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We investigate how job displacement affects whom men marry and study implications for 

marriage market matching theory. Leveraging quasi-experimental variation from Danish 

establishment closures, we show that job displacement leads men to break up if matched 

with low-earning women and to re-match with higher earning women. We use a general 

search and matching model of the marriage market to derive several implications of our 

empirical findings: (i) husbands’ and wives’ incomes are substitutes rather than complements 

in the marriage market; (ii) our findings are hard to reconcile with one-dimensional 

matching, but are consistent with multidimensional matching; (iii) a substantial part of 

the cross-sectional correlation between spouses’ incomes arises spuriously from sorting on 

unobserved characteristics. We highlight the relevance of our results by simulating how 

the effect of rising individual-level inequality on between-household inequality is shaped 

by marital sorting.
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1 Introduction

Who marries whom contributes to inequality. This idea, which goes back to Becker (1973), has motivated

an extensive body of literature studying empirical patterns of marriage market sorting. A wide range

of studies document cross-sectional correlations between spouses’ characteristics, such as income and

education (see, e.g., Browning, Chiappori, and Weiss, 2014), personality traits (Becker, 1973; Dupuy and

Galichon, 2014), measures of health (Chiappori, Oreffice, and Quintana-Domeque, 2017a; Guner, Kulikova,

and Llull, 2018) physical attractiveness (Oreffice and Quintana-Domeque, 2010; Chiappori, Oreffice, and

Quintana-Domeque, 2012), and wealth (Fagereng, Guiso, and Pistaferri, 2022).1 However, less is known

about the forces that give rise to these cross-sectional correlations. Consider the case of income: do

individuals directly value a potential partner’s income when making marriage decisions? Or does the

observed positive correlation between spouses’ incomes arise through other channels, for example, because

marriage decisions are also based on other (potentially unobserved) characteristics that correlate with

income?

In this paper, we offer novel empirical evidence and combine theory and data to study these questions. We

estimate the effect of exogenous job displacements on men’s marriage market transitions. To do so, we

leverage variation from establishment closures in Denmark, and compare marriage market outcomes—such

as breakup rates, which couples break up, couple formation rates, and which new couples form—between

a treatment group of displaced men and a nondisplaced control group. This research design allows us to

study how an adverse shock that reduces a person’s long-term earnings potential influences their marriage

market prospects. We leverage our empirical findings together with a general search and matching

framework of the marriage market to derive broader implications for our understanding of marriage

market matching and marital sorting.

Our empirical design compares over 72,000 displaced male workers with a nondisplaced control group. We

follow the treatment and control groups over time, comparing their transitions into and out of marriages

and cohabiting relationships. The research design relies on establishment closures as an exogenous source

of variation to circumvent the endogeneity of individual job loss and voluntary quits. Our empirical

results show that men who are displaced from their jobs (i) are more likely to experience a breakup, (ii)

are particularly more likely to experience a breakup if matched with a low-earning partner, (iii) have an

increased risk of remaining single post breakup, and (iv) are more likely to transition from a low-earning

to a higher earning partner when re-matching, compared to the nondisplaced control group. We further

show that finding (iv) is not driven by partners’ labor supply choices, but is due to men matching with

new partners who earn higher hourly wages. Additionally, we examine partner characteristics other than
1Chiappori, Costa-Dias, and Meghir (2020) establish two criteria that measures of sorting should satisfy, and show that

the correlation coefficient satisfies both. Chiappori et al. (2020) further argue that measuring changes in sorting over time is
challenging if the marginal distributions of the characteristic that people match on are non-constant. In this paper, we use
correlation coefficients to measure sorting within a specific time period. As our analysis is focused on the underlying mechanisms
that give rise to sorting in a given time period, we do not need to make comparisons over time.
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labor earnings as outcomes and find no notable effects in terms of partners’ age, education, or number

of children. We conduct robustness checks that show that our results are not driven by displaced men

moving to municipalities where women have higher earnings or where men are relatively scarce.

We use these empirical results to examine marriage market sorting and its underlying mechanisms. As

shown in the seminal work of Becker (1973), marriage market sorting can be explained by complementarities

in the match value from marriage. Intuitively, similar individuals mate if spouses’ characteristics are

complements, whereas dissimilar individuals mate if spouses’ characteristics are substitutes.2 Following

this reasoning, various mechanisms have been proposed to explain why, empirically, couples tend to be

sorted positively on income and education. For example, complementarities in home production hours

(Goussé, Jacquemet, and Robin 2017; Chiappori, Salanié, and Weiss 2017b; Calvo, Lindenlaub, and Reynoso

2024), education homophily (Chiappori, Costa-Dias, and Meghir 2018; Chiappori, Iyigun, and Weiss 2009),

or market-purchased household public goods (Lam 1988). Other mechanisms imply substitutability of

spouses’ characteristics and, therefore, negative marriage market sorting. For example, substitutability in

home production hours (leading to household specialization; see, e.g., Becker 1973, 1981) or risk sharing

(Chiappori et al., 2018; Pilossoph and Wee, 2021).3 Thus, in standard (one-dimensional) models of marriage

market matching, there is a tight link between complementarities in spouses’ characteristics and cross-

sectional patterns of marriage market sorting.4

We argue that our empirical results challenge this close relationship between observed sorting patterns

and complementarities in spouses’ characteristics. We show that our empirical findings (ii) and (iv)—that

displaced men tend to transition away from low-earning partners and toward higher-earning partners—

suggest a negative association between husbands’ and wives’ incomes, which is consistent with negative

assortative matching (NAM) but inconsistent with positive assortative matching (PAM). By contrast, the

observed positive correlation between matched spouses’ incomes is in line with PAM but contradicts NAM.

Under one-dimensional matching, our empirical findings (i)-(iv) and the positive correlation between

spouses’ incomes can be reconciled under neither PAM nor NAM. We demonstrate this formally within a

general search and matching model of the marriage market, based on Shimer and Smith (2000).5 Intuitively,

when spouses’ earnings are complements, the model generates a positive correlation between their incomes

but predicts that, following job loss, men transition from high-earning to lower-earning partners (which

contradicts our empirical evidence). In contrast, if spouses’ incomes are substitutes, then the model predicts

2More technically, positive (negative) sorting arises if the match value from marriage is supermodular (submodular) (see, e.g.,
Chiappori 2017).

3These mechanisms are not mutually exclusive and some of the cited studies feature more than one of the described
mechanisms.

4For example, Calvo et al. (2024) note that a strong role for household specialization is hard to reconcile with positive
assortative matching.

5We choose a frictional dynamic model, as it provides a natural framework for jointly studying match formation and match
dissolution, corresponding to our empirical results concerning the formation and dissolution of couples. For previous applications
of the Shimer and Smith (2000) model to marriage markets see, e.g., Wong (2003a,b); Jacquemet and Robin (2013); Goussé et al.
(2017); Ciscato, Galichon, and Goussé (2020); Ciscato (2021); Holzner and Schulz (2023).
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that job loss leads men to transition from low-earning to higher-earning partners (in line with our empirical

evidence) but generates a negative correlation between spouses’ incomes, which is at odds with the data.6

To reconcile theory and evidence, we develop a multidimensional extension of the Shimer and Smith (2000)

model. Under multidimensional matching, the link between complementarities in spouses’ characteristics

and marriage market sorting becomes more complex. For example, a positive correlation between spouses’

incomes reflects not only sorting on income but also sorting on other characteristics that correlate with

income (potentially including unobserved characteristics). As a consequence, a positive correlation between

spouses’ incomes may arise from sorting on correlates of income, even if sorting on income itself is negative

(e.g., as this maximizes the gains from optimal division of labor in the household, as predicted by Becker,

1973, 1981).

We formally show that the multidimensional framework can jointly explain our empirical findings (i)-(iv)

and the positive cross-sectional correlation between matched spouses’ incomes. To show this, we define

notions of PAM and NAM within the multidimensional framework. Sorting is defined dimension by

dimension so that PAM can arise in one dimension, whereas NAM arises in another.7 Our proposed

model specification, which is consistent with the empirical facts, features negative sorting on income and

positive sorting on other characteristics. This generates our empirical findings through the following simple

mechanism: under negative sorting on income (holding other characteristics fixed), agents who experience

job loss (and thus lose income) tend to transition away from low-earning spouses and toward higher-

earning spouses. At the same time, positive sorting on other characteristics that correlate positively with

income gives rise to the observed cross-sectional correlation between spouses’ incomes. Thus, the positive

correlation between spouses’ incomes does not arise from sorting on income but is instead spuriously

driven by sorting on other characteristics that correlate with income.8

We discuss several broader implications of our findings. First, our multidimensional framework offers a

unifying perspective, allowing important roles for mechanisms that imply negative sorting on income (e.g.,

household specialization), and mechanisms that generate positive cross-sectional correlations between

spouses’ incomes. In our proposed multidimensional specification, holding other dimensions constant,

sorting on incomes is negative, as predicted by Becker (1973, 1981). The positive cross-sectional correlation

between spouses’ incomes, on the other hand, is shaped by sorting on other dimensions, which may reflect

education homophily (as in Chiappori et al. 2009 and Chiappori et al. 2018) or sorting on home produc-

tivities (as in Goussé et al. 2017; Chiappori et al. 2017b and Calvo et al. 2024). In our multidimensional
6We use the terms complements and substitutes loosely here. More precisely, sufficient conditions for PAM or NAM in the

Shimer and Smith (2000) model involve the supermodularity or submodularity of the match value and the log-supermodularity
or log-submodularity of its derivatives and cross-derivative.

7Similarly, Lindenlaub and Postel-Vinay (2023) define sorting dimension by dimension in a multidimensional search and
matching model of the labor market.

8Becker (1981) describes this as a possible mechanism underlying the positive correlation between spouses’ wages: “The
positive correlation between wage rates of husbands and wives [...] may really be measuring the predicted positive correlation
between a husband’s wage rate (or his non-market productivity) and his wife’s non-market productivity. Many unobserved
variables, like intelligence, raise both wage rates and non-market productivity.”

3



framework, these model mechanisms do not counteract each other but rather coexist and shape sorting

patterns in different dimensions.

Second, we argue that our findings suggest a quantitatively meaningful role for sorting on both observed

and unobserved characteristics. We decompose the cross-sectional correlation between matched spouses’

incomes into components driven by sorting on income, sorting on other observed characteristics, and

sorting on unobserved characteristics. Our results allow us to derive a lower bound for the share at-

tributable to sorting on unobserved characteristics. Our findings imply that at least 42% of the positive

regression coefficient obtained by regressing wives’ income on husbands’ income is explained by sorting

on characteristics unobserved in our data (characteristics other than income, age, and education).

Third, to illustrate the relevance of our findings, we calibrate both a one-dimensional and a bidimensional

specification of our framework. The bidimensional model matches both our main empirical findings and

the positive correlation between spouses’ incomes. In contrast, the one-dimensional model fails to match

both at the same time. Furthermore, we simulate a counterfactual increase in individual income inequality

in each calibrated model version and examine how the effect on between-household income inequality is

shaped by marital sorting. The two models make markedly different predictions under the counterfactual.

The one-dimensional model (which is at odds with our empirical evidence) predicts that marital sorting

amplifies the increase in between-household income inequality; in contrast, the bidimensional model

(which is consistent with our findings) predicts that marital sorting dampens the increase in between-

household income inequality.

Our paper is related to several strands of literature. First, we contribute to a large body of literature that

measures patterns of marriage market sorting (see, e.g., Greenwood, Guner, Kocharkov, and Santos 2015;

Eika, Mogstad, and Zafar 2019; Almar and Schulz 2024; Almar, Friedrich, Reynoso, Schulz, and Vejlin 2024)

and interprets them using structural matching models (e.g., Becker 1973, 1981; Wong 2003a; Choo and

Siow 2006; Goussé et al. 2017). Cross-sectional patterns of sorting on income, wages, and education have

generally been found to be positive (see, e.g., Browning et al., 2014), which has often been interpreted as

evidence of complementarities in the match value from marriage (following the reasoning of Becker 1973,

likes mate if spouses’ characteristics are complements).9 Relatedly, it has been concluded that mechanisms

that lead to complementarities in spouses’ types (such as complementarities in home production hours,

market-purchased household public goods, or education homophily) play a more important role than mech-

anisms that lead to substitutability in spouses’ types (such as substitutability in home production hours

or risk sharing). Our key innovation in this paper is to leverage exogenous variation from establishment

closures to obtain novel evidence on marital sorting patterns that complements the correlational evidence

from previous studies. We use our empirical evidence together with a structural model to show that our

findings challenge the tight link between complementarities in spouses’ characteristics and cross-sectional
9Several studies document further, that not only the raw correlations between spouses’ wages (and labor incomes), but also

partial correlations, when various other observed characteristics are held constant, are positive (see, e.g., Becker, 1973).
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patterns of marital sorting. This link is at the core of one-dimensional models of the marriage market,

which have been widely used to study marital matching. In sum, our findings offer a new perspective on

the mechanismsthat shape observed marital sorting patterns.

Second, we contribute to a more recent literature that explores multidimensional marriage market match-

ing. While the majority of applied matching models are one-dimensional, multidimensional frictionless

matching models of the marriage market have been explored by, e.g., Chiappori et al. (2012), Dupuy and

Galichon (2014), Adda, Pinotti, and Tura (2024) and Low (2024). Multidimensional models with frictions

have been studied in the context of labor markets (see, e.g. Lindenlaub and Postel-Vinay 2021, 2023), but

have received less attention in the context of marriage market matching.10 Our paper provides a novel

multidimensional framework of the marriage market that extends the Shimer and Smith (2000) model. We

build on previous multidimensional models of the marriage market, but extend them in several directions.

While previous studies have focused on multidimensional frictionless matching and have not allowed for

match dissolution, our framework includes search frictions, and, importantly, accounts for match formation

as well as endogenous match dissolution. Additionally, our framework allows for multidimensional

sorting on observed and unobserved characteristics, where observed and unobserved characteristics may

be correlated. Furthermore, our new empirical evidence is consistent with multidimensional matching,

while being inconsistent with standard one-dimensional models of the marriage market under PAM or

NAM.

Third, we relate our findings to studies that use structural models to examine how marital sorting is affected

by counterfactual changes in, e.g., the wage structure (Fernández, Guner, and Knowles 2005, Greenwood,

Guner, Kocharkov, and Santos 2016, Shephard 2019, Calvo et al. 2024), taxation (Frankel 2014; Bronson,

Haanwinckel, and Mazzocco 2024; Gayle and Shephard 2019), social insurance (Persson 2020, Low, Meghir,

Pistaferri, and Voena 2023; Schulz and Siuda 2023), or divorce laws (Fernández and Wong 2016; Reynoso

2024; Calvo 2022). Our counterfactual simulations illustrate that if the cross-sectional correlation between

matched spouses’ incomes directly arises from sorting on income, then marriage market sorting can be

expected to amplify income inequality. However, if this correlation is a byproduct of sorting on other

characteristics, then marriage market sorting may dampen income inequality. These findings highlight the

relevance of understanding the mechanisms underlying observed marital sorting patterns for structural

modeling and counterfactual simulations.

The remainder of our paper is structured as follows. Section 2 introduces our conceptual framework.

Section 3 describes our data and empirical design. In Section 4, we present our empirical results. Section

5 describes how multidimensional matching reconciles theory with our empirical evidence. Section 6

explores broader implications of our findings and Section 7 concludes.

10A rare exception is the model by Coles and Francesconi (2019). In their model partnerships last forever and unobserved
characteristics are not accounted for. Lauermann, Nöldeke, and Tröger (2020) argue that their proof of equilibrium existence
extends to multidimensional settings.
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2 Conceptual Framework

This section introduces a search-and-matching model of the marriage market. We build on the frictional

version of the classical Beckerian assignment model developed by Shimer and Smith (2000), which features

two-sided (one-dimensional) heterogeneity and transferable utility. The model serves as a conceptual

framework and guides the development of our empirical strategy, which we outline in Section 3. Several

empirical predictions emerge from this framework, and we subsequently test them in Section 4. Finally, we

use the model to quantify the implications of our empirical results in Section 6.3.

2.1 Setup

We consider a two-sided matching environment populated by women, denoted by f , and men, denoted by

m. Time is continuous and discounted at rate r. Women and men are fully characterized by their types,

qf 2 Qf and qm 2 Qm, respectively. In general, we allow for multidimensional type spaces, assuming that

Qf = Qm =
QK

k=1

h
q
k
, qk

i
, where each dimension, k, of the Cartesian product represents a distinct type

attribute. We will clearly indicate whenever we examine the special case of one-dimensional matching

(K = 1) or the more general multidimensional case (K > 1). Under one-dimensional matching, agent types

are summarized by a single attribute (e.g., income or education), whereas multidimensional matching

allows for various attributes that may or may not be correlated.

We assume random search. Denote by Gf and Gm the cumulative distribution functions (CDFs) of single

women’s and men’s types, respectively.11 At rate �f , a single woman meets a single man drawn from Gm.

Conversely, at rate �m, a single man meets a single woman, drawn from Gf . We follow Shimer and Smith

(2000) and assume that the meeting rates for men and women are proportional to the mass of singles of

the other gender, i.e., �f = �
R

dGm(qm) and �m = �
R

dGf (qf ), respectively, where � is a common Poisson

rate. Upon meeting, female and male agents observe each other’s types and jointly decide whether to

accept and form a match or to reject and continue the search for a partner.

2.2 Flow Utilities

Single agents’ flow value depends on their type qg (g 2 {f, m}), and is given by the flow utility function

u0
g(qg).12 Matched women and men enjoy flow utilities u1

f (qf , qm) and u1
m(qf , qm), where u1

f (qf , qm) is the

flow utility of a type qf woman matched with a type qm man (and vice versa for men). The flow match

value, f(qf , qm), equals the sum of the matched partners’ individual flow utilities,

f(qf , qm) = u1
f (qf , qm) + u1

m(qf , qm). (1)

11Note that Gf and Gm are equilibrium outcomes, i.e., endogenous objects.
12Model objects with superscript 0 refer to singles, whereas objects with superscript 1 refer to matched agents.
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2.3 Bellman Equations and Matching

A model agent’s decision problem is summarized by two Bellman equations. Denote by M(qg) the

matching set of a model agent of type qg, i.e., qf 2 M(qm) and qm 2 M(qf )if type qf women and type qm

men agree to match upon meeting. It follows that the value of being a type qm single man is given by

rV 0
m(qm) = u0

m(qm) + �m

Z

M(qm)
(1 � µf )S(qf , qm)dGf (qf ), (2)

where (1 � µf )S(qf , qm) is the share of the marital surplus that type-qm men receive in a match with a

type-qf woman, given the female Nash bargaining power µf . This Bellman equation states that the value

of being single is determined by the flow utility of singlehood and the option value of matching with a

partner.

The value for a type-qm man of being matched with a type-qf woman is

rV 1
m(qf , qm) = u1

m(qf , qm) + tm + �(V 0
m(qm) � V 1

m(qf , qm)), (3)

where � is the exogenous separation rate. tm denotes the intra-household utility transfer, which may be

positive or negative.13

Given these Bellman equations, the marital surplus is defined as

S(qf , qm) = V 1
m(qf , qm) + V 1

f (qf , qm) � V 0
m(qm) � V 0

f (qf ). (4)

The transferable utility assumption entails that the marital surplus can be distributed between spouses

without frictions. Couples therefore match upon meeting if (and only if) the marital surplus is weakly

positive (i.e. S(qf , qm) � 0). The transfer ensures that both spouses benefit relative to remaining single.

