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ABSTRACT

IZA DP No. 17080 JUNE 2024

Breastfeeding and Child Development 
Outcomes across Early Childhood and 
Adolescence: Doubly Robust Estimation 
with Machine Learning*

Using data from the Panel Study of Income Dynamics, we estimate the impact of 

breastfeeding initiation and duration on multiple cognitive, health, and behavioral 

outcomes spanning early childhood through adolescence. To mitigate the potential bias 

from misspecification, we employ a doubly robust (DR) estimation method, addressing 

misspecification in either the treatment or outcome models while adjusting for selection 

effects. Our novel approach is to use and evaluate a battery of supervised machine learning 

(ML) algorithms to improve propensity score (PS) estimates. We demonstrate that the 

gradient boosting machine (GBM) algorithm removes bias more effectively and minimizes 

other prediction errors compared to logit and probit models as well as alternative ML 

algorithms. Across all outcomes, our DR-GBM estimation generally yields lower estimates 

than OLS, DR, and PS matching using standard and alternative ML algorithms and even 

sibling fixed effects estimates. We find that having been breastfed is significantly linked 

to multiple improved early cognitive outcomes, though the impact reduces somewhat 

with age. In contrast, we find mixed evidence regarding the impact of breastfeeding on 

non-cognitive (health and behavioral) outcomes, with effects being most pronounced in 

adolescence. Our results also suggest relatively higher cognitive benefits for children of 

minority mothers and children of mothers with at least some post-high school education, 

and minimal marginal benefits of breastfeeding duration beyond 12 months for cognitive 

outcomes and 6 months for non-cognitive outcomes.
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1| Introduction  

 

A large body of research underscores the importance of health capital investment in infants 

and toddlers on their developmental and socioeconomic outcomes in early and subsequent stages 

of life (Cunha, Heckman, & Schennach, 2010; Francesconi & Heckman, 2016; Heckman & 

Mosso, 2014; Maluccio et al., 2009; Walters, 2015). Breastfeeding, in particular, has been 

extensively documented to confer numerous benefits for children.1 Several studies have pointed to 

improved health outcomes, including reduced risks of asthma, diabetes, obesity, ear infections, 

disability, and stunting (Adair & Guilkey, 1997; Brennan et al., 2004; Dyson et al., 2006; Haines 

& Kintner, 2008; Ip et al., 2007; Wehby, 2014; Victora et al., 2016).2 More consistently, strong 

associations between breastfeeding and child cognitive outcomes have been found (Borra et al., 

2012; Belfield & Kelly, 2012; Del Bono -& Rabe, 2012; Evenhouse &Reilly, 2005; Kramer et al., 

2001; Fitzsimons & Vera-Hernández, 2022), along with higher educational attainment 

(Mohammed et al., 2023; Rees & Sabia, 2009; Victora et al., 2015). Given these findings and 

persisting gaps in breastfeeding by family income, education, and race (Diaz et al., 2023), policies 

targeting breastfeeding have the potential to significantly impact social and economic inequality 

in the intergenerational transmission of human capital (Almond et al., 2018). 

Much of the evidence of the impacts of breastfeeding has necessarily come from 

observational studies. Since the act of breastfeeding is a personal choice and influenced by one’s 

specific circumstances, deriving causal estimates from observational data requires both rich data 

 
1 While not reviewed here, there is a large literature relating to the mechanisms of why breastfeeding may lead to 
improved developmental outcomes. One of two main channels is the nutritional content of breast milk versus infant 
formulas, including particular fatty acids, as well as transference of antibodies for immune protection (Martin et al., 
2016). The other main channel is through increased skin-to-skin contact between mothers and babies, which may 
stimulate oxytocin release and improve mother-child bonding (Bigelow & Power, 2020).  
2 Other studies observe no significant impacts of breastfeeding on health outcomes in childhood (Del Bono & Rabe, 
2012; Evenhouse & Reilly, 2005; Fitzsimons & Vera-Hernandez (2022).  
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and correctly specified empirical models in order to control for this selection.3 This paper uses data 

from the Panel Study of Income Dynamics (PSID) to estimate the relationships between 

breastfeeding and several cognitive, health, and behavioral outcomes of children in the United 

States at two points in time. Along with propensity score matching (PSM) estimators, we use a 

doubly robust (DR) estimation procedure involving propensity scores (PS), which allows for 

unbiased estimates even when either the selection equation or outcome model is misspecified. For 

both methods, our focus is on accurate estimation of the PS (i.e., the likelihood of being breastfed). 

We use a battery of supervised machine learning algorithms (ML) to estimate the PS, demonstrably 

improving estimation upon traditional approaches.  

Despite the infeasibility of directly experimentally manipulating breastfeeding activity, a 

handful of studies in the breastfeeding literature use experimental or natural experimental designs.  

Mostly notably, Kramer et al. (2008a, b) utilize a randomized trial of a breastfeeding promotion 

intervention in Belarus. In this “intention to treat” framework, they find that exclusive 

breastfeeding improves cognitive and health outcomes of children. A recent study by Fitzsimons 

& Vera-Hernández (2022) cleverly exploits a natural experiment involving differences in hospital 

staffing on weekends versus weekdays in the United Kingdom, also finding large positive effects 

of breastfeeding on cognitive outcomes of children – especially those of lower educated women.4  

Despite its obvious strengths, there are some downsides to this natural experimental approach. 

First, the settings in which such an approach is possible are quite limited, making generalizations 

 
3 Selection into breastfeeding is generally assumed (or observed) to be positive. Supporting this, Raissian & Su 
(2018) find that prenatal breastfeeding intentions are positively related to infant health outcomes, regardless of 
whether the mother ever initiated breastfeeding. Part of this association appears to be due to differences in health 
knowledge (prior to giving birth) between women intending versus not intending to breastfeed.  
4  Other studies use variation or changes in policies in an attempt to estimate causal impacts.  Baker & Milligan 
(2008) exploit changes in Canadian maternal leave mandates, which they find to positively impact breastfeeding 
duration. Del Bono & Rabe (2012) use variation in breastfeeding support policies across UK hospitals, finding large 
positive impacts on child cognitive development. 
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to other countries or demographics difficult. Second, this approach results in the estimation of a 

Local Average Treatment Effect (LATE). For example, according to Fitzsimons & Vera-

Hernández (2022, p. 360): “…Our estimates are only applicable to compliers, who are relatively 

well-off mothers (amongst those with relatively low education) and those who experienced some 

complications during delivery, and we cannot extrapolate our results to other groups of the 

population.”  

In the absence of an experimental or natural experimental setting, researchers tend to use 

one of three approaches: (1) Regression (OLS, logit/probit, etc.) including few or many controls; 

(2) sibling fixed effects, which helps to eliminate unobserved family environment and some 

genetic characteristics from confounding the estimated treatment effect;5 and (3) PSM.6 The latter 

approach is a particularly common method used to reduce potential confounding biases in 

observational studies estimating average treatment effects. A semi-parametric approach, PSM 

attempts to mimic an experimental setting by comparing outcomes among treated and untreated 

individuals, where the two groups are made observationally similar in terms of their PS. The ability 

of PSM to generate unbiased estimates rests on accurate estimation of the PS, the probability of 

treatment (Rosenbaum & Rubin, 1983). A typical approach is for researchers to select variables to 

include in a large, flexible-form logit or probit, the specification of which is selected to balance 

the PS of treated and control units. To the extent that the PS formulation is misspecified, the 

resulting PSM estimates will be biased.  

 
5 Evenhouse & Reilly (2005), Rees & Sabia (2009), and Wehby (2014) incorporate sibling fixed effects in their 
analyses. While offering a clear improvement, a disadvantage of this approach is that it relies solely on multi-child 
households that, for whatever reason, breastfed at least one child but did not breastfeed at least one other. 
6 For example, in the literature on impacts of breastfeeding, PSM is used by Belfield & Kelly (2012), Borra, 
Iacovou, & Sevilla (2012), McCrory & Layte (2011), and Rothstein (2013). 
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Methodologically, this study utilizes PS in PSM, as well as DR estimation, which allows 

for separating the outcome specification from the selection (PS) specification, resulting in unbiased 

treatment effects estimates if either (but not both) specification is incorrect. A novel aspect of our 

paper is that we use ML methods to improve estimation of the PS. Owing to the significant 

heterogeneity of the underlying data, ML techniques are particularly effective in predicting human 

behavior and health outcomes (Kleinberg et al., 2018).7 The benefits of ML techniques for 

regression have recently become more pronounced in the economics literature, indicating the 

problems in economics where ML methods are robust and emphasizing the recent developments 

in adapting ML for addressing causal questions and policy implications (Athey, 2018; 

Mullainathan & Spiess, 2017; Varian, 2014; Wüthrich & Zhu, 2021).8 Important for our context 

of PS estimation, machine learning is particularly instrumental when it comes to prediction 

(Mullainathan & Spiess, 2017). 9 

We contribute to the literature on breastfeeding in several ways. First, our study is the first 

(to our knowledge) to apply doubly robust estimation to the analysis of the impacts of 

breastfeeding on child outcomes. It is also the first in this context to apply DR and PSM techniques 

subject to improving the PS estimation using ML algorithms. Second, we compare the performance 

of alternative algorithms and offer an example of how ML may be used to improve treatment 

 
7 Several studies document that ML algorithms can correct for selection bias more efficiently and minimize mean 
square error (MSE) in predicting the treatment compared to traditional models used for PS estimation (Breiman, 
2001; Friedman, 2001; Lee et al., 2010; Austin, 2012; McCaffrey et al., 2013; Ferri-García & Rueda, 2020). 
8 For example, Carmona et al. (2019) use gradient boosting to predict bank failures in the United States. In another 
study, Bajari et al. (2015) employed several ML algorithms to predict the demand for salty snacks using sales data 
and reported that ML can perform superbly in demand prediction. Khudri et al. (2023) predicted the BMI and the 
risks of malnutrition outcomes for Bangladeshi women of childbearing age from economic, health, and demographic 
features. They found that particular ML algorithms can predict the outcomes of interest more accurately and 
efficiently than traditional OLS and logit models. 
9 Due to the tendency of OLS to overfit a model, ML can also be considered as an alternative in the first-stage 
estimation of instrumental variables (Angrist & Frandsen, 2022), and can be crucial in mitigating the omitted 
variable bias (Athey & Imbens, 2019; Wüthrich & Zhu, 2021). 
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effects estimations involving PS, which can be extended to other areas of research estimating 

treatment effects. Third, our analysis is quite comprehensive. Using longitudinal data in a U.S. 

context, we evaluate several cognitive outcomes, as well as health and behavioral outcomes, at 

two points in time (spanning childhood and adolescence). This allows us to investigate the extent 

to which impacts of breastfeeding are sustained with age. We also consider possible heterogeneous 

treatment effects by maternal race and education, as well as breastfeeding duration, which are 

important for formulating targeted policies.  Finally, we offer several falsification tests, as well as 

comparisons to results using sibling fixed effects, that provide confidence in our findings.  

Our main results suggest that breastfeeding improves multiple cognitive outcomes in 

children between 5 and 18 years old. These findings are robust and meaningful in magnitude, with 

treatment effects estimated to be between 10 and 22 percent higher of a standard deviation in scores 

compared to that of non-breastfed peers. The estimated impacts decrease somewhat as the sample 

ages 10+ years but are still uniformly statistically significant. We also find significant negative 

associations between having been breastfed and adverse child health outcomes. Specifically, our 

preferred estimates from DR estimation incorporating the gradient boosting machine (GBM) 

algorithm suggest that breastfed children have a diminished BMI of about 10 percent, an impact 

that rises with age. Similarly, children who were breastfed were 8.5 percentage points less likely 

to be obese by the time they reached 10-18 years of age. In contrast, estimates of the relationships 

between breastfeeding and behavioral outcomes are more muted. We find no evidence of 

breastfeeding impacting a broad measure of child behavioral problems, but our estimate suggests 

breastfed children have a 3.6 percentage point lower likelihood of exhibiting hyperactivity by the 

final survey wave.  Across all outcome measures, our preferred estimates are generally lower than 

OLS estimates, DR estimates using alternative ML algorithms, PSM estimates, and even sibling 
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fixed effects estimates, highlighting the importance of how one models and empirically estimates 

selection into treatment. 

