
DISCUSSION PAPER SERIES

IZA DP No. 17362

Ritwik Banerjee
Niels-Hugo Blunch
Daniele Cassese
Nabanita Datta Gupta
Paolo Pin

The Effectiveness of Teamwork for 
Student Academic Outcomes:  
Evidence from a Field Experiment

OCTOBER 2024



Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may 
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA 
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics 
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the 
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our 
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper 
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

DISCUSSION PAPER SERIES

ISSN: 2365-9793

IZA DP No. 17362

The Effectiveness of Teamwork for 
Student Academic Outcomes:  
Evidence from a Field Experiment

OCTOBER 2024

Ritwik Banerjee
Indian Institute of Management and IZA

Niels-Hugo Blunch
Washington and Lee University and IZA

Daniele Cassese
University of Cambridge

Nabanita Datta Gupta
Aarhus University and IZA

Paolo Pin
University of Siena and Università Bocconi



ABSTRACT
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Evidence from a Field Experiment*

An enduring question in education is whether team-based peer learning methods help 

improve learning outcomes among students. We randomly assign around 10,000 middle 

school students in Karnataka, India, to alternative peer learning treatments in Math and 

English that vary the intensity of collaboration. Teamwork with co-coaching outperforms 

simple teamwork and incentive treatments by increasing the test scores by about 0.25 

standard deviation, but only in Math. This is both statistically and economically significant 

for students at the bottom of the ability distribution. We develop theoretical conditions 

under which teamwork with co-coaching outperforms simple teamwork as a peer-learning 

method.
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1. Introduction  
 

In recent years, research on education in developing countries has shifted from a focus 
on increasing school inputs and improving infrastructure (Glewwe, 1999) to enhancing 
the quality of instruction and interactions within the classroom (Muralidharan, 2019). A 
challenge in such settings is how to close the large achievement gaps that exist between 
children of different ability levels within the same classroom and at the same time 
improve overall learning levels within the remit of a resource-constrained public 
education system. The literature suggests that peer-based learning methods are 
promising candidates in this regard (Epple and Romano, 2011; Sacerdote, 2011). 
While peer-based learning environments have been found to improve learning outcomes 
in general, Carrell et al. (2013) showed that low achievers do not necessarily benefit if 
they are randomly paired-up with high achievers. They surmise that a plausible reason 
for this is a lack of interaction between the two groups. Clearly, while institutional 
arrangements can help bring students from diverse backgrounds together, they may not 
result in actual inter-group interactions. One way to directly facilitate interactions 
between students is by employing cooperative learning methods. Cooperative learning 
in the classroom, involving different types of teamwork among students of diverse 
backgrounds, has been practiced since the 1970s (Slavin, 1989). 
In this paper, we embed a peer-based cooperative learning method that facilitates 
interactions between students of different ability groups within the structure of a 
standard course curriculum. We conduct a randomized control trial in the state of 
Karnataka, India, at the middle school level in 37 schools within a common schooling 
system sharing syllabus, teaching objectives and methods. We introduce alternative 
team-based peer learning methods in the classroom and measure their impacts on 
learning outcomes in Math and English. We also report on whether teamwork benefits 
both high-achieving and low-achieving students alike. Finally, we derive the theoretical 
conditions under which teamwork can improve such outcomes.  
The randomization is done at the school level and assigns nearly 10,000 students in grades 
6, 7 and 8 in these 37 schools to three treatment arms and a control arm. Our treatments 
are nested and are denoted, respectively, Pair, Pair-Incentive, Pair-Incentive-Jigsaw. The 
control arm is the status quo with teacher-based instruction and usual, endogenously 
determined seating arrangement within the classroom. In the remaining treatments, pairs 
of students with different ability levels form bench-mates. Pair treatment introduces this 
mixed seating arrangement. Pair-Incentive, in addition to pairing by ability, offers a 
status reward to the pair that has the highest combined score in the endline. The final 
treatment, Pair-Incentive-Jigsaw, was inspired by the seminal work of Aronson et al. 
(1978). In addition to Pair-Incentive, this treatment facilitates a cooperative learning 
method, namely the Jigsaw method, where students develop expertise in parts of the 
day’s lesson and subsequently co-teach each other. The motivation behind these 
alternative treatments is to vary the intensity of collaboration and test whether they have 
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differential effects on outcomes. Thus, while paired seating captures the simplest type of 
teamwork that can arise between students of different ability levels, the Pair-Incentive-
Jigsaw treatment requires intense collaboration with co-coaching. This nested structure 
of the experiment allows us to identify the mechanism behind why mixed-pair seating 
can produce positive effects, as has been found in the literature (see, for example, Li et al. 
(2014)). 
Our findings show that mixed pair seating with Jigsaw-based learning techniques 
produces positive effects on student educational achievement, as measured by test scores. 
Further, this form of teamwork with co-coaching, outperforms simple teamwork and 
teamwork with incentive, by increasing the test scores by about 0.25 standard deviations, 
but only in Math. Further, the effect is both statistically and economically significant not 
only for all students but also for those at the bottom of the ability distribution. Our 
theoretical model predicts conditions under which teamwork with co-coaching 
outperforms simple teamwork as a peer-learning method and show that the mechanism 
depends on whether one's own effort improves one's own productivity more than the 
partner’s effort does. The nature of Math, which requires one’s own effort and practice in 
addition to being exposed to the concepts and techniques may thus be more amenable to 
Jigsaw-type cooperative learning techniques than English, in which exposure at home, 
for instance, may play a larger role. 
In Section 2 we review the literature and in Section 3 we describe the experimental 
design. Section 4 presents and discusses results. Section 5 sketches a theoretical model 
with conditions under which (different forms of) teamwork can elicit more student 
effort, and Section 6 concludes.  
 

2. Literature Review   
 

For improving the quality of education further in developing countries, research needs 
to look beyond interventions focusing on increasing enrolment or increasing investments 
in inputs such as infrastructure, school materials etc. and focus instead on implementing 
learning interventions within the classroom that can improve students’ basic skills in 
reading and numeracy (Glewwe and Muralidharan, 2016). Such pedagogical 
interventions are both low-cost and highly effective in raising test scores (Kremer and 
Holla, 2009).  In many developing country settings, large class sizes make it difficult for 
teachers to provide individualized attention. Cooperative learning, which has been 
shown in meta-studies to reduce intergroup hostility and prejudice as well as improve 
student outcomes (Aronson, et al. 1978; Slavin, 1991; Johnson et al. 2000) is a potentially 
effective way to enhance an individual student’s learning within a resource-constrained 
public education system.1 These methods are usually practised at the school level in 

 
1 Jigsaw, Learning Together (LT), Student Team Achievement Divisions (STAD) are some prevalent 
cooperative learning methods. 
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developed countries, but they have also been introduced at the university level (Johnson 
et al. 2024), in teacher training programs, in on-the-job training and in workplaces.  
A unique feature of cooperative learning methods is that the greater part of the class time 
is used to work together in small groups to achieve learning goals, i.e., it is a form of peer 
learning but with teacher facilitation and mentoring. Another feature is that student 
groups are generally mixed by ability. Such pedagogical practices have been examined 
in the education and social psychology literature and are generally associated with an 
improvement in academic and non-academic outcomes (see meta-analyses by Johnson et 
al. (1981), Johnson and Johnson (2002), Roseth et al. (2008), Slavin (1989), and Gillies 
(2016)). However, many of these studies on cooperative learning methods are affected by 
small samples, which are convenience/selected samples (rather than random samples), 
and often have non-random treatment assignments. Our study addresses these 
limitations by conducting a randomized control trial and carefully measuring effects on 
different parts of the ability distribution – issues that are often not addressed.  
The economics literature examines peer effects in education, largely in high income 
settings, by exploiting the quasi-random assignment of students to their dormmates or 
roommates.2 Peer effects are often found to be stronger for social outcomes than academic 
outcomes (Sacerdote, 2011).  At the primary and secondary levels, which are the levels of 
the current study, peer effects have been found to be, at best, modest. A key finding is 
that peer effects are largest at the top and bottom and less at the middle and depend on 
peer group composition (Feld and Zölitz, 2017). Past literature has found that high-
achieving peers gain from being matched to other high-achieving peers (Imberman, 
Kugler and Sacerdote, 2009).  Some studies try to probe the conditions under which high-
achieving peers can positively affect low-achieving peers’ academic outcomes without 
hurting their own performance. A factor that seems to be important is whether there is 
sufficient interaction between different student groups (Carrell, 2013). A key contribution 
of our paper is that we test whether varying the intensity of inter-group interactions has 
different effects on the outcomes. Relatedly, unlike much of this literature, our paper 
investigates these questions in the context of public schools of an economically 
disadvantaged region, namely Karnataka, India. 
The paper closest in spirit to ours is by Li et al. (2014). They randomly assign half of the 
bottom 20 low-achieving primary-level students within a classroom of migrant schools 
in Beijing to high-achieving bench mates. The remaining bottom students in the 
classroom are then assigned to the control group. Their results show that pairing across 
ability levels improves low-achiever combined (Math and Chinese) test scores by 0.265 
SD without hurting the high-achievers. Incentives alone do not improve low-achieving 
student scores and neither does pure pairing alone. Thus, group incentives plus mixed 
pair seating together generate positive treatment effects. However, it remains unclear 
whether the treatment makes both high and low-achieving students expend more effort 
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in coaching their bench-mates. Besides involving a risk of spillovers to other untreated 
students (although there is little evidence of that in their setting), their design relies on 
giving monetary incentives to only some students in the classroom – a feature that may 
be difficult to scale up in low-income environments. Further, they do not examine 
whether a change in the pedagogy makes any difference – something that becomes 
particularly relevant given that, like us, they do not find a pure bench-mate effect.  Our 
paper contributes to this literature by addressing these issues, in addition to separately 
identifying effects by Math and Language. In doing so, our paper helps understand 
which subjects are most amenable to cooperative learning. We further add to this study 
by demonstrating that co-coaching is the mechanism that produces the overall positive 
effect of team-based learning. 
Thus, in this paper we ask: can team-based peer learning improve academic 
performance? Can such methods reduce achievement gaps such that low-ability children 
are helped without harming high-ability children? What level of collaboration – simple 
or with co-coaching is needed to produce positive effects? Does team-based learning 
work equally well in Math and in English? And finally, which theoretical conditions are 
consistent with the observed effects?  
 

