I Z A Institute

of Labor Economics

Initiated by Deutsche Post Foundation

DISCUSSION PAPER SERIES

IZA DP No. 17014
A Hands-on Machine Learning Primer
for Social Scientists:

Math, Algorithms and Code

Nikos Askitas

MAY 2024

I Z A Institute

of Labor Economics

Initiated by Deutsche Post Foundation

DISCUSSION PAPER SERIES

IZA DP No. 17014
A Hands-on Machine Learning Primer

for Social Scientists:
Math, Algorithms and Code

Nikos Askitas
IZA

MAY 2024

Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the 1ZA
Guiding Principles of Research Integrity.

The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the
world's largest network of economists, whose research aims to provide answers to the global labor market challenges of our
time. Our key objective is to build bridges between academic research, policymakers and society.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper
should account for its provisional character. A revised version may be available directly from the author.

ISSN: 2365-9793

IZA - Institute of Labor Economics

Schaumburg-Lippe-Strae 5-9 Phone: +49-228-3894-0
53113 Bonn, Germany Email: publications@iza.org WWw.iza.org

IZA DP No. 17014 MAY 2024

ABSTRACT

A Hands-on Machine Learning Primer
for Social Scientists:
Math, Algorithms and Code”

This paper addresses the steep learning curve in Machine Learning faced by noncomputer
scientists, particularly social scientists, stemming from the absence of a primer on its
fundamental principles. | adopt a pedagogical strategy inspired by the adage “once you
understand OLS, you can work your way up to any other estimator,” and apply it to
Machine Learning. Focusing on a single-hidden-layer artificial neural network, the paper
discusses its mathematical underpinnings, including the pivotal Universal Approximation
Theorem—an essential “existence theorem”. The exposition extends to the algorithmic
exploration of solutions, specifically through “feed forward” and “back-propagation”,
and rounds up with the practical implementation in Python. The objective of this primer is
to equip readers with a solid elementary comprehension of first principles and fire some
trailblazers to the forefront of Al and causal machine learning.

JEL Classification: C01, €87, COO, C60

Keywords: machine learning, deep learning, supervised learning, artificial
neural network, perceptron, Python, keras, tensorflow,
universal approximation theorem

Corresponding author:

Nikos Askitas

Institute of Labor Economics (IZA)
Schaumburg-Lippe-Strasse 5-9
53113 Bonn

Germany

E-mail: askitas@iza.org

* Based on part of a course given at the University of Luxembourg in 2023. For the code in Section 3 | used
ChatGPT3.5 for speed which | adapted to my needs. Readers who want to start with Python will find a wealth of
knowledge online or might work through a hands-on course like e.g. Effective Programming Practices for Economists
but are also encouraged to use OpenAl's ChatGPT (or Google’s gemini) as a tutor. To streamline using ChatGPT while
coding you might use askgpt. A Python module which works a bit like Github copilot but cheaper. Jupyter notebooks
with some code related to this paper is deposited at the IDSC Dataverse. A version of this paper was presented at
the research retreat of IZA - Institute of Labor Economics. | would like to thank the participants for comments and in
particular Andrew Oswald for in addition taking the time to read an earlier draft.

1 Introduction

Machine Learning (ML) has made significant strides due to the confluence of enhanced com-
puting power, refined algorithms, and progress in its mathematical underpinningﬂ Machine
Learning techniques are used widely in life and empirical researchm: speech and image recog-
nition, natural language tasks (i.e. translations, chat bots etc), medical diagnosis, a wide
range of prediction tasks, recommendation systems (from e-commerce, to the labor market
i.e. jobs boards etc), autonomous vehicles, filtering of all kinds (e.g. email spam detection,
fraud detection etc), in stock market trading, fraud detection. In causal machine learning it
is used to remedy the situation in which a “treatment” comes from observational data and
may or may not be randomly assigned. In that case we might use machine learning to con-
trol for covariates without needing to know the functional form of their effect on treatment
selection.

However, the absence of a foundational primer tailored to non-computer scientists, par-
ticularly social scientists, results in a steeper than necessary learning curve. This challenge
is compounded by field-specific jargon and a disconnection between mathematical concepts,
algorithms, and code. This paper seeks to address this gap. In the spirit of the adage ”once
you understand OLS, you can work your way up to any other estimator,” I contend that
comprehending artificial (feed-forward) neural networks (ANN) serves as a gateway to under-
standing the entire spectrum of modern machine learning, including the latest advancements
in large language models and even more cutting edge developments like quantum machine
learning.

For social scientists, especially economists, who do not “just” concern themselves with

prediction in a business context but whose work might have more profound societal or policy

IThis diversity of contributing factors in return might inhibit adoption for many.

2For example a good place to start on machine learning for social scientist and text to data approaches
might be Grimmer et al. [7].

3An emerging “market” with pre-trained, off-the-shelf models where researchers might shop for models:
https://huggingface.co/l First signs of a trend among young economics with job market papers.

*A good place to start on causal machine learning might be Huber [9].

https://huggingface.co/

impact understanding the foundations of Machine Learning from first principles is a moral
obligation and a sine qua mon both when they add it to their research toolkit as well as
when they consume it (e.g. Generative Al) as an end-user or provide guidance to the general
public and the press in order to fend off the useless, unfounded palaver, on the topic, flooding
us.

