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ABSTRACT

IZA DP No. 17610 JANUARY 2025

Estimation of Linear Models from 
Coarsened Observations: 
A Method of Moments Approach*

In the last few decades, the study of ordinal data in which the variable of interest is not 

exactly observed but only known to be in a specific ordinal category has become important. 

In Psychometrics such variables are analysed under the heading of item response models 

(IRM). In Econometrics, subjective well-being (SWB) and self-assessed health (SAH) studies, 

and in marketing research, Ordered Probit, Ordered Logit, and Interval Regression models 

are common research platforms. To emphasize that the problem is not specific to a specific 

discipline we will use the neutral term coarsened observation. For single-equation models 

estimation of the latent linear model by Maximum Likelihood (ML) is routine. But, for higher 

-dimensional multivariate models it is computationally cumbersome as estimation requires 

the evaluation of multivariate normal distribution functions on a large scale. Our proposed 

alternative estimation method, based on the Generalized Method of Moments (GMM), 

circumvents this multivariate integration problem. The method is based on the assumed 

zero correlations between explanatory variables and generalized residuals. This is more 

general than ML but coincides with ML if the error distribution is multivariate normal. It can 

be implemented by repeated application of standard techniques. GMM provides a simpler 

and faster approach than the usual ML approach. It is applicable to multiple-equation 

models with K-dimensional error correlation matrices and Jk response categories for the kth 

equation. It also yields a simple method to estimate polyserial and polychoric correlations. 

Comparison of our method with the outcomes of the Stata ML procedure cmp yields 

estimates that are not statistically different, while estimation by our method requires only 

a fraction of the computing time.
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1. Introduction.2 

The statistical tools of empirical Psychometrics, Econometrics, Political Science, and 

many other empirical sciences including marketing analysis, agriculture, health, and 

medical statistics, find their origin in the linear regression model. The idea is that a 

random phenomenon Y can be predicted by variables X in the sense that ( ; )Y f X β≈ , 

where β is a parameter vector. Later, the same model is applied to explain the 

phenomenon Y, as caused by the variables X. In the econometrics literature since the 

1960s this resulted in a host of different models, described in textbooks such as Greene 

(2018) and Cameron and Trivedi(2005).) In psychometrics there was a similar 

development known as the Structural Equation Model (SEM) (Duncan (1975), Hayduk, 

(1987), Bollen (1989), Jöreskog(1973).) (For software, see, for example, Narayanan 

(2012).)  The main idea behind the modeling approach is that the phenomenon Y  to be 

studied has a conditional mean function that depends on other variables 1,..., MX X , say, 

( ) ( ; )E Y X x f x β= = , where (.)f  is a continuous and differentiable function and β is 

a set of parameters. In practice the model is usually taken to be linear, that is, 

0 1 1[ | ] ... M ME Y X x x xβ β β= = + + + , which produces the linear regression model. In 

the traditional approach, the variable Y  is continuous and directly observable. In 

economics the model approach (a first influential introduction is by Hood and 

Koopmans(1953))  is used to describe dependencies between economic variables like, 

e.g., purchase intentions as a function of income, prices, education, family size, and age. In 

marketing the modeling approach is used to develop and assess the effects of advertising, 

prices, promotions, etc. (see e.g. Fok (2017)). In medical statistics a model is used to 

evaluate the response to diagnostic tests. These are a few examples to illustrate the 

pervasiveness of the regression model approach in empirical sciences.  

The one-dimensional observation iY  may be replaced by a K -dimensional vector, 

1( ,..., )i i iKY Y Y=  and the function (.)f  by a K -vector function, 1( ,..., )Kf f f= . 

 
2 Capitals will be used for random variables, vectors, and matrices. We denote the zero-vector by o=(0,…,0). 
Disturbance terms will be in Greek letters. Roman letters will be used for constants and realizations of 
random variables. Matrices will be denoted by capitals as well to conform to the traditional regression 
formulas.  Indexes will be suppressed where the interpretation will be clear from the context. The ML-

estimator of a parameter vector θ  is denoted by θ̂ . The corresponding estimator from coarsened data is 

denoted by θ̂ . An overbar above a symbol denotes a sample average. 
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In practice, the parameters of interest in such a model are estimated from a set of N  

observations { }( ) 1
,

N
i i i

Y X
=

. Randomness enters the observed outcomes through the 

difference between the individual response, iY , and the conditional expectation for 

individual observation i , ( ) ( )i i i iE Y X x f x= = . Hence, we introduce an ‘error,’ iε , or a 

K -vector of errors, ( )1,...,i i iKε ε ε= , which is defined for each response as 

( ; )
def

i i iY f Xε β= − . The error represents the aggregate of other possible, unobserved 

variables as well as the randomness of individual behavior. The random term is generated 

by a mean zero process that operates stochastically independently of X . If the model is 

linear, we denote the discrepancy as the residual 
def

Y Xε β′= − . This approach is 

applicable when the dependent variable(s) Y  and the explanatory variable(s) X  is (are) 

cardinal, i.e., are expressed in observable numerical values.  

However, in many practical cases the dependent variable Y  is coarsened; it is only 

observable in terms of ordinal categories on a preference scale, such as subjective health 

status, well-being, , reported as ‘bad’ or ‘good’, or ‘like’ or ‘dislike’ ,or “poor, fair, good, very 

good, excellent,” or some ordinal ranking from one to five where a cardinal interpretation 

becomes dubious. Although the observations take place in a coarsened mode, we must 

interpret the discrete answers as reflecting a latent variable Y , the range of which is a 

continuum.  In that situation, we say the observations are ‘coarsened’ or condensed into 

a set of J  adjacent intervals { } { }1 1 1
( , ]

J J

j j jj j
Sν ν− = =

= on the real axis. For an individual i, 

the latent observation is 
ii jY S∈ , if the realized observation is ij . Hence, we see that the 

estimation of the model is complicated by two factors. First, there is the statistical 

problem that there is always a random error term involved. Second, there is the additional 

observation problem that the continuum of observations is coarsened or condensed 

(Maris (1995)) and mapped on a discrete event space { }1,...,j J= . We will call such data 

Ordinally Coarsened (OC).  