3. Experimental Design 
 
3.1. The Randomized Trial: Background 

 

The RCT was run in close association with Kendriya Vidyalaya Sanghathan (KVS). KVS is a 
system of schools under the administration of the Ministry of Education, Government of 
India, with about 1250 schools under its aegis. The stated aim of the Sanghathan is to 
impart knowledge and values through high quality educational endeavours, particularly 
for children of the often-transferred central government employees. While Kendriya 
Vidyalaya schools or KVs are public schools, they are much better managed, better 
funded, attract more qualified teachers and have different student profile than the public 
schools managed by the state governments. For this trial, we received permission to 
collaborate with the Karnataka chapter of KVS, which administers 50 KVs (including 5 
KVs in Goa), from the KVS Headquarters, New Delhi.3 Out of the 50 KVs in Karnataka & 
Goa, on grounds of  feasibility, we had to exclude 13 KVs.4  Eventually, we ran the RCT 
with students from grades 6, 7 and 8 in 37 schools, covering about 10,000 students in total. 
The schools are represented treatment-wise on a map of Karnataka and Goa, India in 

 
3 Karnataka is a large state in the southern part of India, with a population of 64 million. For a map of the geographic 
placement of KVS schools in Karnataka see Appendix Figure A2.  
4 Our project was on a tight timeline with respect to the funding, and as these 13 schools did not send their baseline 
information to us on time, they could not be included in the randomization and intervention. However, as they sent 
their information later, we were able to incorporate these schools in the analysis by running selection models and 
testing whether our results are driven by selection effects.  
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Figure A2. Our RCT was designed to examine the effect of the interventions on two 
subjects: English and Math. Every student participated in a baseline and an endline test, 
each of which comprised of standardized questions in Math and English, along with a 
short survey containing basic background questions. All tests were administered and 
invigilated by trained enumerators. The tests were carried out simultaneously across all 
schools to minimize leakage of questions. To avoid cheating, test questions were 
scrambled, and three different versions were handed out to the students (see Appendix 
E). 

We randomized the 37 schools using the block randomization technique. We define 
blocks based on district income and school size to ensure that the treatments are broadly 
balanced. Post-randomization, we compare pre-treatment variables to ensure that certain 
observable characteristics of the schools and students are balanced across treatments (see 
Table A1). The pre-treatment variables are well-balanced and deviations from control 
group means are not statistically significant for any variable, except for class size, where 
Pair and Jigsaw classes are on average smaller. We use these pre-treatment variables as 
additional explanatory variables in regressions controlling for baseline scores for 
increasing the precision of the estimated treatment effects. 

 
3.2. Treatments 

 
Each school was randomly assigned one of the four treatments:  
(i) Control Treatment: These schools are not offered any intervention. We simply conduct 
the baseline and endline tests. The seating pattern follows the status quo, where students 
sit according to endogenously formed pairs.5  
(ii) Pair Treatment: In this treatment, students are grouped in pairs within each 
classroom and are assigned seats next to each other. How are the pairs determined? A 
baseline test is conducted. Students are ranked within their gender according to the scores 
in the test.6 Pairing is done such that the top ranked student is paired with the student 
with the lowest rank (within the same gender). For example, if there are 50 students in a 
class, the rank 1 student is a girl, rank 2 is a boy, rank 49 and 50 are girls and boys, 
respectively, then rank 1 and rank 49 students are paired together, and rank 2 and rank 
50 students are paired together. The paired students are assigned specific benches and 

 
5 Our field visits at the time of designing the RCT revealed that there was no rule describing how students should sit, 
and students endogenously formed groups to sit with friends. 
6 During our initial visits to the KVs, we had noticed that the seating arrangement of the children were gender 
segregated, with one column of desks assigned to boys and another to girls. One of the authors of this paper, a former 
KV student, recalls a similar norm in his school, located in a different state and belonging to a different era. We did 
not want to disrupt the widely held, deeply entrenched gender norms in the schools, so as not to confound our results 
with other social forces. Our visits also revealed that KVs follow a uniform classroom design across all schools, with 
mostly two students at a desk, and only rarely one student at a desk. 
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are required to sit together. This pairing scheme, consistent with that used in other studies 
(Li et al., 2014) paired students in the middle of the score distribution together and those 
in either end together. Notably, mixed ability pairing is a key feature of cooperative 
learning methods such as the jigsaw method described below. 
(iii) Pair-Incentive Treatment: In this treatment, students are grouped in pairs, exactly 
as in the Pair Treatment. However, the top three groups, as per the highest combined 
scores in the endline test, are rewarded. The reward comes in the form of a prize, that is 
publicly given out in an award ceremony in the school assembly. This form of reward, a 
prize and public felicitation, is commonplace in KVs. Exceptional performance in major 
competitions such as Olympiads are routinely, publicly felicitated in school assemblies 
and such forms of social recognition are highly coveted among students. While the 
literature uses other forms of rewards, (e.g. cash awards (Li et al., 2014), scholarships  
(Kremer et al., 2009)), we choose not to use them to achieve scalability and consistency 
with local practices and norms.  
(iv) Pair-Incentive-Jigsaw Treatment: In this treatment, students are grouped in pairs 
and are offered incentives, exactly as in the Pair-Incentive Treatment. Additionally, the 
jigsaw method of learning is implemented in the respective classes by the class teachers. 
We describe the jigsaw method in more detail below. 
 

3.3. Jigsaw Method of Education 
 
Cooperation, and not competition, forms the basis of the jigsaw method of education7. In 
a jigsaw classroom, students are allocated to their jigsaw groups, which are small groups 
of 2-4 students (2 in our case), who form the basis of the cooperative learning unit. The 
lesson for the day is then divided into two parts.  Each student in the jigsaw group is 
assigned one of the two parts. Each student becomes an expert in their assigned part by 
going through the material themselves, and then meeting with a small group of students 
from other jigsaw groups who are assigned the same part of the material (“expert 
group”). In our case, the expert group size is 4, i.e., a student is matched with 3 other 
closely seated students who are assigned the same part of the lesson. The expert group 
studies that part together, till the point where each student can teach that part to their 
“non-expert” students. After specializing in their part of the lesson, the students get back 
to their jigsaw groups. A jigsaw group now has two students, each specializing in one of 
the two parts of the lesson. Each student now teaches their own part to the other student 
(i.e., co-coaching). This design necessarily demands cooperation among students, as each 
student specializes in one part of the whole. The role of the teacher is largely to introduce 
the lesson at the beginning of the class, manage the discussions in the expert and jigsaw 
groups, and finally, offer a summary at the end.  

 
7 See Aronson et al. (1978). 
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We needed the help of an education-consultant who had extensively researched and 
practiced the jigsaw method for implementing this. First, executing the jigsaw method of 
education in an Indian classroom needed some training. The teachers involved in 
teaching Mathematics and English in grades 6, 7 and 8 of the schools assigned to the Pair-
Incentive-Jigsaw treatment were invited to a two-day special training session.8 The 
training was given by the education-consultant. Second, the jigsaw method of education 
requires that the lesson of the day is appropriately divided into two parts, and that the 
key point of each part is explicitly laid out. Notice, that we did not introduce a different 
content, but simply helped transform the standard syllabus of the class into a jigsaw 
friendly format. The preparation of the lessons into a jigsaw friendly format was done by 
a team of education-consultants. 
 

3.4. Implementation 
 
We conducted the randomized trial in 2017-2018. The baseline test was conducted in 
August 2017 and had two parts, one each in English and Math. The randomization across 
the treatments was done within blocks defined based on district income and school 
characteristics. The study is powered to detect minimum effect sizes 0.25-0.29 SD with 
80% power and a 5% significance threshold.9 Teachers randomized to the jigsaw 
treatment were trained in the method by a team of educational consultants in October 
2017. Overall, the interventions were in place for 4 months, November-February. The 
endline test was conducted in March 2018, before the final exam of the session. Different 
grades were administered separate, grade-appropriate tests prepared by our educational 
consultants. The awards were given out in the fall of 2019, when the new academic year 
had begun. 
 

3.5.  Description 
 
We report the treatment-wise summary of the control variables for the full sample in 
Table A1 (N=9,838). The coefficients of ‘Control’ indicate sample mean for control 
treatment, while those of the treatments indicate the respective difference from the 
control treatment, as estimated by regressions that include block fixed effects and clusters 
the standard errors at school level. Table A1 shows that the pre-treatment characteristics 
are largely balanced, except for class size. We control for these variables in our regression 
specifications. Density distributions of baseline and endline test scores by subject and 
intervention type pooled across grades can be found in the Online Appendix, Figure A1.  