Extending our primary analysis to allow for heterogeneous treatment effects by maternal 

characteristics, we find that children of mothers with at least some post-high school education 

experience greater cognitive benefits of breastfeeding than children of less educated mothers.  Our 

results also suggest a larger positive impact of breastfeeding on several outcomes of African 

American children in comparison to non-Hispanic white children, including letter word, applied 

problem, and a behavioral problem index, in addition to a reduced likelihood of childhood obesity 

among other racial/ethnic minorities. Finally, regarding breastfeeding duration, we find the benefits 

rise until 12 months of duration for cognitive outcomes, after which they level off. In contrast, the 

impacts of most health and behavioral outcomes peak at 6 months.10  

The rest of the paper proceeds as follows. Section 2 of this study details the data sources, 

key variables, and estimation strategies used in the paper. Section 3 presents the results. Finally, 

section 4 discusses the implications of our findings and concludes.  

 

2| Methods 

2.1 | Data  

2.1.1 | Data source 

 

The PSID is a leading comprehensive panel survey of a nationally representative sample 

comprising children, adults, and families residing in the United States. They have collected data 

 
10 These results support the recommendations by the USDA, the American Academy of Pediatrics, and other 
organizations, to engage in exclusive breastfeeding for a minimum of 6 months after birth (Meek et al., 2022; 
Snetselaar et al., 2021) 
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annually on income, wealth, employment, housing, food expenditures, health, and welfare from 

1968 through 1997 and biennially following 1997. The PSID Child Development Supplement 

(CDS) launched in 1997 (wave 1) to investigate a wide range of children’s developmental 

outcomes, including behavioral, cognitive, health, and other characteristics within the context of 

family, school, and neighborhood environments, and to gather information on children’s 

caregivers. In the first wave of CDS, PSID formed a random sample of 3,563 children aged 0 to 

12 years out of 2,394 families (McGonagle & Sastry, 2015).11 Children and their primary 

caregivers (PCGs) were reinterviewed for two subsequent waves of CDS, fielded in 2002-03 (wave 

2) on 2907 children aged 5–18 years, and 2007-08 (wave 3) on 1,506 children aged 10–18.12  

We initially extract data from the first three waves of CDS and restrict the sample to 

children whose PCGs are the biological mother and household head or wife of the household head. 

Subsequently, we match the children’s and their PCGs’ identifications from CDS with those from 

the family-level and childbirth adoption and history files to access information on maternal and 

family characteristics and the family identification mapping file of PSID to identify siblings’ 

information. We eliminated 287 children from the original CDS sample. Of these children, 271 

were dropped as they did not live with their biological mothers during the 1997 interview, and the 

remaining children had missing information on their breastfeeding status. This results in a sample 

of 3,276 children for our analysis.   

 

2.1.2 | Dependent variables 
 

 
11 Those children were born between 1984 and 1997. 
12 The children were eligible to be re-interviewed if they were 18 or younger. For further details about CDS waves, 
see the user guides: Hofferth et al., 1997; Mainieri, 2006; McGonagle et al., 2012. 
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At each wave, CDS administers subtests of the Woodcock-Johnson Psycho-Educational Battery-

Revised (WJ-R) to assess the reading and math skills of children over time as they progress through 

school.13 CDS chose three particular subscales of WJ-R to measure achievement: the letter-word 

identification, the applied problems test, and the passage comprehension test.14 The first two tests 

are administered among children aged three and older, while the latter is given among six years 

and older (Duffy & Sastry, 2014). Additionally, CDS provides test scores for broad reading 

combining the letter-word and passage comprehension tests.15 Each of these four tests constitute 

the cognitive outcomes in our analysis. The CDS reports four types of scores for each test. We use 

the standardized scores adjusted for age in our analysis, which facilitates comparing children’s 

achievements across different ages.16  

Our study also considers four non-cognitive outcomes: body mass index (BMI) z-score17, 

obesity, hyperactivity, and behavior problems index (BPI). The CDS calculates BMI z-score from 

the height and weight data of the children collected during the in-person interview. An obesity 

indicator is created following the CDC guidelines.18 BPI measures the incidence and degree of 

child behavior problems in a survey setting (Peterson & Zill, 1986).19 We use each of these 

outcomes from waves 2 and 3 to measure children’s academic achievements, health, and 

behavioral progress over their early childhood and adolescence.  

 
13 WJ-R measures children's achievements in several dimensions of intellectual capability, including developmental 
status, degree of proficiency in reading and mathematics, and a group standing based on age and grade (Mainieri, 
2006; Woodcock, 1997). 
14 The CDS also administered a calculation test in wave 1, only among relatively older children.  
15 Broad math score, the summation of applied problems and calculation tests, is only reported in wave 1. 
16 The CDS provides standardized scores with a mean of 100 and a standard deviation of 15 for each age group (Duffy 
& Sastry, 2014).  
17 For children, the Centers for Disease Control and Prevention (CDC) suggests using BMI z-score, a standardized 
measure of BMI using age- and gender-specific BMI distributions from the 2000 growth chart (National Center for 
Health Statistics, 2002). 
18 According to the 2000 growth chart, if a child’s BMI is above the 95 th percentile of the BMI distribution of the 
corresponding reference population, the child is considered obese (National Center for Health Statistics, 2002). 
19 Further details about the BPI scale are available in Hofferth et al. (1997). 
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Descriptive statistics of all outcome variables are reported in Table 1, both for the full 

sample and separately by whether the respondent reported ever having breastfed their child. We 

find an increase in the overall BMI z- score and the prevalence of obesity and hyperactivity but a 

decline in behavior problems index from wave 2 to 3. Comparisons in outcomes across 

breastfeeding status suggest that breastfed children experience better outcomes compared to their 

non-breastfed counterparts. Children who are breastfed receive higher test scores on all four 

subtests of WJ-R than their non-breastfeed peers. In contrast, breastfed children have a lower 

average BMI z-score and BPI score than non-breastfed children. We also find that the prevalence 

of obesity and hyperactivity are lower among breastfed children relative to non-breastfed ones. Of 

course, these differences cannot be interpreted as causal impacts of breastfeeding, as mothers and 

children who engaged in breastfeeding differ from those who did not.  

 

2.1.3 | Independent variables  
 

Table 2 shows the descriptive statistics for independent variables considered in our study, 

including the results of t-tests for differences in means between breastfed and non-breastfed sub-

samples. About 44% of the sampled children were reported as ever breastfed. Nearly half of the 

sampled children were girls; on average, they were eight years old during the 1997 interview. 

Furthermore, 40% of them were firstborn. The average weight of the children at birth was 

approximately 7 lbs. Around 15% of the children were born small for gestational age (SGA), and 

11% of them were born prematurely. According to their mothers, roughly 28% of the children 

were born healthier than other babies. Approximately 15% of the mothers did not complete high 

school, while about 34% held a college degree or higher. Over 60% of them were employed, with 

an average age of 27 years old. Two-thirds were married, and 40% were non-Hispanic black. About 
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39% reported having poor health, 45% smoked, and roughly one-fourth consumed alcohol during 

pregnancy. Approximately 43% of expectant mothers took part in WIC, while 22% received food 

stamps, and slightly over one-third were beneficiaries of Medicaid during pregnancy.  

According to our descriptive statistics, mothers who breastfed their babies had higher levels 

of educational attainment and higher IQs, suggesting positive selection into breastfeeding. 

Although employed less frequently than their non-breastfeeding counterparts, these mothers 

tended to be in better health, smoked less, and consumed slightly more alcohol during pregnancy. 

Additionally, breastfeeding mothers were more likely to be married and tended to participate less 

in welfare enrollment programs than their non-breastfeeding peers. Families with breastfed 

children also had higher annual incomes. 

 

2.2 | Empirical strategy 
 

Our general empirical model is as follows: 

                                 𝑌௜ = 𝛽଴ + 𝛽ଵ𝐵𝑟𝑒𝑎𝑠𝑡𝑓𝑒𝑑௜ + 𝜷𝟐
ᇱ 𝑿𝒊 + 𝜷𝟑

ᇱ 𝒁𝒊 + 𝜀௜           (1)  

where 𝑌௜ represents the outcomes of children i. Our coefficient of interest is 𝛽ଵ, which captures the 

effects of breastfeeding on child developmental outcomes. 𝑿𝒊 is a vector of child characteristics, 

including gender, age, birth order, year of birth, etc. Additionally, the vector 𝒁𝒊 comprises 

maternal, family, and community characteristics (see Table 2 for details). We derive and compare 

multiple estimates of 𝛽ଵ using the methods described below. 

 

2.2.1| Doubly robust estimation 
 

We use the doubly robust (DR) estimation approach to estimate the causal effect of breastfeeding 

on child developmental outcomes. While the DR is a selection-on-observables approach, it 
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minimizes bias emanating from misspecification more effectively than the traditional OLS and 

PSM techniques. Moreover, it offers reduced sensitivity to functional form assumptions. Both 

treatment (i.e., the PS model) and outcome regression models must be correctly specified to obtain 

unbiased estimates when they are used separately to estimate the causal effect. In contrast, the DR 

estimators combine these two models such that only one of them needs to be correctly specified to 

get an unbiased estimate (Imbens and Wooldridge, 2009; Wooldridge, 2010). 

We use the augmented inverse probability weighted estimator (AIPW), a doubly robust 

approach, in this paper (Glynn & Quinn, 2010; Kurz, 2022; Robins & Rotnitzky, 1995; Robins et 

al., 1995; Robins, 2000; Scharfstein, Rotnitzky, & Robins, 1999). Although the AIPW estimator 

is not widely used, it contains desirable theoretical properties. It only requires researchers to: (1) 

specify a binary regression model for the PS, and (2) define a regression model for the outcome 

variable (Glynn & Quinn, 2010). The AIPW estimator uses a correction term to augment the 

inverse probability weighted (IPW) estimator. The term eliminates the bias if the PS model is 

misspecified and the outcome model is correct. Conversely, the correction term disappears if the 

PS model is correctly specified, and the outcome model is wrong.  

If either the treatment or the outcome regression models are correctly specified, the AIPW 

estimator will be consistent (Ho et al., 2007; Glynn & Quinn, 2010; Scharfstein et al., 1999). When 

both PS and regression models are correctly specified, the AIPW estimator achieves the 

semiparametric efficiency bound and is more efficient than the regression adjustment or the IPW 

estimator (Glynn & Quinn, 2010).20 Nevertheless, incorrect specifications of both the PS and 

outcome models would lead to biased estimates.  Because of this possible scenario, attempting to 

obtain the best possible estimated PS is crucial to the robust consistency of the estimator. 

 
20 Additionally, Glynn & Quinn (2010) demonstrated that the AIPW estimator yields comparable or lower mean square 
error than the alternative estimators when both the PS and outcome models are correctly specified. 
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Therefore, we harness several machine learning algorithms to estimate the PS, rather than solely 

relying on logistic or probit regression. 

The ATT estimation based on the AIPW estimator involves three steps: 

1. We estimate the PS, i.e., the probability of being breastfed conditioning on observed pre-

treatment characteristics using probit/logistic/supervised ML algorithms. 

2. We fit a model that predicts the outcomes for the treatment group under both treatment and 

control conditions. The predicted outcomes are then inverse probability weighted using the 

PS generated from step 1 to construct a weighted average of the outcome to derive the 

treatment-specific predicted outcomes model (Kurz, 2022). All covariates from equation 

(1) are included in the outcome model.  

3. Finally, we compute the average treatment (i.e., breastfeeding) effect on the treated 

(ATT) using the difference in predicted outcomes.21 

The standard errors are derived by bootstrapping with 999 repetitions, following some other 

studies that used the DR estimation (Glynn & Quinn, 2010; Imbens, 2004; Moodie et al., 2018). 

The number of replications with values one less than a multiple of 100 is preferred to avoid 

interpolations when using the percentiles as confidence interval limits (MacKinnon, 2006).22  

 

2.2.2 | Propensity score matching 
 

PSM involves explicitly comparing outcomes of breastfed babies with the outcomes of individuals 

who were not breastfed. PSM allows us to effectively simulate an experiment by generating 

matched breastfed (i.e., treatment) and non-breastfed (i.e., control) samples, with both groups 

 
21 ATT estimates are consistent if either the treatment or the outcome model is correctly specified (Imbens & 
Wooldridge, 2009; Wooldridge, 2010). 
22 Moodie et al. (2018) demonstrate that a bootstrap procedure performs well even in small samples.  
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being similar in all other observable aspects (Rosenbaum & Rubin, 1983). After estimation of the 

PS, the matching estimator is non-parametric. This offers advantages over traditional regression, 

of which the requisite functional form and homogeneity of treatment effects assumptions are 

unlikely to hold (Zhao, 2008).  