Since about 1934 in bioassay studies (Bliss (1934), Finney (1947, 1971)), and in 

Economics, Sociology and Political Science, much later in the 1960s and 1970s 

researchers realized that many variables of interest have an ordinal coarsened character. 

For instance, a question on self-assessed health status may be responded to with ordered 
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labels varying from ‘very healthy,’ to ‘very unhealthy’. In modern datasets, especially 

survey data, such verbal evaluations are abundant. The World Happiness Report (Oxford 

University, 2024) is a notable example. Such a coarsening is nearly always dictated by the 

fact that respondents are unable to quantify their answers directly on a numerical 

continuous scale but only in terms of a few ordered verbally described categories. These 

values are not expressed in numbers but in ordinal qualitative terms. In Psychometrics 

popular item response theory offers many examples (see Wiberg et al. (2019)). To stress 

that the statistical problems are not specific for one discipline we will also speak of 

coarsened data.  

 

In psychometric Structural Equations models (SEM) things may be further 

complicated by the fact that the explanatory X  variables are sometimes coarsened as well 

(cf. Jöreskog (1973)). In this paper we will assume that the explanatory X  variables are 

either directly observable on a continuous scale, or coarsened in ordered classes labelled 

1,2,.., or by dichotomous dummy variables, taking the value zero or one.   

A specific case of coarsened events is that of psychological testing (item -response 

theory IRT) and that of multiple-choice tests used in exams. Say, the exam or test consists 

of K items with each J ordered response categories. Then the test may be described by K 

item scores 1,..., KY Y . The response to each separate item may be dichotomous (e.g. correct 

/false) or polychotomous (correct, not wholly correct,…, false).  

The probability of the response on item k is ( ; )ikj k ip F b θ= ,where kb stands for 

difficulty of the item k and iθ  for the ability of respondent i. From the joint probability of 

the K responses by individual i we try to estimate the latent ability iθ (e.g., IQ) of the 

individual by maximizing per individual i the joint probability 
1

( ; )K
k ik

F b θ
=∏ , with 

respect to iθ  .  The ability iθ may also depend on (or be explained by) individual 

observable characteristics 1( ,..., )i i iMX X X= , say 0i i i iX Dθ β β′= +  ,where the dummy 

variable iD equals one for individual i and zero for others and 0iβ  is the ability of 

individual i. The term iX β′  gives then the part of ability or intelligence that can be 

explained by e.g. education, genetic factors, health, income, etc. , while the individual 

parameter 0iβ may be identified as the unexplainable truly individual ability component. 

https://amsuni-my.sharepoint.com/personal/b_m_s_vanpraag_uva_nl/Documents/2mijnwerk/pending%20manuscripts/psychometrika/werkexemplaar%20revisie/K
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We notice that estimation of 0iβ  requires that K>1 and preferably considerably larger than 

one,  

The method developed below may be used to estimate these β ’s and iθ ’s.  The 

response probability ( ; )k iF b θ  of a separate item score is frequently assumed to be 

described by a normal or logistic distribution function. Estimation of iθ is then rather easy. 

But intuition tells us that mostly the item scores on different items by a respondent will 

be correlated. This is almost unavoidable if the response behavior depends on one iθ . In 

that case the ML- estimation is mostly difficult since estimation will require the evaluation 

of many multivariate integrals. The correlation makes that the multivariate integrals can 

not be reduced to products of one-dimensional integrals. The method proposed by us will 

avoid this problem. 

For directly observed cardinal data, ordinary least squares (OLS) is usually the default 

estimator of choice3. There are many extensions of the OLS estimator that are used in 

nonstandard cases, such as nonzero covariances across observations. A familiar 

alternative to OLS is Generalized Least Squares (GLS), in which the disturbances of the K  

observations per observation unit i  are heteroskedastic or correlated. Then an unknown 

error-covariance matrix has to be estimated as well. If this is feasible, we call the method 

Feasible Generalized Least Squares (FGLS). Another well-known example is Seemingly 

Unrelated Regressions (SUR), where K  response variables are explained by K  equations 

where the errors are correlated. We refer to well-known econometric textbooks such as 

Amemiya(1985),(Cameron and Trivedi (2005), Greene (2018), and Verbeek (2017) for 

elaborate descriptions. We note that in modern work these estimations are usually based 

on the assumption of a known error distribution, usually multivariate normal, leading to 

Maximum Likelihood (ML) estimation. In the early received literature, least squares was 

not explicitly based on an underlying error distribution, but rather on minimization of a 

Sum of Squared Residuals (SSR) that led to unbiased estimation of the regression 

coefficients. Later it was found that SSR-minimization and ML-estimation led to the same 

estimator when the errors are normally distributed. (The normality assumption was also 

used to motivate certain inference procedures.) The common counterpart for the linear 

 
3 The original least squares method is due to Gauss (1809) and Legendre (1804) A.M. 
Legendre. Nouvelles méthodes pour la détermination des orbites des comètes, Firmin Didot, Paris, 
1805. “Sur la Méthode des moindres quarrés”.  See, also, Stigler (1981) for a historical survey. 

https://en.wikipedia.org/wiki/Adrien-Marie_Legendre
https://en.wikipedia.org/wiki/Adrien-Marie_Legendre
https://books.google.com/books?id=FRcOAAAAQAAJ
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regression model in case of coarsening of Y  is the Ordered Probit or Ordered Logit model 

(OP or OL). In the literature it is frequently called Probit or Logit Regression. (See e.g. 

