002 0.022 ´0.002 0.022

Lives with both parents ´0.027 0.016 ´0.034 0.016 ´0.004 0.017 ´0.002 0.017 ´0.015 0.018 ´0.014 0.018
Years in school 0.003 0.004 0.029 0.004 ´0.010 0.005 ´0.010 0.005 ´0.008 0.006 ´0.008 0.006
Member of a club ´0.110 0.027 ´0.140 0.028 ´0.053 0.028 ´0.053 0.028 ´0.084 0.029 ´0.084 0.029
Mother’s education

† High ´0.008 0.017 ´0.049 0.016 0.017 0.018 0.016 0.018 0.025 0.019 0.024 0.019
° High ´0.012 0.018 0.033 0.017 ´0.017 0.020 ´0.013 0.020 ´0.027 0.021 ´0.026 0.021
Missing ´0.049 0.024 ´0.064 0.024 ´0.029 0.025 ´0.029 0.025 ´0.027 0.026 ´0.027 0.026

Mother’s job
Professional ´0.044 0.018 ´0.057 0.018 ´0.024 0.019 ´0.024 0.019 ´0.035 0.019 ´0.036 0.019
Other ´0.059 0.014 ´0.109 0.014 ´0.026 0.016 ´0.026 0.016 ´0.026 0.016 ´0.026 0.016
Missing ´0.047 0.022 ´0.117 0.021 0.000 0.023 ´0.001 0.023 0.006 0.024 0.005 0.024

�2
⌘ 0.282 0.283 0.281 0.282

�2
✏ 0.510 0.500 0.116 0.124 0.054 0.056

⇢ 0.205 0.173 0.547 0.525

Weak instrument F 131 190 113 113 114 114
Sargan test prob. 0.039 0.000 0.076 0.090 0.447 0.453
Number of schools 141 141 141 141 141 141
Number of students 68,430 68,430 68,430 68,430 68,430 68,430

Models 2a, 3a, and 4a use logit fixed effect estimations for µout
s,i and µin

s,i in the first stage, whereas Models 2b, 3b, and 4b consider the Bayesian probit random
estimate. Models 2a and 2b control for unobserved school heterogeneity but do not include dummy variables capturing isolated students (↵s “ 0 and cs varies
across schools). Models 3a and 3b include a single fixed effect per school with a dummy variable capturing isolated students (i.e., ↵s may not be zero but is con-
stant across schools, whereas cs varies). Models 4a and 4b are specified as our structural model. The columns "Coef" report the coefficient estimates followed by
their corresponding standard errors in the columns "Sd Err".

C Online Appendix

Supplementary material related to this paper can be found online at https://ahoundetoungan.

com/files/Papers/PEEffort_OA.pdf
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