Our key parameter of interest from the PSM is the ATT. The ATT indicates the differences 

in mean outcomes between babies who were breastfed, and the same group under the hypothetical 

situation that they had not been breastfed. The ATT, 𝛿, is given by: 

𝛿 ≡ 𝐸[𝑌ଵ − 𝑌଴|𝐷 = 1]            (1) 
                       = 𝐸 [𝐸{𝑌ଵ − 𝑌଴|𝐷 = 1, 𝑝(𝑿)}] 

                                                                     = 𝐸 [𝐸{𝑌ଵ|𝐷 = 1, 𝑝(𝑿)} − 𝐸{𝑌଴|𝐷 = 0, 𝑝(𝑿)}|𝐷 = 1] 
 
where D is a dichotomous variable equal to one if the child is breastfed and zero otherwise, 𝑌ଵ is 

the outcome if treated (breastfed), and 𝑌଴ is the outcome if untreated (not breastfed). X indicates a 

vector of covariates (pretreatment characteristics) included in our models and p(𝑿), the PS , is the 

conditional probability of receiving a treatment (i.e., being breastfed) given observed 

characteristics. To interpret estimates of the ATT (𝛿) as causal, it must be assumed that the PS 

includes all relevant variables, or that the effect of unobservable characteristics on the PS is the 

same as that of observable characteristics.  

To generate estimates of 𝛿, we first apply a (single) nearest-neighbor matching procedure 

to match breastfed children to comparable children who were not breastfed.23 For all our estimation 

involving PS, to help ensure similar treated and control units we impose a common support 

restriction on both treatment and control groups. Treated and control units whose estimated PS lies 

 
23 We employ the “Matchit” package (Ho et al., 2011), matching with replacement. 
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outside the intersection of the range of PS of treated units and the range of PS of the control units 

are discarded.24  

 We further evaluate the quality of the matching process by checking for covariate balance 

resulting from the matched sample. Appendix Table A1 reports the mean values of the covariates 

used in the analysis by treatment and control groups after performing nearest-neighbors matching 

for each test wave.25 Our overall matching results corroborate that our treatment and control groups 

are quite similar after matching, with insignificant differences in all variables except for only one 

in the PSM for cognitive outcomes at a 10% level.  

 

2.2.3 | Propensity score adjustment using machine learning algorithms 
 

The traditional PS estimation methods used in the economics literature are logistic and probit 

regression models. However, these methods may overestimate the treatment effects if they fail to 

remove non-observable bias and minimize MSE effectively in predicting the probability of 

assignment to treatment (Lee et al., 2010; Ferri-García & Rueda, 2020). The efficacy of the PSM 

at removing non-observable bias depends primarily on the selection mechanism, covariates 

chosen, and data dimensionality. Another drawback of the logistic model is that it assumes the log-

odds risks are linearly associated with the covariates (Agresti, 2012). This assumption might fail 

to hold while testing the hypothesis that breastfeeding affects a child's subsequent developmental 

outcomes, with a large sample and many covariates.  

 
24 3.85% of the observations were dropped due not meeting the common support requirements. The resulting range 
of propensity score estimates for both groups from PSM with gradient boosting algorithm is shown in Appendix 
Figure A1. Substantial representation of both groups is present across the full range of common support. 
25 The covariate balance analysis in Appendix Table A1 is derived from nearest-neighbors matching using GBM-
based PS (described in Section 2.2.3). Covariate balance derived from alternative PS estimates is comparable.   
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Black-box (e.g., neural network and bagging/boosting algorithms) and interpretable 

machine learning algorithms such as classification and regression trees are recommended as 

potential replacements subject to the available covariates and the complexity of the relationships 

impacting selection (Breiman, 2001; Friedman, 2001; Lee et al., 2010). Athey and Imbens (2017) 

discuss the role of machine learning methods in estimating PS. These methods may improve upon 

traditional PS estimation based on logistic regression, which performs poorly under model 

misspecification. McCaffrey et al. (2004) emphasize that while traditional PS methods can remove 

confounders, many covariates could lead to an inaccurate estimation of the PS. They apply 

boosting to overcome this issue and show that PS weights computed based on boosting removed 

pretreatment group differences and obtained a better estimate for the treatment. 

Boosting, discussed by Athey and Imbens (2019) as a way to improve the performance of 

supervised leaning methods, involves building regression trees sequentially by placing weights on 

observations that incorrectly classify the outcome. This can reduce bias and yield more stable 

weights than logit, probit, and multinomial models at the cost of a minimal rise in variance (Austin, 

2012; McCaffrey et al., 2013). Gradient boosting machine (GBM) is the upgraded version of 

boosting, and it allows for both categorical and continuous outcomes. In GBM, trees are 

sequentially built to minimize prediction error measures such as the mean squared error (Friedman, 

2001).26 Additionally, GBM models perform well with rare outcomes and a smaller sample size. 

For example, Ayaru et al. (2015) predicted acute lower gastrointestinal bleeding using 300 

observations and demonstrated that GBM predicted the outcome with a higher accuracy and 

outperformed multiple logistic regression-based models.  

 
26 See Appendix B for methodological details of the GBM algorithm.  
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While our ultimate aim is to estimate treatment effects of breastfeeding by incorporating 

the best performing algorithm, an additional objective of our study is to evaluate and compare the 

performance of GBM and several widely used ML algorithms (along with traditional logit and 

probit models) in predicting the probability of being breastfed. Specifically, we consider logit, 

probit, classification and regression trees (CART), random forest (RF), gradient boosting machine 

(GBM), neural network (NN), and generalized additive model (GAM) for estimating the PS. 

Tables A2 and A3 report the specifications of the SML algorithms used for estimating the PS in 

the DR and PSM estimations, respectively.27 We calculate the R2, mean squared error (MSE), bias, 

mean absolute error (MAE), and mean absolute percentage error (MAPE) from the out-of-sample 

to evaluate the prediction error and performance of the algorithms used in the PS estimation. 

Results from all these performance measures are shown in Figure 1 and indicate that the GBM 

outperforms other algorithms in predicting the probability of being breastfed most accurately, as 

evidenced by its highest R2 value, and lowest MSE, bias, MAE, and MAPE values.28 Specifically, 

the MSE value from the GBM is about 30% and 31% lower than that of the logit and probit models, 

respectively. Additionally, the R2 value of GBM exceeds that of the logit and probit models by 

about 26 and 28 percentage points, respectively. Therefore, we selected the ATT estimation 

utilizing GBM-based PS as our primary estimation technique for treatment effects. 

 
27 To avoid overfitting, the supervised machine learning algorithms are regularized by imposing a penalty on the model 
when additional variables are included. To what extent a model requires to be regularized depends on cross-validation 
(Daoud et al., 2019). Typically, the SML algorithms split the data into an in-sample (also known as the training dataset) 
portion that are used to train the model and an out-of-sample (also known as the test dataset) portion to evaluate its 
prediction performance. We employ 80% of the data as the training dataset, while the remaining 20% as the test 
dataset. Next, we apply 10-fold cross-validation to the training set to optimize out-of-sample prediction (Mullainathan 
& Spiess, 2017). This involves randomly splitting the training data set into ten equal sizes (or folds), with nine folds 
randomly chosen to train the model, and the remaining fold used to assess its performance. These is 
performed ten times with each fold alternatively acting as the testing set, and the collective predictive performance is 
used to determine the optimal parameters of the model. 
28 The GBM algorithm surpasses other algorithms across all performance evaluation measures other than the MAE in 
estimating the PS used in the PSM technique. Results are available upon request.  



Page 18 of 59 
 

2.2.4 | Sibling fixed effects 
 

One of the limitations associated with PSM is that it does not rule out unobserved heterogeneity 

arising from genetic and family-related factors that could impact estimates. Sibling fixed-effects 

models provide a way to control for unobserved, time-invariant hereditary and household factors 

(e.g., home environment, genetics, mother’s characteristics) that are common across siblings. The 

structure of the data allows us to observe siblings from the same mother, who each may or may 

not have been breastfed. The sibling fixed-effects model exploits within-mother variation, i.e., 

sibling comparisons, to estimate the effect of breastfeeding on a child’s developmental outcomes. 

A significant drawback of this approach is that it focuses solely on households with more than one 

child. Also, a mother’s decision to breastfeed is likely to apply to both her babies, which further 

restricts the identifying variation. Further, siblings’ differential abilities to breastfeed can be 

correlated with ensuing developmental outcomes. Despite these drawbacks, for comparison to our 

primary PSM estimates we estimate the following fixed-effects models using the data on 1062 

pairs of siblings included by the CDS:29  

 

       𝑌௜௝ = 𝛽଴ + 𝛽ଵ𝐵𝑟𝑒𝑎𝑠𝑡𝑒𝑑௜௝ + 𝜷𝟐
ᇱ 𝑿𝒊 + 𝝉𝒋 + 𝜀௜௝                                 (2) 

 

where 𝑌௜௝ represents the outcomes of children i at family j. Our coefficient of interest is 𝛽ଵ, which 

captures the relationship between breastfeeding and child developmental outcomes. The vector 𝑿𝒊 

comprises the set of sibling-varying controls that are used in the PSM and 𝜷𝟐 indicates the vector 

of corresponding coefficients.  𝝉𝒋 is a vector of sibling fixed effects which controls for all factors 

 
29 We discard the mother with only one child from our sample, leaving a total sample size of 2124 for sibling fixed 
effects analysis.   
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that are common to both siblings, ruling out the need to observe and measure potentially critical 

confounders (Rees and Sabia, 2009).    

 

3| Results 
 

In this section we report and discuss estimates of treatment effects of ever having been breastfed 

(i.e., breastfeeding initiation) on child developmental outcomes. We focus primarily on results 

from DR and PSM techniques in which PS are estimated using GBM algorithm. After presenting 

these results, we turn to sibling fixed effects estimates. Following this, we consider possible 

heterogeneity in treatment effects along several dimensions: breastfeeding duration, children’s 

age, and maternal race and education.  

 

3.1| Main estimates 
 

Table 3 presents baseline estimates of the relationships between breastfeeding initiation and 

cognitive and non-cognitive outcomes using and DR estimation techniques. For comparison 

purposes, column 1 displays the estimates from OLS with the same covariates, whereas columns 

2 and 3 report the ATT estimates from the PSM and DR techniques in which PS are estimated 

using the GBM algorithm. 

Our analysis shows that breastfeeding is significantly associated with improved cognitive 

outcomes (i.e., higher test scores) in both waves 2 (when children were aged 5 to 18 years) and 

wave 3 (when children were aged 10 to 18 years). This finding aligns with previous studies that 

identified a positive link between breastfeeding and cognitive test scores (Belfield & Kelley, 2012; 

Borra et al., 2012; Fitzsimons & Vera-Hernández, 2022; Rees & Sabia, 2009). This result is robust 
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across all four test scores and across all specifications. In terms of magnitude, the estimated 

impacts are modest but meaningful. For instance, the estimated ATT for letter word test scores 

obtained from the DR estimation in wave 2 is 3.093, relative to a mean score in the sample of about 

100. Given the standard deviation in this test score, we find that breastfed children performed about 

17 percent of a standard deviation higher than non-breastfed children. Across all test scores, 

breastfed children performed better than those who were not, with an improvement of about 10%-

22% of a standard deviation. The DR approach (with GBM), which may perform better than OLS 

and PSM in dealing with selection into breastfeeding, results in relatively lower effect sizes among 

corresponding estimates while controlling for the same set of covariates. The estimated impacts 

on cognitive outcomes diminish somewhat as children age from wave 2 to wave 3 (five years later), 

although they remain statistically significant. The most persistent treatment effect is observed for 

passage comprehension, while the impact on letter word score falls dramatically and the 

significance level is reduced to 10%.  

Turning to non-cognitive outcomes, each specification suggests that being breastfed is 

associated with a decline in a child’s BMI z-score.  The estimates range from -0.099 to -0.144 in 

wave 2 and increase to between -0.254 to -0.355 when children are older in wave 3.30 In line with 

these findings, we also find that breastfed children are less likely to be obese, with estimates 

ranging from 3.7 to 6.2 percentage points in wave 2 and 8.5 to 10.4 percentage points in wave 3. 