McElvey and Zavoina (1975)).  

In this paper we will develop a novel approach to coarsened data, called Feasible 

Multivariate Ordered Probit (FMOP), where the errors are suspected of being correlated, 

as it is the case in, e.g., item response models, in panel data, regional data or customer 

satisfaction data. It follows the analogy principle as formulated by Goldberger (1968, 

1991) and Manski (1988), based on the method of moments (MoM).  

The established way to treat such models with coarsened correlated observations in 

psychometrics or econometrics, and other empirical applications is by maximum 

likelihood (ML) estimation (see McFadden (1989), Hajivassiliou and McFadden (1998)), 

where the likelihoods per observation include K -variate normal integrals (instead of 

densities). Those integrals are generally estimated by simulation such as by the Geweke-

Hajivasilliou-Kean (GHK)-algorithm. Theoretically, this is a straightforward application of 

ML theory. However, the practical problem is that the evaluation of those integrals by 

simulation may be quite cumbersome and time-consuming. 

Geweke (1989), McFadden (1989), Keane (1994), Hajivassiliou and McFadden 

(1998), Cappellari and Jenkins (2003), Mullahy (2016), and others developed a 

multivariate probit estimator. Progress has also been made based on the simulated 

moments approach (McFadden (1989)), using the Gibbs sampler method (see Geman and 

Geman (1984), and Casella and George (1992)). An interesting historical survey on the 

(logit and) probit method is found in Cramer (2004). See also Hensher, Rose, and Greene 

(2015). Roodman (2007, 2020) developed a flexible working Stata estimation procedure 

(cmp) based on the GHK-simulator. 

Independently, scholars in Psychometrics expanded a vast literature on IRT-models 

yielding different tools of analysis, inspired by the differences between the subject 

matters between disciplines (See Bollen (1989)). It is surprising that both 

psychometricians and econometricians are working on essentially the same 

methodological problems, but mostly without taking much notice of each other’s 

literature. A rare exception is the econometrician Goldberger (1971) who explicitly 

recognized the commonalities between Econometrics and Psychometrics. 

Our approach, based on sample moments, does not need the evaluation of likelihoods, 
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i.e. ,multi-dimensional probability integrals or simulated moments. In this paper we 

assume multivariate normal error distributions for ε  in line with the established 

practice. Data on X  are assumed to be generated by a random process that is statistically 

(and functionally) independent of that which generates ε . The important element is that 

the observed values of iX  convey no information about the errors iε , a property 

identified by econometricians as ‘strict exogeneity.’ It is the property that [ ] 0E Xε =  

for every X . It follows that Cov( , ) Cov( , [ ]) 0X X E Xε ε= =  as well. Econometricians 

call this condition strict exogeneity. It implies the same zero- covariance property. Data 

on X  are assumed to be “well behaved”, meaning that in any random sample, the sample 

covariance matrix 
1

ˆ(1 / )
N def

i i X
i

N X X
=

′ = Σ∑  is always finite and positive definite. (Regularity 

conditions on X such as that the influence of any individual iX  in 
1

(1 / )
N

i i
i

N X X
=

′∑  vanishes 

as N  increases are also assumed.) Nothing further is assumed at this point about the 

distribution of iX , e.g., normality, discreteness, etc. 

The theoretical model, that is, the data-generating mechanism, mimics the classical 

linear statistical models. The substantive difference between exact and coarsened data is 

in the mode of observation of the dependent variable Y . In the classical framework the 

dependent variable Y  is directly observed, while in the Ordered Coarsened (OC) -

observation mode, the dependent variable Y  is only observed to be in one of J intervals 

1( , ]j j jS ν ν−= , where the cut points 1jν −  and jν  are unknown parameters to be 

estimated. If Y  is a K -vector, 1jν −  and jν are K-vectors and 1( , ]j j jS ν ν−=  is a block in 

KR . Since the cut points 1jν −  and jν  are unknown, it follows that the unit of measurement 

of Y  is unidentified. The usual identification is secured by setting the error variances 

equal to one; 2 1kσ =  ( 1,..., )k K= ..4 

The structure of this paper is as follows. In Section 2 we outline the basic probabilistic 

model in the presence of coarsening of the dependent variables. In Section 3 we develop 

 
4 The important issue of whether the coarsened sample data ( , )i iY X  contain sufficient information to 

identify estimators of β  and the unknown cut-points in jS  is considered in Greene and Hensher (2010) 
among others. 
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the estimation method for a K -equations model based on the Ordered Coarsened data 

model. In IRT-models this is equivalent to K  item responses per respondent. We call the 

method Feasible Multivariate Ordered Probit (FMOP).  We call it Seemingly Unrelated 

Ordered Probit (SUOP), when we have a K -equation model with one observation 

( )1,...,i i iKY Y Y=  per observation unit i. Of course, mixtures of FMOP and SUOP are possible 

as well. Instead of differentiating high-dimensional log-likelihoods, with the likelihoods 

being multi-dimensional integrals, with respect to the unknown parameters ( , , )θ β ν= Σ , 

we derive sample moment conditions ˆ ( ) 0g θ =  from the coarsened data that are 

analogues of the likelihood equations, ˆ ( ) 0g θ =  for direct observations. We then estimate 