The model is closed by assuming that the spouses share the marital surplus by Nash bargaining, which

implies that transfers are set such that the wife receives a share µfS(qf , qm) of the marital surplus while

the husband receives (1 � µf )S(qf , qm) (see Appendix D.1 for details).

2.4 Equilibrium and Sorting

For the one-dimensional case (K = 1), Shimer and Smith (2000) prove the existence of an equilibrium that

satisfies: 1. individually optimal behavior: every agent maximizes her expected payoff, taking all other agents’

strategies as given. 2. steady-state: match creation equals match destruction for each agent type (i.e., for all

qf and all qm). Shimer and Smith (2000) characterize sorting by defining the following notions of PAM and

NAM, which generalize the corresponding definition for the frictionless case by Becker (1973).14

13The values of being a single woman or type-qf women matched with a type-qm man are defined analogously to (2) and (3).
Transfers are constraint to be net-zero, i.e., tm = �tf .

14Note that as matching is symmetric, qf 2 M(qm) is equivalent to qm 2 M(qf ). The definitions of PAM and NAM thus imply
that the respective relationships with qm and qf interchanged also hold.
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Definition 1. Consider q0f < q00f , q0m < q00m.

There is PAM if: q00f 2 M(q0m) and q0f 2 M(q00m) ) q0f 2 M(q0m) and q00f 2 M(q00m)

There is NAM if: q0f 2 M(q0m) and q00f 2 M(q00m) ) q00f 2 M(q0m) and q0f 2 M(q00m).

Intuitively, under PAM, whenever two couples, (q0f , q
00
m) and (q00f , q

0
m), can form more positively sorted

matches by trading partners, they are willing to do so. By implication, higher-qm men match on average

with higher-qf women in any PAM equilibrium. That is, E[qf |qm] is weakly increasing in qm in the

population of matched couples. In contrast, higher-qm men will match on average with lower-qf women in

any NAM equilibrium. That is, E[qf |qm] is weakly decreasing in qm in the population of matched couples.

As a consequence, for the correlation between matched partners’ types the following holds:

PAM ) Corr(qf , qm) � 0, (5)

NAM ) Corr(qf , qm)  0. (6)

Using (5) and (6), it is possible to use observed cross-sectional correlations between matched spouses’

attributes to draw conclusions about marital sorting patterns. Specifically, under one-dimensional matching,

Corr(qf , qm) < 0 is inconsistent with PAM, while Corr(qf , qm) > 0 is inconsistent with NAM. Under the

common assumption that agent types map (one-to-one) into income or education levels, the widely

documented positive correlations between spouses’ income and education levels have been interpreted in

the literature as evidence that refutes NAM and supports PAM.

2.5 Job Loss and Marriage Market Matching

To link our conceptual framework to the effects of job loss that we estimate in our data, we maintain

the assumption of one-dimensional matching (K = 1) and interpret job displacement as a permanent

unexpected reduction of an agent’s type. Additionally, we assume that agent types map into labor incomes

by an increasing one-to-one function.15 Our interpretation is consistent with extensive empirical evidence

on the long-term effects of job loss, e.g., wage scarring.16 Formally, we assume that a man of type qm who

is displaced from his job suffers a permanent type reduction to qm � d, where d > 0.

We use our conceptual framework to derive predictions regarding the effects of job displacement that

we identify in our empirical analysis: consider two groups of men (a “treatment group” and a “control

group”), observed at two points in time, t0 and ⌧ > t0. Suppose that men in both groups are matched with

a female partner in period t0. Men in the treatment group are displaced from their jobs in t0, whereas men

in the control group are not displaced between t0 and ⌧ . Formally, qm(⌧) = qm(t0) � d for the treated and
15This assumption allows for agent types mapping (one-to-one) into other agent characteristics that also deteriorate upon job

displacement (such as health).
16See our own empirical results in Section 4, as well as previous studies (e.g., Jacobson, LaLonde, and Sullivan, 1993; Sullivan

and von Wachter, 2009).
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qm(⌧) = qm(t0) for the control group. Throughout, we impose that the treatment group is small (i.e., of

measure zero) so that job displacements impact the displaced agents, but do not induce a transition to a

new steady-state equilibrium.

We denote by D a treatment indicator, which equals 1 for the (displaced) treatment group and 0 for the

(nondisplaced) control group. The CDFs of men’s types in the treatment group and the control group

are denoted by F (qm|D = 1) and F (qm|D = 0), respectively. We further denote by DB an indicator for

whether a man experiences a breakup from his t0-partner between t0 and ⌧ . DR denotes an indicator for

whether he rematches with a new partner between t0 and ⌧ .

In our empirical analysis, we estimate the following effects of job displacement.

1. The impact of job displacement on breakup risk:

�B = P (DB = 1|D = 1) � P (DB = 1|D = 0) .

2. The impact of job displacement on which male and female types experience a breakup:

�qm|B = E [qm(t0)|DB = 1, D = 1] � E [qm(t0)|DB = 1, D = 0] ,

�qf |B = E [qf (t0)|DB = 1, D = 1] � E [qf (t0)|DB = 1, D = 0] .

3. The impact of job displacement on the risk of remaining single after a breakup:

�R=0|B = P (DR = 0|DB = 1, D = 1) � P (DR = 0|DB = 1, D = 0) .

4. The impact of job displacement on the expected female type with which a man rematches after a breakup:

��qf |R = E [qf (⌧) � qf (t0)|DR = 1, DB = 1, D = 1] � E [qf (⌧) � qf (t0)|DR = 1, DB = 1, D = 0] .

Note that both a treatment margin and a selection margin contribute to ��qf |R, �qm|B, �qf |B and �R=0|B .

First, job displacement may affect which types of men experience a breakup. Second, for a given man, job

displacement may have an effect on his propensity to find a partner or to rematch with a specific qf -type.

We leverage our conceptual framework to derive and test predictions regarding both the treatment and the

selection margin. Based on our conceptual framework, we show that the following relationships between

marriage market sorting and the described effects of job displacement hold:17

Proposition 1. Consider the described matching environment in steady-state equilibrium.

Under either PAM or NAM:

1. Job displacement increases the breakup risk: �B � 0.
17For proofs and derivations see Appendix A.
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2. Job displacement may increase or decrease the probability of staying single:

�R=0|B may be positive or negative.

Under PAM:

3.-a Job displacement leads men to rematch with women of lower type: ��qf |R  0.

4.-a The association between job displacement and partner type is bounded above: ��qf |R  ��qf |R.

The upper bound is given by

��qf |R = �
Z Z d

0

@E[qf |qm]

@qm

���
qm=q�x

dxdF (q|DR = 1, DB = 1, D = 1)  0.

5.-a If F (qm|DB = 1, D = 1)  F (qm|DB = 1, D = 0) holds additionally, then, on average, women from whom

displaced men separate are of higher type than women from whom nondisplaced men separate: �qf |B � 0.

Under NAM:

3.-b Job displacement leads men to rematch with women of higher type: ��qf |R � 0.

4.-b The association between job displacement and partner type is bounded below: ��qf |R � �
�qf |R

.

The lower bound is given by

�
�qf |R

= �
Z Z d

0

@E[qf |qm]

@qm

���
qm=q�x

dxdF (q|DR = 1, DB = 1, D = 1) � 0.

5.-b If F (qm|DB = 1, D = 1) � F (qm|DB = 1, D = 0) holds additionally, then, on average, women from whom

displaced men separate are of lower type than women from whom nondisplaced men separate: �qf |B  0.

Relationships (3.-a) and (3.-b) show that under PAM or NAM marriage market sorting pins down the sign

of the association between job displacement and partner type, ��qf |R. Moreover, relationships (4.-a) and

(4.-b) show that ��qf |R is bounded away from zero by bounds that are determined by the slope of E[qf |qm]

in qm, which adds an additional, empirically testable implication.

In Sections 3 and 4, we leverage quasi-experimental variation from plant closures to obtain empirical

estimates of �B, �qm|B, �qf |B, ��qf |R, and �R=0|B . We compare these estimates to the relationships implied

by Proposition 1 to confront the described marriage market matching framework with empirical evidence.

3 Empirical Strategy

Our research design compares 72,667 male workers who lose their jobs due to establishment closures

with a control group of workers who are similar in terms of observable characteristics but not affected

by an establishment closure during our sample period. The following subsections describe our data, the

definitions of establishment closures and job displacement, the matching procedure by which we select a

control group, and the main empirical specifications that we estimate in Section 4.
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3.1 Data

Our empirical analysis relies on Danish register data covering the entire population living in Denmark

between 1980 and 2007.18 The data are drawn from tax and social security records and include individual-

level information on a range of demographics, as well as employment status, labor income, occupation,

work hours, identifiers of the firm and establishment the individual is employed at, marital histories, and

children. In particular, the data record whether an individual is married or in a cohabiting relationship,

and provide an identifier of the individual’s spouse or cohabiting partner. Cohabiting couples are defined

as two opposite-sex individuals who share the same address, exhibit an age difference of less than 15 years,

have no family relationship, and do not share housing with adults other than their partner.19

3.2 Establishment Closures

We define a closing establishment as one that stops operating, i.e., completely sheds its workforce within

three years.20 The treatment year is defined as the first year in which a closing establishment sheds 10% or

more of its workforce. The rationale behind this definition is that layoffs occurring after 10% or more of

an establishment’s workforce has already been laid off are likely anticipated by the remaining workers.

We exclude establishments with fewer than 5 employees in the treatment year. We identify 23,913 closing

establishments in our data that satisfy these criteria. The mean closing establishment in our data employs

55 workers in the treatment year.

3.3 Treatment and Control Group

Treatment group We select our treatment group from men who are employed at a closing establishment

during the treatment year and have at least three years of tenure.21 Additionally, we restrict the treatment

group to men who are 28–48 years old in the treatment year and who were married or in a cohabiting

relationship three years prior to the treatment year.22 Men who are employed at the same establishment as

their spouse or cohabiting partner are excluded from the treatment sample. Our treatment group consists

of 72,667 individuals who meet these criteria.

18Our sample ends in 2007 due to a change in the definition of family types in the Danish registers.
19This is the official definition of cohabiting couples used by Statistics Denmark. For previous studies that have relied on this

definition see, (e.g., Svarer, 2004; Datta Gupta and Larsen, 2007; Datta Gupta and Larsen, 2010; Bruze, Svarer, and Weiss, 2015).
Our data do not allow us to identify cohabiting same-sex couples. Therefore, we do not include same-sex couples in our analysis.
Same-sex marriage has been legal in Denmark since 2012.

20By focusing on establishment closures instead of a broader notion of establishment-level employment reduction (often
referred to as "mass-layoffs"), we minimize selection problems that may occur if employment reductions are influenced by worker
performance and ability (see, e.g., Eliason and Storrie 2006).

21We repeated our empirical analysis for displaced women. In contrast to men, women experience a much less persistent
earnings loss in our sample. We find a statistically insignificant effect on breakup rates in couples where the female partner is
displaced. This is consistent with previous findings by Huttunen and Kellokumpu (2016) and Eliason (2012), who document that
men’s displacement leads to a statistically significant increase in relationship dissolution risk, but find no significant effect for
displaced women. The effects of job displacement on which couples separate, the risk of staying single post breakup, and which
new couples form are also insignificant for displaced women.

22Note that in our analysis, we consider an event time window ranging from five years prior to ten years after establishment
closure. Within this time window the considered men are 23–58 years old.
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Coarsened exact matching to select control group To select a control group, we rely on matched sampling

from men who, during our sample period, were never employed at an establishment within three years of

its closure. We apply the same sample restrictions on age, tenure, and relationship status and exclude men

coworking with their partner, as in the treatment group. We implement a coarsened exact matching (CEM)

algorithm on the resulting pool of individuals. For each treated individual, the algorithm selects one control

individual who, in the treatment year, provides an exact match on various observed characteristics (Iacus,

King, and Porro, 2012, 2019). To make exact matching feasible in all cases, the observables we match on are

coarsened into discrete bins (except for those already discrete). The CEM algorithm then matches each

treated individual with a control individual whose characteristics fall in the same bin for each observable.23

The observed characteristics that our CEM algorithm matches on are marital status (single, cohabiting,

married, divorced), age, children (binary indicator), calendar year, occupation (6 categories), industry (9

groups), establishment size quintiles, and tenure quintiles. We match treatment and control group with

respect to each of these variables three years before establishment closure, except for establishment size

quintiles, which we match five years before closure.24 Our empirical analysis draws on the combined

sample of 72,667 displaced men in the treatment group and the same number of men in the control group.

For men in the control group, we refer to the year in which the matched treatment individual is displaced

as “the year of placebo displacement”.

Summary statistics Table B.1 reports summary statistics in the year before (actual or placebo) displace-

ment for the treatment group and the control group. The average displaced worker is 38 years old with 12.6

years of education, corresponding approximately to a high school or vocational degree. In the year before

displacement actual and placebo displaced workers earn annual salaries of 326,247 DKK in the treatment

group and 324,898 DKK in the comparison group.25 Their married or cohabiting partners are on average

36 years old, with 12.2 (treatment group’s partners) and 12.3 (control group’s partners) years of education,

and earn annual salaries of 177,682 DKK (treatment group’s partners) and 178,891 DKK (control group’s

partners). The similarity between treatment and control group is not entirely mechanical as our coarsened

exact matching relies on variables three and five years before actual/placebo displacement. Moreover,

Table B.1 includes several variables that we do not match on (e.g., labor income as well as partner’s, age,

education, and labor income).

23Coarsened exact matching has favorable statistical properties in finite samples compared with methods such as propensity
score matching (see Iacus et al., 2012), and the appeal of being straightforward to interpret. See Azoulay, Graff Zivin, and Wang
(2010) and Jäger and Heining (2022) for previous applications.

24For matching on establishment size, we move two years further away from establishment closure, as this variable begins to
differ early between treatment group and control group.

25Throughout, all money measures are CPI adjusted to 2004 DKK.
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3.4 Estimating Equations

Unconditional difference-in-differences specification We estimate the effect of job displacement on

labor market and marriage market outcomes using the following difference-in-differences specification:

Yit = ↵+
10X

⌧=�5

 ⌧1{t = ⌧} +
10X

⌧=�5

�⌧Di1{t = ⌧} + �DDi + eit, (7)

where Yit denotes the outcome Y for individual i in year t relative to the year of actual or placebo

displacement. Di is an indicator of whether individual i is in the treatment group and eit is the residual

error term. We normalize  �3 = ��3 = 0. The coefficients of interest, �⌧ , capture the effect of job

displacement on the treatment group relative to the control group, at event time ⌧ . We do not include

calendar year fixed effects in (7) because calendar time is exactly balanced between treatment and control

group, as it is one of the variables we match on in the coarsened exact matching procedure. The specification

allows for time invariant differences between the treatment and control groups, which are absorbed by

�D. The variation we leverage to estimate �⌧ is differential variation over event time (relative to actual

or placebo job displacement) in the treatment group relative to the control group. The key identifying

assumption is that in the absence of job displacement, treatment and control group would have been on

parallel trends.

Match-specific difference-in-differences specification To estimate how job displacement impacts match-

ing patterns, we use the following match-specific difference-in-differences specification.26 We run this

specification on a sample of partners j who are matched with a treatment or control group individual at

some point during the even-time window t = �5, . . . , 10:27

Yjt = ↵+ ↵tM>01{tM (i, j) > 0} + �tM>0Di(j)1{tM (i, j) > 0} + �DDi(j) + ejt. (8)

where, Yjt denotes the outcome Y for individual j in year t relative to the year of actual or placebo

displacement. Di(j) is an indicator for whether individual i(j), who was matched with individual j, is in

the treatment group.28 tM (i, j) denotes the time relative to actual or placebo displacement at which the

match between i and j is formed. I.e., 1{tM (i, j) > 0} is an indicator for whether the match between i

and j is formed after actual or placebo displacement, and eit is the residual error term. The coefficients

26Specifically, we use this specification to estimate the data analog of ��qf |R = E [qf (⌧)� qf (t0)|DR = 1, DB = 1, D = 1]�
E [qf (⌧)� qf (t0)|DR = 1, DB = 1, D = 0], where �tM>0 is the coefficient of interest that identifies ��qf |R.

27We refer to two individuals, i and j, as “matched” if they are married or in a cohabiting relationship. We refer to the first
period in which i and j are observed being married or cohabiting as “the period in which the match between i and j was formed”.

28Specifically, the mapping i(j) assigns to each individual j the individual i with whom j was matched during the time
window t = �5, . . . , 10. To ensure that this mapping is many-to-one, we exclude 65 individuals j (0.05% of our sample) who are
matched with different individuals in our treatment or control group at different points in time. The mapping is many-to-one
(rather than one-to-one) as our sample does include all partners j that i is matched with at some point during the time window
t = �5, . . . , 10.
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of interest, �tM>0, capture the effect of job displacement on which types of partners individuals match

with in the treatment group compared with the control group. To estimate �tM>0, we leverage changes

in matching patterns around actual displacement in the treatment group and compare them to changes

around placebo displacement in the control group.

4 Empirical Results

This section presents our empirical results. We establish four main empirical findings: (i) Job displace-

ment increases the risk of relationship dissolution; (ii) Job displacement especially increases the risk of

relationship dissolution for men matched with low-earning women; (iii) Displaced men have a higher risk

of remaining single post breakup than nondisplaced men; (iv) Job displacement leads men to transition to

higher earning women post-breakup, compared with non-displaced men.

Section 4.1 documents the long-run effect of job displacement on employment and earnings. Sections

4.2-4.4 report our main empirical findings. In Section 4.5, we support our results with several robustness

checks, ruling out that our empirical findings are driven by men who move to municipalities with favorable

marriage market conditions. We further provide back-of-the-envelope calculations that suggest that

establishment closures are unlikely to trigger substantial marriage or labor market equilibrium effects.

4.1 Labor Income, Employment, Hourly Wages, and Work Hours

First, we document the effects of job displacement on employment and earnings. After job displacement,

men’s labor incomes drop sharply and persistently remain low. This pattern is driven predominantly

by men taking on jobs at lower hourly wages post-displacement and, to a lesser extent, by reductions in

employment and work hours.

Figure 1A shows that job displacement is a persistent negative shock to labor earnings. The figure displays

estimates of �⌧ , measuring the differential evolution of labor income in treatment and control group after

actual or placebo displacement. The trend prior to displacement is flat, and there is a pronounced drop

in earnings post-displacement, reaching �17, 354 DKK in t = 3, a 5% drop compared with men’s average

earnings in t = �3. Post-displacement, labor income remains depressed for at least 10 years. The average

effect over our post-displacement event-time window amounts to �13, 332 DKK, �4% of men’s average

earnings in t = �3.29 Figures 1B and C.1A and B show that the long-run effect on labor income is driven

by men transitioning to jobs that pay lower hourly wages, and, to a lesser extent, by reductions in work

hours and employment.

29The average effect over our post-displacement event-time window is computed as 1
10

P10
⌧=1 �⌧ .