These results are consistent with the study by Metzger & McDade (2010), which found that 

breastfed children had lower BMI scores than their non-breastfed siblings. They also found that 

breastfed siblings were less likely to be overweight or obese. We also observe breastfeeding to be 

associated with a lower risk of being hyperactive by 2.5 to 2.6 percentage points at earlier ages 

 
30 Gibson et al. (2017) found statistically significant effect of breastfeeding on BMI, specifically in older children. 
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(wave 2), though this result is statistically insignificant for the PSM specification and marginally 

significant for the OLS and DR specifications. Conversely, breastfeeding appears to be statistically 

significantly linked with a 3.6-6.7 percentage points decrease in hyperactivity risk as children grow 

older. These findings are consistent with previous studies (Soled et al., 2021; Brasfield, Goulding, 

& Kancherla, 2021). However, our results do not provide evidence of a significant relationship 

between breastfeeding and behavior problems, either at an early age or later. This supports the 

findings of Borra et al. (2012) and Belfield & Kelley (2010).  

It is worth comparing our primary results to those obtained using traditional models of PS 

estimation (i.e., logit or probit) as well as alternative SML methods of PS estimation. These 

comparisons of DR estimates are displayed in Appendix Table A4. Two broad characterizations 

are notable from these comparisons. First, the results from various models suggest that the general 

findings from our primary estimates are robust. Specifically, breastfeeding is linked to higher test 

scores and improved cognitive outcomes in both early and later childhood stages, with the effect 

diminishing over time. As for non-cognitive outcomes, all the algorithms indicate that 

breastfeeding significantly reduces a child’s BMI z-score, as well as the risk of obesity in both 

waves. Most algorithms suggest that breastfeeding is associated with a lower risk of hyperactivity, 

with a pronounced effect in the latter wave. In contrast, behavior problems seem to have no 

significant association with breastfeeding across most of the algorithms. Second, the GBM-based 

DR approach yields lower point estimates of ATT values compared to other algorithms and 

consistently provides lower estimates than traditional logistic and probit models.31 We also 

 
31 Out of all sixteen outcomes, we found significant differences (based on a t-test) in ATT values at a 10% level 
between GBM and logistic or probit models in letter word, applied problem, and passage comprehension scores in 
Wave 2. Even though only a few outcomes showed significant differences, the results reported in Table A4 collectively 
reinforce the argument that machine learning algorithms can yield a lower ATT value than the traditional approaches 
subject to reducing bias. 
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estimate the PS using the same set of SML algorithms for PSM estimation, and the results again 

suggest that the GBM-based ATT estimates are lower for most of the outcomes, particularly for 

cognitive scores (Appendix Table A5). This finding suggests the possibility of overestimation of 

treatment effects due to the prevailing bias resulting from an error in calculating the PS using 

alternative methods.  

 

3.2 | Sibling fixed effects estimates 
 

To further evaluate the robustness of our primary results using PSM and DR estimation, and to 

consider the potential impact of unobserved factors biasing our results, we present results from 

sibling fixed effects models.  If there exists selection into breastfeeding initiation on the basis of 

any family background, home environment or genetic characteristics that are common across 

siblings and may also independently influence outcomes, the use of sibling effects will eliminate 

their role in the estimation. However, a downside of this approach is that we must confine our 

sample to multiple-child households. Furthermore, ATT estimates are identified solely on sets of 

siblings for whom there exists variation in treatment status. These caveats aside, the findings 

(presented in Table 4) are largely consistent with the OLS, PSM, and DR estimates, with cognitive 

outcomes being positively impacted by breastfeeding and, with the exception of behavior 

problems, non-cognitive outcomes being significantly negatively impacted. In comparing the 

magnitudes of our estimates, the DR estimates are almost uniformly lower than those of the sibling 

fixed effects model, except for the hyperactivity outcome in Wave 2. This is notable given that 

breastfeeding generally exhibits positive selection on observables, which is typically assumed for 

unobservables as well. So, while the sample restrictions on sibling fixed effects estimation make 
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the comparisons imperfect, our results from the sibling fixed effects model serve as a robustness 

check and provide confidence that the role of omitted variable bias is limited. 

 

3.3| Heterogeneous treatment effects 
 

To summarize our primary estimation results so far, we find that breastfeeding improves cognitive 

test scores, and the results persist across different techniques. In contrast, our results based on non-

cognitive outcomes are mixed. Having been breastfed is negatively associated with both BMI and 

obesity, but the association with behavioral outcomes is not consistent. We now turn to stratifying 

the sample by breastfeeding duration, children’s age, maternal race, and maternal education to 

investigate if our estimated results vary across these dimensions. 

 

3.3.1| Heterogeneity of results by breastfeeding duration 
 

 

Thus far we have considered the impacts of ever having been breastfed. We now analyze how 

varying durations of breastfeeding are associated with child developmental outcomes (Table 5).32 

We focus on four different periods of breastfeeding: breastfeeding for at most 3 months, at most 6 

months, 6+ to 12 months, and more than 12 months.33 We compare each duration category with 

reference to never having been breastfed. Our findings show that all durations of breastfeeding up 

to 12 months positively and significantly impact cognitive outcomes. Although the positive effects 

 
32 Results from the PSM (omitted for brevity) are quantitatively similar. They are available upon request.  
33 Rather than a continuous measure, we focus on these categories for a few reasons. First, the retrospective nature of 
the breastfeeding data makes measurement error in precise duration likely. Second, the duration of breastfeeding is 
truncated at 24 months for those who were breastfed for a longer period (n=27). Finally, these category cutoffs 
correspond to common recommendations of breastfeeding duration. According to the National Health and Nutrition 
Examination Survey (NHANES) during 1988-1994, the prevalence of breastfeeding at 6 and 12 months in wave 3 
were 22.4% and 8.9%, respectively (Li et al., 2002), versus 23.56% and 10.4% from our study using the PSID data, 
providing reassurance of the consistency between studies.  
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on applied problem and passage comprehension test scores are only substantial in Wave 2 for the 

12+ month duration, the effects on other cognitive outcomes remain positive but level off.34 We 

observe a greater benefit of breastfeeding among those who were breastfed for 6+ to 12 months 

compared to those who were breastfed for a maximum of 3 months. Also, children who were 

breastfed for 6+ to 12 months appear to have a larger effect on letter word, applied problem, 

passage comprehension (in wave 3), and broad reading than those breastfed for a maximum of 6 

months. Overall, these results suggest a positive but diminishing impact of breastfeeding, and that 

breastfeeding beyond 12 months is unlikely to offer additional cognitive benefits to children. The 

maximum impacts of breastfeeding on cognitive outcomes are estimated to occur between 6 and 

12 months of breastfeeding for letter word and applied problem scores, each estimated to increase 

scores by about 0.3 standard deviations compared to never having been breastfed. 

Our results indicate that breastfeeding for 3 months or 6 months is linked to a decrease in 

the child’s BMI z-score and the risks of being obese and hyperactive in both waves, in contrast to 

those who were never breastfed. Furthermore, children who were breastfed for 6+ to 12 months 

also had a decrease in BMI z-score and lower risks of being obese and hyperactive in Wave 3 than 

their non-breastfeeding counterparts. However, our findings indicate that breastfeeding does not 

affect behavioral problems, regardless of duration. Overall, our results suggest that the benefits of 

breastfeeding rise until 6 months of breastfeeding and subsequently flatten off for non-cognitive 

outcomes. 

 

3.3.2| Heterogeneity of results by child’s age 
 

 
34 It should be noted that the sample size of this group is relatively small (3.5 percent of the overall sample).  
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In this exercise, we limit our sample to children who were aged 7 or younger during the 1997 

interview (wave 1) and rerun our primary analysis. The purpose of this analysis is twofold. Firstly, 

focusing on the earlier wave helps to minimize the possibility of recall bias.35 Secondly, we wish 

to examine whether there is any variation in our estimated treatment effects across waves among 

the same children. This provides an alternative way to investigate whether the impact of 

breastfeeding on developmental outcomes changes with children’s age. ATT estimates from the 

DR estimation are presented in Table 6. According to our estimates, breastfeeding has a positive 

association with test scores for all four cognitive outcomes in both waves. Nonetheless, we observe 

more negligible treatment effects in the last wave when the children get older, implying that the 

impact of breastfeeding on cognitive abilities may decline over time. However, these declines are 

not statistically significant.  

In contrast, our findings indicate that breastfeeding has a notably greater impact on some 

noncognitive outcomes, particularly BMI and obesity, in the third wave when children are older 

versus wave 2. Breastfeeding is found to be significantly associated with a lower risk of 

hyperactivity in both waves. In contrast, we observe no significant relationship between 

breastfeeding and behavior problems across both waves. All of these results validate the baseline 

estimates reported in Table 3. 

 

3.3.3| Heterogeneity of results by maternal race 
 

 
35 As PSID collects retrospective cohort data, our results could be subject to some recall bias owing to the long lag 
between birth and the survey, causing a potential downward bias in estimates. To address this issue, we first investigate 
those who reported breastfeeding in both the 1997 and 2002 waves and see if their responses are consistent. We find 
a correlation of 0.86, thus suggesting a relatively low recall bias. 
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Despite the increase in the overall breastfeeding rates in the United States over the past decade, 

racial/ethnic disparities still persist. Black women and some other racial and ethnic minority 

groups continue to have lower breastfeeding rates and are far from meeting the Healthy People 

2020 goals, as stated in studies by Jones et al. (2015) and Chiang et al. (2021). To investigate 

whether estimates differ across maternal race/ethnicity, the baseline model was re-estimated by 

stratifying the sample based on maternal race/ethnicity, which includes non-Hispanic white 

(n=1534), non-Hispanic black (n=1305), and Other race/ethnicity36 (n=424). Table 7 presents the 

ATT values from the DR estimation for each group.37 Our results, in general, suggest that children 

with minority mothers have significantly higher cognitive test scores compared to children with 

non-Hispanic white mothers. In particular, non-Hispanic black children observe the most 

considerable impact of breastfeeding on letter words, applied problems, and broad reading scores. 

For these children in wave 2, the estimated impacts of having been breastfed on letter word score 

and applied problem score are about 0.41 and 0.48 standard deviations higher, respectively. These 

estimates are over twice as high as the estimates for the non-Hispanic white sample, with both 

differences statistically significant at the 10 percent level. With the exception of applied problem 

in both waves and passage comprehension in wave 3, the estimated treatment effects are also 

higher for the “other race” sample than they are for children of non-Hispanic white mothers, though 

the differences are not statistically significant. 

We also observe some differences by maternal race for non-cognitive outcomes. 

Specifically, we find significant associations of breastfeeding with child obesity and BMI only for 

the non-Hispanic white and other race samples, and not for the non-Hispanic black sample. The 

estimated reduction in the likelihood of obesity is especially large for the “Other race” sample. In 

 
36 Other race/ethnicity refers to Hispanic, Asian, and other (combined due to lower sample sizes). 
37 Results from the PSM are available upon request. 
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contrast, breastfed children with non-Hispanic black mothers appear to have the largest reduction 

in hyperactivity in both waves. Similarly, the association between having been breastfed and the 

likelihood of behavioral problems is (highly) statistically significant only for this group, reflecting 

an approximate 0.16 standard deviation reduction in this outcome.  

Other studies tend to not separate their analysis by race across ages. Therefore, comparing 

our results with prior studies is difficult. Nevertheless, previous studies have investigated the 

benefits of breastfeeding for children below the poverty line (Belfield & Kelly, 2010) and socially 

disadvantaged groups (McCrory & Layte, 2011) and have found larger benefits for underprivileged 

groups. 

 

3.3.4| Heterogeneity of results by maternal education 
 

We also run a heterogeneity analysis by stratifying the sample by maternal education (Table 8). 

We find that children of mothers with at least some post-high school education (50% of the sample) 

experience relatively greater benefits from breastfeeding. Although this finding contrasts with 

results from Borra et al. (2012) and Fitzsimons & Vera-Hernández (2022), both UK-based studies, 

they corroborate the results of Gibson-Davis & Brooks-Gunn (2006), who only found positive 

breastfeeding effects for mothers with at least some post-secondary education in the United States. 