θ  from the equation set ˆ ( ) 0g θ = . We find that ˆ ( )g θ  and ˆ ( )g θ  converge to the same 

probability limit for all values of θ . The estimation of θ  from ˆ ( ) 0g θ =  takes place by 

repeatedly applying the generalized method of moments (GMM), (Hansen (1982)). We 

note in passing, our approach employs elements of the EM algorithm (Dempster, Laird 

and Rubin (1977). In Section 4 we demonstrate how to estimate polychoric correlations 

from SUOP-estimates. Further, we generalize the concept of the coefficient of 

determination, 2R , to 1K > . In Section 5a we apply FMOP to an employment equation 

over a five-year panel-dataset from the German SOEP dataset. In Section 5b we apply 

SUOP to a block of eight satisfaction questions extracted from the German SOEP data. In 

order to get more insight into the stability of the method, in Section 5c. we do some 

experiments on a simulated data set. We use a recent update of the Stata procedure cmp 

as our benchmark to compare our alternative approach with the ML approach.  

We find that the estimation results of regression coefficients and their standard 

errors do not differ substantially between the two methods. Where the established 

method may need hours, our method takes only minutes. In Section 6 we provide some 

concluding remarks. In the Appendix we propose an easy intuitively appealing method to 

estimate the latent full error-covariance matrix, after the regression coefficients, β , have 

been estimated using the coarsened data. 
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2. Regression in the population space 

Regression analysis often begins with assumptions about the distribution of the 

observed data. Each estimation procedure on a sample may be seen as a reflection of a 

similar procedure in the population. For convenience but without loss of generality we 

assume ( ) 0,  ( ) 0= =E X E Y . The model of interest for equation k of K  equations is 

 , ,
1

| + = + ,  1,...,
M

k m k m k k k k k
m

Y x x x k Kβ ε β ε
=

′= =∑  (2.1) 

Where the model design might call for differences across equations, they can be 

accommodated by suitable zero restrictions on the coefficients in kβ . For convenience, 

we ignore constant terms by setting ( ) 0=E X . The expectation of outcome or response 

kY  is conditioned or co-determined by explanatory variables /stimuli ( ),  1,...,mX m M=  

assuming values mx . There are M variables mX , that are generated by a strictly 

exogenous process. The error vector ε  derives from observation - specific variation 

around the theoretical conditional mean. We have k k kY Xε β′= − . Denoting the 

observations by ,i ky  the observed residual is defined as , ,i k i k i ke y x β′= − . Deviations of 

observations 1,...,i N=  of ,i kY  from the conditional mean result from the presence of 

unobserved elements that enter the data generating process, for example, variation across 

individuals in the self-assessment of health or well-being. Random elements are assumed 

to be generated by a zero mean, finite variance process; if k k kY Xε β′= − , it follows that

[ ] 0E ε =  and Var[ ]ε  is finite. We assume that the process that generates X  is 

stochastically independent of that of ε . This implies [ ] 0E Xε = . Substitution yields the 

familiar regression equations 

 ,( ) 0,  1,...,i i k i kE X Y X k Kβ ′ ′− = =
  , (2.2) 

where iX ′ is a ( )M K× -matrix and ,( )i i k i kX Y X β′ ′−  a K -vector. 

If this holds for all i , then we have  

 ,
1

( ) 0 ,
N

i i k i k
i

E X Y X k mβ
=

 ′ ′− = ∀
 ∑  (2.3) 

from which the regression coefficients β  can be solved. 
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We define the functions , , , ,
1

( ) ( )( ) .
N

m k i k m i k i k
i

g E X Y Xβ β
=

′ ′ = − ∑  The equation system (2.3) in 

β  is then shortly written as ( ) 0=g β .  

Result (2.3) identifies the slopes β of the conditional mean function. The zero conditional 

mean result in (2.2) motivates least squares without reference to minimizing the mean squared 

error prediction of Y X  or minimum variance linear unbiased estimation of β .  

If the error covariance matrix ( )E εε ′Σ = is not the identity matrix, we may want to correct 

for the unequal variances and correlations, and we weigh the observations by 

( )( )
1

1 E Y X Y Xβ β
−

−  ′′ ′Σ = − −  
, producing 

1
, , ,

1
( ) ( ) ( ) .

N

m k i m i k i k
i

g E X Y Xβ β−

=

′ ′ = Σ − ∑  

By weighting the K  observations per individual i by 1−Σ variances are standardized, and 

the error correlations accounted for. In that case, according to the Aitken theorem the covariance 

matrix of the estimator β̂  is minimized.  

We have motivated least squares through the moment equations (2.2). We see that we can 

interpret these conditions (2.2) as first-order conditions for minimizing the expectation of the 

squared residuals 1( )S E ε ε−′= Σ = ( ) ( )1E Y X Y Xβ β−′′ ′− Σ − . 

We do not need to specify the probability distribution of X and Y. We do assume well- 

behaved data generating processes, which will include a finite, positive variance of ε  and a 

finite positive covariance matrix, Var[ , ]X Y . If the marginal probability distribution of ε  is 

multivariate normal, the regression estimator is Maximum Likelihood. We call X β′  the 

structural part of the model and ε  the disturbance, where β  is the ( )M K× – matrix with 

columns 1 ,..., Kβ β′ ′ . 