 
8 The entire program was implemented in close association with KVS Headquarters, which also issued the mandate 
of the training. Consequently, all the selected teachers were present.  
9 The power calculation initially assumed an intra-cluster correlation of 0.05 (MDE = 0.29) where a cluster is a 
school, but e.g. in Math, the intra-cluster correlation within control schools was ex post found to be 0.03, implying 
an MDE of 0.25. 
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4. Results 
 

In this section we examine the effect of three alternative treatments (Pair, Incentive, and 
Jigsaw) on two outcomes: standardized Math and English test scores. To additionally 
estimate the pure effect of the Incentive and Jigsaw components, we compare Pair-
Incentive with Pair and Pair-Incentive-Jigsaw with Pair-Incentive (see Appendix B for 
details of the empirical specifications).   All specifications incorporate sampling weights 
(defined as the relative block shares) and clustered (at the school level) standard errors.10 
From these models, we estimate the treatment effects. Note that since the data originates 
from a randomized controlled trial, the estimates can be interpreted as causal treatment 
effects.  

Table 1 presents our main results. The table consists of four columns, where the first two 
columns provide the results for Math and English test scores without control variables 
and the following two columns provide the results for Math and English test scores with 
the control variables added. Starting with the primary results, there appears to be a 
negative effect of the pure Incentive on Math test scores, both without and with controls, 
but statistically significant at the 10% level only. The pair treatment does not have any 
effect on Math. Further, none of the treatments have any effect on English test scores. 
Obtaining a negative effect of incentives is not a new result in the literature, for example, 
Fryer (2011) finds a negative (albeit non-statistically significant) effect of financial 
incentives on Math scores for 9th-grade students in Chicago schools. More recently, Jain 
and Tan (2023) find that there is no effect of individual level incentive on student 
performance in Kenya. Further, in our case the negative effect on Math does not survive 
randomization inference (Table A5 and Table A6). Overall, our primary results align with 
Fryer (2011). Turning next to the pure effect of Jigsaw, our estimates show that the effect 
on Math test scores is almost a quarter (0.239) of a standard deviation (SD) without any 
control variables (col(1)). This effect persists, and even slightly increases (to 0.251 SD), 
when the control variables are added (col(2)).  

 

 

 

 

 
10 For more details on the estimation strategy, see Appendix B. 
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Table 1: Treatment effects on Math and English, with and without the control variables 
 

Math English Math English 

 (1) (2) (3) (4) 

Pair TE 0.014 0.267 0.021 0.223 

 (0.09) (0.167) (0.097) (0.152) 

[p-value] [0.879] [0.11] [0.828] [0.141] 

N 6,142 

Incentive TE -0.192* -0.081 -0.175* -0.046 

 (0.104) (0.163) (0.101) (0.154) 

[p-value] [0.064] [0.618] [0.085] [0.764] 

N 4,979 

Jigsaw TE 0.239** -0.184 0.251** -0.163 

 (0.11) (0.131) (0.106) (0.136) 

[p-value] [0.03] [0.159] [0.018] [0.23] 

N 3,742 

Baseline characteristics No No Yes Yes 

Notes: Columns (1) and (2) include the treatment variables, own baseline test scores and block FEs. Columns 
(3) and (4) additionally include the control variables presented in Table A1.  The standard errors, clustered 
at the school level, are reported in parentheses and p-values in square brackets.  

 

Stratifying by ability (as defined by their baseline test scores) in Table 2 reveals that, 
starting with the primary results, the negative effect of the Incentive treatment on Math 
scores is not statistically significant any longer, except for the middle third of students 
(col(2)). Additionally, there appears to be a positive and statistically significant effect of 
the Pair treatment on English scores for the bottom third students (col(4)). The effect on 
English scores is not robust to randomization inference (see Table A5 and Table A6).  
Turning next to the effect of the pure Jigsaw treatment, we see that that the effect on 
standardized Math scores seen in the full-sample specification reported in Table 1 
remains positive and statistically significant (at 5 percent) across all three ability groups. 
The magnitude of the effect is largest for the top third of students, at 0.249  SD (col(2)), 
and smallest for middle third, at 0.22 SD (col(3)). Hence, we can say that the main 
(statistically significant) effect of our treatments appears to be more effective at 
improving Math scores than language scores, which is consistent with the literature 
(Fryer 2017). One of the leading theories to explain this divergence between Math and 
English argues that when English is not the language spoken outside of the classroom it 
is particularly difficult to increase reading scores (Charity et. al., 2004) and this is likely 
to be the case for many students in our sample. Another study finds that when rich and 
poor students are exogenously mixed in private elite school classrooms in Delhi, learning 
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outcomes are negatively affected in English but not in Math (Rao, 2019). Poor students in 
an Indian context are less likely to have been exposed to English at home, which is 
consistent with the theory above.  
 

Table 2: Treatment effects on Math and English, stratified by ability 

Notes: All columns include the treatment variables, own baseline test scores, block FEs, and the 
control variables presented in Table A1.  The standard errors, clustered at the school level, are 
reported in parentheses and p-values in square brackets.  
 
 
In Table 3 we add baseline Partner Test Scores to the specifications estimated in Table 2, 
and we find that the positive effect of Jigsaw on Math decreases only marginally in 
magnitude by 0.04 SD (col(1)). Partner Test Scores are negatively correlated with 
outcomes across all treatments, but none of these are statistically significant. As partner 
test scores capture, in part, partner’s effort, this is evidence against imitation being the 
mechanism driving the findings.11  
The pure Jigsaw effect for Math in the stratified model persists across the three ability 
strata after the introduction of Partner Test Scores, as can be seen in Table 4. The effect on 
the top third students is less precisely estimated than in the previous specification and is 

 
11 Note, that partner here refers to the jigsaw group partner only, as we did not collect data on the expert 
group composition.  
 

 Math English 

 Bottom Middle Top Bottom Middle Top 

 (1) (2) (3) (4) (5) (6) 

Pair TE 0.072 0.017 0.002 0.201* 0.241 0.221 

 (0.088) (0.099) (0.121) (0.118) (0.164) (0.178) 

[p-value] [0.413] [0.864] [0.121] [0.089] [0.142] [0.215] 

N 2,092 1,885 2,165 2,092 1,885 2,165 

Incentive TE -0.138 -0.229** -0.18 -0.059 -0.044 -0.072 

 (0.103) (0.113) (0.116) (0.132) (0.142) (1.165) 

[p-value] [0.18] [0.043] [0.12] [0.657] [0.757] [0.661] 

N 1,706 1,522 1,751 1,706 1,522 1,751 

Jigsaw TE 0.235** 0.225** 0.249** -0.158 -0.184 -0.128 

 (0.112) (0.105) (0.12) (0.111) (0.125) (0.166) 

[p-value] [0.036] [0.033] [0.037] [0.156] [0.141] [0.443] 

N 1,280 1,136 1,326 1,280 1,136 1,326 



   
 

 12 

now statistically significant at 10 percent (col(3)). The Jigsaw effect on the bottom and 
middle are 0.246 SD (col(1)) and 0.237 SD (col(2)), with p-values 0.025 and 0.023, 
respectively. In turn, this indicates the presence of a positive externality from being with 
better ability partners, especially when the student her or him -self is at the lower part of 
the ability distribution. 
 

Table 3: Treatment effects on Math and English, adding partner test scores 

 Math English 

 (1) (2) 

   
Pair TE 0.018 0.217 

 (0.096) (0.147) 

[p-value] [0.852] [0.15] 

Partner test score -0.024 -0.034 

 (0.017) (0.025) 

[p-value] [0.161] [0.18] 

N 6,142 

Incentive TE -0.175* -0.061 

 (0.103) (0.146) 

[p-value] [0.088] [0.678] 

Partner test score -0.019 -0.087** 

 (0.025) (0.005) 

[p-value] [0.431] [0.031] 

N 4,979 

Jigsaw TE 0.247** -0.156  
(0.107) (0.129) 

[p-value] [0.021] [0.225] 

Partner test score -0.028 -0.029 

 (0.031) (0.037) 

[p-value] [0.357] [0.434] 

N 3,742 

Notes: Columns (1) and (2) include the treatment variables, own baseline test scores, block FEs, 
the control variables presented in Table A1, and partner test scores.  The standard errors, 
clustered at the school level, are reported in parentheses and p-values in square brackets. 
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We can now summarize the above results into 3 main results, as follows: 
Result 1.  The Jigsaw treatment increases Math test scores between 0.24 SD and 0.25 SD 
compared to the control treatment.  
Result 2. Stratifying by ability (as defined by students' baseline test scores) reveals that 
the Jigsaw treatment yields a positive, statistically significant effect on Math scores across 
the three ability strata, and this effect is marginally stronger for top ability students.   
Result 3. The Jigsaw effect for Math across all ability strata persists after the introduction 
of Partner Test Scores.  
We conduct several robustness checks, the results of which are presented in Appendix A. 
First, we estimate treatment effects for two model specifications (non-stratified, including 
control variables and stratified on ability) using inverse probability weights to account 
for a selection bias due to the excluded schools. The results Table A3 and Table A4 
confirm our main results. Second, to take into account the intra-cluster correlation of the 
outcome variables, we conduct randomization inference as detailed in Appendix C.  
Table A5, Table A6 and Table A7 report the randomization inference p-values, as the 
share of 5,000 simulations in which the absolute value of the coefficient of interest is larger 
than the absolute value of the result from the true randomization. The positive effect of 
Jigsaw on Math scores is still statistically significant in all the models in Table A5, albeit 
at the 10 percent level.  Table A6 and Table A7, which present the randomization 
inference p-values in the stratified model, with and without partner scores, confirm that 
Jigsaw has a positive effect on Math scores but significant at the 10% level, and only for 
bottom students. 
 