This paper will discuss Universal Approximation Theorems, existence theorems which
constitute the mathematical underpinnings of ANNs and imply that they can indeed be
trained to approximate any function with mild restrictions imposed on it (e.g. continuous
with compact support). Additionally it will discuss the algorithmic side of searching for
solutions when training models (i.e. looking for suitable model parameters) and provide
practical implementations using Python code with keraslﬂ and tensorf lowﬂ

I use an informal exposition style whose purpose is to explain the basic principles and
supply the reader with the necessary intuition for a surefooted entry into the wonderful world
of ML. The aim is that a reader will understand the mathematical foundation of ANNs as
well as write code to implement them but also, equipped with a solid theoretical foundation,
be able to interpret algorithm behavior. By doing so, the paper aims at guiding the reader
from foundational knowledge to the frontiers of Al and (causal) machine learning. Put
differently this paper has a very modest goal: to create a solid foundation on first principles
for a social scientist who wishes to add Machine Learning to their research toolkit. A reader
will then be able to appreciate more involved ML accounts for economists such as Athey and
Imbens [3] or Mullainathan and Spiess [13].

This paper is organised as follows: Section 2| discusses the mechanics of feed forward
ANNSs using visual representations and sets language and terminology. Section [3| discusses a
universal approximation theorem which implies that feed-forward ANNs with just a single
hidden layer can approximate any well behaved function at the expense of adding neurons to

the layer. Functions need to satisfy mild requirements such as being continuous and having

Shttps://keras.io/
Shttps://www.tensorflow.org/

https://keras.io/
https://www.tensorflow.org/

compact support, certainly overlapping with data generating mechanisms a social scientist
might encounter. I also sketch the proof of the theorem in a special case. In Section [4] I
approximate the XOR function (a tiny labelled dataset) with an ANN in Python and keras
and give the reader the play by play of the code. In the last Section [5] I give a helicopter
view of the wonderful world of ML and some trailblazers that might help readers zero in
on regions of ML suitable to their own interests. Appendix [5| contains Python code for the

illustrations of Section [3| which is generated by ChatGPT and adopted to suit my needs.

2 What can ANNs do for a social scientist?

Mathematically, Artificial neural networks can be used to approximate certain “well behaved
functions”

fiR™ S X — R",

Such functions need to be continuous and have compact support X. In Social Science such
functions occur whenever we have a number m of covariates that might predict (determine, be
conjectured to “explain” or simply correlate with etc.) an n-dimensional outcome. Whenever
then we have a number of observations in a dataset we assume that the underlying data
generating mechanism is continuous with compact support. Such an assumption is in a
significant number of cases plausible.

Typically when n = 1 we speak of an outcome that we need to predict, explain etc and
such outcomes might be unemployment rate, housing prices, economic sentiment, educa-
tional attainment etc. The covariates might be survey answers, administrative data or high
dimensional vectors that represent free text. In traditional econometrics a social scientist
will run some flavour of OLS “controlling for covariates” to demonstrate some covariates
play a more important role than others. Whenever we don’t have a theory or the dimension
m is huge we might want to approach the problem in a way more agnostic about what the
functional form of the underlying data generating mechanism is and in these cases an ANN
is the tool of choicd’} Figure[l]is an example of an ANN which could be used to approximate
a function f when m = 3 and n = 1. Reading the neural network from left to right we speak
of a 3-dimensional “input layer” (x1,z2,x3), a 1-dimensional “output layer” (y) and a single
5-dimensional “hidden layer” (hy,. .., hs).

In the context of neural networks one speaks of “training” a model which basically means

using the observations (x1, x2, x3,y) to find weights w;;, w; which produce outputs ¢ so that

"This is in particular the case of causal machine learning. Whenever we have a treatment from observa-
tional data and not e.g. a proper RCT and want to control for covariates that may confound the treatment
assignment but don’t know the functional form of how they do so machine learning is the best that we can
do.

some measure of error based on the differences of y and ¢ is as small as possible.

We then speak of “supervised learning” and we say that such learning can take place
whenever we have a “labelled” datasetﬁ. In this example the dataset consists of the data
points (z1,xs,23) and the labels are the y’s. In contrast to the case of an OLS where the
parameters of the model are found analytically finding the parameters in the case of an ANN
is not possible analytically. We say that the ANN in Figure|l| has “width” 5 (the number of
“nodes” or “neurons” of the hidden layer). Neural networks may have more than one hidden
layers. The number of such hidden layers is the “depth” of the ANN, hence “deep learning”.
The example of Figure [T] has depth 1 while Figure 2] shows an example of depth 2. A neural

network of depth zero is just linear regression.

Figure 1: An ANN with one input layer with three nodes, one hidden layer with five nodes
and one output layer with one single node.

The input data is entered at the input layer and “feeds forward” from left to right. At
each layer each node/neuron receives a linear combination of the data and weights coming
from all neurons of the previous layer that point to it with a weighted edge/synapsis and

adds a constant of its own called the “bias” and subsequently applies an activation function

830 we approximate a function whose form we don’t know calling elements in its domain "the data”
and their images ”labels”. This paper focuses on supervised learning. The unsupervised type of (machine)
learning techniques are used whenever we have data but no function i.e. no labels. Such is the case of a
corpus of documents for example which might be clustered agnostically by e.g. a k-means algorithm or on
which topic analysis is done using an LDA algorithm (Latent Dirichlet Allocation).

o assigned to the layer. For example in Figure [2| the hidden node h; j receives:

3
g Wi ki,
i=1

it then adds its bias by , applies the layer’s activation function oy and then emits (“fires”,

“outputs”):

3
L1k = 0'1<Zwl'7k$¢ + bl,k), for k = 1, 2, 3, 4, D.

i=1

Now the hidden layer hy 4 receives:

5

E Vi,sT1 4,

i=1
adds ist bias by, applies the activation functions of its layer oo and emits (“fires” or
outputs):

5
Tos = Uz(zvi,sxl,i +ba5).

=1

Finally the output node receives:

E du;zy 4,
i1

and after adding its own bias b and applying its activation function o it outputs:

4
U(ZUZ{EQ’Z' +b).
i=1

This concludes this section in which we formally introduced all the parameters of which
an ANN is made up, the language and jargon that might be used in this context and how
input feeds forward through an ANN to produce an output. The logical next question is why

on earth would such a thing have a chance at helping us approximate observed but elusive

functions? The next section is dedicated to answering this question.