If the columns of the matrix β  are identical, this is the typical setting for longitudinal 

and panel data. If the coefficients vary by response setting k , kβ   we have the situation of K  

different model equations. 
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Regression for Coarsened observations 

We call an observation Y R∈  coarsened if it is not observed directly, but only as 

belonging to one of the J  intervals, { } { }1 1 1
( , ]

J J

j j jj j
Sν ν− = =

=  (The leftmost and rightmost 

terminals are infinite). These intervals constitute the class  of observable events. We will 

call  the observation grid. This is generalized to K -dimensional observations by replacing 

the J observed intervals 1( , ]j jν ν−  by K -dimensional blocks 

1 11 1, 1 1, , 1 ,( , ] ( , ],..., ( , ]
K Kj j j j K j K j jSν ν ν ν ν ν− − − = =   

where the one-dimensional random observations ij  are replaced by the index vectors 

1( ,..., )i i i Kj j j= . stands for a partition in KR  consisting of KJ  adjacent blocks. (We take 

1 ...
def

KJ J J= = =  for convenience, but equality is not necessary). We denote the  -coarsened 

event space by Ω . We may then define the corresponding coarsened probability measure P  

on  by P . We will call  the K -dimensional observation grid. 

Coarsening of Y implies that we do not directly observe Y y= , but the event jY S∈ , and 

more explicitly for a K -vector Y that
1 11, 1 1 1, , 1 ,,...,

K Kj j K j K K jY Yν ν ν ν− −< ≤ < ≤ . It 

follows that for given X x=  and 1( ,..., )Kj j j=  there holds for the error vector  

1 11, 1 1 1 1 1, 1 , 1 ,,...,
K Kj j K j K K K K j K Kx x x xν β ε ν β ν β ε ν β− −′ ′ ′ ′− < ≤ − − < ≤ − , 

which we denote shortly as ( )jS xε β∈ − . We denote the marginal probability as

, 1, 1 1,( )k j j k k j kp P x xν β ε ν β−= − < ≤ − . We define the generalized residual as 

( ( ))
def

jE S xε ε ε β= ∈ − . It is a random K -vector defined on the blocks 

1( , ]j i j ix xν β ν β− − − . These blocks constitute individual i’s individualized observation grid 

. The grid  i   for observation unit i  depends on ix β′ . However, for any given value x  of X  
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and any grid  ( )xβ  we have , ,
1

( )
J def

k j k j k
j

p Eε ε
=

= =∑


( ) 0E ε =  according to the Law of Iterated 

Expectations(LIE). Then it follows that 

 , ,. 0,  ,( ) = ∀
i k i kE i kx ε  (2.3) 

and 

 
, , ,

1
(1 / ) ( . ) 0,  1,...,

=

= =∑ i k

N

X i k i k
i

N E X k Kε  (2.4) 

This is the coarsened analogue of (2,2). We define the function ( ),
1

( ) (1/ ) ( )
=

= ∑
N

k i i k
i

g N E Xβ ε

. The equation system (2.4) is then shortly written as ( )g oβ = . If the error covariance matrix 

is not the identity matrix, we may want to correct for the unequal variances and correlations, 

and we write 1
,

1
( ) ( )

N

i i k
i

g X Eβ ε−

=

= Σ∑ , where Var( )εΣ = . 

Finally, we have for the two functions 

 ( ) ( )g gβ β≡  (2.5) 

This holds for all values of β , not only for the zero roots of (2.2) and (2.4). (2.5) holds since 

for any x - value ( ) ( )xE xEε ε= . 

3. Large Sample Results for Regression 

The Law of Large Numbers states that under standard regularity conditions, sample 

moments converge in probability to their population counterparts as the number N  of 

observations grows large. Slutsky’s theorem says that continuous and differentiable 

functions of random sample moments converge in probability to those functions of the 

population counterparts as N  grows large, implying that the population functions 

( , )g β Σ  are consistently estimated by filling in the corresponding sample moments. 

When we want to get its (large-)sample estimator ˆ ( , )g β Σ  we replace the 

expectations in (2.2) by the corresponding sample moment conditions and we get 

 1 1

1 1

1 1 ˆ ˆˆ ˆ ˆˆ ( , ) 0
N N def

i i i i
i i

X Y X X g
N N

β β− −

= =

 ′ ′ ′Σ − Σ = Σ = 
 

∑ ∑ , (3.1) 
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where ( )( )
1

1ˆ
N

i i i i
i

Y X Y X
N

β β
=

′′ ′Σ = − −∑ . Solution of (3.1) with respect to the regression 

coefficients β  yields 

 
1

1 1

1 1

1 1ˆ ˆ ˆ( ) ( )
N N

i i i i
i i

X X X Y
N N

β
−

− −

= =

 ′ ′= Σ Σ  
∑ ∑ . (3.2). 

This is the well- known OLS- estimator. 
Estimation of the asymptotic covariance matrix ˆAsy.Var[ ]β  is usually understood to 
mean under the condition that X  equals the sample data x . Then the well-known 
template is 

 
1

1

1

1 1ˆ ˆEst.Asy.Var[ ] ( )
N

i i
i

X X
N N

β
−

−

=

 ′= Σ  
∑  (3.3) 

 
Estimation from ordered coarsened data. 

Let us now consider the coarsened analogue. The events are elements of the 

observation grid . The corresponding coarsened probability measure is P . If we would 

follow the conditional ML-strategy, the information to be maximized is.E  (ln P  )= 

1 1

N J

i j= =
∑∑  P  ( | ) lni j iY S x∈  P  ( | )i j iY S x∈  . 

The problem is here the evaluation of the P  ( | )i j iY S x∈ , being multivariate integrals 

over rectangular blocks in KR . We can evaluate P  ( | )i j iY S x∈  by its sample analogue, 

but this entails the evaluation of a multitude of K -dimensional integrals, making this 

procedure very cumbersome, albeit not impossible (see Roodman (2011)). 