14



Figure 1: Labor Market Effects of Job Displacement

(A) Labor Income (in DKK) (B) Hourly Wage (in DKK)

Notes: The figure shows the impact of job displacement on annual labor income (including zeros for nonemployed individuals,
Panel A), and hourly wages (conditional on employment, Panel B) measured in DKK (CPI 2004). The dashed vertical lines are
95% confidence intervals. The estimates correspond to estimates of �⌧ from Equation (7). All estimates are based on a sample of
men who were displaced as part of an establishment closure between 1980 and 2007, and the same number of control individuals
selected by coarsened exact matching. The specific sample selection criteria and matched sampling algorithm are described in
Subsection 3.3.

4.2 Relationship Status

This subsection shows that job displacement increases the risk of relationship dissolution and that displaced

men are more likely to remain single after a breakup than nondisplaced men are. Figures 2A-C show the

dynamic effects of job displacement on the probability of being separated (Figure 2A), being single (Figure

2B) or being matched with a new partner (Figure 2C).

Figure 2A measures the effect on separations, using an indicator for not living with the same partner

as in t = �3 as the outcome variable30 and documents a statistically significant increase in separations

after job displacement, building up to 0.01 in t = 10, a 6% increase compared to the separation rate in the

control group between t = �3 and t = 10, which is at 0.18.31 Thus, job displacement leads to an increase in

separations, in line with the model predictions (under PAM and NAM) derived in Section 2.

Figure 2B and C decompose the effect on separation into the effect on being single and being on matched

with a new partner. We use indicators for not living with a partner (in panel B) and for living with a partner

different from the one in t = �3 (in panel C) as outcome variables. Each effect is statistically significant. By

construction, the estimates sum to the effect on separations, showing that approximately two-thirds of the

effect on separations is driven by men who are single post-breakup, and one third by men living with new

partners.

30This includes not living together with any partner and living together with a new partner who is distinct from the partner in
t = �3.

31Huttunen and Kellokumpu (2016) and Eliason (2012) report comparable findings for Finland and Sweden, respectively.
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Figure 2: Impact of Job Displacement on Relationship Status,
and Which Couples Break Up

(A) Separated (B) Single

(C) New Partner (D) Which Couples Separate?
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Notes: Panel A -C show the impact of job displacement on different measures of relationship status. Panel A shows the impact
of job displacement on the probability of being separated from the pre-displacement partner. Panel B shows the impact of job
displacement on the probability of being single (i.e., unmarried and not cohabiting). Panel C shows the impact of job displacement
on the probability of being matched (married or cohabiting) with a new partner who is distinct from the pre-displacement partner.
The values in Panel A-D correspond to coefficient estimates of �⌧ in Equation (7). The dashed vertical lines are 95% confidence
intervals. Panel D shows the effect of job displacement on the composition of women and men (in terms of their labor income) who
experience a breakup. Each plotted bar shows average pre-displacement labor income, in t 2 {�5, ..,�3}, of men and women
who experience a break up after the male partner’s actual or placebo displacement, i.e., between t = 0 and t = 10. All values are
normalized by the respective sample average. The underlying sample for all panels is our sample of men who were displaced as
part of an establishment closure between 1980-2007, and the same number of control individuals selected by coarsened exact
matching. The specific sample selection criteria and matched sampling algorithm are described in Subsection 3.3.

Additionally, we compare the probability of staying single post-breakup between actual and placebo

displaced men. Table B.2 reports differences between actual and placebo displaced men in (i) the probability

of being matched with a partner in t + 1 conditional on having been single in t, and (ii) the probability

of being matched with a partner at any point in time t = 1, ..., 10 after having been single in at least one
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period, t > �3. Displaced men are statistically significantly less likely to transition out of being single

by either measure. Note that these estimates include both a treatment effect on a given man’s chances of

finding a partner and a selection effect by which job displacement potentially causes breakups among men

with above- or below-average chances of finding a new partner.

4.3 Which Couples Separate?

Next, we demonstrate that men who experience a breakup after being displaced tend to be matched with

low-earning women. We consider couples’ pre-displacement earnings in t 2 {�5, .., �3} to circumvent the

direct effect of displacement on men’s incomes and draw comparisons between couples in the treatment

and control group who break up within 10 years after actual or placebo displacement.

Figure 2D shows the average pre-displacement labor income, in t 2 {�5, .., �3}, of men and women who

experience a breakup between t = 0 and t = 10 normalized by the respective sample average.32 Our

results show that people who experience a breakup are generally below-average earning. This is true

for both women and men in the treatment and control group. More importantly, women in dissolving

couples that were matched with an actually displaced man have lower earnings than women in dissolving

couples who were matched with a placebo displaced man. The difference is statistically significant at

�3063 DKK, 23% of the average income loss of a displaced man. The difference between the earnings of

men in dissolving couples in the treatment group and those in the control group is modestly positive but

statistically insignificant. These results demonstrate that job displacement especially increases the risk of

relationship dissolution for men matched with low-earning women.

We repeat the same analysis steps for outcomes other than labor income to gauge the extent to which

dissolving couples in the treatment and control group differ in other dimensions. Figure C.3 shows that

there are no statistically significant differences between treatment and control group in men and women’s

age, or couples’ number of children. Women and men in dissolving couples in the treatment group have

statistically significantly fewer years of schooling relative to the control group, but the differences are small

in magnitude (less than 0.05 years).

To invoke implication 5.-a or 5.-b of Proposition 1 (showing which types of women men in the treatment and

control group separate from on average), we additionally need to confirm whether our data are consistent

with the condition F (qm|DB = 1, D = 1)  F (qm|DB = 1, D = 0) or F (qm|DB = 1, D = 1) � F (qm|DB =

1, D = 0). To empirically assess whether either condition is satisfied, Figure C.2 plots the empirical cdf of

labor income in t 2 {�5, .., �3} for actual and placebo displaced men who experience breakup between

t = 0 and t = 10. The figure shows that the empirical cdfs for these two groups are strikingly similar. A

Kolmogorov-Smirnov test fails to reject the hypothesis of equality between the two distributions (p-value:

0.539). Empirically, the conditions of Proposition 1, 5.-a and 5.-b do not appear to be violated.
32Note that displacement refers to the actual or placebo displacement of the male partner in the considered couples. Women
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Figure 3: Impact of Job Displacement on New Partners’ Income

(A) New Partner, Income Higher by � 5% (B) New Partner, Income within ±5% Range

(C) New partner, Income Lower by  �5%

Notes: The displayed results show the effect of job displacement on the female type a man rematches with after a breakup, where
the type is measured in terms of annual labor income. Panel A shows the impact of job displacement on the probability of
matching with a new partner (who is distinct from the pre-displacement partner) who outearns the pre-displacement partner by
at least 5%. Panel B shows the impact of job displacement on the probability of matching with a new partner who earns 95% or
less of the pre-displacement partner’s income. Panel C shows the impact of job displacement on the probability of matching with
a new partner who earns within a ±5% range of the pre-displacement partner’s income. The estimates correspond to estimates
of �⌧ in Equation (7). The dashed vertical lines are 95% confidence intervals. All estimates are based on a sample of men who
experienced an establishment closure between 1980 and 2007, and the same number of control individuals selected by exact
matching. The sample selection criteria and matching algorithm are described in subsection 3.3.

4.4 Which Types of Partners do Men Rematch with?

We now turn to analyzing how job displacement affects which types of partners men rematch with after

breakup. Our findings show that displaced men are more likely to transition from low-earning to higher-

earning partners than men in the control group. We do not find substantial effects of job displacement on

matching patterns in terms of other partner characteristics, including age and education.

First, we consider the propensity of transitioning to a higher earning, similarly earning, or lower-earning

are assigned to treatment or control group according to their male partner’s treatment status.
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new partner compared with the pre-displacement partner in the treatment versus the control group. To

this end, we estimate Equation (7) using three types of indicators as outcome variables:

Y +
it = 1

�
Yit � (1 + ⇢)Y

pre
it

 
· DRt,

Y 0
it = 1

�
(1 � ⇢)Y

pre
it < Yit < (1 + ⇢)Y

pre
it

 
· DRt,

Y �
it = 1

�
Yit  (1 � ⇢)Y

pre
it

 
· DRt,

where Yit denotes the earnings of the partner with whom individual i is matched in period t. Y
pre
it denotes

the earnings of the partner with whom individual i was matched pre-displacement, in period t = �3. ⇢ is a

threshold value that we choose, and DRt is an indicator for living with a partner different from the one in

t = �3. According to this definition, Y +
it indicates that i transitioned to a new partner who outearns his

pre-displacement partner by at least ⇢ · 100%, Y 0
it indicates that i transitioned to a new partner who earns

within a ±⇢ · 100% range of his pre-displacement partner, and Y �
it indicates that i transitioned to a new

partner who earns (1 � ⇢) · 100% or less than his pre-displacement partner. For our main analysis, we fix

⇢ = 0.05, and use annual labor income as measure of earnings.33

Figures 3A-C show that job displacement increases the likelihood of transitioning to either higher or

similarly earning partners, but not the likelihood of transitioning to lower-earning partners. The figure

displays estimates of �⌧ in Equation (7), using Y +
it , Y 0

it , and Y �
it as outcome variables. The effects on

transitions to higher and similarly earning partners are statistically significant at 0.003 and 0.002 in t = 10,

a 8.5% and 5.3% increase relative to the control group. These results show that displaced men are more

likely to transition from low-earning to higher-earning partners compared than men in the control group.

We additionally estimate specification (8) to assess the average gain in partner income associated with

transitioning to a new partner post displacement. Specifically, we use specification (8) to estimate34

��qf |R = E [qf (⌧) � qf (t0)|DR = 1, DB = 1, D = 1] � E [qf (⌧) � qf (t0)|DR = 1, DB = 1, D = 0] ,

and use the estimate to assess whether our empirical findings can be reconciled with our model predictions

derived in Section 2. Table 1 reports estimates of �tM>0 from Equation (8), using annual labor income,

hourly wages, and work hours as outcome variables. The coefficient estimate in Column (1) shows that,

compared with the control group, displaced men experience a statistically significant increase in partner

earnings of 3269 DKK when transitioning to a new partner post displacement. Scaling this estimate by the

average income loss from job displacement, which we estimate at �qm = �13, 332 DKK (see Section 4.1),

yields
��qf |R

�qm
= �0.25,

33Varying the value of ⇢ or using hourly wages as measure of earnings delivers qualitatively similar results. Figures C.4 and
C.5 report results for ⇢ = 0.1 and for using hourly wages as the measure of earnings.

34Note that �tM>0 is the data analog of ��qf |R.
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implying that among the subgroup of men who experience a breakup and rematch with a new partner, a 1

unit loss in own income is associated with matching with a 0.25 unit higher earning partner. Note that

this estimate includes both a treatment effect on a given man’s chances of matching with particular female

types and a selection effect by which job displacement potentially causes men to break up and rematch

who have above- or below-average chances of finding a high-earning new partner.

Columns (2) and (3) of Table 1 report separate estimates for hourly wages and work hours as outcome

variables, showing that the estimate for labor income is driven by differences in partners’ hourly wages

rather than differences in their labor supply.

Table 1: Impact of Job Displacement on New Partners’ Income, Wage, and Work Hours

Labor Income Wage Work Hours

Treated ⇥ post-displacement, �tM>0 3269.01⇤⇤ 2.58⇤ �0.12
(1614.72) (1.38) (0.13)

No. of observations 108, 982 79, 796 53, 702

Notes: The table shows the effect of job displacement on the types of partners men transition to in terms of their labor income,
hourly wage (conditional on employment), and work hours (including zeros for non-employed individuals). The table reports
coefficient estimates of �tM>0 from Equation (8). Standard errors are reported in parentheses. ⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01.

To gauge the extent to which job displacement affects matching patterns in terms of other partner charac-

teristics, we additionally estimate specification (8) using age, education (years of schooling), and number

of children from previous relationships as outcome variables. Table 2 shows that job displacement induces

men to transition to younger partners with more children. The coefficient estimates are statistically signifi-

cant but very modest in magnitude. For partner age, the coefficient estimate is �0.27 years, while for the

number of children it is 0.04. The effect on partner education is small and statistically insignificant at �0.04

years of schooling.

Table 2: Impact of Job Displacement on New Partners’ Age, Education, and No. of Children

Age Education No. of children

Treated ⇥ post-displacement, �tM>0 �0.27⇤⇤⇤ �0.04 0.04⇤⇤⇤

(0.09) (0.03) (0.01)

No. of observations 108, 982 108, 982 108, 982

Notes: The table shows the effect of job displacement on the types of partners men transition to in terms of their age, education
(measured in years of schooling) and number of children. The table reports coefficient estimates of �tM>0 from Equation (8).
Standard errors are reported in parentheses. ⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01.
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4.5 Robustness

We rule out several alternative explanations for our empirical findings. First, we rule out that our findings

are driven by men who move to municipalities populated by high-earning single women. Second, we

exclude that displaced men move to municipalities in which single men are scarce relative to single women,

and therefore face less competition in the marriage market. Third, we provide back-of-the-envelope

calculations that suggest it is unlikely that establishment closures trigger substantial marriage or labor

market equilibrium effects.

Moves Across Municipalities and Local Marriage Market Conditions We consider the role of moves

to different municipalities that are triggered by job displacement. Figure C.6A shows how displacement

affects the propensity to move by estimating Equation (7), using an indicator variable for whether the

individual lives in a different municipality compared to his residence measured in t = �3 (i.e., before

actual or placebo displacement) as the outcome variable. The figure shows that the impact of displacement

on the likelihood of having moved to a different municipality is positive and statistically significant at 1.16

percentage points 10 years after displacement. To check whether these are moves to municipalities with

favorable marriage market conditions, we consider two robustness checks. First, we examine whether

job displacement induces moves to municipalities populated by high-earning single women. To do so,

we estimate Equation (7) using the average earnings of single women in the municipality the individual

resides in as the outcome variable.

Second, we explore whether job displacement triggers moves to municipalities in which single men are

scarce relative to single women, which would mean they face low competition in the marriage market.35

We estimate Equation (7) using the sex-ratio in the municipality the individual resides in as the outcome

variable. Figure C.6B and C show that job displacement has no statistically significant effect on either of

these outcomes.

Labor Market and Marriage Market Equilibrium Effects of Establishment Closures We gauge whether

it is likely that establishment closures exert notable labor market or marriage market equilibrium effects

by performing a back of the envelope calculation. The workforce of the average closing establishment

in our sample is 55 workers, 0.6% of the average local labor force in municipalities that contain a closing

establishment. The rate at which displaced workers separate from their partners within the 10 years

following establishment closure is 0.2 in our sample. The average inflow of singles into a the marriage

market over 10 years due to an establishment closure is thus approximately 0.2 ⇥ 55 = 11. This amounts to

an influx of 1.5% relative to the average local population of singles who are 28-48 years old in municipalities

that contain a closing establishment.

35We define the sex ratio on a local marriage market as the number of single women divided by the number of single men in a
municipality.
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4.6 Confronting Theory and Data

We are now ready to confront theory and data, by comparing the predictions we have derived within our

conceptual framework with our empirical findings. Table 3 summarizes our empirical results vis-à-vis the

model predictions, which we derived in Proposition 1. Our empirical findings are largely consistent with

our conceptual framework under NAM. This is true for all our empirical evidence from job displacement.

Under PAM, in contrast, our conceptual framework predicts that men transition away from high-earning

toward lower-earning women (�qf |B � 0 and ��qf |R  0), which is rejected by our data. At the same time,

the cross-sectional correlation between matched partners’ incomes in our data is positive (0.15), which is

consistent with PAM and inconsistent with NAM (see Equations (5) and (6)).

In summary, our empirical evidence from job displacements is consistent with NAM but not with PAM. By

contrast, the positive cross-sectional correlation between matched partners’ incomes is consistent with PAM,

but not with NAM. Under one-dimensional matching, our conceptual framework cannot simultaneously

account for our evidence from job displacements and the positive correlation between matched partners’

incomes, under neither NAM nor PAM.

Quantitatively, our conceptual framework predicts that under PAM, ��qf |R is not only weakly negative,

but also bounded away from zero by ��qf |R (see Proposition 1). To provide a simple check of this rela-

tionship, we approximate @E[qf |qm]
@qm

by the slope coefficient, �, obtained by regressing wives’ income on

husbands’ income and a constant.36 Under this approximation, relationship 4.-a of Proposition 1 simplifies

to
��qf |R
�qm

� �.37 Figure 4 shows our estimate of � at 0.17, whereas we estimated that
��qf |R
�qm

= �0.25 (see

Section 4.4), showing that our estimates are far from satisfying the quantitative restriction,
��qf |R
�qm

� �,

which is implied by our conceptual framework under PAM.

Table 3: Confronting Theory and Data

Impact of job displacement on Data NAM PAM

Breakup risk �B � 0 � 0 � 0

Risk of remaining single post breakup �R=0|B � 0 unrestricted unrestricted

Which female types experience a break up �qf |B  0  0 � 0

Female types men rematch with after a breakup ��qf |R � 0 � 0  0

Cross-sectional income correlation Corr(incomef , incomem) � 0  0 � 0

Notes: The table summarizes the predictions implied by our conceptual framework and NAM and PAM that we derive in
Proposition 1 in Section 2, and our empirical findings reported in Section 4.

36As is well known, � =
Cov(qf ,qm)

V ar(qm) provides the best linear predictor of @E[qf |qm]

@qm
in terms of minimizing the mean squared

prediction error between E[qf |qm] and ↵+ �qm (see, e.g., Goldberger 1991).
37To see this, note that using @E[qf |qm]

@qm
⇡ �, it follows that ��qf |R ⇡ �d� = �qm�. Dividing ��qf |R  �qm� by �qm  0

yields
��qf |R
�qm

� �.
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Figure 4: Correlational Evidence vs. Evidence from Establishment Closures
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Notes: The figure displays the regression coefficient of regressing wife’s on husband’s income, �, alongside our estimate of the
change in partner income associated with transitioning to a new partner after job displacement,

��qf |R
�qm

. The capped error bars are
95% confidence intervals.

5 Reconciling Theory and Data: Multidimensional Matching

This section discusses a possible theoretical explanation for our empirical findings. In Section 4.6, we

argued that our one-dimensional conceptual framework under PAM or NAM cannot simultaneously

account for: first, our evidence that men transition away from low-earning to higher-earning partners after

job loss; second, the positive correlation between matched partners’ incomes. In this section, we argue

that under multidimensional matching our conceptual framework is capable of capturing both of these

empirical facts simultaneously.

We consider the framework described in Section 2.1 in the multidimensional case, K > 1. Our definitions

of flow utilities, value functions, and marital surplus from Subsection 2.1 carry over to the case where qf

and qm are K-dimensional vectors. In the following subsections, we define multidimensional notions of

PAM and NAM (dimension by dimension, similar to Lindenlaub and Postel-Vinay 2023). We then derive

predictions regarding the effects of job displacement on marriage market matching in the K-dimensional

version of our framework and propose conditions under which the multidimensional framework is

consistent with both, our evidence from job displacment and the positive correlation between spouses’

incomes.