Table 4: Treatment effects on Math and English, stratified by ability and adding partner test 
scores 

 Math English 

 Bottom Middle Top Bottom Middle Top 
 (1) (2) (3) (4) (5) (6) 

Pair TE 0.051 0.011 0.006 0.2* 0.245 0.211 
 (0.091) (0.098) (0.115) (0.119) (0.164) (0.179) 
[p-value] [0.574] [0.911] [0.96] [0.095] [0.135] [0.237] 

Partner test score 0.038** 0.01 0.014 -0.006 0.025 0.001 

 (0.018) (0.028) (0.034) (0.02) (0.032) (0.024) 

[p-value] [0.031] [0.715] [0.683] [0.766] [0.44] [0.96] 

N 2,092 1,885 2,165 2,092 1,885 2,165 

Incentive TE -0.13 -0.225 -0.181 -0.062 -0.044 -0.081 
 (0.1) (0.11) (0.117) (0.132) (0.142) (1.162) 
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Notes: All columns include the treatment variables, own baseline test scores, block FEs, the 
control variables presented in Table A1, and partner test scores.  The standard errors, clustered 
at the school level, are reported in parentheses and p-values in square brackets.  

 
The next section sketches a simple theoretical framework, with an aim to understand the 
mechanism behind the relative effectiveness of different team-based peer learning 
methods.  
 

5. Theoretical Model 
Here, we present sufficient conditions, based on a standard theoretical model, under 
which teamwork can serve as a more effective incentive for students to exert effort. 
Specifically, we demonstrate that when two students collaborate in a team and possess 
varying skill levels, with no capacity to influence each other's skills, the less skilled 
student may be inclined to rely on the efforts of the more skilled counterpart. 
However, if they can coach each other, both the more skilled and less skilled students 
may be motivated to invest more effort, leading to an increase in overall productivity. 
Additionally, within the framework of our model, we find additional sufficient 
conditions for which this incentive for mutual coaching is amplified in the context of a 
jigsaw approach as opposed to simple teamwork. 
So, the presence or not of those sufficient conditions may account for the disparate 
outcomes between Math and English, with regard to the type of teamwork that proves 
most effective. 
We assume that each student 𝑖 is characterized by a potential (or productivity) 𝑝𝑖, and 
that she can put effort 𝑒𝑖 for achieving a certain grade. We model this with a production 
function 𝑔(𝑝𝑖, 𝑒𝑖) which is Cobb-Douglas of the form 𝑔(𝑝𝑖, 𝑒𝑖) = 𝑘𝑝𝑖

𝛼𝑒𝑖
1−𝛼.  She has a 

preference for grade and effort which is of the form 𝑢(𝑔, 𝑒) = 𝑣(𝑔) − 𝑒, and 𝑣(𝑔) is CARA 

[p-value] [0.195] [0.041] [0.124] [0.639] [0.757] [0.615] 

Partner test score 0.085*** 0.069* -0.033 -0.027 0.013 -0.067 

 (0.026) (0.038) (0.057) (0.027) (0.026) (0.052) 

[p-value] [0.001] [0.066] [0.561] [0.321] [0.614] [0.052] 

N 1,706 1,522 1,751 1,706 1,522 1,751 

Jigsaw TE 0.246** 0.237** 0.239* -0.168 -0.191 -0.12 

 (0.11) (0.104) (0.124) (0.105) (0.125) (0.163) 
[p-value] [0.025] [0.023] [0.053] [0.11] [0.127] [0.46] 

Partner test score 0.064* 0.083* -0.09 0.041 0.046 -0.066 

 (0.036) (0.044) (0.062) (0.031) (0.029) (0.062) 

[p-value] [0.076] [0.058] [0.146] [0.186] [0.11] [0.284] 

N 1,280 1,136 1,326 1,280 1,136 1,326 
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with − 𝑣′(𝑔)
𝑣′′(𝑔) = 𝑟. In Appendix C we provide more details, the formal proofs, and a more 

general setup. 
We show that if a student is alone, or in the simple teamwork treatment (because our model 
is not based on pure imitation and peer effects), then the function from the potential of a 
student to her achieved grade is increasing and concave, meaning that the marginal effect 
of the potential is positive but decreasing in the potential (Proposition 2 in Appendix C). 
From an empirical point of view, this means that if we observe that student 𝑖 has a better 
grade than student 𝑗, we infer that 𝑝𝑖 > 𝑝𝑗. 
Next, we model two types of incentivized teamwork. Under pair-incentive teamwork, the 
two students have to prepare separate parts of the project, and the grade is the sum of 
the two outputs, so that the payoff function for the two students is 𝑣𝑖(𝑔𝑖 + 𝑔𝑗

∗) − 𝑒𝑖 for 
student 𝑖 and 𝑣𝑗(𝑔𝑖

∗ + 𝑔𝑗) − 𝑒𝑗 for student 𝑗. 
Instead, under teamwork with co-coaching or Pair-Incentive Jigsaw teamwork, both have to 
work on predefined separated parts of the project (the experts’ part). We model the payoff 
functions for the two students as 𝑣(𝑔𝑖) − 𝑒𝑖 +  𝛽𝑣(𝑔𝑗

∗) for student 𝑖 and 𝑣(𝑔𝑗) − 𝑒𝑗 +
 𝛽𝑣(𝑔𝑖

∗) for student 𝑖, where 𝛽 ∈ (0,1) is a constant. Under Jigsaw, the output of student 𝑗 
cannot be changed by student 𝑖, and this induces free riding from the weakest student, 
unless we assume a preliminary form of coaching/teaching between the two students. 
So, we assume that students can coach/teach each other before the teamwork commences, 
and that this activity will increase their productivity. In our model the diffusion of skills 
is not based on passive diffusion, but work only to the extent to which students put effort 
in teaching to each other and learning from each other. Let us assume that the coaching 
function is a function of the following form: 

𝑡(𝑝𝑖
0, 𝜏𝑖, 𝑝𝑗

0, 𝜏𝑗) = (∆𝑝𝑖, ∆𝑝𝑗) . 
Depending on initial productivity and effort 𝜏𝑖 and 𝜏𝑗, they increase their productivity. 
Students still care only about their grade, and not about their increase in productivity 
(that is, we assume that they are myopic). In Appendix B we formalize other properties 
of this coaching function. 

One possible assumption on the externalities of these effects that we consider in the 
model ( 

 

Assumption 2 in Appendix C) is that  𝜕𝑡𝑖
𝜕𝜏𝑖

> 𝜕𝑡𝑖
𝜕𝜏𝑗

, and symmetrically 
𝜕𝑡𝑗

𝜕𝜏𝑖
< 𝜕𝑡𝑗

𝜕𝜏𝑗
. This means 

that the effect of one student’s effort is more beneficial for her productivity than for the 
productivity of the other student. 

In the following, we assume without loss of generality that 𝑝𝑖 > 𝑝𝑗, so that we can assume 
that students 𝑖 and 𝑗 are matched together and 𝑖 is has a higher potential than 𝑗, and then, 
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as discussed above, also 𝑔𝑖 > 𝑔𝑗 (which is what we can observe empirically).  In the 
context of this model, we show (Proposition 3 in Appendix C) that under the above 
assumption (and additional conditions at the margins for the initial effect on 
productivity) that both students will put in effort in both types of teamwork. This means 
that both will improve their potential. This is what we observe empirically for Math. 
For English, we do not observe an impact of Jigsaw on the improvement of students in 
any part of the grades’ distribution. As we discuss in the end of Appendix  C, the reason 
could be that  
 
Assumption 2 does not hold for English. Indeed, we find empirically (see Table A10, 
commented also at the end of Appendix C) that own effort has a statistically significant, 
positive association on own score, but only for math. 

 
 

6. Conclusion 
 

Teamwork among diverse groups of students is the cornerstone of cooperative learning 
methods. Such team-based peer learning methods have been shown to improve student 
academic outcomes and reduce bias and stereotyping. However, economists may be 
concerned about the potential for free riding. Under what theoretical conditions can 
mixed teamwork improve academic outcomes among low-ability students without 
harming their high-ability team-mates? Previous literature has been largely based on 
small samples and incomplete randomization.  
 