A much easier way is by making a detour and evaluating the coarsened analogue of 

the condition (3.1). Let ij  be the K -dimensional response by individual i. We notice 

that (the K -dimensional) |
ii j iY S x∈  implies , 1 ,( , ]

i ii i j i i j ix B x Bε ν ν−
′ ′∈ − − . In this way 

to each observation unit i  is assigned its own observation grid i depending on ix B′ . 

We define the K -vector of the generalized residuals 

, 1 , ( ,  ],
i ii i i i j i i j i i iE x B x B X xε ε ε ν ν−

 ′ ′= ∈ − − = 
 

. 
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The grid i over which the expectation is taken at the LHS in (3.1) is now a grid in the 

space M KR +  where the first X -coordinates are directly observed while the  K iε -  

coordinates are  coarsened by i. Summing over the observations we get 

 1

1 1

1 1|  
N N

i i
i i

E x x E
N N

ε−

= =

′ Σ = ∑ ∑  i 
1 |i ix xε−′ Σ   (3.4) 

Then (3.4) may be summarized as the identity 

 ( , | ) ( , | )g x g xβ βΣ ≡ Σ  (3.5) 

This implies that the equations ( , | ) 0Σ =g xβ  and ( , | ) 0Σ =g xβ  have the same roots β . 

The vector function ( , )g β Σ  may be interpreted as the vector of derivatives of a criterion 

function like a log-likelihood or the sum of squared residuals with respect to β . The 

simplest criterion function with ( , )g β Σ  as gradient vector5 is 

1

1

1
, 1 , , 1 ,

1

1 (  | )  

1 ( ,  ], ( ,  ],

−

=

−
− −

=

′= Σ = =

′   ′ ′ ′ ′= ∈ − − = Σ ∈ − − =   

∑

∑

N

i
i

N

i i i j i i j i i i i i j i i j i i
i

S E X x
N

E x x X x E x x X x
N

ε ε

ε ε ν β ν β ε ε ν β ν β
 

This is the sum of Squared Generalized Residuals. The identity (3.5) implies that 

( | )′=S E Xε ε  and ( | )′=S E Xε ε  have the same derivatives with respect to β ; 

consequently they are identical except for a constant. When we decompose the residual 

variance into the sum of between- and within-variance 

( | ) (  | ) (   | )E X E X E Xε ε ε ε ε ε′ ′ ′= +   , it is obvious that this constant difference is just the 

within-variance (   | )S S E Xε ε′− =   , which appears not to depend on β . Things are 

complicated since each individual i  has its own observation grid i. 

The solution for β  is found as the root-vector of the K -equation system 
( , | ) 0Σ =g Xβ . 

We have now to construct the sample analogue of ( , | )Σg Xβ . The , ii jε  have not 

drawn much attention in the empirical literature. One notable exception is Heckman 

 
5 Notice that ( ) ( )1 1, ,j j j jE x x X x E y y x X x xε ε ν β ε ν β ν ν β

β β β− −

∂ ∂ ∂  = − < ≤ − = = < ≤ − = = ∂ ∂ ∂
. 
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(1976) who appears to be the first author in econometric literature to recognize the 

importance of this expected residual, later in the econometric literature sometimes called 

the Heckman-term (see also Van de Ven and Van Praag (1981)),. They have been called 

by Gouriéroux et al. (1987) the generalized residuals. They used them in the analysis of 

residuals. If the exact errors ε  are standard normally distributed, then we have for the 

coarsened errors the well-known formula 

 
( ), 1

1

1

= ,

( ) ( )
      =  

( ) ( )

i i i

i i

i i

def

i j i j i i j i

j i j i

j i j i

E x x X

x x
x x

ε ε ν β ε ν β

ϕ ν β ϕ ν β
ν β ν β

−

−

−

− < ≤ − =

− − −

Φ − −Φ −

 (3.6) 

If the errors are not normally distributed but logistically, the formulas for the 

truncated marginal distribution can be found for example in Johnson, Kotz, Balakrishnan 

(1994) or in Maddala (1983, p.369). We shall restrict ourselves to the assumption of 

normally distributed errors. 

Since there are no natural units observed, we can only estimate the β ’s in (2.1) up to 

their ratios. A way to make them identifiable is to assume 1kσ =  for 1,...,k K= , which is 

the traditional assumption in Probit and item response analysis. 

The sample moment analogue of (3.1) is 

11 1
,

1 1 1

( ) ( )1 1 ˆ ( ) 0
( ) ( )

i i

i

i i

N N
j i j i

i i j i
i i j i j i

x x
x e x g

N N x x
ϕ ν β ϕ ν β

β
ν β ν β

−− −

= = −

 − − −
 Σ = Σ = =   Φ − −Φ −  

∑ ∑  (3.7) 

where ij  is the index of the interval/block observed for the observation unit i . 

Notice that (3.7) is a concise presentation of a system of K blocks of M equations, each 

corresponding with one of the elements of the coefficient matrix β , where we assume 

that each of the K  blocks contains M  different coefficients kβ . 

The cut-points ν  remain to be estimated. There are ( 1)K J× −  of them. Therefore, 

we derive another additional set of ν -identifying equations. The cut-points ν  can be 

easily estimated one by one by applying the following strategy (called binarization). We 
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define for each equation the 1J −  auxiliary binary variables ,
b

i jε  which may assume the 

lower value ( )i i j iE xε ε ν β≤ −  or the upper value ( )i i j iE xε ε ν β> − .6 We have 

 ( ). ( ) ( ). ( ) 0i j i i i j i i j i i i j iP x E x P x E xε ν β ε ε ν β ε ν β ε ε ν β≤ − ≤ − + > − > − =  (3.8) 

Again, there holds ,( ) 0b
i jE ε = , due to LIE. For the sample counterparts this implies 

 ,
1plim 0,   1,2,..., 1b

i je j J
N

  = = −  
∑ . 