5.1 Multidimensional Sorting

We extend the one-dimensional definitions of PAM and NAM given in Subsection 2.4 to the multidimen-

sional case where qf and qm are K-dimensional vectors. Consider the general matching environment

described in Section 2 which is summarized by (2)–(4). Denote by M(qm) = {qf 2 Qf : S(qf , qm) � 0} the

multidimensional matching set of a model agent of type qm. It will occasionally be useful to denote qf by

(qfi, q
�i
f ), where qfi denotes the i-th component and q�i

f denotes all but the i-th components of vector qf .

We define positive and negative assortative mating in dimension i, write PAM(i) and NAM(i), as follows:
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Definition 2. Consider q0fi < q00fi, q0mi < q00mi.

There is PAM(i) if for all q�i
f , q�i

m : (q00fi, q
�i
f ) 2 M(q0mi, q

�i
m ) and (q0fi, q

�i
f ) 2 M(q00mi, q

�i
m )

) (q0fi, q
�i
f ) 2 M(q0mi, q

�i
m ) and (q00fi, q

�i
f ) 2 M(q00mi, q

�i
m ).

There is NAM(i) if for all q�i
f , q�i

m : (q0fi, q
�i
f ) 2 M(q0mi, q

�i
m ) and (q00fi, q

�i
f ) 2 M(q00mi, q

�i
m )

) (q00fi, q
�i
f ) 2 M(q0mi, q

�i
m ) and (q0fi, q

�i
f ) 2 M(q00mi, q

�i
m ).

Next, we show that under either PAM(i) or NAM(i) there is a (weakly) monotonic relationship between

matching sets and the i-th component of agent type (generalizing the corresponding one-dimensional

property derived by Shimer and Smith 2000). To do so, we invoke the following additional assumption,

requiring that sets of the form {qfi : (qfi, q
�i
f ) 2 M(qm)} are nonempty.

A-1. For any given qm and q�i
f there exists a qfi, such that (qfi, q

�i
f ) 2 M(qm). For any given qf and q�i

m there

exists a qmi, such that (qmi, q�i
m ) 2 M(qf ).

Intuitively, A-1 is satisfied if for a man with characteristics qm and a woman with characteristics q�i
f

there exists a value of characteristic qfi sufficiently favorable such that qm and (qfi, q
�i
f ) would agree

to match upon meeting. Leveraging A-1, we establish the following relationship between sorting and

multidimensional matching sets.

Lemma 1. Under assumption A-1, and given either PAM(i) or NAM(i), multidimensional matching sets, M(qm),

are characterized by one-dimensional sets

{qfi : (qfi, q
�i
f ) 2 M(qm)} = [ai(qmi, q

�i
m , q�i

f ), bi(qmi, q
�i
m , q�i

f )],

where

qf 2 M(qm) , qfi 2 [ai(qmi, q
�i
m , q�i

f ), bi(qmi, q
�i
m , q�i

f )]

and ai, bi are

(i) weakly increasing in qmi under PAM(i),

(ii) weakly decreasing in qmi under NAM(i).

Intuitively, Lemma 1 states that given male and female characteristics q�i
m and q�i

f , the remaining i-th

dimension of the matching set M(qm) is an interval with bounds that are weakly increasing in qmi under

PAM(i) and weakly decreasing in qmi under NAM(i).

5.2 Job Loss and Multidimensional Matching

Next, we use the described multidimensional framework to derive predictions regarding the effects of job

displacement that we identified in our empirical analysis. We interpret job displacement as a permanent
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change in the i-th dimension of a displaced agent’s type. More specifically, a man of type qm who is

displaced from his job suffers a permanent unexpected reduction in qmi to qmi � d, where d > 0. Similar

to the one-dimensional case, we assume that qmi maps into labor income by an increasing one-to-one

mapping.38 To derive predictions regarding the effects of job displacement, we consider the same setup as

described in Section 2.5 (a treatment group displaced in t0, and a control group that is not displaced in

[t0, ⌧ ]). The definitions of the effects of job displacement �B and �R=0|B carry over from Section 2.5. We

further define

�qmi|B = E [qmi(t0)|DB = 1, D = 1] � E [qmi(t0)|DB = 1, D = 0] ,

�qfi|B = E [qfi(t0)|DB = 1, D = 1] � E [qfi(t0)|DB = 1, D = 0] ,

��qfi|R = E [qfi(⌧) � qfi(t0)|DR = 1, DB = 1, D = 1] � E [qfi(⌧) � qfi(t0)|DR = 1, DB = 1, D = 0]

analogously to the corresponding objects from Section 2.5. We show that the following relationships be-

tween marriage market sorting and the effects of job displacement hold under multidimensional matching,

analogous to the one-dimensional case.

Proposition 2. Consider the described matching environment in steady-state equilibrium in the multidimensional

case, K > 1 and suppose A-1 holds.

Under either PAM(i) or NAM(i):

1. Job displacement increases the separation risk: �B � 0.

2. Job displacement may increase or decrease the probability of staying single:

�R=0|B may be positive or negative.

Under PAM(i):

3.-a Job displacement leads men to rematch with women of lower type: ��qfi|R  0.

4.-a The association between job displacement and partner type is bounded above: ��qfi|R  ��qfi|R.

The upper bound is given by

��qfi|R = �
Z Z Z d

0

@E
h
qfi|qmi, q�i

m , q�i
f

i

@qmi

�����
qmi=q�x

dxdG�i
f (q�i

f )dF (q|DR = 1, DB = 1, D = 1)  0.

5.-a If F (qmi|DB = 1, D = 1)  F (qmi|DB = 1, D = 0) holds additionally, then, on average, women from whom

displaced men separate are of higher type than women from whom nondisplaced men separate: �qfi|B � 0.

38Note that other observable attributes than labor income may map one-to-one into qmi and be affected by job displacement as
well. The distinguishing feature of the multidimensional case is that other dimensions j 6= i of qm exist that are not shocked by job
displacement. The idea is that while some agent characteristics, such as earnings potential or health are permanently reduced (see,
e.g., Eliason and Storrie 2006; Browning, Moller Dano, and Heinesen 2006; Sullivan and von Wachter 2009), other characteristics
such as an agent’s age or height remain unchanged.
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Under NAM(i):

3.-b Job displacement leads men to rematch with women of higher type: ��qfi|R � 0.

4.-b The association between job displacement and partner type is bounded below: ��qfi|R � �
�qfi|R

.

The lower bound is given by

�
�qfi|R

= �
Z Z Z d

0

@E
h
qfi|qmi, q�i

m , q�i
f

i

@qmi

�����
qmi=q�x

dxdG�i
f (q�i

f )dF (q|DR = 1, DB = 1, D = 1) � 0.

5.-b If F (qmi|DB = 1, D = 1) � F (qmi|DB = 1, D = 0) holds additionally, then, on average, women from whom

displaced men separate are of lower type than women from whom non-displaced men separate: �qfi|B  0.

Proposition 2 establishes that the claims established in Proposition 1 carry over to the multidimensional

case up to minor modifications.

5.3 Cross-Sectional Correlations and Multidimensional Matching

We show that under multidimensional matching our conceptual framework can capture our empirical

evidence from job displacements as well as the positive correlation between matched partners’ incomes.

Intuitively, in the multidimensional framework we can have a negative relationship between qfi and qmi,

ceteris paribus, keeping all other dimensions fixed, whereas the positive cross-sectional correlation between

qfi and qmi arises spuriously from sorting in other dimensions that happen to correlate with qfi and qmi.

Formally, we investigate under which conditions the conditional expectation E[qfi|qmi] is weakly increasing

(weakly decreasing) in qmi, which implies a weakly positive (weakly negative) correlation between qfi

and qmi. Specifically, we decompose the effect of increasing qmi on E[qfi|qmi] into a direct effect (DE),

which captures the impact of ceteris paribus increasing qmi while holding q�i
m fixed, and an indirect effect

(IE), which captures the association between qfi and qmi that arises from sorting on q�i
m and q�i

f . We then

derive sufficient conditions that determine the signs of DE and IE. To this end, we invoke the following

additional assumption on the orientation of matching sets.

A-2. For any given dimensions i and j, and any q0fi < q00fi, q0fj < q00fj , q�(i,j)
f , and qm it holds that:

(q0fi, q
0
fj , q

�(i,j)
f ) 2 M(qm) and (q00fi, q

00
fj , q

�(i,j)
f ) 2 M(qm)

) (q0fi, q
00
fj , q

�(i,j)
f ) 2 M(qm) and (q00fi, q

0
fj , q

�(i,j)
f ) 2 M(qm).

Intuitively, A-2 is satisfied if there is a trade-off between qfi and qfj , in the sense that for a man of given

type qm, matches with partners who are high-type in one but low-type in the other dimension are more

likely than matches with partners who are high-types or low-types in both dimension i and j.
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For simplicity, Proposition 3 provides the result for the bidimensional special case, K = 2. The result for

the general multidimensional case, K > 1, requires additional notation as well as additional assumptions

on the joint distribution of q�i
m , and is provided in Proposition 4 in Appendix A.39

Proposition 3. Consider the described matching environment in the bidimensional case, K = 2, and suppose that

A-1 and A-2 hold.

Consider the following decomposition for q00mi � q0mi

E[qfi|q00mi] � E[qfi|q0mi] =

Z
E[qfi|q00mi, qmj ] � E[qfi|q0mi, qmj ]dG(qmj |q00mi)

| {z }
:=DE (Direct effect)

+

Z
E[qfi|q0mi, qmj ]dG(qmj |q00mi) �

Z
E[qfi|q0mi, qmj ]dG(qmj |q0mi)

| {z }
:=IE (Indirect effect)

.

In a bidimensional steady-state matching equilibrium, the following implications hold:

PAM(i) ) DE � 0,

NAM(i) ) DE  0.

Given PAM (i) or NAM (i), the following additional implications hold:

PAM(j) and G(qmj |qmi) is weakly decreasing in qmi ) IE � 0,

NAM(j) and G(qmj |qmi) is weakly decreasing in qmi ) IE  0,

PAM(j) and G(qmj |qmi) is weakly increasing in qmi ) IE  0,

NAM(j) and G(qmj |qmi) is weakly increasing in qmi ) IE � 0.

Proposition 3 provides sufficient conditions for Corr(qfi, qmi) � 0 and Corr(qfi, qmi)  0.40 Moreover,

the proposition shows that even if sorting in dimension i is negative (i.e., under NAM (i)), a positive

cross-sectional correlation between qfi and qmi is possible if IE is positive and larger than DE in magnitude.

5.4 Taking Stock

Together, Proposition 2 and Proposition 3 show that under multidimensional matching our conceptual

framework can explain our empirical findings. Proposition 2 shows that the multidimensional framework

predicts under NAM(i) that job displacement increases the risk of relationship dissolution (�B � 0), and

that men transition away from low-earning and toward higher-earning partners after job loss (�qf |B  0

and ��qf |R � 0), in line with our empirical findings presented in Section 4. Proposition 3 shows that at

the same time a positive correlation between partners’ incomes is possible, e.g., if it arises from sorting
39The condition that G(qmj |qmi) is weakly increasing in qmi is sometimes referred to as "positive regression dependence" (see,

e.g., Lehmann 1966) and implies Corr(qmj , qmi) > 0.
40If DE � 0 and IE � 0 then E[qfi|qmi] is weakly increasing in qmi, which implies Corr(qfi, qmi) � 0. If DE  0 and IE  0

then E[qfi|qmi] is weakly decreasing in qmi, which implies Corr(qfi, qmi)  0.
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on other attributes that are correlated with income (e.g., if PAM(j), and G(qmi|qmj) is increasing in qmj).

Note that this simple mechanism, which reconciles our empirical evidence with our multidimensional

conceptual framework, is ruled out in one-dimensional models as it requires sorting on several different

characteristics (multiple dimensions of qf and qm).

6 Implications

This section explores broader implications of our findings for our understanding of marriage market

matching. Specifically, we contrast the multidimensional matching framework (which is consistent with

our empirical findings) with the commonly-used one-dimensional model under PAM (which is rejected by

our evidence). In Section 6.1, we argue that our multidimensional framework offers a unifying perspective

that reconciles negative sorting on earnings as predicted by Becker (1973, 1981) with model mechanisms

that generate positive sorting in one-dimensional models, such as complementarities in home productivity

or education homophily. In Section 6.2, we argue that our multidimensional framework suggests a strong

role for sorting on unobserved characteristics. Section 6.3 illustrates the wider relevance of our findings by

comparing counterfactual simulations in the one-dimensional model and a bi-dimensional specification of

our framework.

6.1 Implications for the Interpretation of Empirical Matching Patterns

In this subsection, we revisit the widely documented positive correlation in spouses’ incomes and wages,

in light of our multidimensional matching framework and the evidence from establishment closures.

Going back to Becker (1973, 1981), economists have interpreted this positive empirical correlation as being

indicative of earnings-based positive sorting of women and men into marriages.41 However, Becker’s

seminal theory of marriage market matching predicts positive sorting on “non-market traits” (e.g., IQ,

height, attractiveness, ethnic origin), but negative sorting on wages, as this maximizes the gains from

optimal division of labor in the household.42

Various arguments have been made to resolve the apparent discrepancy between the empirical positive

correlation in spouses’ wages and the theoretical prediction of negative sorting on wages. Becker (1973,

1981) argues that missing wage data for non-working women might bias the observed correlation between

spouses’ wages toward positive values. Lam (1988) shows in a simple extension of Becker’s (1973,1981)

framework that joint consumption of a household public good purchased in the market may give rise

to positive assortative mating.43 In recent studies, complementarities in spouses’ housework hours (e.g.,

41As more powerful evidence of earnings based sorting, the partial correlation in spouses’ wages, controlling for years of
schooling and age, has been documented to be positive, e.g., in Becker (1973, 1981).

42Becker (1981) notes that: "the strong positive partial correlation between years of schooling is predicted by the theory, but
the positive correlation between wage rates is troublesome since the theory predicts a negative correlation when nonmarket
productivity is held constant."

43This driver of positive assortative mating features, e.g., in Low (2024).
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Gayle and Shephard 2019; Calvo et al. 2024) and homophily (e.g., Goussé et al. 2017; Gayle and Shephard

2019; Adda et al. 2024) have often been invoked to generate earnings-based positive assortative matching.

Our multidimensional matching framework (presented in Section 5) together with the evidence from estab-

lishment closures (see Section 4) offers a new perspective that allows us to reconcile Becker’s (1973,1981)

prediction of negative sorting on wages with the positive empirical correlation in spouses’ wages, and

with most of the model mechanisms mentioned above. Our preferred specification posits that sorting on

incomes (and wages), holding all other dimensions of agent type constant, is negative. This is consistent

with Becker’s (1973,1981) prediction of negative sorting on wages as an artifact of the optimal division

of labor in the household. At the same time, in our framework the positive cross-sectional correlation in

spouses’ wages may arise from sorting on other dimensions of agent type, e.g., from complementarities

in home productivity (as in Goussé et al. 2017; Chiappori et al. 2017b and Calvo et al. 2024) or education

homophily (as in Chiappori et al. 2009, 2018). Our multidimensional matching model offers a unified

framework in which these model mechanisms and Becker’s (1973,1981) prediction do not contradict each

other but can coexist and serve to simultaneously generate the effects consistent with our evidence from

job displacements and the widely-documented positive correlation between spouses’ incomes.

6.2 The Role of Unobserved Characteristics in Explaining Observed Matching Patterns

In our multidimensional matching framework, the positive correlation between matched spouses’ incomes

does not necessarily reflect sorting on income, but may be driven by sorting on other characteristics

correlated with income. In this subsection, we decompose the correlation between spouses’ incomes

into the shares driven by different observed characteristics and a residual term driven by unobserved

characteristics. The arguments we invoke rely on our multidimensional matching framework (see Section

5) and conclusions drawn from our empirical findings (see Section 4).

As a starting point for the decomposition, consider the regression

qfi = �0 + �1qmi + �02Xm + �03Xf + ✏ (9)

run on a sample of couples, where qfi, qmi denote husbands’ and wives’ labor incomes, and Xm, Xf are

vectors of observable characteristics other than income.

Suppose that the multidimensional types that women and men match on are qf = (qfi, Xf , Uf ) for women

and qm = (qmi, Xm, Um) for men, where Xm, Xf are the observed characteristics included in regression

(9) and Uf , Um are characteristics not included in the regression, which may include variables that are

unobserved by us, the researchers. Regression (9) estimates the conditional mean E[qfi|qmi, Xm, Xf ], whose

dependence on qmi can be decomposed as follows:

E[qfi|q00mi, Xm, Xf ] � E[qfi|q0mi, Xm, Xf ] = �qfi + �U |qfi ,
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where
�qfi =

Z
E[qfi|q00mi, Xm, Um, Xf , Uf ] � E[qfi|q0mi, Xm, Um, Xf , Uf ]dG(Uf , Um|q00mi, Xm, Xf )

and

�U |qfi =

Z
E[qfi|q0mi, Xm, Um, Xf , Uf ]dG(Uf , Um|q00mi, Xm, Xf )

�
Z

E[qfi|q0mi, Xm, Um, Xf , Uf ]dG(Uf , Um|q0mi, Xm, Xf ).

The first term (�qfi) reflects sorting on income, keeping all other characteristics constant. The second term

(�U |qfi) captures the indirect effect of qmi on qfi, via Uf and Um.

In Section 5, we argued that in our multidimensional matching framework our quasi-experimental evidence

from job displacements is consistent with NAM(i) but inconsistent with PAM(i). Under NAM(i), it can

be shown that �qfi  0.44 This allows us to use regression (9) to estimate a lower bound on �U |qfi , the

dependence of qfi on qmi that arises from sorting on Uf , Um. Specifically, by using (9) to estimate the

conditional mean E[qfi|qmi, Xm, Xf ], and normalizing q00mi � q0mi = 1, it follows that �1  �U |qfi . Intuitively,

sorting on income, keeping other characteristics fixed, is negative under NAM(i). Sorting on characteristics

not controlled for in the regression must therefore exceed the magnitude of �1 to rationalize the matching

pattern in our data.

In Table 4, we present results from estimating regression (9), varying which observed variables are included

as dependent variables in the regression (i.e., are included in Xm, Xf ) and which ones are not controlled for

(i.e., are included in Um, Uf ). The “raw” regression coefficient obtained by regressing wives’ on husbands’

income without any controls is 0.172. Controlling for age or education fixed effects for both spouses reduces

the coefficient estimate by 0.018 (10.5%) and 0.083 (48.3%), respectively. Jointly controlling for age and

education fixed effects reduces the estimate by 0.099 (57.6%). Given that �1 is a lower bound on �U |qfi ,

the estimates in column (4) imply �U |qfi � 0.073. I.e., at least 42.4% (= 0.073/0.172 · 100%) of the raw

coefficient is due to sorting on characteristics not controlled for in the regression (i.e., characteristics other

than income, age, and education) potentially including characteristics that are typically unobserved by

researchers.45

44This follows directly from the first step of the proof of Proposition 4.
45This may include characteristics that are unavailable in the Danish register data, but that other researchers have measured

and studied, such as anthropometrics (Oreffice and Quintana-Domeque 2010), personality traits (Dupuy and Galichon 2014),
tobacco use (Chiappori et al. 2017a) or physical attractiveness (Fisman, Iyengar, Kamenica, and Simonson 2006).
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Table 4: Regressing Wives’ on Husbands’ Income, Controlling for Age and Education

(1) (2) (3) (4)

Husband’s labor income (�̂1) 0.172⇤⇤⇤ 0.154⇤⇤⇤ 0.089⇤⇤⇤ 0.073⇤⇤⇤

(0.000521) (0.000523) (0.000539) (0.000541)

Covariates

Male education FE No No Yes Yes

Female education FE No No Yes Yes

Male age FE No Yes No Yes

Female age FE No Yes No Yes

Observations 3,180,802 3,118,538 3,086,225 3,086,225

Notes: This table reports coefficient estimates of �1 from equation (9) for varying sets of control variables Xf and Xm. All
specifications are estimated on our full sample of married or cohabiting couples, observed between 1980 and 2007. Standard
errors are reported in parentheses. ⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001.