This paper reports the findings of a randomized intervention among 10,000 middle school 
children in Karnataka, India, who are assigned to alternative team-based peer learning 
treatments in Math and English in different ability groupings. The treatments vary the 
amount of co-coaching of the study material. We find that teamwork with co-coaching 
outperforms simple teamwork and incentive treatments.  
The teamwork with co-coaching treatment alone produces statistically significant effects, 
but only in Math. The effect is substantial - an almost 0.25 standard deviation increase 
relative to the baseline, which is approximately the same as that found in Li et al. (2014) 
in their intervention, and therefore, points to co-coaching as a possible mechanism 
producing the effect of pairing students of different ability together as benchmates. 
Furthermore, we find that an effect of this size is found across all ability thirds of the 
baseline score distribution but is statistically significant only for bottom students. Thus, 
low-ability students in the intervention are helped without hurting their high-ability 
team-mates. 
We also find that the statistically significant increase in Math scores at the bottom arises 
despite the inclusion of partner baseline scores in the model. This indicates that it is the 
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treatment itself and not the partner’s skill or effort level or imitation of the partner’s work 
habits that matters for the enhanced performance effect.  
Why does teamwork with co-coaching work—and why only in Math? We elaborate the 
theoretical conditions under which collaborative teamwork outperforms simple 
teamwork as a peer-learning method and the mechanism that may produce a larger effect 
in Math than in English. The effectiveness of collaborative learning, such as co-coaching, 
depends significantly on whether an individual's effort enhances their own productivity 
more than their partner's effort does. In Mathematics, where mastery requires substantial 
individual effort and practice beyond initial concept comprehension, co-coaching is 
particularly effective. This subject's demands align well with the active engagement co-
coaching fosters. In contrast, English relies more on external exposure, such as at home, 
which plays a larger role in language acquisition. As a result, co-coaching may have a 
stronger impact on Math outcomes than on English, where external factors complement 
formal learning more heavily. 
Our study thus corroborates the earlier educational literature on the positive effects of 
cooperative learning methods involving co-coaching. It goes beyond the previous 
literature by imposing a stringent randomization design and exploring the theoretical 
channels that produce these effects. A limitation is that we report on only the short-run 
effects of the intervention and the evidence therefore cannot speak to the existence of a 
longer-term effect. That would require following up on the children’s academic 
performance over time. Furthermore, this paper only investigates effects on academic 
performance. In ongoing work, we are exploring effects of the intervention on secondary 
outcomes such as social behavior. 
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ONLINE APPENDIX 
 
                                                     A: Additional Tables and Figures 

Figure A1: Density distributions of baseline and endline test scores 
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Figure A2: Maps of Karnataka and Goa and the selected schools under different treatments 

                  
 

(a) Map of Goa and Karnataka in India              (b) Treatment-wise locations of the 37 schools in Karnataka and 
Goa, India 
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Table A1: Control group means and tests for statistical significance of differences of means 
between the control and treatment groups for explanatory variables 

Explanatory variables: 

 

Age 
 
  

First 
Language 
Kannada 

Hindu 
 
  

High Caste 
 
  

Father High 
Education 

Number of 
HH Members 

Control 12.488 0.587 0.852 0.319 0.702 4.493 

 (0.057) (0.061) (0.014) (0.034) (0.025) (0.123) 
Pair -0.056 -0.022 0.006 0.042 0.012 -0.087 

 (0.065) (0.092) (0.013) (0.054) (0.025) (0.118) 
Incentive 0.041 0.017 -0.007 -0.002 -0.011 0.042 

 (0.078) (0.080) (0.010) (0.05) (0.025) (0.09) 
Jigsaw -0.013 0.087 -0.013 -0.002 -0.002 0.099 

 (0.020) (0.106) (0.020) (0.061) (0.021) (0.146) 

       

 

Mother 
Works Class Size  Female   

Control 0.289 41.83 0.459  

 (0.028) (1.751) (0.014)  
Pair 0.01 -3.85*** 0.028  

 (0.036) (1.391) (0.017)  
Incentive 0.03 -2.642 0.007  

 (0.034) (1.644) (0.015)  
Jigsaw 0.066* -3.948** 0.024  

 (0.036) (1.658) (0.02)  
Notes: The total number of observations is 9,838.  The descriptive statistics in Table A1 have been estimated from 
regressions including block fixed effects, incorporating weights, and also clustering the standard errors at the school 
level (similar to the main estimations in Tables 1-4).  The numbers for the Control column are the sample means 
(with standard errors in parentheses), while the numbers for the treatment groups are the deviations from the means 
of the Control group (with standard errors in parentheses).   
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Table A2: Control group means and tests for statistical significance of differences of means 
between the control and treatment groups for the explanatory variables, non-test takers 

       

Explanatory variables: 

       

 

Age 
 
  

First 
Language 
Kannada 

Hindu 
 
  

High Caste 
 
  

Father High 
Education 

Number of 
HH Members 

Control 13.71 -0.371 0.775 0.158 0.907 5.76 

 (0.742) (0.294) (0.151) (0.282) (0.187) (1.043) 
Pair -0.056 0.059 0.008 0.032 -0.042 -0.167 

 (0.16) (0.107) (0.038) (0.066) (0.039) (0.231) 
Incentive 0.062 0.048 -0.039 -0.025 -0.039 0.015 

 (0.148) (0.072) (0.033) (0.055) (0.033) (0.247) 
Jigsaw 0.086 0.019 -0.072** 0.057 0.006 0.267 

 (0.175) (0.88) (0.037) (0.067) (0.036) (0.321) 

       

 

Mother 
Works Class Size  Female   

Control 0.937 45.014 0.686  

 (0.254) (2.35) (0.251)  
Pair 0.036 -5.111*** 0.009  

 (0.047) (1.565) (0.045)  
Incentive 0.014 -3.446* -0.092  

 (0.051) (1.795) (0.046)  
Jigsaw 0.061 -3.926** -0.11**  

 (0.061) (1.828) (0.054)  
       

Notes: The total number of observations is 941 (70 who did not show for the baseline test, 871 for the endline test).  The 
descriptive statistics in Table A2 have been estimated from regressions including block fixed effects, incorporating 
weights, and also clustering the standard errors at the school level (similar to the main estimations in Tables 1-4).  The 
numbers for the Control column are the sample means (with standard errors in parentheses), while the numbers for 
the treatment groups are the deviations from the means of the Control group (with standard errors in parentheses).   
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Table A3: Treatment effects on Math and English, IPW, including basic controls 

 Math English 

 (1) (2) 

Pair TE 0.028 0.236 

 (0.099) (0.136) 

[p-value] [0.776] [0.131] 

N 6,142 

Incentive TE -0.157 -0.083 

 (0.108) (0.165) 

[p-value] [0.146] [0.613] 

N 4,979 

Jigsaw TE 0.243** -0.145 

 (0.118) (0.143) 

[p-value] [0.04] [0.304] 

N 3,742 

Notes: Columns (1) and (2) include the treatment variables, own baseline test scores, block FEs, and the 
control variables presented in Table A1.  The standard errors, clustered at the school level, are reported in 
parentheses and p-values in square brackets.  
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Table A4: Treatment effects on Math and English, IPW, stratified by ability 

Notes: All columns include the treatment variables, own baseline test scores, block FEs, and the control 
variables presented in Table A1.  The standard errors, clustered at the school level, are reported in 
parentheses and p-values in square brackets.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Math English 

 Bottom Middle Top Bottom Middle Top 
 (1) (2) (3) (4) (5) (6) 

Pair TE 0.064 0.016 0.003 0.203 0.229 0.261 
 (0.094) (0.097) (0.123) (0.114) (0.172) (0.173) 
[p-value] [0.497] [0.873] [0.805] [0.128] [0.183] [0.173] 

N 2,092 1,885 2,165 2,092 1,885 2,165 

Incentive TE -0.119 -0.196* -0.184 -0.095 -0.066 -0.122 
 (0.11) (0.114) (0.122) (0.139) (0.153) (1.178) 
[p-value] [0.279] [0.085] [0.131] [0.493] [0.664] [0.493] 

N 1,706 1,522 1,751 1,706 1,522 1,751 

Jigsaw TE 0.237** 0.207* 0.247* -0.14 -0.184 -0.087 

 (0.119) (0.115) (0.134) (0.116) (0.131) (0.173) 
[p-value] [0.047] [0.07] [0.066] [0.228] [0.159] [0.617] 

N 1,280 1,136 1,326 1,280 1,136 1,326 
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Table A5: Treatment effects on Math and English, randomization inference, with and without 
the control variables 

 
Math English Math English 

 (1) (2) (3) (4) 

Pair TE 0.014 0.267 0.021 0.223 

 (0.09) (0.167) (0.097) (0.152) 

[RI p-value] [0.916] [0.183] [0.870] [0.248] 

N 6,142 

Incentive TE -0.192 -0.081 -0.175 -0.046 

 (0.104) (0.163) (0.101) (0.154) 

[RI p-value] [0.150] [0.711] [0.193] [0.826] 

N 4,979 

Jigsaw TE 0.239* -0.184 0.251* -0.163 

 (0.11) (0.131) (0.106) (0.136) 

[RI p-value] [0.097] [0.415] [0.073] [0.463] 

N 3,742 

Baseline characteristics No No Yes Yes 

Notes: Columns (1) and (2) include the treatment variables, own baseline test scores, and block FEs.  
Columns (3) and (4) add the control variables presented in Table A1.  The standard errors, clustered at the 
school level, are reported in parentheses. Randomization inference p-values (in square brackets) are 
based on 5,000 permutations inside each block. 
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Table A6: Treatment effects on Math and English, randomization inference, stratified by ability 

Notes: All columns include the treatment variables, own baseline test scores, block FEs, and the control 
variables presented in Table A1. The standard errors, clustered at the school level, are reported in 
parentheses. Randomization inference p-values (in square brackets) are based on 5,000 permutations 
inside each block. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Math English 

 Bottom Middle Top Bottom Middle Top 
 (1) (2) (3) (4) (5) (6) 

Pair TE 0.072 0.017 0.002 0.201 0.241 0.221 
 (0.088) (0.099) (0.121) (0.118) (0.164) (0.178) 
[RI  p-value] [0.576] [0.906] [0.992] [0.212] [0.228] [0.31] 

N 2,092 1,885 2,165 2,092 1,885 2,165 

Incentive TE -0.138 -0.229 -0.18 -0.059 -0.044 -0.072 
 (0.103) (0.113) (0.116) (0.132) (0.142) (1.165) 
[RI  p-value] [0.295] [0.111] [0.263] [0.73] [0.838] [0.753] 

N 1,706 1,522 1,751 1,706 1,522 1,751 

Jigsaw TE 0.235* 0.225 0.249 -0.158 -0.184 -0.128 

 (0.112) (0.105) (0.12) (0.111) (0.125) (0.166) 
[RI  p-value] [0.096] [0.152] [0.137] [0.39] [0.42] [0.617] 

N 1,280 1,136 1,326 1,280 1,136 1,326 
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Table A7: Treatment effects on Math and English, randomization inference, stratified by ability, 
adding partner test scores 

Notes: All columns include the treatment variables, own baseline test scores, block FEs, and the control 
variables presented in Table A1.  The standard errors, clustered at the school level, are reported in 
parentheses. Randomization inference p-values (in square brackets) are based on 5,000 permutations 
inside each block. 