U

Figure 2: An ANN with one input layer with three nodes and one output layer with one
single node. Its depth is 2 i.e. it has two hidden layers: one hidden layer with five nodes and
one with four nodes. This examples is fully labelled with all ingredients that built an ANN.

3 Universal Approximators

A universal approximation theorem is an existence theorem which states that certain well
behaved functions may be approximated by a certain form of simply built functions. The
original proof of the one that relates to neural networks appears in [6]. In the language of
[6] the paper shows that “finite linear combinations of compositions of a fized, univariate
function and a set of affine functionals can uniformly approximate any continuous function
of n real variables with support in the unit hypercube; only mild conditions are imposed on
the univariate function”. More formally, with less mathematical lingo and in more generality

our universal approximation theorem states that:

Universal Approximation Theorem [I]. Let C'(X,R™) be the set of continuous functions
from a subset X C R"™ to R™ and o € C(R,R). Then o is not polynomial iff for every
ne€N,mecN, compact K CR", f € C(K,R™),e >0 there exist k € N, A€ R">",
beR*, C e R™* such that if g(x) = C - (0o (A2 + b)) then SIGJE Ilf(z) —g(z)|| <e, where

(cox); =o(x;).

The theorem says that “well behaved functions” (i.e. continuous with compact support)
can be arbitrarily (i.e. up to €) approximated by an affine transformation (i.e. A-x + b)
followed by a point wise application of any non-polynomial function (i.e. o) followed by a
linear transformation (i.e. C). It also says that when o is polynomial this is not trud’} In

other words it can be restated as saying that:

Any continuous function f: R™ D> X — R", with compact support X can be
approximated, at any desired precision, by a neural network of one single hidden

layer if we are willing to add enough nodes to it (k).

This is a beautiful and powerful theorem which, if we are willing to believe it, guarantees

the existence of a neural network (i.e. parameters like weights, activation functions, biases

9For the mathematically minded reader who might remember their elementary mathematical analysis
this does not contradict the Stone—Weierstrass theorem which states that: “well behaved” functions have
arbitrarily precise polynomial approximations.

and width) which approximates any function leaving us with the “simple task” of finding
it. We then thus enter the world of Machines (computers) which learn their parameters
(algorithms).

Before moving to the next section where we will start looking into the search for such
neural networks, we will sketch a proof of the theorem in [6] in order to achieve that the
reader is at ease with believing the theorem by understanding the flavor of the ingredients
that go into a proof. The reader who feels comfortable without the proof can skip the
rest of this section. In what follows we sketch how we could construct an arbitrarily close
approximation of a function f : [0, 1] — [0, 1] by means of a neural network using the sigmoid

as an activation function:
1
T 1gese

o(z)
Here the parameter s is the steepness and determines how sharp we change from values near
0 to values near 1. A function defined on the unit interval with constant support on some
subinterval [a,b] C [0, 1] will be called a bump function.

By the Mean Value Theorem for Intervals it is obvious that we can approximate any
continuous function f to any desired prediction by a linear combination of a finite number
of bump functions by partitioning the unit interval in subintervals and defining appropriate
bump functions on them. The finer the partition the better the approximation. Figure
demonstrates such approximation by bump functions and the code that generated the ex-
ample is in Listing [4

It remains to show that we can approximate any bump function by using linear combi-
nations of Sigmoid functions. The reader might play with the Python code in Listing [5| to
produce output like in Figure [] and convince themselves that we can apply linear transfor-
mations and the Sigmoid to get a step function of any kind. The sketch is only an existence
construction and it is not concerned with bounding the number of nodes of the hidden layer.

In practice we can do better. Now using the python code in the Listing [6] we can convince

ourselves that we can produce arbitrarily close approximations of any bump function (see

Figure [5)). This concludes the sketch of the proof.
I leave it as an exercise to the reader to produce a sketch of the proof of the statement that
using the ReLU functions works as well. A hint on how to proceed is that any continuous

function with compact support can be approximated arbitrarily closely by a piece-wise linear

function.
10-interval partition 10-interval partition
0.50 - 0.50 - —— Smooth function with two extrema
0.25 0.25
0.00 - 0.00 -
-0.25 | -0.25 |
-
~0.50 A ~0.50 A
-0.75 | -0.75 |
-1.00 | -1.00 |
-1.25 | -1.25 |
—— Smeoth function with two extrema
0.0 02 0.4 0.6 08 1.0 0.0 02 0.4 0.6 08 1.0
X X
(a) num_segments = 10 in Listing (b) num_segments = 50 in Listing

Figure 3: Example of approximating a function by bump functions.