6.3 Counterfactuals: The Relationship between Marital Sorting and Income Inequality

In this section, we illustrate implications of our results for the relationship between individual-level and

household-level inequality, which is shaped by marital sorting. We examine how a simulated increase in

individual income inequality affects between-household inequality in calibrated quantitative versions of a

one-dimensional (1D) and a bidimensional (2D) specification of our framework. The simulation results

show that in the one-dimensional model, which is at odds with our empirical evidence, the marriage

market amplifies the effects of rising individual inequality on between-household inequality. In contrast, in

the bidimensional model, which is consistent with our empirical findings, the marriage market dampens the

effect of rising individual inequality on between-household inequality. These results illustrate that under-

standing the mechanisms underlying the positive cross-sectional income correlation—whether it directly

results from income complementaries or whether it is a byproduct of sorting on other characteristics—has

important implications for the relationship between marital sorting and income inequality. The nature of

this relationship is relevant, e.g., for quantifying the extent to which marital sorting contributes to rising

between-household inequality (Greenwood et al. 2015, 2016; Eika et al. 2019), and for understanding how

redistributive taxation affects marriage decisions (see, e.g., Frankel 2014; Bronson et al. 2024; Gayle and

Shephard 2019).

Model Specification To calibrate our framework, we make additional functional form and distributional

assumptions. Our quantitative model also adds an idiosyncratic “love shock”, z, which summarizes all

non-economic motives for marriage.46 In the 1D model, we assume that individuals match on incomes, qf

46The love shock is drawn from a N(µz,�z) distribution upon meeting a potential partner, is equal for both individuals, and is
fixed for the duration of the match. The shock allows the model to generate empirically plausible matching patterns. Without
the shock, income would perfectly predict (in the 1D model) whether a meeting results in a match. Jacquemet and Robin (2013),
Goussé et al. (2017), and Borovicková and Shimer (2024) use similar settings.
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and qm. In the 2D model, we assume that individuals match on incomes, qf1 and qm1, as well as a second,

unobserved characteristic, qf2 and qm2. This second dimension may be correlated with income, and we

denote the correlation between income and the second, unobserved dimension by ⇢.

We use the following specifications for the utility flow values of married and single individuals in the 1D

and the 2D model, respectively:

1D model:
Couples: u1

g(qf , qm) = 1
(qf+qm)1�⌘

1�⌘ � 2(qf � qm)2 + z

Singles: u0
g(qg) = 1

q1�⌘
g

1�⌘ , g 2 {f, m}
(10)

2D model:
Couples: u1

g(qf , qm) = !1
(qf1+qm1)1�⌘

1�⌘ � !2(qf2 � qm2)2 + z

Singles: u0
g(qg) = !1

q1�⌘
g1

1�⌘ s 2 {f, m},

(11)

In the 1D model, the first term on the RHS of u1
g(qf , qm) induces negative sorting via the curvature of

the CRRA utility term. Intuitively, the marginal utility of partner income is decreasing in own income,

which is a force toward NAM. The second term on the RHS of u1
g(qf , qm) penalizes non-homogamous

matches and, thereby, induces positive sorting.47 The magnitude of 2 relative to 1 determines which of

the two forces dominates in the 1D model. The flow utility of singles only depends on own income and

sets the non-homogamy penalty equal to zero. In the 2D model, the first term on the RHS of u1
g(qf , qm)

is identical to the 1D version and induces NAM on income. The second term on the RHS of u1
g(qf , qm)

penalizes matches that are non-homogamous in terms of the unobserved characteristic, qg2, and thereby

induces PAM in the second dimension. The second dimension does not matter for the flow utility of singles,

which is identical to the 1D model. Additional technical details about the model (definition of type spaces,

matching technology, household bargaining, equilibrium characterization, and numerical solution) are

relegated to Appendix D.

Calibration We calibrate a 1D as well as a 2D specification of our framework. We fix five parameter

values by either setting them to standard values or by estimating them outside the model. First, we fix the

annual discount rate at 0.05. Second, we set the parameter that determines the curvature, ⌘, equal to 1.5.48

Third, we set the relationship dissolution rate, �, equal to 0.06, which is the annual rate at which couples

break up in our sample. Fourth, we fix the Poisson meeting rate at � = 1.49 Fifth, we fix women’s and

men’s Nash-bargaining power at µf = 1 � µf = 0.5.

47See, e.g., Gihleb and Lang (2016) who use a similar penalty term for non-homogamous marriages. Marimon and Zilibotti
(2001) introduced this notion of suitability for workers and jobs in a labor market context.

48See, e.g., Attanasio, Low, and Sánchez-Marcos (2008).
49Recall that we assume a quadratic matching technology, implying that the meeting rates for men and women are �f =

�
R
dGm(qm) and �m = �

R
dGf (qf ). Fixing the common Poisson meeting rate at � = 1 implies, �f =

R
dGm(qm) and

�m =
R
dGf (qf ), i.e., the rate at which women and men meet potential partners is equal to the mass of singles of the opposite

gender.
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The remaining model parameters are {1,2, µz,�z} in the 1D and {!1,!2, µz,�z, ⇢} in the 2D model.

These are calibrated by minimizing the relative distance between theoretical and empirical moments.

We target four common moments in both the 1D and the 2D model: the share of married individuals

in the population, the marriage rate (i.e., the flow into marriage/cohabition), the cross-sectional income

correlation among couples, and the variance of log-household income.50 These four moments pin down

the two utility function parameters and the mean and standard deviation of the z-shock distribution.

For the 2D model, to calibrate ⇢, we additionally target the displacement effect estimated in Section 4.4,
��qf |R
�qm

= �0.25. Recall that this effect implies that displaced men who experience a breakup and rematch

with a new partner get a 0.25 unit higher earning new partner (compared to the pre-displacement parter)

for a 1 unit loss in own income. We compute the model counterpart of
��qf |R
�qm

by simulating in the model

a negative exogenous income shock and measuring the average change in partner income associated

with subsequent transitions to new partners. All theoretical moments are computed at the steady state.

Empirical moments are computed in our estimation sample described in Section 3. We summarize all fixed

and calibrated parameter values in Table B.3.

Table 5 shows the model fit. Both the 1D and the 2D version of our framework provide a good fit for the

targeted empirical moments. The key difference between the models, in terms of fit, is that the 1D model

predicts a positive value (0.17) for the change in partner income associated with transitioning to a new

partner after job displacement,
��qf |R
�qm

, which is at odds with the data. By contrast, the 2D model is capable

of matching
��qf |R
�qm

= �0.25 closely. This is in line with our theoretical results presented in Sections 2 and 5.

The implied positive correlation between spousal types in the unobserved dimension, Corr(qf2, qm2) = 0.70,

is higher than the positive correlation between spouses’ incomes, Corr(qf1, qm1) = 0.22. This is unsur-

prising as the positive correlation between spouses’ incomes is entirely driven by sorting on unobserved

characteristics in the 2D model. The calibrated correlation between income and unobserved characteristics

at the individual level, is ⇢ = 0.71, see Table B.3.

Simulation Results We use the calibrated models to simulate an increase in individual income inequality

and explore how marital sorting and between-household income inequality respond in the 1D and the

2D model. We simulate an increase in income inequality by applying the following transformation to the

exogenous income types, separately for men and women:

q̃ = max
⇣
c · (q � µq,g) + µq,g, qmin

⌘
. (12)

This transformation can be thought of as a spread around the mean of the distribution (µq,g), where the

parameter c controls the size of the spread and the parameter qmin is a small value to ensure that income

remains positive. For our experiment, we set c = 0.15 and q̄ = 5000 DKK, which results in an increase

50This is a common measure of income inequality, see, e.g., Blundell, Pistaferri, and Preston 2008.
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Table 5: Model Fit

Moment Value 1D Model Value 2D Model Empirical Value

Population share of married individuals 0.75 0.70 0.76

Income correlation, Corr(incomef , incomem) 0.22 0.22 0.22

Income inequality, Var(log(incomef + incomem)) 0.14 0.14 0.15

Marriage rate 0.04 0.04 0.05

Displacement effect,
��qf |R

�qm
0.17 -0.19 -0.25

Notes: The table shows the fit of the calibrated 1D and 2D version of our quantitative framework compared to the data. Each row
corresponds to one of the 5 moments that we target in the calibration. The data moments are computed based on our sample of
men who were displaced as part of an establishment closure between 1980-2007, and the same number of control individuals
selected by coarsened exact matching. The specific sample selection criteria and matched sampling algorithm are described in
subsection 3.3.

in the variance of income of 23% for men and 29% for women. Intuitively, increased income inequality

increases the gains from marital sorting, amplifying existing patterns of sorting on income.

Table 6 contrasts the simulation results from the 1D and the 2D model. For both versions, row (1) reports

simulated between-household income inequality at baseline (the calibrated steady state). Row (2) reports

between-household income inequality under the counterfactual mean preserving spread, but keeping

the sorting of individuals into couples fixed at baseline. Row (3) reports between-household income

inequality under the counterfactual, letting both individual incomes and the sorting of individuals into

couples respond.51 Comparing rows (2) and (3) reveals that the 1D version of our framework—which is

at odds with our empirical findings presented in Section 4—predicts that marital sorting amplifies the

rise in between-household inequality. By contrast, the 2D model—which is consistent with the empirical

evidence–predicts that marital sorting dampens the rise in between-household inequality. Quantitatively,

under the counterfactual the 2D version of our framework predicts 30% lower between-household income

inequality (0.174) compared to the 1D model (0.250).

These results highlight the relevance of our findings for understanding the relationship between marriage

market sorting and income inequality. If the cross-sectional correlation between matched spouses’ incomes

directly arises from sorting on income (as in the 1D model) marriage market sorting can be expected to

amplify between-household inequality if individual-level income inequality rises. If it is a byproduct of

sorting on other characteristics while sorting on income, keeping other characteristics fixed, is negative (as

in the 2D model), then marriage market sorting will dampen the effect of rising individual-level income

inequality on between-household inequality. This marked difference points to potential implications of

our findings for the contribution of marital sorting to between-household income inequality and for our

understanding of how redistributive tax policy distorts marriage decisions by reducing income inequality.

51This includes both a change in “who marries whom” and a change in “who marries”, i.e., which model agents are married
and which are singles at the steady state.
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Table 6: Simulation Results: Income Inequality and Marital Sorting

Var(log(incomef + incomem))

1D model 2D model

(1) Baseline 0.144 0.143

(2) Counterfactual, marital sorting fixed 0.233 0.239

(3) Counterfactual 0.250 0.174

Notes: The table shows household income inequality, measured by the variance of log household income, in the baseline scenario
(row 1) and in the counterfactual experiment that increases individual income inequality (row 3). Row 2 shows how inequality
increases under the counterfactual if the sorting of individuals into couples is kept constant at the baseline distribution.

7 Conclusion

In this paper, we leverage exogenous variation from establishment closures to provide novel empirical

evidence on marital sorting patterns. Our empirical results show that men who are displaced from their

job are more likely to experience a break up, face an increased risk of remaining single post-breakup, and

tend to transition away from low-earning and toward higher-earning (married or cohabiting) partners

when rematching.

Standard (one-dimensional) models of marriage market matching imply a tight link between comple-

mentarities in spouses’ characteristics and cross-sectional patterns of marriage market sorting. We show

in a general search and matching model based on Shimer and Smith (2000) that our novel empirical

evidence challenges this tight relationship. Specifically, we argue that our empirical findings suggest a

negative association between husbands’ and wives’ incomes, which is consistent with negative assortative

matching (NAM) but inconsistent with positive assortative matching (PAM) in one-dimensional models.

By contrast, the widely documented positive correlation between spouses’ incomes is consistent with PAM

but contradicts NAM.

We show that theory and evidence can be reconciled in a multidimensional extension of the Shimer and

Smith (2000) model, in which sorting on income—holding other characteristics fixed—is negative, whereas

the cross-sectional positive correlation between spouses’ incomes arises spuriously due to positive sorting

on other characteristics that are correlated with income. We explore several additional implications of our

empirical findings. First, we argue that our findings are in line with Becker’s (1973,1981) hypothesis that

husbands’ and wives’ earnings are substitutes, rather than complements in the marriage market. Second,

we show that at least 42% of the positive association between matched spouses’ earnings is due to sorting

on unobserved characteristics, with the remaining 58% being due to sorting on characteristics that we

observe in our data (income, age, and education). Finally, we highlight the relevance of our findings

by contrasting a counterfactual increase in individual income inequality in a one-dimensional versus a

bidimensional specification of our framework. The one-dimensional model (which is at odds with our
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empirical evidence) predicts that marital sorting amplifies the rise in between-household income inequality.

In contrast, the bidimensional model (which is consistent with our findings) predicts that marital sorting

dampens the increase in between-household income inequality.

Our paper underscores the importance of understanding the mechanisms that give rise to observed cross-

sectional marital sorting patterns. Does the cross-sectional correlation between spouses’ incomes reflect

direct sorting on income? Or is it a byproduct of sorting on other characteristics that correlate with income?

Our new empirical evidence allows us to address these questions and demonstrate that the answer has

implications for whether marriage market matching is one- or multidimensional, for the relative relevance

of different economic mechanisms that give rise to marital sorting, and for the sign and magnitude of

counterfactual simulation results in structural models of marriage market matching.

Our findings point toward several fruitful directions for future work. One promising avenue is leveraging

exogenous variation in characteristics other than income (e.g., health or education) to improve our un-

derstanding of the mechanisms underlying observed cross-sectional sorting patterns in these dimensions.

Another open question for future work is to what extent observed marital sorting patterns arise from com-

plementarities in the match value, from marriage or from meeting opportunities, e.g., due to geographic

segregation (Alonzo, Guner, and Luccioletti 2023), or the context in which couples meet (e.g., at work or

university). Finally, our paper highlights the importance of empirically examining how policy changes,

such as changes in taxation, interact with marital sorting. Studying quasi-exogenous policy changes and

their effects on marital sorting would be a natural next step in this direction.
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Appendix

A Proofs and Derivations

Proof of proposition 1: We start by proving that under PAM or NAM, �B � 0:

As men in the control group by definition are not displaced between period t0 and ⌧ , their types are

unchanged between these points in time, i.e., qm(⌧) = qm(t0). A control group couple that was matched in

period ⌧ , therefore continues to have the identical (non-negative) marital surplus it had in t0.

It follows that no endogenous breakups occur in the control group. Exogenous breakups, by assumption,

occur at rate �. The overall probability that a man in the control group experiences a breakup from his

t0-partner between t0 and ⌧ is thus given by:

P (DB = 1|D = 0) = 1 � e��(⌧�t0) (A.1)

Note that this holds under PAM as well as under NAM.

In the treatment group, by contrast, men’s types change between t0 and ⌧ due to job displacement.

Specifically, qm(⌧) = qm(t0) � d < qm(t0).

For a given man with pre-displacement type qm(t0), job displacement will lead to a breakup if it changes

the couples’ marital surplus from weakly positive to negative, or equivalently if qf (t0) 2 M (qm(t0)) but

qf (t0) /2 M (qm(t0) � d).

Shimer and Smith (2000) show that under NAM or PAM matching sets are closed intervals, M(qm) =

[a(qm), b(qm)], with interval bounds, a(qm), b(qm), that are weakly increasing in qmund PAM and that are

weakly decreasing under NAM. It follows under PAM that job displacement leads to a breakup for a man of

pre-displacement type qm if and only if he is matched with a woman of type qf 2 (max{b(qm � d), a(qm)}, b(qm)].

Similarly, it follows under NAM that job displacement will lead to a breakup for a man with pre-

displacement type qm if and only if he is matched with a woman of type qf 2 [a(qm), min{a(qm � d), b(qm)}).

Additionally, breakups occur exogenously at rate � under PAM as well as under NAM.

It follows that under PAM the overall probability that a man in the treatment group experiences a breakup

from his t0-partner between t0 and ⌧ is given by:

P (DB = 1|D = 1) = 1 � e��(⌧�t0)
| {z }

prob. of exogenous breakups

+

Z
Gf (b(qm(t0))) � Gf ((max{b(qm(t0) � d), a(qm(t0))})dF (qm(t0)|D = 1)

| {z }
prob. of endogenous breakups

.

1



(A.2)

Note that Gf (b(qm(t0))) � Gf ((max{b(qm(t0) � d), a(qm(t0))}) is the mass of men of type qm(t0) matched

with a woman of type qf 2 (max{b(qm � d), a(qm)}, b(qm)], i.e., the mass of qm(t0)-type men who experience

an endogenous breakup after displacement.

Similarly, under NAM, the overall probability that a man in the treatment group experiences a breakup

from his t0-partner between t0 and ⌧ is:

P (DB = 1|D = 1) = 1 � e��(⌧�t0)
| {z }

prob. of exogenous breakup

+

Z
Gf (min{a(qm(t0) � d), b(qm(t0))}) � Gf (a(qm(t0)))dF (qm(t0)|D = 1)

| {z }
prob. of endogenous breakup

,

(A.3)

From (A.1), (A.2), and (A.3) it follows that under PAM as well as under NAM

�B = P (DB = 1|D = 1) � P (DB = 1|D = 0) � 0. This concludes the proof of statement 1.

To see that the sign of the impact of job displacement on the probability of staying single post-breakup is

undetermined, note that for a given man of type qm

P (DR = 0|qm) = exp

✓
� (⌧ � t0)�m(Gf (b(qm)) � Gf (a(qm))

◆
.

It follows that P (DR = 0|qm � d) � P (DR = 0|qm) if and only if

Gf (b(qm � d)) � Gf (b(qm)) � Gf (a(qm � d)) � Gf (a(qm)). (A.4)

Under PAM a, b are weakly increasing in qm, implying that Gf (b(qm � d)) � Gf (b(qm)) is weakly negative.

However, as the same is implied for Gf (b(qm � d)) � Gf (b(qm)), (A.4) may or may not hold. By similar

arguments it follows that the sign of P (DR = 0|qm � d) � P (DR = 0|qm) is also undetermined under

NAM.

Note that the above arguments show that for a given type qm the sign of P (DR = 0|qm �d)�P (DR = 0|qm)

is undetermined, i.e., even if the compard groups of men were to overlap perfectly (i.e., if F (qm|DB =

1, D = 1) = F (qm|DB = 1, D = 0)) the sign of �R=0|B is undetermined.52 In the general case, F (qm|DB =

1, D = 1) 6= F (qm|DB = 1, D = 0) is a further reason why the sign of �R=0|B may be weakly positive or

negative. These arguments confirm statement 2.