 
 
 
 
 
 
 

 Math English 

 Bottom Middle Top Bottom Middle Top 
 (1) (2) (3) (4) (5) (6) 

Pair TE 0.051 0.011 0.006 0.2 0.245 0.211 
 (0.091) (0.098) (0.115) (0.119) (0.164) (0.179) 
[RI p-value] [0.69] [0.94] [0.971] [0.219] [0.221] [0.339] 

Partner test scores 0.038 0.01 0.014 -0.006 0.025 0.001 

 (0.018) (0.028) (0.034) (0.02) (0.032) (0.024) 

[RI  p-value] [0.521] [0.773] [0.727] [0.791] [0.635] [0.997] 

N 2,092 1,885 2,165 2,092 1,885 2,165 

Incentive TE -0.13 -0.225 -0.181 -0.062 -0.044 -0.081 
 (0.1) (0.11) (0.117) (0.132) (0.142) (1.162) 
[RI p-value] [0.324] [0.118] [0.263] [0.723] [0.839] [0.72] 

Partner test scores 0.085** 0.069* -0.033 -0.027 0.013 -0.067 

 (0.026) (0.038) (0.057) (0.027) (0.026) (0.052) 

[RI  p-value] [0.011] [0.025] [0.417] [0.760] [0.211] [0.345] 

N 1,706 1,522 1,751 1,706 1,522 1,751 

Jigsaw TE 0.246* 0.237 0.239 -0.168 -0.191 -0.12 

 (0.11) (0.104) (0.124) (0.105) (0.125) (0.163) 
[RI p-value] [0.077] [0.131] [0.158] [0.369] [0.403] [0.643] 

Partner test scores 0.064* 0.083* -0.09 0.041 0.046 -0.066 

 (0.036) (0.044) (0.062) (0.031) (0.029) (0.062) 

[RI  p-value] [0.159] [0.010] [0.104] [0.126] [0.222] [0.335] 

N 1,280 1,136 1,326 1,280 1,136 1,326 
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Table A8: Treatment effects on Math and English, by gender 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Notes: All columns include the treatment variables, own baseline test scores, block FEs, and the control 
variables presented in Table A1. The standard errors, clustered at the school level, are reported in 
parentheses and p-values in square brackets.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Math English  
Male Female Male Female 

 (1) (2) (3) (4) 

Pair TE 0.078 -0.039 0.243* 0.2 

 (0.106) (0.095) (0.136) (0.172) 

[p-value] [0.461] [0.683] [0.074] [0.243] 

N 3,258 2,884 3,258 2,884 

Incentive TE -0.223** -0.125 -0.052 -0.029 

 (0.107) (0.098) (0.148) (0.161) 

[p-value] [0.037] [0.203] [0.724] [0.856] 

N 2,623 2,356 2,623 2,356 

Jigsaw TE 0.315*** 0.191* -0.196 -0.133 

 (0.011) (0.104) (0.128) (0.145) 

[p-value] [0.004] [0.067] [0.127] [0.358] 

N 1,988 1,754 1,988 1,754 
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Table A9: Treatment effects on attendance, by gender 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: Ordered probit model of reported attendance post intervention: no significant difference in 
attendance emerges between treatments and control. Both specifications include baseline reported 
attendance and block fixed effects. Clustered standard errors (at the school level) are shown in parentheses.  
 
 
 

Table A10: Effect of own effort and partner effort on Math and English 

 Math English 

 (1) (2) 

Own effort change 0.033** 0.003 

 (0.015) (0.12) 

[p-value] [0.024] [0.798] 

Partner effort 
change 

0.003 -0.018 

 (0.013) (0.013) 

[p-value] [0.822] [0.156] 

N 4,722 
Notes: All specifications here include own baseline test scores, block FEs, and all the additional 
explanatory variables shown in Table A1.  Clustered standard errors (at the school level) are shown in 
parentheses. These specifications include Pair Treatment, Pair-Incentive Treatment and Pair-Incentive 
Jigsaw Treatment schools, for a total of 6,314 students. After dropping missing values in the effort 
variable, we are left with 4,722 students.                                     

 
Male Female 

 (1) (2) 

Pair TE -0.041 -0.074 

 (0.057) (0.077) 

Incentive TE -0.068 -0.085 

 (0.048) (0.078) 

Jigsaw TE 0.012 0.094 

 (0.085) (0.075) 

Absent sometimes 0.66 0.731 

 (0.06) (0.094) 

Absent often 0.516 0.635 

 (0.02) (0.022) 

N 4,335 3,919 
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                                                            B: Estimation Equations 

 
For student i in school j in community k, test scores TS at time 1 are regressed on test 
scores at time 0 (baseline), plus other controls (i.e. a value-added model).  
 

𝑇𝑆𝑖𝑗𝑘
1 =  𝛼 +  𝛽𝑏𝑇𝑆𝑖𝑗𝑘

0 + 𝛿1𝑃𝑎𝑖𝑟𝑖𝑗𝑘 + 𝛿2𝑃𝑎𝑖𝑟_𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒𝑖𝑗𝑘 + 𝛿3𝑃𝑎𝑖𝑟_𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒_𝐽𝑖𝑔𝑠𝑎𝑤𝑖𝑗𝑘
+ 𝛽𝑥𝑋𝑖𝑗𝑘

0 + 𝜓𝑘 + 𝜀𝑖𝑗𝑘 
 
where Pair is a binary indicator for the pairing treatment, Incentive is a binary indicator 
for the financial incentive treatment and Jigsaw is a binary indicator for the main 
teaching innovation treatment; X are a set of controls at the level of the student and 
school; ψ are a set of block fixed effects; and where standard errors are clustered at the 
level of the school. 
Since Jigsaw and Incentive are combined into one, joint “combination-treatment,” we tease 
out the “pure” (i.e., marginal) Jigsaw effect using the following two-step method.  First, 
we restrict the estimation sample to the Pair and Pair_Incentive groups, only; hence, 
estimating the following equation: 
 

𝑇𝑆𝑖𝑗𝑘
1 =  𝛼 + 𝛽𝑏𝑇𝑆𝑖𝑗𝑘

0 + 𝛿1𝑃𝑎𝑖𝑟𝑖𝑗𝑘 + 𝛿2𝑃𝑎𝑖𝑟_𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒𝑖𝑗𝑘 + 𝛽𝑥𝑋𝑖𝑗𝑘
0 + 𝜓𝑘 + 𝜀𝑖𝑗𝑘 

 
We then subtract the estimated treatment effect for Pair_Incentive, 𝛿̂2, from the test scores 
for the Pair_Incentive_Jigsaw group (only). In the second step of the procedure we then 
restrict the estimation sample to the Pair_Incentive_Jigsaw and Control groups, only; 
hence, now estimating the following equation regression: 
 

𝑇𝑆𝑖𝑗𝑘
1 =  𝛼 +  𝛽𝑏𝑇𝑆𝑖𝑗𝑘

0 + 𝛿3𝑃𝑎𝑖𝑟_𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒_𝐽𝑖𝑔𝑠𝑎𝑤𝑖𝑗𝑘 + 𝛽𝑥𝑋𝑖𝑗𝑘
0 + 𝜓𝑘 + 𝜀𝑖𝑗𝑘 

 
The estimated treatment effect for Pair_Incentive_Jigsaw, 𝛿̂3, then, yields the “pure” (i.e., 
marginal) treatment effect for Jigsaw, only. 
 
                                                                     C: Theoretical model 

 

In the following, we model the incentives of students in a classical effort setup, adding 
the characteristics of teamwork. 
Imagine that a student 𝑖 is characterized by a potential (or productivity) 𝑝𝑖, and that she 
can put effort 𝑒𝑖 for achieving a certain grade. In the model, we assume that a student 
cannot affect her 𝑝𝑖 by herself. 