The sample moment analogues are 

, , , ,

( ) ( ), , , ,

( ) ( )1 0,
( ) 1 ( )

i i

k j i k k k j i k

i j j i j jk j i k k j i k

x x
N x x

ϕ ν β ϕ ν β
ν β ν β≤ >

 − −
− = 

Φ − −Φ −  
∑ ∑  1,..., , 1,..., 1k K j J= = −  

(3.8a) 

from which the cut-points ,k jν  can be easily estimated, as both sums at the left increase in 

,k jν . We notice that these observations are not yet weighted by an error-covariance 

matrix. 

Summing up we are ending with two equation systems (3.7) and (3.8) from which the 

parameters β  and ν  are estimated. This can be done by applying the Generalized Method 

of Moments (GMM) (Hansen (1982)). We refer to well-known textbooks such as Cameron 

and Trivedi (2005), Greene (2018a), and Verbeek (2017) for elaborate descriptions. The 

software can be found, e.g., in Stata.7  We use an iterative calculation scheme. Starting with 

assuming 0β = , a first-round yields (1) (1),β ν . Taking these values as starting point we 

repeat this iterative procedure until convergence, which is rather rapidly reached. The 

GMM-method provides us with an estimate of the covariance matrix of ˆ ˆ,  β ν  as well, 

using the well-known ‘sandwich’ formula. 

 

 

  

 
6 This trick, called “binarization” is suggested by, e.g., Chris Muris, 2017. "Estimation in the Fixed-Effects 

Ordered Logit Model," The Review of Economics and Statistics, vol. 99(3), pages 465-477, July. The term has 
been used before in computer science. 

7 We use a mixture of our own software in Fortran and in Stata. See our computer program online. 

https://ideas.repec.org/a/tpr/restat/v99y2017i3p465-477.html
https://ideas.repec.org/a/tpr/restat/v99y2017i3p465-477.html
https://ideas.repec.org/s/tpr/restat.html
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4. Polychoric correlations and Coefficients of Determination. 

Suppose we have two test items 1 2,Y Y  ( 2)K =  available by which we may, for 

example, examine an individual or test the effect of a specific therapy or a response on a 

satisfaction question. For simplicity we assume both items are yes/no questions. Then we 

are of course interested to know how correlated the two test items 1 2,Y Y  and therewith 

the responses on the two items are. The latent correlation between items is known in the 

psychometric literature as the polychoric correlation. The literature on polychoric 

correlations is massive. We refer out of the host of excellent contributions to the seminal 

Olsson (1979), and the more recent Liu, Li, Yu & Moustaki (2021), Moss and Grønneberg 

(2023) for more analysis. The problem is clearly how to estimate correlations between 

latent variables 1 2,Y Y , if we only have a 2 2×  coincidence table at our disposition. We 

propose the following method. 

The latent variables are modelled like (2.1). The latent model is 

 , , ,1 1 , , 0 ,...     1,..., ,  1,...,i k i k i k M M i kY X X i N k Kβ β β ε= + + + + = =   (4.1) 

where in this case 1,2k = . In this case we have 

 1 2 1 1 2 2 1,2Cov( , ) ( ) ( )Y Y E X Xβ β σ ε′ ′= +  (4.2) 

and more generally for a K K×  coincidence table we find the K K× -covariance matrix 

 Cov( ) XXY B B εε′= Σ + Σ  (4.3) 

where B′  stands for the K M×  matrix of structural effects and εεΣ  for the latent error 

covariance matrix. Now we derive the polychoric correlation from Cov( )Y  in the usual 

way, that is, 1 2 1 2 1 2( ) Cov( ) ( ). ( )YY YY Y Yρ σ σ= . The covariance matrix Cov( )YY YΣ =  is 

estimated as 

 ˆ ˆˆ ˆ ˆ
YY XXB B εε′Σ = Σ + Σ  (4.4) 

where B̂  is the estimated matrix of regression coefficients, 
1

1ˆ
N

XX i i
i

X X
N =

′Σ = ∑ , and ˆ
εεΣ the 

estimated full error-covariance matrix, as estimated in the Appendix. 

https://www.researchgate.net/profile/Ulf-Olsson-4?_sg%5B0%5D=4fVedA-YBVSOWPDhKtZKaSZ4qgirSLxfNnPl8P62StJ5a36d7FOX0sWODDS8_XisCr3OxIs.fLFKCbHc6QALlaUn5WyMR5YB-zj_RnR1To-l5hFep3K_BxZEfNxxtNqb4apCA4pTe6-MxfmbPkE5Z3pFfBOQYg&_sg%5B1%5D=8GeHDitnkVbH4Ufeaotzj5RTOwrxsgzytp2Gd-4VHpFtCNYOrMj1__pYVLTRhnPQtXxONBM.vho-_6X7sc_Wr4t5VAdSw34XTV4r5oZCA0P6ETVYclhn0EoMah_y7Gj8ysMBzSmRVOp_Zc2Z_piUoTmlDFYHTw
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We notice that in the case that there are no structural effects found, i.e. B o= , we still 

may have non-zero polychoric correlations due to correlated errors. The corresponding 

correlations are found from the covariance matrix ˆ
YYΣ  in the usual way. 

The matrices B , XXΣ  are already consistently estimated. The latent (full) error-

covariance matrix εεΣ  is yet unknown. In the Appendix we demonstrate how εεΣ  is 

consistently estimated. 

We note that this method does not assume normality of the random vectors X  or ε . 