Next, we turn to proving that under PAM the impact of job displacement on partner type, ��qf |R, is weakly

52The fact that even for a given individual the sign of P (DR = 0|qm � d)� P (DR = 0|qm) is undetermined implies that under
additional assumptions on the stochastic ordering of F (qm|DB = 1, D = 1) and F (qm|DB = 1, D = 0), NAM and PAM still do
not determine the sign of �R=0|B .
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negative and bounded above by

��qf |R = �
Z Z d

0

@E[qf |qm]

@qm

���
qm=q�x

dxdF (q|DR = 1, DB = 1, D = 1)  0.

Denote by D� an indicator that equals 1 for men who experience an exogenous breakup between t0 and ⌧ ,

and 0 for all other men. Consider men in the treatment group of pre-displacement type qm who separate

from their t0-partner and rematch with a new partner between t0 and ⌧ . The average female type this

group of men is matched with in t0 can be written as weighted average:

E [qf (t0)|DR = 1, DB = 1, D = 1, qm(t0) = qm] =

E [qf (t0)|DR = 1, DB = 1, D = 1, qm, D� = 1] P (D� = 1|DR = 1, DB = 1, D = 1, qm)

+E [qf (t0)|DR = 1, DB = 1, D = 1, qm, D� = 0] P (D� = 0|DR = 1, DB = 1, D = 1, qm)

=
1 � e��(⌧�t0)

1 � e��(⌧�t0) + Gf (b(qm)) � Gf (max{b(qm � d), a(qm)})
· 1

Gf (b(qm)) � Gf (a(qm))

b(qm)Z

a(qm)

qfdGf (qf )

+
Gf (b(qm)) � Gf (max{b(qm � d), a(qm)})

1 � e��(⌧�t0) + Gf (b(qm)) � Gf (max{b(qm � d), a(qm)})

· 1

Gf (b(qm)) � Gf (max{b(qm � d), a(qm)})

b(qm)Z

max{b(qm�d),a(qm)}

qfdGf (qf )

=
1 � e��(⌧�t0)

1 � e��(⌧�t0) + Gf (b(qm)) � Gf (max{b(qm � d), a(qm)})
E [qf |a(qm) < qf < b(qm)]

+
Gf (b(qm)) � Gf (max{b(qm � d), a(qm)})

1 � e��(⌧�t0) + Gf (b(qm)) � Gf (max{b(qm � d), a(qm)})
E [qf |max{b(qm � d), a(qm)} < qf < b(qm)]

(A.5)

Next we turn to computing the corresponding average for period ⌧ , taking into account that men in the

treatment group are displaced in t0. Their type when rematching with a new partner in (t0, ⌧ ] is therefore

qm � d, and the average female type they are matched with in ⌧ is:

E [qf (⌧)|DR = 1, DB = 1, D = 1, qm(t0) = qm] =
1

Gf (b(qm � d)) � Gf (a(qm � d))

b(qm�d)Z

a(qm�d)

qfdGf (qf )

= E [qf |a(qm � d) < qf < b(qm � d)] . (A.6)

For the control group, by contrast, as men’s types are unchanged between t0 and ⌧ , the corresponding

expressions are given by:

E [qf (t0)|DR = 1, DB = 1, D = 0, qm(t0) = qm] = E [qf (⌧)|DR = 1, DB = 1, D = 0, qm(t0) = qm]
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=
1

Gf (b(qm)) � Gf (a(qm))

b(qm)Z

a(qm)

qfdGf (qf )

= E [qf |a(qm) < qf < b(qm)] . (A.7)

Using (A.5), (A.6), and (A.7) it follows for ��qf |R that

��qf |R =

Z
E [qf (⌧) � qf (t0)|DR = 1, DB = 1, D = 1, qm] dF (qm|DR = 1, DB = 1, D = 1)

�
Z

E [qf (⌧) � qf (t0)|DR = 1, DB = 1, D = 0, qm] dF (qm|DR = 1, DB = 1, D = 0)

=

Z
1 � e��(⌧�t0)

1 � e��(⌧�t0) + Gf (b(qm)) � Gf (max{b(qm � d), a(qm)})

·
✓
E [qf |a(qm � d) < qf < b(qm � d)] � E [qf |a(qm) < qf < b(qm)]

◆

dF (qm|DR = 1, DB = 1, D = 1)

+

Z
Gf (b(qm)) � Gf (max{b(qm � d), a(qm)})

1 � e��(⌧�t0) + Gf (b(qm)) � Gf (max{b(qm � d), a(qm)})

·
✓
E [qf |a(qm � d) < qf < b(qm � d)] � E [qf |max{b(qm � d), a(qm)} < qf < b(qm)]

◆

dF (qm|DR = 1, DB = 1, D = 1)


Z

E [qf |a(qm � d) < qf < b(qm � d)]

�E [qf |a(qm) < qf < b(qm)] dF (qm|DR = 1, DB = 1, D = 1)

=

Z
E [qf |qm � d] � E [qf |qm] dF (qm|DR = 1, DB = 1, D = 1)

= �
Z dZ

0

@E [qf |qm]

@qm

���
qm=q�x

dxdF (q|DR = 1, DB = 1, D = 1)

= ��qf |R,

where the weak inequality follows as53

E [qf |a(qm) < qf < b(qm)]  E [qf |max{b(qm � d), a(qm)} < qf < b(qm)] . (A.8)

As shown by Shimer and Smith (2000), E [qf |qm] is weakly increasing in qm under PAM, from which

��qf |R  0 follows. This concludes the proof of statements 3.-a and 3.-b.

By analogous steps it can be shown that under NAM ��qf |R is weakly positive and bounded below by

53Note that in general for any random variable X , and a  a0 it holds that E[X|a  X  b]  E[X|a0  X  b].
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�
�qf |R

� 0 (statements 4.-a and 4.-b).

Finally, we prove that under PAM, if F (qm|DB = 1, D = 1)  F (qm|DB = 1, D = 0), then �qf |B � 0. As

noted above, under PAM M(qm) = [a(qm), b(qm)] with interval bounds that are weakly increasing in qm

(see Shimer and Smith (2000)). By implication, under PAM E [qf |a(qm) < qf < b(qm)] is weakly increasing

in qm. From F (qm|DB = 1, D = 1)  F (qm|DB = 1, D = 0) it follows that54

Z
E [qf |a(qm) < qf < b(qm)] dF (qm|DB = 1, D = 1)

�
Z

E [qf |a(qm) < qf < b(qm)] dF (qm|DB = 1, D = 0). (A.9)

Using (A.5) and (A.7) it follows for �qf |B that

�qf |B =

Z
E [qm(t0)|DB = 1, D = 1, qm] dF (qm|DB = 1, D = 1)

�
Z

E [qm(t0)|DB = 1, D = 0] dF (qm|DB = 1, D = 0)

=

Z
1 � e��(⌧�t0)

1 � e��(⌧�t0) + Gf (b(qm)) � Gf (max{b(qm � d), a(qm)})
E [qf |a(qm) < qf < b(qm)]

+
Gf (b(qm)) � Gf (max{b(qm � d), a(qm)})

1 � e��(⌧�t0) + Gf (b(qm)) � Gf (max{b(qm � d), a(qm)})

E [qf |max{b(qm � d), a(qm)} < qf < b(qm)] dF (qm|DB = 1, D = 1)

�
Z

E [qf |a(qm) < qf < b(qm)] dF (qm|DB = 1, D = 0)

�
Z

E [qf |a(qm) < qf < b(qm)] dF (qm|DB = 1, D = 1)

�
Z

E [qf |a(qm) < qf < b(qm)] dF (qm|DB = 1, D = 0)

� 0 ,

where the first weak inequality follows by (A.8) and the second follows by (A.9). This concludes the proof

of statement 5-a. Statement 5-b can be proved by analogous steps.

Proof of Lemma 1: Define Mi(qmi, q�i
m , q�i

f ) := {qfi : (qfi, q
�i
f ) 2 M(qm)}. We proceed by first proving

that any set Mi is a convex set and then show that its bounds are weakly increasing under PAM (i).55

1. Mi(qmi, q�i
m , q�i

f ) is convex:

54Note that in general, if F1(x) � F2(x) for all x, then
R
h(x)dF2(x) �

R
h(x)dF1(x) for any weakly increasing measurable

function h(x).
55Note that Mi is bounded, as it is a subset of

h
q
i
, qi

i
by assumption.
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Consider q0fi < q00fi < q000fi, with q0fi and q000fi in Mi(qmi, q�i
m , q�i

f ), i.e.,

(q0fi, q
�i
f ) 2 M(qm), (A.10)

(q000fi, q
�i
f ) 2 M(qm). (A.11)

Now consider M(qf ). By A-1 there exists a q̂mi such that (q̂mi, q�i
m ) 2 M(q00fi, q

�i
f ). As matching is

symmetric, equivalently:

(q00fi, q
�i
f ) 2 M(q̂mi, q

�i
m ). (A.12)

In case q̂mi = qmi, (A.12) yields (q00fi, q
�i
f ) 2 M(qmi, q�i

m ) and we have shown convexity of Mi. Now

suppose q̂mi < qmi then PAM (i) together with (A.10) and (A.12) implies (q00fi, q
�i
f ) 2 M(qm). If q̂mi > qmi

the same follows from PAM (i), together with (A.11) and (A.12). In each case we have shown that

(q00fi, q
�i
f ) 2 M(qmi, q�i

m ), and thus that Mi(qmi, q�i
m , q�i

f ) is convex. Mi(qmi, q�i
m , q�i

f ) is thus an interval

described by bounds ai(qmi, q�i
m , q�i

f ), bi(qmi, q�i
m , q�i

f ).

2. ai(qmi, q�i
m , q�i

f ) and bi(qmi, q�i
m , q�i

f ) are weakly increasing in qmi under PAM(i):

bi is weakly increasing in qmi: Suppose not, then bi(q0mi, q
�i
m , q�i

f ) > bi(q00mi, q
�i
m , q�i

f ) for some q0mi <

q00mi. Note that as Mi(qmi, q�i
m , q�i

f ) = [ai(qmi, q�i
m , q�i

f ), bi(qmi, q�i
m , q�i

f )] it follows that bi(q0mi, q
�i
m , q�i

f ) 2

Mi(q0mi, q
�i
m , q�i

f ) and bi(q00mi, q
�i
m , q�i

f ) 2 Mi(q00mi, q
�i
m , q�i

f ). Equivalently (bi(q0mi, q
�i
m , q�i

f ), q�i
f ) 2 M((q0mi, q

�i
m ))

and (bi(q00mi, q
�i
m , q�i

f ), q�i
f ) 2 M(q00mi, q

�i
m ). By PAM(i) this constellation implies (bi(q0mi, q

�i
m , q�i

f ), q�i
f ) 2

M(q00mi, q
�i
m ). Equivalently, bi(q0mi, q

�i
m , q�i

f ) 2 Mi(q00mi, q
�i
m , q�i

f ), in contradiction to bi(q00mi, q
�i
m , q�i

f ) being

the upper bound of Mi(q00mi, q
�i
m , q�i

f ).

That ai is weakly increasing in qmi follows by similar steps that yield, ai(q00mi, q
�i
m , q�i

f ) 2 Mi(q0mi, q
�i
m , q�i

f ),

in contradiction to ai(q0mi, q
�i
m , q�i

f ) being the lower bound of Mi(q0mi, q
�i
m , q�i

f ).

The proof that ai(qmi, q�i
m , q�i

f ) and bi(qmi, q�i
m , q�i

f ) are weakly decreasing in qmi under NAM(i) proceeds

analogously.

Proof of Proposition 2: We first prove that under PAM(i) or NAM(i), �B � 0.

As men in the control group are not displaced, their types are unchanged between t0 and ⌧ , i.e., qm(⌧) =

qm(t0). It follows that no endogenous breakups occur in the control group, while exogenous breakups

occur at rate �. Like in the one-dimensional case, the probability that control group couples break up

between t0 and ⌧ is thus given by

P (DB = 1|D = 0) = 1 � e��(⌧�t0) (A.13)
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under PAM as well as under NAM.

In the treatment group, the i-th dimension of men’s type changes between t0 and ⌧ due to job displacement.

Specifically, qmi(⌧) = qmi(t0) � d < qmi(⌧). For a given man, with pre-displacement type qm(t0), job

displacement leads to a breakup if and only if qf (t0) 2 M
�
(qim, q�i

m )
�

and qf (t0) /2 M
�
(qim � d, q�i

m )
�
. By

Lemma 1, equivalently qfi 2 [ai(qmi, q�i
m , q�i

f ), bi(qmi, q�i
m , q�i

f )] and qfi /2 [ai(qmi � d, q�i
m , q�i

f ), bi(qmi �

d, q�i
m , q�i

f )]. Further, ai(qmi, q�i
m , q�i

f ), bi(qmi, q�i
m , q�i

f ) are weakly increasing in qmi under PAM(i) and

weakly decreasing in qmi under NAM(i).

It follows under PAM(i) that job displacement leads to a breakup for a man of pre-displacement type qm if

and only if he is matched with a qf -type woman, such that

qfi 2
⇣
max{bi(qmi � d, q�i

m , q�i
f ), ai(qmi, q

�i
m , q�i

f )}, bi(qmi, q
�i
m , q�i

f )
i
.

Similarly, under NAM job displacement leads to breakup for a man of pre-displacement type qm if and

only if he is matched with a woman of type qf , such that

qfi 2
h
ai(qmi, q

�i
m , q�i

f ), max{ai(qmi � d, q�i
m , q�i

f ), bi(qmi, q
�i
m , q�i

f )}
⌘

.

Additionally, breakups occur exogenously at rate � under PAM(i) as well as under NAM(i).

Denote by Gfi(qfi) the marginal CDF of qfi, by G�i
f (q�i

f ) the joint CDF of q�i
f , and by Gfi(qfi|q�i

f ) the

marginal CDF of qfi conditional on q�i
f .

Under PAM(i) the overall probability that a man in the treatment group experiences a breakup between t0

and ⌧ is:

P (DB = 1|D = 1) = 1 � e��(⌧�t0)

+

Z Z
Gfi

⇣
bi(qmi, q

�i
m , q�i

f )|q�i
f

⌘

�Gfi

⇣
max{bi(qmi � d, q�i

m , q�i
f ), ai(qmi, q

�i
m , q�i

f )}|q�i
f

⌘
dG�i

f

⇣
q�i
f

⌘
dF (qm)

(A.14)

Similarly, under NAM(i) the overall probability that a man in the treatment group experiences a breakup

between t0 and ⌧ is:

P (DB = 1|D = 1) = 1 � e��(⌧�t0)

+

Z Z
Gfi

⇣
min{ai(qmi � d, q�i

m , q�i
f ), bi(qmi, q

�i
m , q�i

f )}|q�i
f

⌘

�Gfi

⇣
ai(qmi � d, q�i

m , q�i
f ))|q�i

f

⌘
dG�i

f

⇣
q�i
f

⌘
dF (qm). (A.15)
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From (A.13), (A.14), and (A.15) it follows that under PAM(i) as well as under NAM(i)

�B = P (DB = 1|D = 1) � P (DB = 1|D = 0) � 0, concluding the proof of statement 1.

Next, we turn to proving that under PAM(i), ��qfi  0.

Denote by D� an indicator that equals 1 for men who experience an exogenous breakup between t0 and ⌧ ,

and 0 for all other men. Consider men in the treatment group of pre-displacement type qm, who separate

from their t0-partner and rematch with a new partner between t0 and ⌧ . Moreover, condition on the

t0-partner’s type in all but the i-th dimension, q�i
f (t0) = q�i

f . The conditional mean of the t0-partner’s type

in the i-th dimension can be written as weighted average:

E
h
qfi(t0)|DR = 1, DB = 1, D = 1, qm(t0) = qm, q�i

f (t0) = q�i
f

i
=

E
h
qfi(t0)|DR = 1, DB = 1, D = 1, qm, q�i

f , D� = 1
i
P (D� = 1|DR = 1, DB = 1, D = 1, qm, q�i

f )

+E
h
qfi(t0)|DR = 1, DB = 1, D = 1, qm, q�i

f , D� = 0
i
P (D� = 0|DR = 1, DB = 1, D = 1, qm, q�i

f )

=
1 � e��(⌧�t0)

1 � e��(⌧�t0) + Gfi(bi(qmi, q
�i
m , q�i

f )|q�i
f ) � Gfi(max{bi(qmi � d, q�i

m , q�i
f ), ai(qmi, q

�i
m , q�i

f )}|q�i
f )

· 1

Gfi(bi(qmi, q
�i
m , q�i

f )|q�i
f ) � Gfi(ai(qmi, q

�i
m , q�i

f )|q�i
f )

bi(qmi,q
�i
m ,q�i

f )Z

ai(qmi,q
�i
m ,q�i

f )

qfidGfi(qfi|q�i
f )

+
Gfi(bi(qmi, q�i

m , q�i
f )|q�i

f ) � Gfi(max{bi(qmi � d, q�i
m , q�i

f ), ai(qmi, q�i
m , q�i

f )}|q�i
f )

1 � e��(⌧�t0) + Gfi(bi(qmi, q
�i
m , q�i

f )|q�i
f ) � Gfi(max{bi(qmi � d, q�i

m , q�i
f ), ai(qmi, q

�i
m , q�i

f )}|q�i
f )

· 1

Gfi(bi(qmi, q
�i
m , q�i

f )|q�i
f ) � Gfi(max{bi(qmi � d, q�i

m , q�i
f ), ai(qmi, q

�i
m , q�i

f )}|q�i
f )

bi(qmi,q
�i
m ,q�i

f )Z

max{bi(qmi�d,q�i
m ,q�i

f ),ai(qmi,q
�i
m ,q�i

f )}

qfidGfi(qfi|q�i
f )

=
1 � e��(⌧�t0)

1 � e��(⌧�t0) + Gfi(bi(qmi, q
�i
m , q�i

f )|q�i
f ) � Gfi(max{bi(qmi � d, q�i

m , q�i
f ), ai(qmi, q

�i
m , q�i

f )}|q�i
f )

·E
h
qfi|ai(qmi, q

�i
m , q�i

f ) < qfi < bi(qmi, q
�i
m , q�i

f ), q�i
f

i

+
Gfi(bi(qmi, q�i

m , q�i
f )|q�i

f ) � Gfi(max{bi(qmi � d, q�i
m , q�i

f ), ai(qmi, q�i
m , q�i

f )}|q�i
f )

1 � e��(⌧�t0) + Gfi(bi(qmi, q
�i
m , q�i

f )|q�i
f ) � Gfi(max{bi(qmi � d, q�i

m , q�i
f ), ai(qmi, q

�i
m , q�i

f )}|q�i
f )

·E
h
qfi|max{bi(qmi � d, q�i

m , q�i
f ), ai(qmi, q

�i
m , q�i

f )} < qfi < bi(qmi, q
�i
m , q�i

f ), q�i
f

i
(A.16)

Taking into account that treatment group men are displaced in period t0, the corresponding average for

8



period ⌧ is:

E
h
qfi(⌧)|DR = 1, DB = 1, D = 1, qm, q�i

f

i

=
1

Gfi(bi(qmi � d, q�i
m , q�i

f )) � Gfi(ai(qmi � d, q�i
m , q�i

f ))

bi(qmi�d,q�i
m ,q�i

f )Z

ai(qmi�d,q�i
m ,q�i

f )

qfidGfi(qfi|q�i
f )