Jump Function using Sigmoid (steepness =1) Jump Function using Sigmoid (steepness =5)
1.0 9 —— jump Function i 1.0 { — Jump Function i
——- Threshold ! ——- Threshold !
i i
0.8 4 ! 0.8 4 !
I I
I I
I I
1 1
0.6 | 0.6 |
1
> >
1
0.4 i 0.4 |
1 1
1 1
1 1
I I
0.21 i 0.2 i
1 1
[} [}
I I
I I
I I
0.0 i 0.0 i
. ‘ } T ‘ . ‘ } T ‘
-4 -2 0 2 4 -4 -2 0 2 4
X X
(a) Sigmoid with steepness 1 (b) Sigmoid with steepness 5

Figure 4: Sigmoids produced with code in Listing .

10

approximating a bump function approximating a bump function

1.0 1.0
—— bump function —— bump function
-------- support start -~ support start
-------- support end -~ support end
0.8 1 0.8 1
0.6 4 0.6 4
= =
0.4 1 0.4 1
0.2 1 0.2 1 J
0.0 T T T T 0.0 T T T T \ T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

(a) In Listing@ bump_start = .4, bump_end = .6,(b) In Listing@: bump_start = .4, bump_end = .6,
steepness = 200, jump_height = .8. steepness = 50, jump_height = 1.

Figure 5: A composition of linear transformation and Sigmoids approximates any bump
function with any support and any height arbitrarily close.

The take-away from this section is that we have seen a simple demonstration in a concrete
case that we can approximate any continuous function with compact support with a neural
network of a single hidden layer at the expense of increasing its width. A number of other
papers starting with Lu et al. [IT] in 2017 show that neural networks with bounded width
and arbitrary depth are also universal approximators of a large class of functions. The class
of functions in [I1] are Lebesgue-integrable functions f : R" — R with respect to the L'

distance, the depth is bound by n + 4 and the activation function is the so-called ReLU

z+|z|
5

function (rectified linear unit) defined by: o(z) = A number of remarkable, more
recent generalisations beyond our scope are also available and can be discovered starting
from [1].

We close this section with a remarkable result in Maiorov and Pinkus [12] which shows
that an analytic, strictly monotone, sigmoidal activation function exists with which we can

approximate arbitrarily well any continuous function on any compact domain by a multilayer

feedforward perceptron (ANN) of depth 2 with hidden layers of width 3n and 6n + 3.

11

4 Training a neural network

Armed with an existence theorem which assures us that any continuous function with com-
pact support can be arbitrarily closely approximated by some ANN we will now use the
Python modules keras and tensorflow to approximate the so-called XOR function (exclu-
sive or) defined on the set {(0,0), (0,1),(1,0), (1,1)} as follows: XOR((0,0)) = XOR((1,1)) =
0 and XOR((0,1)) = XOR((1,0)) = 1. The function is called “exclusive or” because it can
be thought of as the truth table of the statement “either A or B but not both” for two
statements A and B. The domain of the XOR function are then all possible pairs of truth
values for these statements.

This innocent looking function is considered as having contributed to the first Al winter
(a period of reduced funding for Al following a hype period) in 197@ It can be easily
proven by elementary means that an ANN of depth 1 with polynomial activation function
cannot approximate the XOR function. The geometric way to think about this is that there
is no straight line on the plane which separates the two vertices of the unit square on one
diagonal {(0,0),(1,1)} from those on the other {(0,1),(1,0)}[]] We will leverage this toy
example to familiarize ourselves with training a neural network for supervised learning. This
very simple example is no different than anything a social scientist might encounter which
falls within the application domain of ANN. From a social scientist’s perspective we are

dealing with a dataset of three variables and four observations:

A very simple dataset

X Y XOR
0 O 0

0 1 1

1 0 1

1 1 0

with covariates X, Y predicting XOR or in machine learning lingo we have a labelled

0Start with [2] to dig into some of the history of the first AI winter.
HTncreasing the depth makes it possible.

12

(XOR) dataset (X,Y). Everything we will do will apply to any other dataset with any
number of covariates, labels and number of observations e.g. vectors representing words in a
document with labels equal to binary sentiment or vectors representing a number of lagged
values of a time series and labels representing the unlagged value (autoregressive model),
or (the case of generative Al) properly encoded sequences of letters (sentences) of length n
from a corpus of documents and the character that succeeds them. To make this point in
what follows, for clarity and language, I supply the broad strokes of the mechanics in some
real cases on how to get labelled data before we proceed with our toy example.
Autoregression: Given a time series); for t = 1,...,n an autoregressive model is based
on the belief that if the state of the world prior to time ¢ = ¢, affects)¢, then since @, for
all t < ¢ are part of that state the corresponding values (); should also affect ();,. Typically
economists, utilising not all but some number of lagged values, will estimate linear models.
Assuming linearity however is a very restrictive approach since the functional form of the
way (s for t < ty affect @y, is unknown. With machine learning we know that if a function
exists then we can find it. So we might fix e.g. 7 lagged values to predict the eighth in which
case our labelled dataset looks like this:

Time Series prepared for training an ANN

Lagged Unlagged
[t1, b2, t3, ta, t5, te, t7] ts
[t27t37t47t57t65t77t8] t9
[t3, ta, ts, te, t7, ts, to] 1o
[tn—77 tn—G) t11—57 tn—47 tn—3a tn—27 tn—l] tn

Now we have a labelled dataset which looks like our toy example and would be amenable
to an ANN approach.
Large Language Models: Lets say you want to train an ANN chatbot to respond in Lewis
Carroll style. One approach would be to take “Alice in the Wonderland” and anything else

he wrote and work as with the time series example. Any n characters occurring in the book