   
 

 33 

We model this with a production function 𝑔(𝑝𝑖, 𝑒𝑖), which is increasing in 𝑝𝑖 and 

increasing and concave in 𝑒𝑖. We also assume that 𝜕2𝑔
𝜕𝑒𝜕𝑝

> 0, meaning that effort and 

potential are complements. 
The student has preferences for effort and grade that are shaped by a quasi-concave 
utility function 𝑢(𝑔, 𝑒), which is decreasing in effort and increasing in grade. 
The solution for this problem is obtained when marginal utilities are equal to marginal 
rate of substitution: 

−
𝜕𝑢
𝜕𝑔

𝜕𝑢
𝜕𝑒

⁄ =
𝜕𝑔
𝜕𝑒

 , 

or equivalently, when the student satisfies first order conditions 
𝜕

𝜕𝑒
𝑢(𝑔(𝑝, 𝑒), 𝑒) =

𝜕𝑢
𝜕𝑒

+
𝜕𝑢
𝜕𝑔

𝜕𝑔
𝜕𝑒

= 0 . 

Let us call 𝑔 
∗ the bliss point of this optimization. By the envelope theorem 

𝑑𝑔 
∗

𝑑𝑝
= −

𝜕 (𝜕𝑢
𝜕𝑒 + 𝜕𝑢

𝜕𝑔
𝜕𝑔
𝜕𝑒)

𝜕𝑝

𝜕 (𝜕𝑢
𝜕𝑒 + 𝜕𝑢

𝜕𝑔
𝜕𝑔
𝜕𝑒)

𝜕𝑔

= −

𝜕2𝑢
𝜕𝑔𝜕𝑒

𝜕𝑔
𝜕𝑝 + 𝜕𝑢

𝜕𝑔
𝜕2𝑔

𝜕𝑒𝜕𝑝
𝜕2𝑢

𝜕𝑔𝜕𝑒 + 𝜕2𝑢
𝜕𝑔2

𝜕𝑔
𝜕𝑒

 . 

In the following we will assume quasilinear preferences. 
 

Assumption 1: 

 𝑢(𝑔, 𝑒) is quasilinear in effort, that is 𝑢(𝑔, 𝑒) = 𝑣(𝑔) − 𝑒.  
 

Under Assumption 1, the condition for an optimum is that 𝑣′(𝑔) 𝜕𝑔
𝜕𝑒

= 1. In this case, 𝑑𝑔 
∗

𝑑𝑝
 

will be positive, and its magnitude is  

−
𝑣′(𝑔)
𝑣′′(𝑔)

𝜕2𝑔
𝜕𝑒𝜕𝑝

𝜕𝑔
𝜕𝑒

 . 

We assume that the same mechanism described above model also the behavior of 
students in the simple pair teamwork treatment, where they just sit next to each other 
when performing the task. Their incentives remain unchanged because they are graded 
separately, and we assume no imitation effect. 
Let us consider now that two students are matched to work jointly on a project with 
common incentives. We call them student 𝑖 and student 𝑗, and we assume without loss 
of generality that 𝑝𝑖 > 𝑝𝑗. 
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We model this teamwork incentives in two ways, which differ in the way grades are 
provided, that is, finally, in the form of the functions 𝑣𝑖(𝑔𝑖, 𝑔𝑗) and 𝑣𝑗(𝑔𝑖, 𝑔𝑗). 
 
First teamwork type: Pair-Incentive Treatment  
The students have to work on separate parts of the project, and the grade is the sum of 
the two outputs, so that the payoff functions for the two students are 𝑣𝑖(𝑔𝑖 + 𝑔𝑗

∗) − 𝑒𝑖 for 
student 𝑖 and 𝑣𝑗(𝑔𝑖

∗ + 𝑔𝑗) − 𝑒𝑗 for student 𝑗. 
In this case, student 𝑗 has no incentive to put in any effort, as the bliss point of student 𝑖 
alone is higher than her bliss point. 
 
Second teamwork type: Pair-Incentive-Jigsaw Treatment 
In this case, the payoff function changes, as both have to work on predefined separated 
parts of the project (the experts’ part). 
We can consider the payoff functions for the two students are 𝑣(𝑔𝑖) − 𝑒𝑖 +  𝛽𝑣(𝑔𝑗

∗) for 
student 𝑖 and 𝑣(𝑔𝑗) − 𝑒𝑗 +  𝛽𝑣(𝑔𝑖

∗) for student 𝑖, where 𝑣 Is homogeneous for both 
students, with the form from Assumption 1, and 𝛽 ∈ (0,1) is a constant. 
As the last term is not under their control, that will not affect their choice from the 
single student case. 
 
Coaching/teaching 
Let us assume that, before students decide on their effort for the schoolwork, they have 
the possibility to do some coaching/teaching activity in which they also can decide how 
much effort to put in. 
This activity will increase their productivity. Let us assume that it is a function of the 
following form: 

𝑡(𝑝𝑖
0, 𝜏𝑖, 𝑝𝑗

0, 𝜏𝑗) = (∆𝑝𝑖, ∆𝑝𝑗) . 
Depending on initial productivity and effort 𝜏𝑖 and 𝜏𝑗, they increase their productivity. 
We call 𝑡𝑖 and 𝑡𝑗 the two unidimensional functions derived from 𝑡. However, students 
still care only about their grade, and not about their increase in productivity (that is, we 
assume that they are myopic). 
𝜏𝑖 and 𝜏𝑗 enter in preferences exactly as 𝑒𝑖 and 𝑒𝑗, we can think about both as efforts 
measured in the time spent by the students. We assume that both 𝑡𝑖 and 𝑡𝑗 are 
increasing and concave in 𝜏𝑖 and 𝜏𝑗.  We assume also that efforts are complementary, 

meaning that both 𝜕2𝑡𝑖
𝜕𝜏𝑖𝜕𝜏𝑗

> 0 and 
𝜕2𝑡𝑗

𝜕𝜏𝑖𝜕𝜏𝑗
> 0. 

We assume that 𝑡(∙ ,0,∙,∙) = (0,0), meaning that if the best student does not put some 
effort, then their productivity remains unchanged. However, if 𝜏𝑖 > 0, then 𝑡𝑖(∙,∙,∙ ,0) >
0, meaning that if the best student puts some effort in coaching/teaching, she will 
improve her potential even if the worst student does not put any effort. 
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We assume that in any case, it cannot be the case that 𝑝𝑖
0 + ∆𝑝𝑖 < 𝑝𝑗

0 + ∆𝑝𝑗, meaning that 
the productivity of the two students cannot revert in order.  
A first result that we provide is related to who will put any effort in the 
teaching/coaching activity. We find that in both Pair-Incentive teamwork and Jigsaw the 
best student is more likely to put any effort. 
 
Proposition 1- Under Assumption 1, both in the Pair-Incentive teamwork, and in the 
Jigsaw mechanism, when there is coaching/teaching, the worst student will put some 
effort if the best student puts any effort. 

Proof: Let us consider first the pair-incentive teamwork with coaching/teaching. With 
quasi-linear preferences, student 𝑗 has an incentive to put some effort if  

𝜕
𝜕𝜏𝑗

(𝑣(𝑔𝑖
∗) − 𝜏𝑗) > 0 , 

which is to say that 

− 𝑣′(𝑔𝑖
∗)

𝑣′′(𝑔𝑖
∗)

𝜕2𝑔
𝜕𝑒𝜕𝑝

𝜕𝑔
𝜕𝑒

( 𝜕
𝜕𝜏𝑗

𝑡𝑖(𝑝𝑖
0, 𝜏𝑖, 𝑝𝑗

0, 𝜏𝑗)|
𝜏𝑗=0

) > 1.                          (1) 

Then student 𝑖 will indeed put effort if 

−
𝑣′(𝑔𝑖

∗)
𝑣′′(𝑔𝑖

∗)

𝜕2𝑔
𝜕𝑒𝜕𝑝

𝜕𝑔
𝜕𝑒

( 
𝜕

𝜕𝜏𝑖
𝑡𝑖(𝑝𝑖

0, 𝜏𝑖, 𝑝𝑗
0, 𝜏𝑗)|

𝜏𝑖=0
) > 1 . 

Since 𝜕𝑡𝑖
𝜕𝜏𝑖

> 𝜕𝑡𝑖
𝜕𝜏𝑗

, this condition is stronger than the previous one, meaning that we could 

have cases where no student put any effort, only student 𝑖 does, or both do. 
In the cases where only student 𝑖 does, we have 

− 𝑣′(𝑔𝑖
∗)

𝑣′′(𝑔𝑖
∗)

𝜕2𝑔
𝜕𝑒𝜕𝑝

𝜕𝑔
𝜕𝑒

( 𝜕
𝜕𝜏𝑖

𝑡𝑖(𝑝𝑖
0, 𝜏𝑖, 𝑝𝑗

0, 0)|
𝜏𝑖=0

) > 1 .                          (2) 

Let us now consider Jigsaw with coaching/teaching. In this case, the problem of putting 
effort in the first coaching stage is separable from the second problem. 
In the second stage, they will behave as if they were in the individual student 
schoolwork. In the first stage the two students must choose 𝜏𝑖 and 𝜏𝑗 in order to 
maximize 𝛽𝑣(𝑔𝑗

∗), for student 𝑖, and 𝛽𝑣(𝑔𝑖
∗), for student 𝑗. 

As before, assuming that student 𝑖 puts some positive effort 𝜏𝑖, student 𝑗, then, will put 
effort if  

−
𝑣′(𝑔𝑗

∗)

𝑣′′(𝑔𝑗
∗)

𝜕2𝑔
𝜕𝑒𝜕𝑝

𝜕𝑔
𝜕𝑒

( 𝜕
𝜕𝜏𝑗

𝑡𝑗(𝑝𝑖
0, 𝜏𝑖, 𝑝𝑗

0, 𝜏𝑗)|
𝜏𝑗=0

) − 𝛽 𝑣′(𝑔𝑖
∗)

𝑣′′(𝑔𝑖
∗)

𝜕2𝑔
𝜕𝑒𝜕𝑝

𝜕𝑔
𝜕𝑒

( 𝜕
𝜕𝜏𝑗

𝑡𝑖(𝑝𝑖
0, 𝜏𝑖, 𝑝𝑗

0, 𝜏𝑗)|
𝜏𝑗=0

) > 1 .                          