= E
h
qfi|ai(qmi � d, q�i

m , q�i
f ) < qfi < bi(qmi � d, q�i

m , q�i
f ), q�i

f

i
. (A.17)

For the control group, by contrast, men’s types are unchanged between t0 and ⌧ . The corresponding

expressions therefore are:

E
h
qfi(t0)|DR = 1, DB = 1, D = 0, qm, q�i

f

i

= E
h
qfi(⌧)|DR = 1, DB = 1, D = 0, qm, q�i

f

i

=
1

Gfi(bi(qmi, q
�i
m , q�i

f )) � Gfi(ai(qmi, q
�i
m , q�i

f ))

bi(qmi,q
�i
m ,q�i

f )Z

ai(qmi,q
�i
m ,q�i

f )

qfidGfi(qfi|q�i
f )

= E
h
qfi|ai(qmi, q

�i
m , q�i

f ) < qfi < bi(qmi, q
�i
m , q�i

f ), q�i
f

i
(A.18)

Using (A.16), (A.23), and (A.18) it follows for ��qfi that

��qfi|R =

Z
E
h
qfi(⌧) � qfi(t0)|DR = 1, DB = 1, D = 1, qm, q�i

f

i
dG�i

f (q�i
f )dF (qm|DR = 1, DB = 1, D = 1)

�
Z

E
h
qfi(⌧) � qfi(t0)|DR = 1, DB = 1, D = 0, qm, q�i

f

i
dG�i

f (q�i
f )dF (qm|DR = 1, DB = 1, D = 0)

=

Z Z
1 � e��(⌧�t0)

1 � e��(⌧�t0) + Gfi(bi(qmi, q
�i
m , q�i

f )|q�i
f ) � Gfi(max{bi(qmi � d, q�i

m , q�i
f ), ai(qmi, q

�i
m , q�i

f )}|q�i
f )

✓
E
h
qfi|ai(qmi � d, q�i

m , q�i
f ) < qfi < bi(qmi � d, q�i

m , q�i
f ), q�i

f

i
�

E
h
qfi|ai(qmi, q

�i
m , q�i

f ) < qfi < bi(qmi, q
�i
m , q�i

f ), q�i
f

i◆

+
Gfi(bi(qmi, q�i

m , q�i
f )|q�i

f ) � Gfi(max{bi(qmi � d, q�i
m , q�i

f ), ai(qmi, q�i
m , q�i

f )}|q�i
f )

1 � e��(⌧�t0) + Gfi(bi(qmi, q
�i
m , q�i

f )|q�i
f ) � Gfi(max{bi(qmi � d, q�i

m , q�i
f ), ai(qmi, q

�i
m , q�i

f )}|q�i
f )

✓
E
h
qfi|ai(qmi � d, q�i

m , q�i
f ) < qfi < bi(qmi � d, q�i

m , q�i
f ), q�i

f

i
�

E
h
qfi|max{bi(qmi � d, q�i

m , q�i
f ), ai(qmi, q

�i
m , q�i

f )} < qfi < bi(qmi, q
�i
m , q�i

f ), q�i
f

i◆

dG�i
f (q�i

f )dF (qm|DR = 1, DB = 1, D = 1)

9




Z Z ✓

E
h
qfi|ai(qmi � d, q�i

m , q�i
f ) < qfi < bi(qmi � d, q�i

m , q�i
f ), q�i

f

i

�E
h
qfi|ai(qmi, q

�i
m , q�i

f ) < qfi < bi(qmi, q
�i
m , q�i

f ), q�i
f

i◆
dG�i

f (q�i
f )dF (qm|DR = 1, DB = 1, D = 1)

=

Z Z
E
h
qfi|qmi � d, q�i

m , q�i
f

i
� E

h
qfi|qmi, q

�i
m , q�i

f

i
dG�i

f (q�i
f )dF (qm|DR = 1, DB = 1, D = 1)

=

Z Z
E
h
qfi|qmi � d, q�i

m , q�i
f

i
� E

h
qfi|qmi, q

�i
m , q�i

f

i
dG�i

f (q�i
f )dF (qm|DR = 1, DB = 1, D = 1)

= �
Z Z Z d

0

@E
h
qfi|qmi, q�i

m , q�i
f

i

@qmi

�����
qmi=q�x

dxdG�i
f (q�i

f )dF (q|DR = 1, DB = 1, D = 1)

= ��qfi|R,

where the weak inequality follows as

E
h
qfi|ai(qmi, q

�i
m , q�i

f ) < qfi < bi(qmi, q
�i
m , q�i

f ), q�i
f

i

 E
h
qfi|max{bi(qmi � d, q�i

m , q�i
f ), ai(qmi, q

�i
m , q�i

f )} < qfi < bi(qmi � d, q�i
m , q�i

f ), q�i
f

i
. (A.19)

By Lemma 1 under PAM(i)

E
h
qfi|qmi, q

�i
m , q�i

f

i
= E

h
qfi|ai(qmi, q

�i
m , q�i

f ) < qfi < bi(qmi, q
�i
m , q�i

f ), q�i
f

i

is weakly increasing in qmi, from which ��qfi|R  0 follows. This concludes the proof of statements 3.-a

and 3.-b.

By analogous steps it can be shown that under NAM(i) ��qfi|R is weakly positive and bounded below by

��qfi|R � 0 (statements 4.-a and 4.-b).

Lemma 2. Given the assumptions of Lemma 1 and A-2, under PAM(j) or NAM(j)

{qfi : (qfi, q
�i
f ) 2 M(qm)} = [ai(qmi, qmj , q

�i,j
m , q�i

f ), bi(qmi, qmj , q
�i,j
m , q�i

f )],

where ai, bi are

(i) increasing in qmj under PAM(j),

(ii) decreasing in qmj under NAM(j).

Proof of Lemma 2: We start by proving that for any q0fi < q00fi, q0mj < q00mj , q�i
f , and q�j

m :

(q0fi, q
�i
f ) 2 M(q00mj , q

�j
m ) and (q00fi, q

�i
f ) 2 M(q0mj , q

�j
m )

10



) (q0fi, q
�i
f ) 2 M(q0mj , q

�j
m ) and (q00fi, q

�i
f ) 2 M(q00mj , q

�j
m ). (A.20)

Under PAM(j) it follows by Lemma 1 that:

(q0fi, q
�i
f ) 2 M(q00mj , q

�j
m ) , qfj 2 [aj(q

00
mj , q

�j
m , q0fi, q

�i,j
f ), bj(q

00
mj , q

�j
m , q0fi, q

�i,j
f )],

with aj , bj weakly increasing in qmj . It follows that aj(q0mj , q
�j
m , q0fi, q

�i,j
f )  aj(q00mj , q

�j
m , q0fi, q

�i,j
f ). In

the special case qfj = aj(q0mj , q
�j
m , q0fi, q

�i,j
f ), it follows trivially that (q0fi, q

�i
f ) 2 M(q0mj , q

�j
m ). Outside

this special case, it holds that aj(q0mj , q
�j
m , q0fi, q

�i,j
f ) < qfj . It follows that there exists a qqfj < qfj such

that qqfj 2 [aj(q0mj , q
�j
m , q0fi, q

�i,j
f ), bj(q0mj , q

�j
m , q0fi, q

�i,j
f )] , or equivalently (q0fi, qqfj , q�i,j

f ) 2 M(q0mj , q
�j
m ).

Together with (q00fi, qfj , q
�i,j
f ) 2 M(q0mj , q

�j
m ) by A-2, (q0fi, q

�i
f ) 2 M(q0mj , q

�j
m ) is implied (the first part of

the right hand side of implication A.20).

By analogous steps, using PAM(j) together with Lemma 1 and A-2, it can be shown that (q00fi, q
�i
f ) 2

M(q0mj , q
�j
m ) implies (q00fi, q

�i
f ) 2 M(q00mj , q

�j
m ), proving the second part of implication A.20.

By Lemma 1 we have

Mi(qmi, qmj , q
�i,j
m , q�i

f ) = [ai(qmi, qmj , q
�i,j
m , q�i

f ), bi(qmi, qmj , q
�i,j
m , q�i

f )]

for Mi(qmi, q�i
m , q�i

f ) := {qfi : (qfi, q
�i
f ) 2 M(qm)}. Next, we use A.20 to show that under PAM(j) bi

is weakly increasing in qmj : Suppose not, then bi(qmi, q0mj , q
�i,j
m , q�i

f ) > bi(qmi, q00mj , q
�i,j
m , q�i

f ) for some

q0mj < q00mj .

From Mi(qmi, qmj , q
�i,j
m , q�i

f ) = [ai(qmi, qmj , q
�i,j
m , q�i

f ), bi(qmi, qmj , q
�i,j
m , q�i

f )] it follows that

bi(qmi, q0mj , q
�i,j
m , q�i

f ) 2 Mi(qmi, q0mj , q
�i,j
m , q�i

f ) and bi(qmi, q00mj , q
�i,j
m , q�i

f ) 2 Mi(qmi, q00mj , q
�i,j
m , q�i

f ). Equiv-

alently, (bi(qmi, q0mj , q
�i
m , q�i

f ), q�i
f ) 2 M((qmi, q0mj , q

�i,j
m )) and

(bi(qmi, q00mj , q
�i,j
m , q�i

f ), q�i
f ) 2 M((qmi, q00mj , q

�i,j
m )).

By A.20 this constellation implies (bi(qmi, q0mj , q
�i,j
m , q�i

f ), q�i
f ) 2 M((qmi, q00mj , q

�i,j
m )), or equivalently,

bi(qmi, q0mj , q
�i,j
m , q�i

f ) 2 Mi(qmi, q00mj , q
�i,j
m , q�i

f ), in contradiction to bi(qmi, q00mj , q
�i,j
m , q�i

f ) being the upper

bound of Mi(qmi, q00mj , q
�i,j
m , q�i

f ).

By similar steps it can be shown that ai is weakly increasing in qmj .

The proof that ai, bi are weakly decreasing in qmj under NAM(j) proceeds analogously.

Proof of Proposition 3: We first show that PAM(i) implies DE � 0. By Lemma 1

E [qfi|qmi, qmj , qfj ] =
1

Gfi(bi(qmi, qmj , qfj)) � Gfi(ai(qmi, qmj , qfj))

bi(qmi,qmj ,qfj)Z

ai(qmi,qmj ,qfj)

qfidGfi(qfi|qfj)

11



= E [qfi|ai(qmi, qmj , qfj) < qfi < bi(qmi, qmj , qfj), qfj ] .

where, under PAM(i), ai(qmi, qmj , qfj) and bi(qmi, qmj , qfj) are weakly increasing in qmi implying the same

for E [qfi|qmi, qmj , qfj ]. It follows that

E[qfi|qmi, qmj ] =

Z
E [qfi|ai(qmi, qmj , qfj) < qfi < bi(qmi, qmj , qfj), qfj ] dGfj(qfj)

is also weakly increasing in qmi, and

DE =

Z
E[qfi|q00mi, qmj ] � E[qfi|q0mi, qmj ]dGmj(qmj |q00mi) � 0.

By analogous steps it follows that NAM(i) implies DE  0.

Next, we establish that under PAM(j) if Gmj(qmj |qmi) is weakly decreasing in qmi, IE � 0 follows. By

Lemma 1

E [qfi|qmi, qmj , qfj ] = E [qfi|ai(qmi, qmj , qfj) < qfi < bi(qmi, qmj , qfj), qfj ] .

By Lemma 2 ai(qmi, qmj , qfj) and bi(qmi, qmj , qfj) are weakly increasing in qmj under PAM (j), implying the

same for E [qfi|qmi, qmj , qfj ]. It follows that

E[qfi|qmi, qmj ] =

Z
E [qfi|ai(qmi, qmj , qfj) < qfi < bi(qmi, qmj , qfj), qfj ] dGfj(qfj)

weakly increasing in qmj . As G(qmj |q00mi) first order stochastically dominates G(qmj |q0mi) this implies

IE =

Z
E[qfi|q0mi, qmj ]dG(qmj |q00mi) �

Z
E[qfi|q0mi, qmj ]dG(qmj |q0mi) � 0.

The remaining implications for IE follow analogously.

12



Proposition 4. Consider the described matching environment in the multidimensional case, K > 1 and suppose

that A-1 and A-2 hold. Consider the following decomposition for q00mi � q0mi

E[qfi|q00mi] � E[qfi|q0mi]

=

Z
E[qfi|q00mi, q

�i
m ] � E[qfi|q0mi, q

�i
m ]dG(q�i

m |q00mi)
| {z }

=DE (Direct effect)

+
X

k 6=i

✓Z Z Z
E[qfi|q0mi, q

�i
m ]dG(qm,1:k�1\{i}|qm,k:K\{i}, q

0
mi)dG(qmk|qm,k+1:K\{i}, q

00
mi)

|

�
Z Z

E[qfi|q0mi, q
�i
m ]dG(qm,1:k�1\{i}|qm,k:K\{i}, q

0
mi)dG(qmk|qm,k+1:K\{i}, q

0
mi)

{z
:=IEk(Indirect effect from k-th dimension)

dG(qm,k+1:K\{i}|q00mi)

◆

}
.

In a multi-dimensional steady state matching equilibrium the following implications hold:

PAM(i) ) DE � 0,

NAM(i) ) DE  0

Given PAM(j) for j 2 APAM and NAM(j) for j 2 ANAM, where APAM [ ANAM = {1, ..., K}, the following

additional implications hold.56

(i) PAM(k) and G(qmk|qm,k+1:K\{i}, qmi) is weakly decreasing in qmi.

(ii) G(qm,APAM\{i,k:K}|qm,ANAM\{i,k:K}, qmk, qm,k+1:K\{i}, qmi) is weakly decreasing in qmk,

and weakly increasing in qm,ANAM\{i,k:K}.

(iii) G(qm,ANAM\{i,k:K}|qm,APAM\{i,k:K}, qmk, qm,k+1:K\{i}, qmi) is weakly increasing in qmk,

and weakly increasing in qm,APAM\{i,k:K}.

9
>>>>>>>>>>>=

>>>>>>>>>>>;

) IEk � 0,

(A.21)

(i) NAM(k) and G(qmk|qm,k+1:K\{i}, qmi) is weakly decreasing in qmi.

(ii) G(qm,APAM\{i,k:K}|qm,ANAM\{i,k:K}, qmk, qm,k+1:K\{i}, qmi) is weakly increasing in qmk,

and weakly increasing in qm,ANAM\{i,k:K}.

(iii) G(qm,ANAM\{i,k:K}|qm,APAM\{i,k:K}, qmk, qm,k+1:K\{i}, qmi) is weakly decreasing in qmk,

and weakly increasing in qm,APAM\{i,k:K}.

9
>>>>>>>>>>>=

>>>>>>>>>>>;

) IEk  0,

(A.22)

56Note that analogous sufficient conditions for IEk � 0 and IEk  0 can be proved assuming in the antacedent that
G(qmk|qm,k+1:K\{i}, qmi) is weakly increasing in qmi. We ommit these additional implications for brevity.
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Proof of Proposition 4: We first show that PAM(i) implies DE � 0. By Lemma 1

E
h
qfi|qmi, q

�i
m , q�i

f

i
=

1

Gfi(bi(qmi, q
�i
m , q�i

f )) � Gfi(ai(qmi, q
�i
m , q�i

f ))

bi(qmi,q
�i
m ,q�i

f )Z

ai(qmi,q
�i
m ,q�i

f )

qfidGfi(qfi|q�i
f )

= E
h
qfi|ai(qmi, q

�i
m , q�i

f ) < qfi < bi(qmi, q
�i
m , q�i

f ), q�i
f

i
.

where, under PAM(i), ai(qmi, q�i
m , q�i

f ) and bi(qmi, q�i
m , q�i

f ) are weakly increasing in qmi implying the same

for E
h
qfi|qmi, q�i

m , q�i
f

i
. It follows that

E[qfi|qmi, q
�i
m ] =

Z
E
h
qfi|ai(qmi, q

�i
m , q�i

f ) < qfi < bi(qmi, q
�i
m , q�i

f ), q�i
f

i
dGfj(q

�i
f )

is also weakly increasing in qmi, and

DE =

Z
E[qfi|q00mi, q

�i
m ] � E[qfi|q0mi, q

�i
m ]dGmj(q

�i
m |q00mi) � 0.

By analogous steps it follows that NAM(i) implies DE  0.

Next, we assume that PAM(j) for j 2 APAM and NAM(j) for j 2 ANAM, where APAM[ANAM = {1, ..., K},

and establish that IEk � 0 follows from premise (i) - (iii) of implication (A.21).

Note that IEk can be expressed as

IEk =

Z Z Z
E[qfi|q0mi, q

�i
m ]dG(qm,APAM\{i,k:K}|qm,ANAM\{i,k:K}, qmk, qm,k+1:K\{i}, q

0
mi)

dG(qm,ANAM\{i,k:K}|qmk, qm,k+1:K\{i}, q
0
mi)dG(qmk|qm,k+1:K\{i}, q

00
mi)

�
Z Z

E[qfi|q0mi, q
�i
m ]dG(qm,APAM\{i,k:K}|qm,ANAM\{i,k:K}, qmk, qm,k+1:K\{i}, q

0
mi)

dG(qm,ANAM\{i,k:K}|qmk, qm,k+1:K\{i}, q
0
mi)dG(qmk|qm,k+1:K\{i}, q

0
mi)dG(qm,k+1:K\{i}|q00mi)

By Lemma 1

E[qfi|qmi, q
�i
m ] =

Z
E
h
qfi|ai(qmi, q

�i
m , q�i

f ) < qfi < bi(qmi, q
�i
m , q�i

f ), q�i
f

i
dGfj(q

�i
f ).

By Lemma 2 ai(qmi, q�i
m , q�i

f ) and bi(qmi, q�i
m , q�i

f ) are weakly increasing in qmj for all j 2 APAM, and weakly

decreasing in qmj for all j 2 ANAM, implying the same for E[qfi|qmi, q�i
m ].

By the premise, G(qm,APAM\{i,k:K}|qm,ANAM\{i,k:K}, qmk, qm,k+1:K\{i}, qmi) is weakly decreasing in qmk and

weakly increasing in qm,ANAM\{i,k:K}. It follows that for any q0mk  q00mk and q0m,ANAM\{i,k:K}  q00m,ANAM\{i,k:K}

Z
E[qfi|q0mi, q

�i
m ]dG(qm,APAM\{i,k:K}|q00m,ANAM\{i,k:K}, q

0
mk, qm,k+1:K\{i}, q

0
mi)


Z

E[qfi|q0mi, q
�i
m ]dG(qm,APAM\{i,k:K}|q0m,ANAM\{i,k:K}, q

00
mk, qm,k+1:K\{i}, q

0
mi),
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by E[qfi|qmi, q�i
m ] being weakly increasing in qm,APAM\{i,k:K}, weakly decreasing in qm,ANAM\{i,k:K}, and by

first order stochastic dominance of G(qm,APAM\{i,k:K}|q0m,ANAM\{i,k:K}, q
00
mk, qm,k+1:K\{i}, q

0
mi) over

G(qm,APAM\{i,k:K}|q00m,ANAM\{i,k:K}, q
0
mk, qm,k+1:K\{i}, q

0
mi), implying that

Z
E[qfi|q0mi, q

�i
m ]dG(qm,APAM\{i,k:K}|qm,ANAM\{i,k:K}, qmk, qm,k+1:K\{i}, q

0
mi) (A.23)

is weakly increasing in qmk, and weakly decreasing in qm,ANAM\{i,k:K}.