In particular, while our estimated impacts on cognitive outcomes are positive and significant for 

children of mothers with high school or lower educations only in wave 1, the estimates are 

uniformly higher and statistically significant among the children of higher educated mothers in 

both waves. Furthermore, the results from t-tests suggest that the differences across education 

groups are largely statistically significant. Regarding non-cognitive outcomes, we notice that 

breastfed children of mothers with some college degrees experience a significant decrease in BMI 
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and lower risks of obesity and hyperactivity in both waves. Interestingly, we find larger health-

related (BMI and obesity) effects in wave 3 among the children of lesser educated women than we 

do among the children of mothers with some college degrees. In contrast to our cognitive results, 

we find no statistically significant differences in ATT estimates by maternal education for the 

health and behavioral outcomes.  

 

3.4| Robustness checks 

3.4.1 | Excluding low birthweight and pre-mature births 
 

 

The relationships between breastfeeding and children’s developmental outcomes may be 

influenced by unobservable circumstances related to a child’s birth, such as prematurity. 

Furthermore, infants with poor health may face challenges latching and are less likely to be 

breastfed (U.S. Department of Health and Human Services, 2011). This poses a problem of 

structural endogeneity that could potentially bias our results. To ensure the robustness of our 

findings, we remove low-birthweight infants (i.e., those weighing less than 5.51 lbs. or 2.5 kg 

during birth) and premature babies (i.e., infants born before 37 weeks), as these groups may differ 

systematically from the rest of our sample. 

Table 9 reports the effects of breastfeeding on child developmental outcomes after 

excluding low birth weight and premature babies. Overall, the results are very similar to our main 

estimates and suggest that breastfeeding significantly improves all test scores in early childhood. 

Although the effects tend to diminish over time, they are sustained for all cognitive outcomes at a 

later age, except for letter word scores. This provides further evidence that breastfeeding is a 

valuable practice that can help promote the cognitive development of children. 
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The results further show that breastfeeding is linked with a reduction in the child’s BMI z-

score and a lower likelihood of obesity at both points in time. In contrast, breastfeeding appears to 

affect hyperactivity only in Wave 3, while its association with behavior problems turns out to be 

statistically insignificant. Overall, the estimates for non-cognitive outcomes are similar to those in 

the baseline estimates. This suggests our primary findings are not driven by endogeneity resulting 

from low birth weight and prematurity. 

 

3.4.2 | Falsification exercise 
 

In this section, we perform a falsification exercise to assess whether unobservables correlated with 

breastfeeding could drive our baseline estimates. This strategy requires identifying a set of 

outcomes that could be linked to these unobservables but are unlikely to be directly affected by 

breastfeeding. Especially if outcomes are measured pre-treatment, i.e., before breastfeeding 

occurs, they should be unaffected by breastfeeding unless there exists some selection bias that the 

PSM technique does not account for. The conditional independence assumption is more reasonable 

if the results suggest that breastfeeding does not impact the placebo outcome. If variables chosen 

in the falsification exercise are closely associated with the outcome of interest, the exercise has 

more acceptability (Imbens & Wooldridge, 2009). We chose five placebo outcomes in this 

exercise: child’s birth weight, whether the mother smoked six months before pregnancy, whether 

the mother smoked during pregnancy, whether the mother drank alcohol 12 months before 

pregnancy, and whether the mother drank alcohol during pregnancy. Birth weight is closely 

associated with both cognitive and noncognitive outcomes (Imbens & Wooldridge, 2009) and can, 

therefore, serve as a crucial pre-treatment proxy outcome. The other variables may indicate 
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maternal attitudes towards their children or parenting and could be linked to unobservables 

affecting children’s outcomes. 

Table 10 displays results from the falsification exercise using sibling fixed effects, PSM, 

and DR techniques. All the specifications indicate that the relationships between the placebo 

outcomes and breastfeeding fall short of statistical significance at conventional levels, providing 

no evidence of selection bias. 

 

4| Discussion and conclusion 
 

This study is the first to incorporate doubly robust estimation and machine learning methods in 

estimating the impact of breastfeeding on child outcomes. Our comprehensive analysis, including 

baseline estimates and heterogeneity analysis by varying durations of breastfeeding, children’s age, 

maternal race, and education, suggests that breastfeeding is significantly linked to multiple 

improved cognitive outcomes in early childhood. Our baseline estimates indicate that breastfed 

children (between 5 and 18 years of age) outperform those who are not breastfed by about 10%–

22% of a standard deviation across cognitive test scores. These effects largely persist as the sample 

ages, with the exception of letter word score, for which the estimate drops in magnitude by about 

40 percent. Further, we find that having been breastfed is negatively associated with BMI and 

obesity among children, especially among older children. In wave 3, among children aged 10-18, 

our results suggest breastfeeding reduced BMI by about 14 percent of a standard deviation, and the 

likelihood of obesity decreased by 8.5 percentage points. Finally, we find weak evidence that 

hyperactivity was reduced by a small degree among breastfed children, but no evidence that 

breastfeeding impacted a broad behavioral problems index.   

Though meaningful in magnitude, these estimated treatment effects resulting from our 
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preferred (bias and MSE-minimizing) algorithm are generally lower than those found using OLS, 

matching estimators using alternative estimation of PS, and sibling fixed effects. Our estimates on 

cognitive scores are also lower than some notable estimates in the literature derived from 

experimental or natural experimental methods. For example, Fitzsimons & Vera-Hernández (2022) 

find impacts of breastfeeding on cognitive outcomes of about 0.5 standard deviations – over twice 

the magnitude of our estimates. One possible reason for this discrepancy could be the difference in 

settings, with their sample drawn from vaginal births in public hospitals in the United Kingdom. 

Also, their estimates represent a local average treatment effect, with identification driven solely by 

those mothers who only chose to breastfeed due to increased breastfeeding support services 

available in the hospital upon giving birth. Since these mothers may be less likely to make other 

early investments in their children’s development, the relative impact of breastfeeding could be 

quite large.  

Our other findings offer policymakers additional insight into the nuanced relationships 

between children’s health capital investments and multiple developmental outcomes. A particularly 

noteworthy finding of our study is that the benefits of breastfeeding rise until 12 months of 

breastfeeding duration for cognitive outcomes (and 6 months for health-related outcomes) and 

flatten off subsequently. This result is in line with some previous studies (Binns et al., 2016; Horta 

et al., 2015; Kramer et al., 2008a,b), which suggest that the benefits of breastfeeding may rise 

beyond 6 months. Our results also support the recommendations by the USDA, the American 

Academy of Pediatrics, and other organizations, which encourage engagement in exclusive 

breastfeeding for a minimum of 6 months after birth, with some continued breastfeeding after that 

age (Meek et al., 2022; Snetselaar, et al., 2021). 

Our analysis also suggests that there are some heterogenous impacts of breastfeeding across 
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demographic groups. We find that children of mothers with at least some post-high school 

education experience greater benefits of breastfeeding than children of less educated mothers. 

There is a large socioeconomic gradient in mothers’ breastfeeding activity in the United States, 

with 75.8 percent of college graduates reporting breastfeeding at 3 months, and only 37.8 percent 

of those with high school or less reporting the same (Diaz et al., 2023). While this differential is 

in line with our relative magnitudes of estimated cognitive benefits of breastfeeding, we instead 

find larger health-related (BMI and obesity) effects among lesser educated women than we do 

among those with college degrees. We also observe a few differentials in estimated treatment 

effects by race, with children of African Americans benefitting more on letter word score, applied 

problem score, and the behavioral problem index, in comparison to children of non-Hispanic, 

white mothers. Especially given the low rates of breastfeeding among African Americans (36.3 

percent), our results suggest breastfeeding informational or support policies targeting this group 

of women would be particularly beneficial. 

Methodologically, our analysis highlights the role that ML methods can have in improving 

PS estimation. Reliable PSM estimators require accurate estimation of the PS, and even doubly 

robust methods benefit from improved PS estimation. ML methods excel at such prediction tasks. 

Accordingly, we find that such methods – in particular the GBM algorithm – result in lower bias 

and mean squared error than traditional methods of estimating the PS. Future researchers should 

consider using ML, and comparing the relative performance of particular algorithms, in other 

contexts involving PS estimation. 

Our analysis is not without limitations. Most importantly, since our analysis inherently 

relies on observable variables to balance treatment and control groups, we cannot rule out the 

possibility that some relevant factors, related to both child outcomes and a mother’s choice to 
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breastfeed, have been omitted. However, the results from falsification exercises and comparable or 

lower DR estimates than those of sibling fixed effects provide some confidence that the role of 

omitted variables is limited.  Second, due to data limitations, we were only able to examine the 

impact of ever having been breastfed (as well as different durations of breastfeeding), versus the 

impact of exclusive breastfeeding. Some prior research has found exclusive breastfeeding to result 

in stronger outcomes (Del Bono & Rabe, 2012), while others have found no difference (Borra et 

al., 2012). 
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         Fig 1. Performance of different machine learning algorithms in propensity score estimation in the DR process 
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Table 1. Descriptive statistics of outcomes 
 Full sample Not breastfed Breastfed 
   Obs  Mean  SD  Mean  SD  Mean  SD 
Cognitive outcomes      
 Letter word        

 Wave 2 2633 103.554 18.966 101.057 18.147 109.813 18.707 
 Wave 3 1505 100.706 16.61 99.402 16.327 106.823 16.108 

Applied problem        
 Wave 2 2625 101.909 16.973 100.319 16.628 108.166 16.932 
 Wave 3 1500 102.829 15.477 101.631 15.460 109.681 14.900 

Passage comprehension        
 Wave 2 2541 103.61 15.897 101.654 15.075 108.223 15.233 
 Wave 3 1456 97.554 14.484 96.019 14.261 102.373 14.872 

Broad reading        
 Wave 2 2637 103.652 17.55 101.194 16.875 109.806 17.042 
 Wave 3 1506 99.044 16.049 97.506 15.823 105.092 15.559 
        

Non-cognitive outcomes      
 Child BMI z-score         

 Wave 2 2599 0.589 1.200 0.611 1.198 0.438 1.169 
 Wave 3 1434 1.141 1.654 1.302 1.779 0.826 1.446 

Obesity        
 Wave 2 2607 0.205 0.404 0.215 0.411 0.159 0.367 
 Wave 3 1440 0.235 0.424 0.296 0.457 0.161 0.368 

Hyperactivity        
 Wave 2 2906 0.073 0.260 0.093 0.290 0.070 0.256 
 Wave 3 1506 0.097 0.296 0.135 0.341 0.071 0.257 

Behavior problems index        
 Wave 2 2907 9.814 11.790 9.925 10.761 9.776 12.462 
 Wave 3 1504 8.836 11.184 10.228 14.966 8.326 10.370 

Notes: All estimates are sample weight adjusted. 
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     Table 2. Descriptive statistics of independent variables. 
 All cases Not breastfed Breastfed MD t-stat    Mean  SD  Mean  SD  Mean  SD 
Coefficient of interest        
 Ever breastfed 0.444 0.497       
         

Controls         
         

Child characteristics         
 Female child 0.490 0.500 0.495 0.500 0.506 0.500 0.011 0.660 
 Child’s age 8.120 2.963 8.153 2.929 8.205 2.958 0.052 0.410 
 First born 0.400 0.477 0.340 0.474 0.358 0.480 0.019 1.140 
 Second born 0.350 0.477 0.341 0.474 0.348 0.477 0.007 0.430 
 Birth weight  6.829 1.436 6.777 1.399 7.122 1.295 0.345 7.510*** 
 Born preterm 0.113 0.317 0.132 0.339 0.104 0.306 -0.028 -0.840 
 Born SGAa 0.153 0.355 0.204 0.397 0.106 0.304 -0.098 -1.601 
 Same healthb 0.636 0.481 0.673 0.469 0.566 0.496 -0.107 -6.480*** 
 Better healthb 0.278 0.448 0.216 0.411 0.367 0.482  0.152 9.820*** 
 HOME measurec 18.02 3.152 17.621 3.08 18.527 3.112 0.906 7.460*** 
         

Maternal & family characteristics 
 Mother’s aged 27.296 5.165 27.535 5.350 27.117 4.900 -0.418 -2.340** 

 IQ 91.689 17.040 90.812 16.356 97.802 17.665 6.990 10.510*** 
 High school dropout 0.150 0.354 0.204 0.403 0.082 0.259 -0.122 -6.303*** 
 High school  0.348 0.445 0.418 0.451 0.266 0.442 -0.152 -9.102*** 