(3) 
The analogous condition for student 𝑖 will be  
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− 𝑣′(𝑔𝑖
∗)

𝑣′′(𝑔𝑖
∗)

𝜕2𝑔
𝜕𝑒𝜕𝑝

𝜕𝑔
𝜕𝑒

( 𝜕
𝜕𝜏𝑖

𝑡𝑖(𝑝𝑖
0, 𝜏𝑖, 𝑝𝑗

0, 𝜏𝑗)|
𝜏𝑖=0

) − 𝛽
𝑣′(𝑔𝑗

∗)

𝑣′′(𝑔𝑗
∗)

𝜕2𝑔
𝜕𝑒𝜕𝑝

𝜕𝑔
𝜕𝑒

( 𝜕
𝜕𝜏𝑖

𝑡𝑗(𝑝𝑖
0, 𝜏𝑖, 𝑝𝑗

0, 𝜏𝑗)|
𝜏𝑖=0

) > 1 .                          

(4) 

Since 𝜕𝑡𝑖
𝜕𝜏𝑖

> 𝜕𝑡𝑖
𝜕𝜏𝑗

 and   
𝜕𝑡𝑗

𝜕𝜏𝑖
< 𝜕𝑡𝑗

𝜕𝜏𝑗
, condition (3) implies condition (4), and as in the previous 

case we cannot have that only student  𝑖 puts any effort. □ 
This result implies that there are 3 possible cases, once a couple is formed: (i) no one 
puts effort, (ii) only the best student puts effort and the other free rides, (iii) both put 
effort. Clearly, we are assuming a one-shot interaction (or, which is the same, we model 
our students as myopic), but in reality, the student who puts effort will improve her 
skills also for future activities in the school. 
We can now ask ourselves in which mechanism are both students more likely to put 
effort, in the coaching/teaching preliminary activity. 
Since, because of Proposition 1, student 𝑗 putting effort implies student 𝑖 putting effort 
in both mechanisms, it is enough to focus on the former student. However, we need to 
make assumptions on the production function 𝑔 and on the utility 𝑣 for grades. We 
focus on pair-incentive sufficient conditions which, we will see, guarantee that under 
Jigsaw both students are more likely to put effort. 
 
Assumption 2: 

We assume that  𝜕𝑡𝑖
𝜕𝜏𝑖

> 𝜕𝑡𝑖
𝜕𝜏𝑗

, and symmetrically 
𝜕𝑡𝑗

𝜕𝜏𝑖
< 𝜕𝑡𝑗

𝜕𝜏𝑗
, meaning that the effect of one 

student’s effort is more beneficial for her productivity than for the productivity of the 
other student. 
 
Assumption 3: 

The grade function is Cobb-Douglas 
𝑔(𝑝𝑖, 𝑒𝑖) = 𝑘𝑝𝑖

𝛼𝑒𝑖
1−𝛼 

and 𝑣(𝑔) is CARA with − 𝑣′(𝑔)
𝑣′′(𝑔) = 𝑟. □ 

 

Proposition 2- Under Assumptions 1 and 2, the grade that a single student, working on 
her own, will achieve is increasing in the potential of that student. This function from 
potential to obtained grade is concave, meaning that the marginal effect of potential is 
decreasing in the potential. 

Proof: If we assume that the grade function is Cobb-Douglas 
𝑔(𝑝𝑖, 𝑒𝑖) = 𝑘𝑝𝑖

𝛼𝑒𝑖
1−𝛼 

and that 𝑣(𝑔) is CARA with − 𝑣′(𝑔)
𝑣′′(𝑔) = 𝑟, then  
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𝑑𝑔 
∗

𝑑𝑝
=

𝑟𝑘𝛼
𝑝𝑖

 .   

The higher the potential, the less positive effect on the grade of increasing the potential. 
□ 
 

Proposition 3- Under Assumptions 1, 2 and 3, if both students put effort in the 
coaching/teaching activity under Pair-Incentive teamwork, they will also do under 
Jigsaw.  

Proof: Under CARA value for grade, and Cobb-Douglas production function, student 𝑗 
will put effort in teamwork if condition (1) holds, which then becomes 

𝑟𝑘𝛼 (
1

𝑝𝑖
0 ( 

𝜕
𝜕𝜏𝑗

𝑡𝑖(𝑝𝑖
0, 𝜏𝑖, 𝑝𝑗

0, 𝜏𝑗)|
𝜏𝑗=0

)) > 1 . 

and in Jigsaw if condition (3) holds, which then becomes 

𝑟𝑘𝛼 (
1

𝑝𝑗
0 ( 

𝜕
𝜕𝜏𝑗

𝑡𝑗(𝑝𝑖
0, 𝜏𝑖, 𝑝𝑗

0, 𝜏𝑗)|
𝜏𝑗=0

) +
𝛽
𝑝𝑖

0 ( 
𝜕

𝜕𝜏𝑗
𝑡𝑖(𝑝𝑖

0, 𝜏𝑖, 𝑝𝑗
0, 𝜏𝑗)|

𝜏𝑗=0
)) > 1 . 

The first condition implies the second one, because  𝜕𝑡𝑖
𝜕𝜏𝑖

> 𝜕𝑡𝑖
𝜕𝜏𝑗

. □ 

Proposition 2 implies that, under Assumptions 1, 2 and 3, a couple of students may put 
effort under jigsaw, but not in pair-incentive teamwork.  

If  we call  σ𝑗𝑖 = 𝜕
𝜕𝜏𝑗

𝑡𝑖(𝑝𝑖
0, 𝜏𝑖, 𝑝𝑗

0, 𝜏𝑗)|
𝜏𝑗=0

the initial marginal effect of the worst student, as 

she starts putting some effort, on the productivity of the best student. This quantity 
turns out to be important, because we show in Proposition 3 in Appendix C that if  

𝑟𝑘𝛼 >
𝑝𝑖

0

σ𝑗𝑖
 ,  

then both students will put in effort in both types of teamwork. This means that both 
will improve their potential and, as a consequence, the grade of the worst student is 
likely to improve more, because of the concavity of the achieved grade with respect to 
the potential. This is what we observe empirically for Math. 
It is worth noticing that this condition depends on the left side, only on simple 
parameters of the production function and of the preferences, homogeneous across 
students, and on the right side on the potential of the best student and on the effect that 
the worst student has on improving it. 
If instead  

𝑟𝑘𝛼 <
𝑝𝑖

0

σ𝑗𝑖
 ,  
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then only the best student will put in effort, and more so under Jigsaw than under pair-
incentive teamwork (Proposition 1). If that is the case, only the grades of the best 
students will improve under teamwork, more frequently under Jigsaw.12  
However, in the data we do not observe this either for English. In the context of the 
model, one difference between Math and English could be in the validity of 
Assumptions 2 or 3, which could hold only for Math, as we discuss in the paper. 
In particular, Assumption 2 is about the externality in marginal effects of productivity, 
saying that the effect of one student’s effort is more beneficial for her productivity than 
for the productivity of the other student. We have indeed evidence suggesting that 
Assumption 2 holds for Math: the effect of a student's effort (the difference between 
endline and baseline effort) on grade is larger than the effect of partner's effort. For 
English none of the two effects is statistically significant (Table A10). 
 
                                            D: Description of Randomization Inference Procedure 

 
We adapt the randomization procedure outlined by Young (2019) to our specific setting. 
The randomization is done to preserve our original block randomization, by keeping 
the number of schools inside each block that is assigned to a specific treatment. The 
randomization is done as follows: 
1. For each block 𝑖, we randomly assign 𝐶𝑖 schools assigned to Control, 𝑃𝑖 (of the non-
extracted) schools to Pair, 𝑃𝐼𝑖 to Pair-Incentive, and 𝑃𝐼𝐽𝑖 to Pair-Incentive-Jigsaw 
treatment, where 𝐶𝑖, 𝑃𝑖,𝑃𝐼𝑖, 𝑃𝐼𝐽𝑖 denote the number of schools assigned to each treatment 
in block 𝑖 in our true randomization.  
2. We compute the new sample weights for each student based on the placebo 
assignment of their school. 
3. We run the respective models’ regressions for the placebo treatments and store the 
estimates of the coefficients (i.e., the treatment effects). 
We repeat the above procedure 5,000 times (Young (2019)) reports no change in 
rejection rates above 2,000 draws) and we compare the true treatment effect estimate 
with the empirical distribution of coefficients obtained from our 5,000 simulations, as in 
Barker et. al (2022). The RI p-value in Table A5 and Table A6 reports the share of the 
5,000 simulations for which the absolute value of the coefficient is larger than the 
absolute value of the coefficient estimated for the true randomization. 
 
                                           

 
12 An alternative explanation regarding the magnitude of 𝑟𝑘𝛼 with respect to 1/σ𝑗𝑖 is that it is smaller in Math and 
greater in English, and, therefore, the two above inequalities could be different for the two topics. However, we 
discard this explanation based on the empirical evidence from the data.  
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E: First page of exam questions 
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