By analogous arguments it follows from G(qm,ANAM\{i,k:K}|qm,APAM\{i,k:K}, qmk, qm,k+1:K\{i}, qmi) being

weakly increasing in qmk, and by (A.23) being weakly decreasing in qmk, and weakly decreasing in

qm,ANAM\{i,k:K} that

Z Z
E[qfi|q0mi, q

�i
m ]dG(qm,APAM\{i,k:K}|qm,ANAM\{i,k:K}, qmk, qm,k+1:K\{i}, q

0
mi)

dG(qm,ANAM\{i,k:K}|qmk, qm,k+1:K\{i}, q
0
mi) (A.24)

is weakly increasing in qmk.

By the premise, G(qmk|qm,k+1:K\{i}, q
00
mi) first order stochastically dominates G(qmk|qm,k+1:K\{i}, q

0
mi), im-

plying toegether with (A.24) being weakly increasing in qmk that
Z Z

E[qfi|q0mi, q
�i
m ]dG(qm,APAM\{i,k:K}|qm,ANAM\{i,k:K}, qmk, qm,k+1:K\{i}, q

0
mi)

dG(qm,ANAM\{i,k:K}|qmk, qm,k+1:K\{i}, q
0
mi)dG(qmk|qm,k+1:K\{i}, q

00
mi)

�
Z Z

E[qfi|q0mi, q
�i
m ]dG(qm,APAM\{i,k:K}|qm,ANAM\{i,k:K}, qmk, qm,k+1:K\{i}, q

0
mi)

dG(qm,ANAM\{i,k:K}|qmk, qm,k+1:K\{i}, q
0
mi)dG(qmk|qm,k+1:K\{i}, q

0
mi) � 0 (A.25)

As (A.25) is satisfied for any qm,k+1:K\{i}, integrating over G(qm,k+1:K\{i}|q00mi) preserves the weak inequality,

implying IEk � 0.

Implication (A.22) can be proved by analogous steps.
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B Additional Tables

Table B.1: Pre-displacement Summary Statistics, Treatment and Control Group

Treatment Control

Age 38.1 38.1
(36.2) (36.2)

Partner’s age 36.2 36.2
(12.6) (12.6)

Years of education 12.6 12.6
(2.4) (2.4)

Patner’s years of education 12.2 12.3
(2.4) (2.4)

Job tenure 6.4 6.4
(4.1) (4.0)

No. of children 1.5 1.5
(1.0) (1.0)

Labor income (in DKK) 326,247 324,898
(97021) (96761)

Partner’s labor income (in DKK) 177,682 178,891
(106798) (106877)

Corr(agef , agem) 0.83 0.83

Corr(educationf , educationm) 0.38 0.39

Corr(incomef , incomem) 0.15 0.15

N 72,667 72,667

Notes: This table shows summary statistics for the actual and placebo displaced men in the treatment and control group. Standard
deviations are reported in parentheses. All variables are measured in t = �1, i.e., one year before actual or placebo displacement.
Years of education are calculated as follows: 9 years for individuals with compulsory education, 12 years for individuals with a
high school degree ("Gymnasium"), 13 years for individuals with a vocational degree, 13.5 years for individuals with a degree
from professional schools or technical colleges ("Professionsbachelor"), 15 years for individuals with a Bachelor’s degree, and 18.5
years for individuals with a Master’s or Doctoral degree. Tenure measures the years of employment at the establishment. Labor
incomes are real annual labor earnings in DKK (2004 CPI).
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Table B.2: Impact of Job Displacement on the Risk of Staying Single

P
�
matchedt+1|singlet

�
P
�
matchedt>t⇤ |singlet⇤>�3

�

Control group 0.12 0.62

� Treatment - Control �0.0044⇤⇤ �0.0113⇤⇤

(0.0015) (0.0054)

Percentage difference �3.6% �1.8%

No. of observations 95,157 33,296

Notes: This table reports differences between actual and placebo displaced men in the probability of being matched with a partner
in t+ 1 conditional having been single in t (in column 1), and in the probability of being matched with a partner at some point in
time t > t⇤ after having been single in at least one time period, t⇤ > �3 (in column 2). For each comparison we start from our
sample of 72,667 displaced men and the same number of placebo displaced individuals observed over our event-time window
t = �5, ..., 10, and select all individual ⇥ t observations in the respective conditioning set. Standard errors are reported in
parentheses. ⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01.

Table B.3: Calibrated Parameter Values

Parameter Symbol 1D Model 2D Model Comment

Discount rate r 0.05 0.05 fixed

Risk aversion ⌘ 1.5 1.5 fixed

Bargaining power µf 0.50 0.50 fixed

Separation rate � 0.06 0.06 data estimate

Meeting rate � 1.00 1.00 fixed

Love shock mean µz 7963.97 91768.12 calibrated

Love shock standard deviation �z 3034.07 44.07 calibrated

Income NAM utility parameter 1D 1 0.79 – calibrated

Income PAM utility parameter 1D 2 0.34 – calibrated

Income NAM utility parameter 2D !1 – 13844.73 calibrated

Unobserved PAM utility parameter 2D !2 – 7724811.39 calibrated

Correlation Income/Unobserved dimension ⇢ – 0.71 calibrated

Notes: This table reports the calibrated parameter values used in the quantitative versions of our framework in the 1D and the 2D
version, see Section 6.3.
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C Additional Figures

Figure C.1: Labor Market Effects of Job Displacement

(A) Employment (B) Weekly Work Hours

Notes: The figure shows the impact of job displacement on employment (Panel A) and weekly work hours (Panel B), and the
associated 95% confidence intervals. The estimates correspond to estimates of �⌧ from equation (7). All estimates are based on
a sample of men who were displaced as part of an establishment closure between 1980-2007, and the same number of control
individuals selected by coarsened exact matching. The specific sample selection criteria and matched sampling algorithm are
described in subsection 3.3.

Figure C.2: Which Couples Break Up? - Empirical CDFs, Men’s Labor Income
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Notes: The figure shows shows the effect of job displacement on the composition of women and men who experience a breakup
(in terms of their labor income distribution). The plotted empirical cdfs are computed based on pre-displacement labor income,
in t 2 {�5, ..,�3}, of men and women who experience a break up after the male partner’s actual or placebo displacement, i.e.,
between t = 0 and t = 10. Each dot in the plot represents an average across 100 individuals (this aggregation step is necessary to
ensure compliance with Statistics Denmark’s data confidentiality policy). The underlying sample is our sample of men who were
displaced as part of an establishment closure between 1980-2007, the same number of control individuals selected by coarsened
exact matching. The specific sample selection criteria and matched sampling algorithm are described in subsection 3.3.
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Figure C.3: Which Couples Break Up? - Age and No. of Children
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Notes: The figure shows the effect of job displacement on the composition of women and men (in terms of their age and no.
number of children) who experience a breakup. Each plotted bar shows the average pre-displacement value (for age in Panel A
and for no. of children in Panel B) in t 2 {�5, ..,�3}, of men and women who experience a break up after the male partner’s
actual or placebo displacement, i.e., between t = 0 and t = 10. All values are normalized by the respective sample average. The
underlying sample is our sample of men who were displaced as part of an establishment closure between 1980-2007, and the same
number of control individuals selected by coarsened exact matching. The specific sample selection criteria and matched sampling
algorithm are described in subsection 3.3.
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Figure C.4: Impact of Job Displacement on New Partners’ Income

(A) New Partner, Income Higher by � 10% (B) New Partner, Income within ±10% Range

(C) New Partner, Income Lower by  �10%

Notes: The displayed results show the effect of job displacement on the female type a man rematches with after a breakup, where
the type is measured in terms of annual labor income. Panel A shows the impact of job displacement on the probability of
matching with a new partner (who is distinct from the pre-displacement partner) who outearns the pre-displacement partner by
at least 10%. Panel B shows the impact of job displacement on the probability of matching with a new partner who earns 90% or
less of the pre-displacement partner’s income. Panel C shows the impact of job displacement on the probability of matching with
a new partner who earns within a ±10% range of the pre-displacement partner’s income. The estimates correspond to estimates
of �⌧ in equation (7). The dashed vertical lines are 95% confidence intervals. All estimates are based on a sample of men who
experienced an establishment closure between 1980-2007, and the same number of control individuals selected by exact matching.
The sample selection criteria and matching algorithm are described in subsection 3.3.
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Figure C.5: Impact of Job Displacement on New Partners’ Hourly Wage

(A) New Partner, Hourly Wage Higher by � 5% (B) New Partner, Hourly Wage within ±5% Range

(C) New Partner, Hourly Wage Lower by  �5%

Notes: The displayed results show the effect of job displacement on the female type a man rematches with after a breakup, where
the type is measured in terms of hourly wages. Panel A shows the impact of job displacement on the probability of matching with
a new partner (who is distinct from the pre-displacement partner) who outearns the pre-displacement partner by at least 5%.
Panel B shows the impact of job displacement on the probability of matching with a new partner who earns 95% or less of the
pre-displacement partner’s income. Panel C shows the impact of job displacement on the probability of matching with a new
partner who earns within a ±5% range of the pre-displacement partner’s hourly wage. The estimates correspond to estimates
of �⌧ in equation (7). The dashed vertical lines are 95% confidence intervals. All estimates are based on a sample of men who
experienced an establishment closure between 1980-2007, and the same number of control individuals selected by exact matching.
The sample selection criteria and matching algorithm are described in subsection 3.3.
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Figure C.6: Robustness Checks

(A) Relocations to a New Municipality (B) Earnings of Single Women in Location of Residence

(C) Sex Ratio in Location of Residence

Notes: Panel A shows the impact of job displacement on the probability of moving to a different municipality. Panel B shows the
difference between single women’s average annual labor income in the municipality where the treatment and control individuals

reside in period t. Panel C shows sex ratio (
# single women

# single men ) where the treatment and control individuals reside in in period t.

The estimates correspond to estimates of �⌧ in equation (7). All estimates are based on a sample of men who experienced an
establishment closure between 1980-2007, and the same number of control individuals selected by exact matching. The sample
selection criteria and matching algorithm are described in subsection 3.3.
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D Model Appendix

D.1 Nash Bargaining

We assume that couples split the match surplus by agreeing on transfers, tf and tm, via Nash-bargaining.

Define the marital surplus of a man of type qm who is matched with a woman of type qf by

Sm(qf , qm) = V 1
m(qf , qm) � V 0

m(qm) =
u1
m(qf , qm) + tm � rV 0

m(qm)

r + �
, (D.1)

and the marital surplus of a woman of type qf who is matched with a man of type qm by

Sf (qf , qm) = V 1
f (qf , qm) � V 0

f (qf ) =
u1
f (qf , qm) + tf � rV 0

f (qf )

r + �
. (D.2)

Under Nash-bargaining the transfers, tf and tm, solve:

max
tf ,tm

Sm(qf , qm)(1�µf )Sf (qf , qm)µf

s.t. tm + tf = 0.

Using (D.1) and (D.2), the Nash bargaining solution is:

(1 � µf )

 
u1
f (qf , qm) + tf � rV 0

f (qf )

r + �

!
= µf

✓
u1
m(qf , qm) + tm � rV 0

m(qm)

r + �

◆
. (D.3)

Equation (D.3) can be solved for the transfers, tm and tf :

tm = rV 0
m(qm) � u1

m(qf , qm) + (1 � µf )
�
u1
m(qf , qm) + u1

f (qf , qm) � rV 0
m(qm) � rV 0

f (qf )
�

(D.4)

tf = rV 0
f (qf ) � u1

f (qf , qm) + µf

�
u1
m(qf , qm) + u1

f (qf , qm) � rV 0
m(qm) � rV 0

f (qf )
�
. (D.5)

Together with (D.1) and (D.2) it follows that

Sm(qf , qm) = V 1
m(qf , qm) � V 0

m(qm) = (1 � µf )S(qf , qm), (D.6)

Sf (qf , qm) = V 1
f (qf , qm) � V 0

f (qf ) = µfS(qf , qm). (D.7)

D.2 Quantitative Model Specification

This section provides a detailed description of the quantitative specification of our framework that we

calibrate and use to generate simulation results in Section 6.3.

Type spaces and distributions Women and men are fully characterized by their types, qf 2 Qf and

qm 2 Qm, respectively. As described in the main text in Section 2, we allow for multidimensional types:
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Qf = Qm =
QK

k=1

h
q
k
, qk

i
, where each dimension, k, of the Cartesian product represents a distinct

attribute. In the one-dimensional version of our framework we impose K = 1, and consider K = 2 for the

bidimensional case.

We denote the PDFs (and CDFs) of the male and female type distributions in the population by lm(qm)

and lf (qf ) (Lm(qm) and Lf (qf )). The masses of men and women are normalized to one,
R

Lm(qm)dqm = 1

and
R

Lf (qf )dqf = 1. At any given point in time, each individual is either single or married. Let

gf (qf ) and gm(qm) (Gm(qm) and Gf (qf )) denote the endogenous PDFs (CDFs) of female and male sin-

gles. The masses of singles are endogenous, and denoted by Gm =
R

gm(qm)dqm and Gf =
R

gf (qf )dqf .

We denote the endogenous bivariate PDF of married individuals by c(qm, qf ), and the mass of married

couples by C =
RR

c(qm, qf )dqmdqf . These definitions imply that lm(qm) =
R

c(qm, qf )dqf + gm(qm) and

lf (qf ) =
R

c(qm, qf )dqm + gf (qf ).

Matching technology As described in the main text in Section 2, we assume a quadratic matching

function ⇤(Gm, Gf ) = �GmGf (see also Mortensen, 2011). The meeting rates for women and men thus equal

�f =
⇤(Gm,Gf )

Gf
= �Gm and �m =

⇤(Gm,Gf )
Gm

= �Gf .

Matching probabilities As described in the main text in Section 6.3, we assume that model agents experi-

ence a match–specific shock, z, which is experienced by both partners and fixed for the duration of the

match. We denote flow utilities net of the match–specific shock by ũ1
g(qf , qm), i.e., u1

g(qf , qm) = ũ1
g(qf , qm)+z

for g 2 {f, m}. Under these assumptions, the probability that a man of type qm and a woman of type

qf is given by ↵(qm, qf ) = 1 � Fz

⇣
�S(qf ,qm)

2

⌘
, where Fz denotes the CDF of the match specific shock,

z ⇠ N(µz,�z).

Equilibrium Characterization and Solution We derive four equations that characterize a steady state

equilibrium in the described setup. We start from the steady-state-condition, which requires that match

creation equals match destruction for any given combination of men’s and women’s types, qf and qm:

�c(qm, qf ) = gm(qm)�m
gf (qf )

Gf
↵(qm, qf ) = �gm(qm)gf (qf )↵(qm, qf ), 8(qm, qf ). (D.8)

Integrating (D.8) over women’s type, qf , yields the steady state flow condition for men of type qm:

�

Z
c(qm, qf )dqf = �gm(qm)

Z
gf (qf )↵(qm, qf )dqf . (D.9)

Substituting lm(qm) � gm(qm) =
R

c(qm, qf )dqf yields:

� (lm(qm) � gm(qm)) = �gm(qm)

Z
gf (qf )↵(qm, qf )dqf , (D.10)
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which can be solved for gm(qm):

gm(qm) =
�lm(qm)

� + �
R

gf (qf )↵(qm, qf )dqf
. (D.11)

Similarly, for women of type qf :

gf (qf ) =
�lf (qf )

� + �
R

gm(qm)↵(qm, qf )dqm
. (D.12)

Equations (D.11) and (D.12) jointly determine the equilibrium distributions of single women and men.

Next, we use the value of being single, given by equation (2) together with (D.6) to obtain the following

extended option-value equation for single men (the option-value for single women is derived by analogous

steps):

rV 0
m(qm) = u0

m(qm) + �m

ZZ
max{Sm(qf , qm), 0}dFz(z)

gf (qf )

Gf
dqf , (D.13)

where Sm(qf , qm) = V 1(qf , qm) � V 0(qm) and the integral captures the option value of meeting single

women, sampled from gf (qf )
Gf

, and drawing a match specific shock from Fz .

Using (D.13) together with (3) yields

rV 1
m(qf , qm) = ũ1

m(qf , qm) + z + tm + �(V 0
m(qm) � V 1

m(qf , qm)), (D.14)

implying for Sm(qf , qm):

Sm(qf , qm) =
ũ1
m(qf , qm) + z + tm � rV 0

m(qm)

r + �
. (D.15)

Next, we use � = �m
Gf

and the updated definition of male surplus Sm in (D.15) to substitute the match-

specific shock z and the transfer tm into the value of being a single man of type qm:

rV 0
m(qm) = u0

m(qm) +
�

r + �

ZZ
max{ũ1

m(qf , qm) + z + tm � rV 0
m(qm), 0}dFz(z)gf (qf )dqf , (D.16)

where the transfers, tm, are given by

tm = rV 0
m(qm) � ũ1

m(qf , qm) + (1 � µf )
�
ũ1
m(qf , qm) + ũ1

f (qf , qm) � rV 0
m(qm) � rV 0

f (qf )
�

(D.17)

� (2µf � 1) z.

Using (D.17) together with (D.16) yields:

rV 0
m(qm) = u0

m(qm) (D.18)
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+
�(1 � µf )

r + �

ZZ
max{2z + ũ1

m(qf , qm) + ũ1
f (qf , qm)

� rV 0
m(qm) � rV 0

f (qf ), 0}dFz(z)gf (qf )dqf ,

By analogous steps we obtain for the value of being a single woman of type qf :

rV 0
f (qf ) = u0

f (qf ) (D.19)

+
�µf

r + �

ZZ
max{2z + ũ1

m(qf , qm) + ũ1
f (qf , qm)

� rV 0
m(qm) � rV 0

f (qf ), 0}dFz(z)gm(qm)dqm.

In summary, the equilibrium is characterized by equations (D.11), (D.12), (D.18), and (D.19). We use these

equations to solve our framework numerically.

Numerical Solution To numerically solve the 1D as well as the 2D specification of our framework,

we discretize the type spaces in the income dimension (1D and 2D model) and for the unobserved

characteristic (2D model only). For the income dimension, we estimate unconditional (on marital status)

income distributions for men and women based on observed annual labor incomes in our estimation

sample (see Section 3). Specifically, we discretize the empirical distributions by measuring the density at

50 equally-spaced income grid points.57 For the unobserved characteristic in the 2D model, we set up 10

grid points with values ranging from 1 to 10 and construct distributions of male and female types across

grid points using a copula, given a mean, a standard deviation, and the correlation between individual

level characteristics in the two dimensions, which we denote ⇢. We calibrate ⇢ by targeting the empirical

displacement effect. We set the mean of the male and female type distributions in the unobserved dimension

to 5.5 (the mid-point between 1 and 10) and the standard deviation to 1.

57We estimate the income density at each gridpoint using kernel density estimation. The highest income grid point is the 99th
percentile of the male income distribution. The lowest income gridpoint is a small positive amount that we derive from the Danish
social security system.
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