13

https://www.gutenberg.org/cache/epub/11/pg11.txt

are in the domain of our function and they are mapped to the character that follows them
so the data we use to train our ANN are these sequences of n characters and the labels are
the characters that follows them. An example of what the title would look like is given in
the table below for n = 4 without the encoding. The first four variables are the dataset the

fifth one is our label:

1 2 3 4
A 1 i c | e
1 i c
1 C e i
c e i|n
e i n
1 n t
1 n t
n t e
t h e
t h e AW
h e Wl o
e W o | n
W o n|d
W o n d| e
o n d e |r
n d e T |
d e r | a
e T l a|n
r 1 a n|d

Sentiment from text: A collection of documents with some thematic relation such as
presidential speeches, or book reviews, or paper abstracts are called a document corpus. If
we are dealing with, say, movie reviews they might be labelled as positive or negative in
which case the task is to train an ANN to predict the sentiment from the text. Lets say we

have a corpus with two documents:

Movie reviews with binary sentiment

Review Sentiment
“this movie is some good shit” 1
“this movie bored me out of my skull” 0

14

First we need to form the “feature space” which is a vector space in which each document
is a (sparse) vector. The feature space is essentially the union of all words from all documents
in the corpus. You might drop short words like e.g. of length three or less (so drop: is, me,
out, of, my) and do a stemming like drop plurals, ing’s etc (so in our example bored might
become bore). Such treatment may often be referred to as preprocessing. Now the corpus
looks as follows:

Movie reviews: after some preprocessing

Review Sentiment
“this movie some good shit” 1
“this movie bore skull” 0

Finally we tokenize the documents so documents become arrays of features (stems):

Tokenized movie reviews

Review Sentiment
[this, movie, some, good, shit] 1
[this, movie, bore, skull] 0

Now take the union of all features from all documents: {this, movie, bore, skull, some, good, shit }
and order them in some arbitrary but fixed way e.g. [this, movie, bore, skull, some, good, shit].
The cardinality of the set of features (i.e. 7) is the dimension of our feature space which is

nothing but R?. Now our (vectorized) documents look like this:

Vectorised movie reviews

Review Sentiment
[1,1,0,0,1,1,1] 1
1,1,1,1,0,0,0] 0

In encoding our documents we might just enter 1 or 0 depending on the presence or
a word or not, this is called one-hot encoding. There are other encodings like frequency

encodings etc. Now our labelled data looks very much like our XOR example.

15

Getting back to our toy example, looking for a single-hidden-layer neural network to
approximate XOR will basically be an empirical task. Now we are in the world of searching
for a solution we know exists so we need to empirically try several things. For example we
need to try several widths and activation functions. For each width and activation function
we are looking for a number of parameters that do the job. For example in Figure 2| we are
looking for wj ;,v; ;, b; ; a total of 48 parameterﬁ.

How would we go about searching? There is only one way: randomly initialise the
parameters and find a way to improve them: send all your data through the ANN (this is
called forward-propagation), then measure the error between what the network predicts and
the actual labels. Then go back and adjust the weights so as to reduce the error (this is
called back-propagation). Then rinse and start over by feeding the data forward, measuring
the error, adjusting the weights etc. When to stop? When you are not making progress any
more.

In propagating forward and backward there are decisions to make. Do I forward all of
my data at once or in batches? How large should the batches be? In adjusting the weights in
a direction that reduces the error do I take small or large steps (the learning rate). Finally
what measurement of the error do I use? Luckily all of that is easily done with the Python
module keras a user-friendly interface to Tensorflow which does the heavy lifting of back-
propagation (linear algebra, chain rule etc)H.

The mathematics of updating the weights all at once is essentially an application of
the chain rule: starting from right to left successively adjust each model parameter p by
p— T%—f where r is the learning rate and FE is the prediction error. Computationally at
the heart of how Tensorflow does back-propagation is the “computational graph” which

is a type of directed acyclic graph that turns computations into data and is fundamental

1215 weights from the input layer to the first hidden layer + 5 biases at the first hidden layer + 20 weights
from the first to the second hidden layer + 4 biases at the second hidden layer + 4 weights from the second
hidden layer to the output layer

13The reader interested in the gory details can read Chapter 2 of Chollet [5], a wonderful introduction
to Deep Learning with Keras which in addition to code and examples includes some very enjoyable and
informative prose accessible also as an audiobook.

16

for deep learning. It is a computational tool to compute derivatives of arbitrarily complex
functions build by operations like addition and multiplications, activation functions and

function compositions. As you back-propagate further to the left you apply chain rules to

9q

express %—f for every parameter p in terms of other parameters ¢ further to the right: %—5 "B

Tensorflow does all of that all at oncd™

The code that does all that is in Listing [I] and a visual representation of the ANN it
builds is in Figure [6} Lets discuss the play by play of the code. Lines 1-5 are just module
imports, line 7 is a numpy array with the dataset, line 8 an array with our labels. Line 10 just
instantiates our neural network. Line 11 adds our hidden layer with 16 nodes and at the same
time declares that the input layer is two-dimensional. It is a dense layer in the sense that the
network is “fully connected” i.e. any two nodes of two successive layers are connected with a
weighted edge. The activation function of the layer is the sigmoid functionﬁ . Line 12 adds
the output layer of dimension 1 (our labels). Its activation function is the hyperbolic tangent.
Line 13 instantiates the Adam optimiseﬂ our chosen method of stochastic gradient descent
and declares the learning rate. Line 14 compiles our model by declaring our loss functionm
and our metric{ﬂ. In Line 15 we fit the model i.e. train the network. The arguments of
model.fit besides our data and labels says that we will run 100 iterationﬂ, sending the
data through the current state of the network in batches of one data point. Line 16 makes

prediction and line 17 prints them. Lines 19-21 predict the support of the XOR function