 College or more 0.335 0.472 0.314 0.464 0.354 0.478 0.040 2.394*** 

 Employed mother d 0.643 0.479 0.670 0.471 0.627 0.484 -0.043 -2.180** 
 Non-Hispanic black 0.400 0.380 0.068 0.251 0.044 0.206 -0.023 -2.520** 
 Other Race/ Ethnicity 0.130 0.320 0.034 0.182 0.035 0.183 0.001 0.080 

 Married d 0.656 0.400 0.523 0.402 0.795 0.396 0.007 0.530 
 Logged family income d 10.595 0.941 10.560 0.868 10.630 0.945 0.070 2.212** 
 Bad healthd 0.388 0.487 0.286 0.452 0.190 0.393 -0.095 -3.870*** 
 Smokede 0.446 0.498 0.614 0.492 0.418 0.502 -0.197 -1.690* 

 Alcohol consumptione 0.252 0.435 0.317 0.468 0.324 0.471 0.007 0.100 
 WIC participatione 0.433 0.496 0.439 0.496 0.262 0.440 -0.176 -10.790*** 
 Received food stampse  0.223 0.416 0.215 0.411 0.121 0.326 -0.094 -7.360*** 
 Received Medicaide  0.354 0.478 0.351 0.477 0.214 0.410 -0.137 -8.850*** 
 Area of residencef 0.655 0.475 0.651 0.477 0.714 0.452 0.063 3.900*** 

 Regiong 2.489 1.009 2.497 0.996 2.488 1.018 -.009 -0.270 
Notes: All estimates are sample weight adjusted. MD indicates the differences in means between breastfed and not 
breastfed. a whether the child was born small for gestational age (SGA), e.g., weighing less than a specified percentile 
of birth weight for a given gestational age following the gender-specific SGA measure from Alexander et al. (1996). 
b As compared to other babies born at birth. c The Home Observation for Measurement of the Environment (HOME) 
scale taken from Caldwell & Bradley (1984) measures the cognitive stimulation and emotional support parents provide 
to children. d year of childbirth. e during pregnancy. f 0 =non-metropolitan area, 1= metropolitan area. g 1= Northeast, 
2= North Central, 3= South, 4 = West, 5 =Alaska, Hawaii. State dummies are considered, but not reported here for 
brevity.  * p < 0.1 ** p < 0.05, *** p < 0.01. 
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Table 3. Breastfeeding initiation (ever breastfed) and child development outcomes.  
 OLS  PSM-GBM  DR-GBM 
Cognitive outcomes      
Letter word       

Wave 2 4.472***  3.545***  3.093*** 
 (0.970)  (1.090)  (0.879) 
Wave 3 3.315***  3.020**  1.603* 

 (1.095)  (1.120)  (0.973) 
Applied problem       

Wave 2 5.602***  5.578***  3.566*** 
 (0.857)  (0.923)  (0.931) 
Wave 3  4.802***  4.781***  2.962*** 

 (0.995)  (1.026)  (0.966) 
Passage comprehension      

Wave 2 3.755***  3.596***  3.200*** 

 (0.783)  (0.843)  (0.741) 
Wave 3 3.469***  3.235***  3.073*** 

 (0.928)  (1.217)  (0.749) 
Broad reading      

Wave 2 4.544***  2.978***  2.632*** 
 (0.881)  (1.025)  (0.753) 
Wave 3 3.521***   2.319*  2.211**  

 (1.026)  (1.198)  (1.021) 
Non-cognitive outcomes 
Child BMI z-score 

Wave 2 -0.144**  -0.142**  -0.099* 

 (0.066)  (0.069)  (0.056) 
Wave 3 -0.355**  -0.294**  -0.254** 

 (0.122)  (0.149)  (0.124) 
Obesity 

Wave 2 -0.062***  -0.060**  -0.037** 

 (0.022)  (0.023)  (0.018) 
Wave 3 -0.104***  -0.096***  -0.085*** 

 (0.030)  (0.036)  (0.025) 
Hyperactivity 

Wave 2 -0.026*  -0.024  -0.025*  

 (0.015)  (0.017)  (0.014) 
Wave 3  -0.067***  -0.058**  -0.036** 

 (0.019)  (0.027)  (0.016) 
Behavior problems index 

Wave 2 0.569  0.935  0.823 
 (0.667)  (0.675)  (0.556) 
Wave 3 -0.766  -0.872  -0.630 

 (0.923)  (0.824)  (0.566) 
Notes: Robust standard errors are provided for OLS, while cluster-robust standard errors are reported for the 
PSM. The DR standard errors are computed by bootstrapping with 999 repetitions. The number of 
replications with values one less than a multiple of 100 are preferred to avoid interpolations when using the 
percentiles as confidence interval limits (MacKinnon, 2006). All standard errors are presented in parentheses. 
For PSM and DR estimations, ATT values are reported based on the propensity scores that are estimated 
using the GBM algorithm.  * p < 0.1 ** p < 0.05, *** p < 0.01. 
 
 
 
 
 



Page 45 of 59 
 

Table 4. Sibling fixed effects estimates of the effects of breastfeeding initiation on child development outcomes. 
 Wave 2  Wave 3 
Cognitive outcomes 
Letter word 3.309***  2.207* 

 (1.031)  (1.161) 
  

Applied problem 3.926***  3.506*** 
 (0.957)  (1.097) 
    

Passage comprehension 3.263***  3.212*** 

 (0.835)  (0.963) 
    

Broad reading 3.022***  2.713** 

 (0.931)  (1.065) 
    

Non-cognitive outcomes 
Child BMI z-score -0.142**  -0.265* 

 (0.068)  (0.137) 
  

Obesity -0.043*  -0.094*** 
 (0.025)  (0.035) 
  

Hyperactivity -0.022*  -0.051** 
 (0.013)  (0.020) 
  

Behavior problems index 0.453  -0.744 
 (0.564)  (0.783) 

Notes: Robust standard errors are reported for sibling fixed effects and are in parentheses. For each 
outcome, the covariates from the baseline model are included as controls.  * p < 0.1 ** p < 0.05, *** p < 
0.01. 
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Table 5. DR- ATT estimates from the heterogeneity analysis by breastfeeding duration 
 ≤3 months  ≤ 6 months  6+ to 12 months  12+ months 
Cognitive outcomes 
Letter word 

Wave 2 3.164***  4.234**  5.177***  3.032 
 (1.181)  (0.928)  (1.358)  (2.437) 
Wave 3 0.887  2.201**  4.400***  2.960 

 (1.104)  (0.886)  (1.338)  (2.538) 
Applied problem 

Wave 2 4.023***  3.349***  5.285***  4.720** 

 (1.040)  (0.857)  (1.352)  (1.903) 
Wave 3 3.546***  2.546***  4.204***  5.427 

 (1.038)  (0.821)  (1.603)  (3.403) 
Passage comprehension 

Wave 2 3.395. ***  3.292***  3.243***  3.103* 

 (0.949)  (0.776)  (1.222)  (1.835) 
Wave 3 2.551**  3.036***  3.085**  6.281 

 (1.044)  (0.774)  (1.430)  (3.837) 
Broad reading 

Wave 2 3.078***  3.244***  3.942***  3.096 

 (1.026)  (0.847)  (1.262)  (2.285) 
Wave 3 1.517  2.628***  2.649*  4.838 

 (1.054)  (0.846)  (1.355)  (3.204) 
Non-cognitive outcomes 
Child BMI z-score 

Wave 2 -0.096  -0.144**  -0.106  -0.076 
 (0.072)  (0.064)  (0.095)  (0.169) 
Wave 3 -0.282**  -0.324***  -0.253*  -0.089 

 (0.119)  (0.095)  (0.146)  (0.361) 
Obesity 

Wave 2 -0.052**  -0.058***  -0.024  -0.071 
 (0.024)  (0.020)  (0.031)  (0.057) 
Wave 3 -0.083***  -0.096***  -0.072*  -0.016 

 (0.030)  (0.024)  (0.040)  (0.095) 
Hyperactivity 

Wave 2 -0.041***  -0.028**  -0.020  -0.018 
 (0.013)  (0.014)  (0.021)  (0.030) 
Wave 3 -0.055***  -0.065***  -0.052*  0.109 

 (0.018)  (0.017)  (0.029)  (0.084) 
Behavior problems index 

Wave 2 0.462  0.604  1.368  0.531 
 (0.711)  (0.609)  (1.061)  (1.783) 
Wave 3 -0.464  -0.756  -1.304  2.817 

 (0.881)  (0.655)  (1.195)  (3.671) 
Notes: The DR standard errors are computed by bootstrapping with 999 repetitions and are in parentheses. From the DR 
estimation, ATT values are reported based on the propensity scores estimated using the GBM algorithm. Each breastfeeding 
duration category is compared with respect to never breastfeeding. * p < 0.1 ** p < 0.05, *** p < 0.01. 
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Table 6. DR-ATT estimates from the heterogeneity analysis by children’s age 
 Wave 2 

(ages 5-13)  
 Wave 3 

(ages 10-18)  
Cognitive outcomes   
Letter word 3.439***  2.547** 
 (1.144)  (1.071) 
   

Applied problem 2.799**  2.585** 
 (1.096)  (1.131) 
    

Passage comprehension 3.540***  3.284** 
 (1.071)  (1.362) 
    

Broad reading 3.651***  2.947** 
 (1.103)  (1.206) 
    

Non-cognitive outcomes   
Child BMI z-score -0.094  -0.277** 

 (0.083)  (0.108) 
   

Obesity -0.037  -0.061** 

 (0.028)  (0.029) 
   

Hyperactivity -0.079***   -0.053** 

 (0.024)  (0.025) 
   

Behavior problems index -0.305  -0.367 
 (0.583)  (0.760) 

Notes: The DR standard errors are computed by bootstrapping with 999 repetitions and are in parentheses. 
From the DR estimation, ATT values are reported based on the propensity scores that are estimated using 
the GBM algorithm. * p < 0.1 ** p < 0.05, *** p < 0.01 
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  Table 7. DR-ATT estimates from the heterogeneity analysis by maternal race 
 NHW NHB t-stat (NHW vs NHB)  Others t-stat (NHW vs others) 
Cognitive outcomes 
Letter word  

Wave 2 3.027*** 7.430*** -1.845*  6.063** -1.028 
 (0.722) (2.289)   (2.864)  
Wave 3 1.425*  4.585** -1.595  4.856** -1.605 

 (0.754) (1.837)   (1.997)  
Applied problem    

Wave 2 3.775*** 8.043*** -1.951*  3.072* 0.367 
 (0.895) (1.989)   (1.753)  
Wave 3 3.269***  5.336*** -1.036  2.432** 0.548 

 (1.015) (1.779)   (1.159)  
Passage comprehension   

Wave 2 3.154*** 2.020 0.702  3.196** -0.025 
 (0.637) (1.404)   (1.518)  
Wave 3 3.121*** 2.735* 0.230  3.087* 0.017 

 (0.670) (1.518)   (1.805)  
Broad reading   

Wave 2 3.258*** 4.423**  -0.578  6.031*** -1.180 
 (0.887) (1.843)   (2.169)  
Wave 3 2.552***  3.458** -0.482  5.473*** -1.361 

 (0.690) (1.730)   (2.027)  
Non-cognitive outcomes   
Child BMI z-score   

Wave 2 -0.066 -0.027 -0.255  -0.245 1.062 
 (0.055) (0.144)   (0.160)  
Wave 3 -0.281*** -0.114 -0.884  -0.326** 0.259 

 (0.083) (0.168)   (0.149)  
Obesity   

Wave 2 -0.035** -0.030 -0.090  -0.135*** 2.094** 
 (0.017) (0.053)   (0.045)  
Wave 3 -0.089*** -0.035 -1.162  -0.117** 0.662 

 (0.019) (0.041)   (0.040)  
Hyperactivity   

Wave 2 -0.039** -0.058** 0.664  -0.002 -0.844 
 (0.016) (0.023)   (0.040)  
Wave 3 -0.065*** -0.078*** 0.631  -0.020 -1.201 

 (0.015) (0.014)   (0.035)  
Behavior problems index   

Wave 2 0.591 0.134 0.257  0.582 0.004 
 (0.552) (1.715)   (2.336)  
Wave 3 -0.685 -2.327*** 1.992**  0.275 -0.428 