\Mathematically minded readers might ask ”why not user polynomials instead of neural networks since
the Stone-Weierstrass theorem is also a suitable existence theorem?”. The answer is that while the two
classes of functions (neural networks and polynomials) are equally ”expressive” i.e. are able to approximate
well behaved functions equally well they differ in terms of their computational tractability. In other words
representing (existence) and learning functions (searching) are two different things. A recent ([I0]) attempt
to use the Kolmogorov-Arnold representation theorem (“multivariare functions can be written as sums of
compositions of univariate functions”) has shown considerable success in producing so-called KANs i.e.
Kolmogorov-Arnold Networks. The univariate functions in play are splines whose parameters are then
trainable resulting in KANs with nice technical properties which as the authors of [10] state “are nothing
more than combinations of splines and multi-layer preceptrons” like the ones this paper describes.

15Keras activation functions

16Keras optimizers

1"Keras Losses

18Keras metrics

9Tn each epoch all of our data gets fed forward in the batches we declare and for each batch model-
parameters will be adjusted by back-propagation.

17

https://keras.io/api/layers/activations/
https://keras.io/api/optimizers/adam/
https://keras.io/api/losses/
https://keras.io/api/metrics/

again and line 24 saves the weights of the model in an array w which is used in Listing [3| to

write down the resulting model analytically as a Python method while Figure [6] depicts the

function visually with placing the elements of the array w as Weightﬂ.

import numpy as np

import keras

from keras.models import Sequential
from keras.layers import Dense

from keras.backend import clear_session

training_data = np.array([[0,0],[0,1],[1,0],[1,1]1], "float32")

target_data = np.array([[0],[1],[1],[0]], "float32")

model = Sequential ()

model.add(Dense (16, input_dim=2, name ="hidden",activation='sigmoid'))

model.add (Dense (1, name="output",activation='tanh'))

optimizer = keras.optimizers.legacy.Adam(learning_rate=0.1)
model.compile(loss='mean_squared_error', optimizer=optimizer, metrics=['accuracy']l)

model.fit (training_data, target_data, epochs=100,batch_size=1, verbose=2)

prediction = model.predict(training_data).round ()

7 print ("prediction",prediction)

support = np.array([[1,0],[0,1]], "float32")
support_prediction=model.predict (support) .round ()

print ("support_prediction",support_prediction)

#to use for writing the model down analytically in Python

w=model.get_weights ()

Listing 1: Approximating the XOR function using an artificial neural network

The output of running this code might look like in Listing [2[which represents a suc-

cessful training session. The reader is encouraged to play with various model configuration-

parameters several times (optimizers, activation layers, width, depth, loss functions, metrics,

learning rates etc). The search for suitable weights will not alway be successful and training

20There are many many more configuration parameters in keras. One worth mentioning is the layer

weight regulariser also referred to as Lasso| regularisation. Specified as e.g. kernel regularizer=11(0.01)
or kernel regularizer=12(0.01) within a layer it modifies the chosen loss function by adding the L1 (1.2)
norm of all the layer’s weights multiplied by 0.01. This is useful for reducing the number of relevant features
in a model.

18

https://keras.io/2.15/api/layers/regularizers/
https://keras.io/2.15/api/layers/regularizers/
https://en.wikipedia.org/wiki/Lasso_(statistics)

might complete sooner or later. This is due to the fact that we randomly initialise our pa-
rameters and in doing so we might be trapped in a local extremum or start closer or further

to a solutionl

| Epoch 1/100
2 4/4 — 0s — loss: 1.0583 — accuracy: 0.2500 — 173ms/epoch — 43ms/step
3 Epoch 2/100

4 4/4 — 0s — loss: 0.4475 — accuracy: 0.5000 — 19ms/epoch — 5ms/step

5 ...

6 Epoch 34/100

7 4/4 — 0s — loss: 0.3075 — accuracy: 0.7500 — 19ms/epoch — 5ms/step

9 Epoch 48/100
10 4/4 — 0s — loss: 0.1158 — accuracy: 1.0000 — 18ms/epoch — 5ms/step

12 Epoch 100/100

13 4/4 — 0s — loss: 5.3166e—04 — accuracy: 1.0000 — 18ms/epoch — 4ms/step
14 1/1 |] — 0s 27ms/step

15

16 Data = [[0. 0.] [O0. 1.] [1. O0.] [1. 1.]]

17 Labels = [[0.] [1.] [1.] [0.]]

18 Predictions = [[0.] [1.] [1.] [0.]]

Listing 2: A successful training session with the code in Listing

Running these should go quickly on a modern laptop and can be enjoyed with a glass
of wine on the sofa after work. I would approach this as follows. Go down to width 2.
Try several activation functions and number of epochs. Do you ever produce convergence?
Increase the width, repeat and so one. Save the weights you find. Are they always the same
up to permutation of the neurons within the hidden-layer? Do some choices of activation
functions work better than others? Are there initial values that trap the search? These lines
of code and this example can teach a reader a lot and provide important intuition.

Listing (3| is Python code which implements the weights we found in an analytic manner.
Being able to understand the analytic form of the model we train might be more important
in social science than in business especially if our work might have policy relevance.

More Python code with keras which demonstrates saving a model, loading a model or

working with free GPUs and TPUs on Google Colabl can be found in the accompanying

21For a fun investigation of the error space of an ANN of depth 2 trained to learn the XOR function the
reader might enjoy Bland [4].

19

https://colab.google/

code in the IDSC Dataverse, together with a complete example of sentiment analysis using
a movie reviews dataset. In the next section we will conclude with the outlook of where a
reader might go from here and in which way this paper understands itself as the start of a

reader’s journey into Machine Learning.

1 def XOR(x,y):

import numpy as np

4 def relu(x):

5 return max (0.0, x)

7 def sig(x):

8 return 1/(1 + np.exp(-x))

11 result = np.vectorize(np.tanh) (np.dot(

12 (np.vectorize(sig) (

13 np.dot (np.column_stack ((w[0][0], w[0I[11)),
14 np.array ([[x],[ylD)

15) + np.array(w[1]) .reshape(-1, 1)

16)).T ,wl2]

17)

18 print (result)

19 return(result [0] [0].round())

21 output = XOR(1,0)

N
¥]

print (output)

Listing 3: Writing down the estimated function analytically

20

https://doi.org/10.15185/mlp4ssci

Figure 6: An ANN with a 2-dimensional input layer, one hidden layer of width 16 and one
output layer with one node representing our XOR keras model. The weights of our pre-
trained model are in an array w of length 4 and plotted at the right place of the figure.
The hidden layer and the output layer have Sigmoid and hyperbolic tangent as activation
functions.

21

5 Where to go from here

I hope to have given an elementary overview of the smallest amount of information a re-
searcher might need in order to enter the world of Machine Learning on a sure foot and to
have demonstrated that at least as far as a basic, vanilla flavored neural network is con-
cerned we need nothing but elementary mathematics and that if we are willing to blackbox
the computational heavy lifting inside Tensorflow then with the use of keras entering the
world of ML is a manageable task achieved in just 24 lines of Python code. The rest of
the vastness of Machine Learning all the way to the very latest developments in e.g Trans-
formers architecture (Vaswani et al. [14]) or Mamba (Gu and Dao [§]) can be thought of as
a series of improvements on previously known techniques in order to remedy various issues
(e.g. performance) and failures (e.g. vanishing gradient)? when applied to different data
contexts at different scales.

In that sense, for example, in the case of large language models where input data consists
of all string sequences of a certain length occurring in a large corpus of texts and the labels
are the succeeding character, Mamba was created in 2023 to address Transformers’ compu-
tational inefficiency on long sequences. Transformers itself introduced in 2017 a so-called
attention mechanism to improve on memory requirements of prior so-called Recurrent Net-
works. The latter are one of two types of networks in which, unlike feed-forward networks
(such as the ones we are concerned with in this paper) where the data flows only from left to
right, data is allowed to flow in both directions so that output from a node might be allowed
to influence its input at a later time during the training. The other kind of bi-directional
networks are the so-called Convolutional Neural Networks distinguished from the Recurrent
type by having a so-called finite impulse. Finally, wrapping up this small excursion into the
evolution of ANNs, Convolutional Neural Networks were created to address issues of van-
ishing or exploding gradients during back-propagation in fully connected neural networks.

These networks are suitable for sequential data e.g. pictures or time-series and apply certain

22A good place to start digging in is: https://en.wikipedia.org/wiki/Machine_learning.

22

https://en.wikipedia.org/wiki/Machine_learning

filters to the data to reduce the number of weights that need to be estimated when training
on e.g. pictured®’| Such filters can be thought of as e.g. aggregating daily data to monthly
data in time-series analysis and can be found in modern graphic design software.

The breadth of elements involved in ML becomes an impediment for entry. These ele-
ments include mathematical and algorithmic understanding as well as programming skills.
This paper provided a basic understanding of these. There is one more practical obstacle
which must also be overcome that we did not deal with here, namely, the ability to deal with
the vagaries of installing and troubleshooting the necessary Python packages. Although
anyone serious about adding ML to their toolkit should learn to maintain their own pro-
gramming environment one way to avoid having to do so at the beginning might be to resort
to Google Colab (where one can always come back for access to GPUs and TPUs). Some
basics can be picked up from this course: Effective Programming Practices for Economists
and of course you can always google errors and issues with your environement and leverage

the experience of others.

23For example if you are analyzing medical imaging e.g. x-rays in digital form you might have an image
of 600 pixels by 600 pixels containing numbers from 0 to 255 expressing how bright the pixel is. In that case
if e.g. you are training a model to identify e.g. a malicious tumor of some kind your input layer will be of
dimension 6002 = 360000. In a fully connected network whose first hidden layer has 1000 nodes this adds
36 - 107 4 1000 weights and biases just between input layer and first hidden layer.

23

https://effective-programming-practices.vercel.app/landing-page.html

References

1]

[13]

[14]

Universal approximation theorem. https://en.wikipedia.org/wiki/Universal_
approximation_theorem. Accessed: January-2024.

Perceptrons (book). https://en.wikipedia.org/wiki/Perceptrons_(book). Ac-
cessed: January-2024.

S. Athey and G. W. Imbens. Machine learning methods that economists should know
about. Annual Review of Economics, 11:685-725, 2019.

R. Bland. Learning XOR: exploring the space of a classic problem. Technical report,
University of Stirling, Department of Computing Science and Mathematics, 06 2010.
F. Chollet. Deep Learning with Python. Manning Publications, 2017. ISBN-13: 978-
1617294433.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303-314, 1989.