 (0.559) (0.588)   (2.095)  
Notes: The DR standard errors are computed by bootstrapping with 999 repetitions and are in parentheses. From the DR 
estimation, ATT values are reported based on the propensity scores that are estimated using the GBM algorithm. NHW 
indicates non-Hispanic white, and NHB indicates non-Hispanic black. Reported t-stats are from two-tailed t-tests of 
differences in ATT estimates across subsamples. * p < 0.1 ** p < 0.05, *** p < 0.01. 
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Table 8. DR-ATT estimates from the heterogeneity analysis by maternal education 
 High school and below  Some college Degree and Higher  t-stat 
Cognitive outcomes   
Letter word    

Wave 2 2.254**  4.355***  1.511 
 (0.940)  (1.010)   
Wave 3 0.871  3.662***  1.980** 

 (0.887)  (1.115)   
Applied problem    

Wave 2 2.905**  5.729***  1.490 
 (1.197)  (1.499)   
Wave 3 1.986  5.647***  2.244** 

 (1.321)  (1.017)   
Passage comprehension     

Wave 2 1.372*  5.896***  3.877*** 
 (0.741)  (0.929)          
Wave 3 0.904  5.591***  3.050*** 

 (1.162)  (1.032)   
Broad reading      

Wave 2 1.691**  5.071***  2.112** 
 (0.807)  (1.363)   
Wave 3 1.128  4.758***  2.681*** 

 (0.903)  (1.055)   
Non-cognitive outcomes     
Child BMI z-score     

Wave 2 -0.026  -0.190***  1.630 
 (0.072)  (0.072)   
Wave 3 -0.406***  -0.227**  1.034 

 (0.130)  (0.105)   
Obesity     

Wave 2 -0.024  -0.037*  0.379 
 (0.025)  (0.022)   
Wave 3 -0.131***  -0.063**  1.425 

 (0.039)  (0.027)   
Hyperactivity     

Wave 2 -0.022*  -0.036**  0.652 
 (0.013)  (0.016)   
Wave 3 -0.054***  -0.078***  0.840 

 (0.019)  (0.021)   
Behavior problems index   

Wave 2 0.983  0.272  0.559 
 (0.844)  (0.927)   
Wave 3 -0.278  -0.839  0.427 

 (0.855)  (0.976)   
Notes: The DR standard errors are computed by bootstrapping with 999 repetitions and are in parentheses. From the DR 
estimation, ATT values are reported based on the propensity scores that are estimated using the GBM algorithm. * p < 0.1 
** p < 0.05, *** p < 0.01. 
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Table 9. Breastfeeding and child development outcomes excluding low-birth weight and pre-mature babies. 
 Sibling Fixed Effect  PSM-GBM  DR-GBM 
Cognitive outcomes      
Letter word       

Wave 2 2.981***  4.797***  2.880*** 

 (1.112)  (1.127)  (0.793) 
Wave 3 2.100*  3.379***  0.889 

 (1.254)  (1.238)  (0.816) 
Applied problem        

Wave 2 3.800***  4.593***  3.591*** 

 (1.013)  (1.277)  (0.746) 
Wave 3 3.490***  2.576*  2.946*** 

 (1.178)  (1.528)  (0.770) 
Passage comprehension 

Wave 2 3.575***  3.954***  3.457*** 

 (1.028)  (0.882)  (0.847) 
Wave 3 2.878**  3.910***  2.804*** 

 (1.125)  (1.021)  (0.734) 
Broad reading      

Wave 2 2.590**  4.608***  2.113*** 
 (1.008)  (0.987)  (0.710) 
Wave 3 2.278**  3.804***  1.700* 

 (1.145)  (1.129)  (0.870) 
Non-cognitive outcomes 
Child BMI z-score 

Wave 2 -0.135*  -0.135*  -0.099* 
 (0.073)  (0.076)  (0.055) 
Wave 3 -0.364**  -0.382**  -0.310** 

 (0.146)  (0.157)  (0.135) 
Obesity      

Wave 2 -0.056**  -0.037  -0.041** 

 (0.027)  (0.030)  (0.018) 
Wave 3 -0.116***  -0.101***  -0.097*** 

 (0.038)  (0.039)  (0.022) 
Hyperactivity 

Wave 2 -0.022  -0.024  -0.021 

 (0.015)  (0.018)  (0.013) 
Wave 3 -0.056**  -0.041*  -0.039** 

 (0.021)  (0.021)  (0.019) 
Behavior problems index 

Wave 2 0.174  0.864  0.700 
 (0.655)  (0.711)  (0.486) 
Wave 3 -1.141  -0.740  -0.918 

 (0.728)  (0.942)  (0.563) 
Notes: Robust standard errors are provided for sibling fixed effects, while cluster-robust standard errors are 
reported for the PSM. The DR standard errors are computed by bootstrapping with 999 repetitions. All 
standard errors are presented in parentheses. For PSM and DR estimations, ATT values are reported based 
on the propensity scores that are estimated using the GBM algorithm.  * p < 0.1 ** p < 0.05, *** p < 0.01. 
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  Table 10. Falsification exercise- breastfeeding and placebo outcomes 
  Sibling Fixed Effect  PSM-GBM  DR-GBM 
Birth weight 0.402  0.179  0.130 
 (0.246)  (0.265)  (0.236) 
Smoked previously  -0.004  0.028  -0.003 
 (0.058)  (0.045)  (0.038) 
Smoked during pregnancy 0.030  -0.006  -0.041 
 (0.161)  (0.004)  (0.142) 
Drank alcohol previously -0.044  -0.060  -0.055 
 (0.080)  (0.092)  (0.057) 
Drank alcohol during pregnancy -0.061  0.032  0.047 
 (0.136)  (0.176)  (0.080) 

Notes: Robust standard errors are provided for sibling fixed effects, while cluster-robust standard errors are reported 
for the PSM. The DR standard errors are computed by bootstrapping with 999 repetitions. All standard errors are 
presented in parentheses. For PSM and DR estimations, ATT values are reported based on the propensity scores 
that are estimated using the GBM algorithm. * p < 0.1 ** p < 0.05, *** p < 0.01. 
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Appendix A 
 

 

  
   Figure A1. Common support and distributions of propensity score estimates by treatment status. 
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Table A1. Quality of matching procedures 

Non-cognitive outcomes 

Cognitive outcomes   
 Wave 2  Wave 3 
 BF NBF % Bias t-stat  BF NBF % Bias t-stat 
Child characteristics 
Female child 0.494 0.476 3.400 0.520  0.563 0.491 4.400 1.520 
First born 0.371 0.343 5.900 0.890  0.356 0.347 1.900 0.200 
Second born 0.376 0.348 5.700 0.890  0.365 0.356 1.900 0.200 
Age 7.562 7.715 -5.400 -0.790  6.995 6.636 2.900 0.720 
Age squared 65.439 68.590 -6.900 -1.020  55.561 50.769 1.900 0.620 
Birth weight 7.140 7.133 0.400 0.060  6.982 6.960 1.500 0.180 

Born preterm 0.083 0.107 -8.300 -0.410  0.073 0.091 -6.400 -0.340 
Born SGA 0.110 0.137 -6.400 -0.340  0.125 0.219 -3.400 -0.990 
Same health 0.584 0.590 -1.400 -0.200  0.632 0.664 -6.700 -0.700 
Better health 0.315 0.268  1.100 1.590  0.264 0.263 0.000 0.000 
HOME measure 18.677 17.634  4.600 0.880  17.894    18.291      -2.200 -0.270 
Maternal and family characteristics 
 Age at giving birth 27.436 27.545 -2.200 -0.340  27.656 27.960  -6.000  -0.680 
 Age squared  776.490 782.910 -2.200 -0.350  788.270 803.850  -5.500 -0.620 
 IQ 102.150 101.090 0.900 0.160  105.870 104.090 1.600 0.200 
 High school dropout 0.082 0.103 -6.800 -1.130  0.068 0.091 -7.300 -0.880 
 High school  0.373 0.401 -5.700 -0.870  0.400 0.414 -2.800 -0.290 
 College or more 0.545 0.496 9.900 1.510  0.518 0.509 -1.800 0.190 
 Employed mother 0.633 0.675 -8.700 -1.490  0.627 0.605 4.700 0.490 
 Non-Hispanic Black 0.023 0.032 -4.600 -0.910  0.018 0.014 2.300 0.380 
 Other Race/ Ethnicity 0.030 0.025 3.100 0.550  0.027 0.045 -9.400 -1.020 
 Married 0.818 0.800 4.400 0.240  0.877 0.868 2.800 0.290 
 Logged family income 10.895 10.836 6.400 1.090  10.981 10.877 3.800 1.430 
 Bad health 0.201 0.242 -3.300 -1.910*  0.105 0.073 1.400 1.170 
 Smoked 0.433 0.600 -1.800 -0.710  0.417 0.416    0.000 0.000 
 Alcohol consumption 0.290 0.258 7.300 0.280  0.298    0.297 0.000 0.000 
 WIC participation 0.283     0.290    -1.300 -0.220  0.318 0.332 -2.8 -0.300 
 Received food stamps 0.144 0.157 -3.200 -0.550  0.170 0.184 -3.1 -0.370 
 Received Medicaid  0.223    0.234 -2.300 -0.390  0.260 0.265 -1.00 0.110 
 Area of residence 0.693 0.697 -0.900 -0.140  0.700 0.709 -1.900 -0.210 
 Region 2.469 2.507 -3.800 -0.640  2.444 2.372 7.2 0.750 

 Wave 2  Wave 3 
 BF NBF % Bias t-stat  BF NBF % Bias t-stat 
Child characteristics         
Female child 0.490 0.442 9.600 1.460  0.493 0.507 -2.900 -0.290 
First born 0.344 0.341 0.500 0.070  0.359 0.335 5.000 0.510 
Second born 0.376 0.337 8.100 1.240  0.364 0.407 -8.900 -0.900 
Age 7.535 7.418 4.200 0.620  5.278 5.264 1.100 0.110 
Age squared 65.082 63.138 4.300 0.640  29.691 29.511 1.200 0.120 
Birth weight 7.155 7.124 2.100 0.310  7.005 6.990 1.000 0.110 

Born preterm 0.107 0.137 -4.500 -0.520  0.129 0.226 -4.200 -0.990 
Born SGA 0.091 0.118 5.500 -0.690  0.179 0.180 -0.000 -0.010 
Same health 0.582 0.567 3.2 0.470  0.632 0.627 1.000 0.100 
Better health 0.328 0.319 2.000 0.280  0.268 0.258 2.200 0.220 
HOME measure 18.680 19.304 -2.700 -0.470  17.778 21.074 -1.300 -1.040 
          



Page 54 of 59 
 

Notes: The variable means correspond to samples resulting from nearest-neighbor matching. The different outcome variables 
have somewhat different numbers of non-missing values. Means reported here correspond to samples with non-missing values 
of letter word test (as representative of the cognitive outcomes) and child BMI Z-score (as representative of the non-cognitive 
outcomes). Covariate balance for other outcomes is comparable and available upon request. * p < 0.10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Maternal and family characteristics 
 Age at giving birth 27.549 27.656 -2.100 -0.330  27.565 27.713 -3.000 -0.320 
 Age squared  783.150 789.670 -2.300 -0.350  782.860 791.030 -2.900 -0.310 
 IQ 100.660 98.720 1.600 0.270  104.850 102.130 2.400 0.280 
 High school dropout 0.107 0.120 -4.100 -0.620  0.096 0.077 6.100 0.700 
 High school  0.398 0.403 -0.900 -0.130  0.397 0.421 -4.900 -0.500 
 College or more 0.495 0.477 3.500 0.530  0.507 0.502 1.000 0.100 
 Employed mother 0.632 0.643 -2.300 -0.340  0.632 0.636 -1.000 -0.100 
 Non-Hispanic Black 0.026 0.046 -9.900 -1.600  0.019 0.010 4.800 0.820 
 Other Race/ Ethnicity 0.028 0.030 -1.200 -0.200  0.024 0.033 -5.100 -0.580 
 Married 0.876 0.874 0.700 0.100  0.876 0.866 2.900 0.290 
 Logged family income 10.947 10.946 0.100 0.020  10.966 10.907 8.199 0.860 
 Bad health 0.098 0.105 -2.200 -0.330  0.101 0.115 -4.700 -0.470 
 Smoked 0.500 0.375 23.800 0.500  0.400 0.275 13.800 0.500 
 Alcohol consumption 0.290 0.240 11.300 0.420  0.390 0.140 11.300 0.420 
 WIC participation 0.287 0.289 -0.500 -0.070  0.325 0.340 -3.000 -0.310 
 Received food stamps 0.140 0.133 1.6 0.290  0.177 0.148 6.700 0.790 
 Received Medicaid  0.234 0.228 1.4 0.240  0.268 0.230 8.100 0.900 
 Area of residence 0.691 0.652 8.4 1.270  0.702 0.697 1.000 0.110 
 Region 2.488 2.580 -9.000 -1.370  2.414 2.423 -1.000 -0.100 
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Table A2. Specifications of algorithms used in the PS estimation for the DR technique. 
Algorithm Specifications 
Logistic / Probit regression  The number of iterations: 4 