J. Grimmer, M. E. Roberts, and B. M. Stewart. Text as data: A new framework for
machine learning and the social sciences. Princeton University Press, 2022.

A. Gu and T. Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXw:2312.00752, 2023.

M. Huber. Causal analysis: Impact evaluation and Causal Machine Learning with ap-
plications in R. MIT Press, 2023.

Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljaci¢, T. Y. Hou, and
M. Tegmark. Kan: Kolmogorov-arnold networks, 2024.

Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neu-
ral networks: A view from the width. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in. Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
32cbf687880eb1674a07bf717761dd3a-Paper. pdf|

V. Maiorov and A. Pinkus. Lower bounds for approximation by mlp neural networks.
Neurocomputing, 25(1):81-91, 1999. ISSN 0925-2312. doi: https://doi.org/10.1016/
S0925-2312(98)00111-8. URL https://wuw.sciencedirect.com/science/article/
pii/S0925231298001118.

S. Mullainathan and J. Spiess. Machine learning: an applied econometric approach.
Journal of Economic Perspectives, 31(2):87-106, 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

24

https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://en.wikipedia.org/wiki/Perceptrons_(book)
https://proceedings.neurips.cc/paper_files/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0925231298001118
https://www.sciencedirect.com/science/article/pii/S0925231298001118

Appendix A. Python code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

import numpy as np
import matplotlib.pyplot as plt

Generate a smooth function with one local maximum and one local minimum
def generate_smooth_function_with_extrema(num_segments=10):

x = np.linspace(0, 1, 100 * num_segments)

y = np.sin(2 * np.pi * x) + 0.2 * x**x2 - 0.5

return x, y

Plot the smooth function with one local maximum and one local minimum
x_values, y_values = generate_smooth_function_with_extrema()
plt.plot(x_values, y_values, label='Smooth function with two extrema')
Draw vertical lines at each point of the partition and at x=1
for i in range(len(x_values) // 100):

a = x_values[100 * (i - 1)] if i > 0 else O

b = x_values[100 * i]

x_mid = (a + b) / 2

y_mid = np.interp(x_mid, x_values, y_values)
plt.axvline (x=x_values [100 * i], color='g', linestyle='--', linewidth=.1)
plt.axhline(y=y_mid, xmin=a, xmax=b, color='r', linestyle='-', linewidth=1)

Add a vertical line at x=1

plt.axvline(x=1, color='g', linestyle='--', linewidth=.1)
Add a horizontal line in the last partition interval
myx=(len(x_values)-1) // 100

print (myx)

a=x_values [100*myx]

15
16
17
18
19
20

28 b=x_values[len(x_values) -1]
20 x_mid = (a + b) / 2
30 y_mid = np.interp(x_mid, x_values, y_values)
31 plt.axhline(y=y_mid, xmin=a, xmax=b, color='r', linestyle='-', linewidth=1)
32 plt.xlim(xmin=0,xmax=1)
33 plt.xlabel('x")
34 plt.ylabel('y"')
35 plt.title(f"{num_segments}-interval partition")
36 plt.legend ()
37 plt.show ()
Listing 4: Python code showing bump functions approximate an example function.
1 import numpy as np
2 import matplotlib.pyplot as plt
4 def jump_function(x, threshold, jump_from, jump_to, steepness=1):
5 return jump_from + (jump_to - jump_from) / (1 + np.exp(-steepness * (x - threshold))
)
6
7 threshold_value = 0 # Point where the jump occurs
8 jump_from_value = 0 # Value before the jump
9 jump_to_value = 1 # Value after the jump
10 # Generate x values
11 x_values = np.linspace(-5, 5, 100)
12 # Generate y values using the jump function
13 y_values = jump_function(x_values, threshold_value, jump_from_value, jump_to_value)
14 # Plot the jump function

plt.plot(x_values, y_values, label='Jump Function')

plt.axvline (x=threshold_value, color='r', linestyle='--', label='Threshold"')
plt.legend ()

plt.xlabel('x")

plt.ylabel('y")

plt.title('Jump Function using Sigmoid')

plt.show ()

Listing 5: Python code for a jump function.

25

1
2
3
1
5

import numpy as np
import matplotlib.pyplot as plt

def

def

jump_function(x, threshold, jump_from, jump_to, steepness):
return jump_from + (jump_to - jump_from) / (1 + np.exp(-steepness * (x - threshold))
)

bump_function(x, bump_start, bump_end, jump_height, steepness):
return jump_height*(jump_function(x, bump_start, O, 1, steepness) \
- jump_function(x, bump_end, O, 1, steepness))

Example usage
jump_height = .8

steepness = 200
bump_start 0
bump_end =

.7

o |

.8

Generate x values
x_values = np.linspace(0, 1, 100)

Generate y values using the bump function
y_values = bump_function(x_values, bump_start, bump_end, jump_height, steepness)

Plot the bump function

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

plot(x_values, y_values, label='bump function')

axvline (x=bump_start, color='r', linestyle='--', label='support start',linewidth=.5)
axvline (x=bump_end, color='g', linestyle='--', label='support end',linewidth=.5)
ylim (ymin=0, ymax=1)

legend ()

xlabel ('x"')

ylabel('y"')
title('approximating a bump function')
show ()

Listing 6: Python code for a bump function

26

	Introduction
	What can ANNs do for a social scientist?
	Universal Approximators
	Training a neural network
	Where to go from here
	Appendix A