 
CART Regularization / complexity parameter (𝛼): 0.007 

Maximum depth: 3 
Number of splits: 5 
Terminal nodes: 6 
Information measure: Gini index 
 

Random forest The number of bootstrapped trees: 500 
The number of variables attempted for splitting a tree: 16. 
Information measure: Gini index 
 

Gradient boosting The number of boosted trees: 10,000 
Maximum depth: 3 
Learning rate(η): 0.01 
 

Neural network Size of the structure: 29-13-1 
 The number of controls: 29  
 The nodes inside the hidden layer: 13 
 Outcome: 1 

Activation function: Sigmoid 
The value of decay: 0.018 
 

General additive model Convergence threshold: 10-7 
Maximum iterations: 200 

Notes: All these specifications are based on 10-fold cross validation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Page 56 of 59 
 

 
Table A3. Specifications of algorithms used in the PS estimation for the PSM technique. 
Algorithm Specifications 
Logistic / Probit regression  The number of iterations: 4 

 
CART Regularization / complexity parameter (𝛼): 0.01 

Maximum depth: 3 
Number of splits: 7 
Terminal nodes: 8 
Information measure: Gini index 
 

Random forest The number of bootstrapped trees: 500 
The number of variables tried for splitting a tree: 4 
Information measure: Gini index 
 

Gradient boosting The number of boosted trees: 10,000 
Maximum depth: 3 
Learning rate(η): 0.01 
 

Neural network Size of the structure: 29-13-1 
 The number of controls: 29 
 The nodes inside the hidden layer: 13 
 Outcome: 1 

Activation function: Sigmoid 
The value of decay: 0.01 
 

General additive model Convergence threshold: 10-7 
Maximum iterations: 200 

Notes: All these specifications are based on 10-fold cross validation.  
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Table A4. DR-ATT estimates using traditional models and ML algorithms.  
 Logit Probit GBM RF CART NN GAM 
Cognitive outcomes  
Letter word   
2002 4.229*** 4.348*** 3.093*** 3.295*** 3.274*** 3.213*** 4.228*** 
 (1.293) (1.293) (0.879) (0.989) (1.145) (1.145) (1.259) 
2007 2.713** 2.727**   1.603* 2.701*** 2.616** 2.923** 2.715** 

 (1.212) (1.212) (0.973) (0.985) (1.145) (1.178) (1.156) 
Applied problem score   
2002 4.689*** 4.764*** 3.566*** 3.972*** 4.120*** 3.848*** 4.689*** 
 (1.297) (1.297) (0.931) (0.902) (1.023) (1.158) (1.176) 
2007 3.260** 3.322** 2.794*** 3.017*** 2.974** 3.963** 3.269** 
 (1.340) (1.339) (0.922) (0.911) (1.131) (1.282) (1.372) 
Passage comprehension 
2002 4.326*** 4.345*** 3.206*** 3.573*** 4.156*** 3.994*** 4.326*** 
 (0.862) (0.862) (0.676) (0.762) (0.950) (0.836) (0.905) 
2007 3.114*** 3.165*** 3.049*** 3.038*** 2.739** 2.879** 3.114** 
 (1.156) (1.147) (0.809) (0.930) (1.161) (1.251) (1.217) 
Broad reading 
2002 3.029*** 3.049*** 2.532*** 2.788*** 2.902*** 3.324*** 3.028*** 
 (1.004) (1.004) (0.767) (0.856) (1.086) (1.114) (1.011) 
2007 2.247* 2.312* 2.129** 2.313** 2.045* 1.509 2.223* 
 (1.295) (1.295) (0.869) (0.955) (1.185) (1.481) (1.262) 
Non-cognitive outcomes  
Child BMI z-score  
2002 -0.118* -0.118* -0.099* -0.129** -0.140* -0.138* -0.117 
 (0.072) (0.071) (0.056) (0.062) (0.077) (0.072) (0.072) 
2007 -0.338*** -0.338*** -0.254** -0.337*** -0.324** -0.374*** -0.338*** 
 (0.130) (0.133) (0.124) (0.108) (0.127) (0.134) (0.131) 
Obesity  
2002 -0.046* -0.046** -0.037** -0.051** -0.056** -0.067** -0.046** 
 (0.022) (0.022) (0.018) (0.020) (0.025) (0.027) (0.023) 
2007 -0.089*** -0.088*** -0.085*** -0.094*** -0.092*** -0.095*** -0.089*** 
 (0.031) (0.031) (0.025) (0.025) (0.033) (0.028) (0.031) 
Hyperactivity  
2002 -0.026* -0.027* -0.025* -0.022* -0.019 -0.022 -0.020 
 (0.014) (0.014) (0.014) (0.013) (0.016) (0.014) (0.014) 
2007 -0.043* -0.043* -0.036** -0.043** -0.043** -0.008 -0.043* 
 (0.023) (0.023) (0.016) (0.018) (0.021) (0.030) (0.023) 
Behavior problem index  
2002 0.884 0.878 0.823 0.993* 0.983 1.036* 0.884 
 (0.654) (0.654) (0.556) (0.582) (0.762) (0.631) (0.630) 
2007 -0.713 -0.680 -0.630 -0.709 -0.720 -0.766 -0.720 
 (0.750) (0.750) (0.566) (0.753) (0.957) (0.809) (0.975) 

Notes: All standard errors are in parentheses computed by bootstrapping with 999 repetitions. For each outcome, 
the covariates from the baseline model are included as controls. * p < 0.1 ** p < 0.05, *** p < 0.01. 

 
 
 
 



Page 58 of 59 
 

 
Table A5. PSM-ATT estimates using traditional models and ML algorithms. 

 Logit Probit GBM RF CART NN GAM 
Cognitive outcomes  
Letter word   
2002  4.847*** 4.836*** 3.545*** 4.817*** 4.862*** 5.796*** 4.847*** 
 (0.998) (1.020) (1.090) (1.019) (0.994) (1.005) (0.998) 
2007 3.172*** 3.172*** 3.020*** 3.180*** 3.198*** 3.156*** 3.172*** 
 (1.141) (1.115) (1.122) (1.140) (1.081) (1.125) (1.141) 
Applied problem score    
2002 6.079*** 6.098*** 4.287*** 6.072*** 6.099*** 6.050*** 6.079*** 
 (0.925) (0.946) (1.042) (0.951) (0.937) (0.921) (0.925) 
2007 4.680*** 4.680*** 3.201*** 4.693*** 4.675*** 4.550*** 4.680*** 
 (1.080) (1.074) (1.235) (1.003) (0.983) (1.018) (1.080) 
Passage comprehension  
2002 4.120*** 4.146*** 3.602*** 4.015*** 4.291*** 4.150*** 4.120*** 
 (0.778) (0.829) (0.831) (0.852) (0.846) (0.826) (0.779) 
2007 3.916*** 3.916*** 3.095*** 3.872*** 3.757*** 3.676*** 3.916*** 
 (0.928) (0.965) (1.187) (0.966) (0.893) (0.946) (0.928) 
Broad reading  
2002 4.890*** 4.850*** 2.915*** 4.767*** 5.001*** 5.050*** 4.890*** 
 (0.906) (0.904) (1.051) (0.917) (0.931) (0.910) (0.906) 
2007 3.641*** 3.642***  2.319* 3.633*** 3.581*** 3.526*** 3.642*** 
 (1.040) (1.040) (1.198) (1.076) (0.997) (1.051) (1.040) 
Non-cognitive outcomes  
Child BMI z-score  
2002 -0.152** -0.155** -0.142** -0.134* -0.120* -0.141* -0.152** 
 (0.070) (0.073) (0.069) (0.073) (0.069) (0.071) (0.070) 
2007 -0.381*** -0.383*** -0.294** -0.378*** -0.379*** -0.391*** -0.381*** 
 (0.142) (0.135) (0.149) (0.129) (0.132) (0.132) (0.142) 
Obesity  
2002 -0.061*** -0.061*** -0.060** -0.056** -0.054** -0.062*** -0.061*** 
 (0.023) (0.023) (0.023) (0.023) (0.022) (0.023) (0.023) 
2007 -0.107*** -0.107*** -0.096*** -0.100*** -0.101*** -0.099*** -0.107*** 
 (0.034) (0.033) (0.036) (0.032) (0.032) (0.033) (0.034) 
Hyperactivity  
2002 -0.021 -0.020 -0.021 -0.014 -0.024* -0.021 -0.021 
 (0.013) (0.014) (0.017) (0.014) (0.014) (0.014) (0.013) 
2007 -0.044** -0.044** -0.042** -0.041* -0.042* -0.042* -0.044** 
 (0.022) (0.021) (0.021) (0.021) (0.022) (0.022) (0.022) 
Behavior problem index  
2002 0.613 0.629 0.935 0.773 0.632 0.518 0.613 
 (0.566) (0.569) (0.675) (0.564) (0.586) (0.569) (0.566) 
2007 -0.994 -0.977 -0.872 -0.719 -0.832 -0.751 -0.944 
 (0.748) (0.748) (0.824) (0.757) (0.739) (0.730) (0.748) 

Notes: DR standard errors are in parentheses computed by bootstrapping with 999 repetitions. For each outcome, 
the covariates from the baseline model are included as controls. * p < 0.1 ** p < 0.05, *** p < 0.01. 
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Appendix B 
 

The steps involved in the GBM are below (Friedman, 2001; Hastie et al., 2009; Boehmke & 

Greenwell, 2019) 

Step 1 : Set the problem as 𝐹଴(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛ஓ ∑ 𝐿(𝑦௜, γ)ே
௜ୀଵ , where 𝐹଴(𝑥) approximates the 

output and γ represents the learning rate. L denotes a loss function, and the mean squared error 

is commonly used for it. The overall task is to minimize the value of the loss function. 

Step 2: For 𝑚 = 1 to M (the number of boosting iterations), 

Step 2-a: Estimate the ‘pseudo-residual’ r୧୫  by solving the following optimization problem 

(steepest-descent according to Friedman). i represents the observations of training data. 

r୧୫ = − ቤ
∂𝐿൫𝑦௜, 𝐹(𝑥௜)൯

∂𝐹(𝑥௜)
ቤ

ி(௫)ୀி೘షభ(௫)
𝑖 = 1, … , 𝑁 

Step 2-b: Using the pseudo-residual r୧୫  as the output, fit a simple regression tree with the 

training data. Hastie et al. (2009) claims this step should produce terminal regions 

(observations that belong to the end node of the tree) 𝑅௝௠ and 𝑗 = 1,2, … , 𝐽௠. The final number 

of trees built for boosting therefore is 𝐽௠. 

Step 2-c: Once the trees are generated, estimate the learning rate γ௝௠ which is between 0 and 1 

by solving the following optimization problem. The purpose of this step is to find the optimal 

learning rate. 

γ௝௠ = 𝑎𝑟𝑔𝑚𝑖𝑛ஓ ෍ 𝐿(𝑦௜, 𝑓௠ିଵ(𝑥௜) + γ)
௫೔∈ோೕ೘

 

Step 2-d: Update the tree by placing the learning rate. A smaller learning rate indicates that a 

longer computation time for boosting and vice versa. 

𝑓௠(𝑥) = 𝑓௠ିଵ(𝑥) + ෍ γ௝௠𝐼൫𝑥 ∈ 𝑅௝௠൯
௃೘

௝ୀଵ

 

Step 3: Output 𝑓(𝑥)෣ = 𝑓ெ(𝑥), which is the final sum of all boosted trees from Step 2-d. 

In sum, the algorithm of GBM is to pick an estimation of the output and then minimize the 

error via boosting. This is done in a sequential matter. 