We may also assume, for example, ε  to be logistic. In those cases the formula (3.3) for the 

generalized residual has to be replaced by the corresponding formula for the logistic, or 

in fact, any distribution, provided that the covariance matrix is finite. 

In the second application below, where we are estimating satisfactions, we present 

the estimated 8 8×  polyserial correlations between satisfactions as the off-diagonal 

elements in Table 5. For the first application in Section 5 we might estimate the polyserial 

correlations as well but given the panel nature of the data, it is not very interesting. 

The relative explanatory power of the equation estimates depends on the question 

how volatile the outcomes are due to random errors. Consider (5.1). We have 

 1 1 1 1 1 1,1Var( ) ( ) ( )Y E X Xβ β σ ε′ ′= +  (4.5) 

An attractive measure of fit, that is explanatory power is the traditional coefficient of 

determination 

 2 1 1 1 1

1 1 1 1 1,1 1 1 1 1 1,1

( ) 11
( ) ( ) ( ) ( )

E X XR
E X X E X X
β β

β β σ ε β β σ ε
′ ′

= = −
′ ′ ′ ′+ +

 (4.6) 

The sample analogue for the first equation is 

 

2

, , ,
2 1 1

2

, , ,
1 1

1 ˆ
ˆ

1 ˆ 1

N M

k m i k m
i m

k N M

k m i k m
i m

x
NR

x
N

β

β

= =

= =

 
  =

 
+  

∑ ∑

∑ ∑
 (4.7) 

where 1,1( ) 1σ ε = , as postulated in Section 3 This is the same magnitude as proposed by 

McKelvey and Zavoina (1975). We notice that these numbers may be interpreted as 

coefficients of determination of the regression equations (5.1) for 1,  2,..., 5k k k= = = , 

respectively. Of course, the regression is not performed as ,i kY  is not observable per 

individual. However, the regression correlation coefficient can be estimated by a detour 
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using (5.6) or (5.7). We call these satisfaction correlation coefficients. They measure the 

part of the satisfaction variation, which can be structurally explained by observable traits 

X . If there are K  equations, we get 2 2
1

ˆ ˆ,..., KR R . 

 

5. Two empirical examples and one simulation experiment. 

In order to evaluate our method empirically we considered two data sets, both part 

of a 2009-2013 panel data-sequence from the German SOEP-panel data set and a block of 

eight satisfaction questions in wave 2013 of the SOEP data. The first model in Section 6a 

is a set of five time-panel Ordered Probit equations where the errors are correlated. We 

call this estimation method Feasible Multivariate Ordered Probit (FMOP). It can be 

generalized to an arbitrary number of panel waves. The second data set consists of eight 

seemingly unrelated eight cross-section satisfaction questions, where errors are 

correlated. It is estimated in Section 6b. We call this a Seemingly Unrelated Ordered Probit 

model (SUOP). In addition we present estimations on a simulated data seton request of 

one the referees to this paper. Online we present the program code. 

Given the results of the method it becomes possible to estimate the latent full 

covariance matrix Σ  as well. We defer the description of how to estimate the full latent 

covariance matrix to the Appendix and the online program code. 

 

5a. Employment status evaluation on a German five-year panel data set. 

Now we apply the FMOP method to a specific data set. We choose the employment 

situation of German workers, where we do not pretend to make a study of German 

employment but merely test the feasibility of the method, using these employment data. 

Following the lines above, we try to estimate the employment equation and the error 

covariance matrix using FMOP. 

The data are derived from the German, Socio-Economic Panel (SOEP) data set. 

Households are followed for a period of five successive years (2009–2013). We assume 

an unstructured error covariance matrix. All explanatory variables are measured as 

deviations from their averages. 

We use the variable employment (variable e11103 in the German SOEP data set) in 

three self-reported categories ‘not working,’ ‘part-time working,’ and ‘full-time working.’ 

This implies that the five grids for the years 2009–2013 consist of three intervals each. 
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We assume the explanatory variables ‘age (18–75 years of age),’ ’age-squared,’ dummy 

variables for ‘gender (female=1)’, ‘marital status: married (reference),’ ‘marital status: 

single,’ ‘marital status: separated,’ ‘ln(household income minus individual labour 

income),’ ‘number of children at home,’ ‘years of education,’ and dummy variables for 

‘years of education unknown’ and ‘living in East-Germany.’ The latent variable is assumed 

to be generated by the linear equation 

 

2
1 2 3 4 5

6 7 8

9 10

Employment Age Age Female Single Separated
                      + Ln(HH.LabourInc) Children Years_educ
                      + Years_educ_unknown East

β β β β β
β β β
β β ε

= + + + + +
+ + +

+ +

 (5.1) 

As already said, we assume an ‘unstructured’ 5 5×  covariance matrix where 

,( )k kρ ′Σ = . The results are presented in Table 1. In the left-hand panel we show the in-

between error covariance matrix Σ̂ , in the right-hand panel the latent full covariance 

matrix Σ̂  as estimated by the simulation method described in the Appendix. The error-

correlation over time appears from the right-panel to be quite considerable (1.0, .8775, 

.7800,…). When we look at the coarsened data the correlation is mitigated by the coarse 

observation but still considerable. 

 

 

 

 

 

 

Table 1. In-between and full error covariance matrices for FMOP 
 In-between covariance matrix (FMOP) Full covariance matrix (FMOP) 

 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013 
2009 .6303     1.0000     
2010 .4760 .6156    .8775 1.0000    
2011 .4049 .4746 .6149   .7800 .8856 1.0000   
2012 .3695 .4125 .4690 .6131  .7343 .7998 .8837 1.0000  
2013 .3336 .3642 .4059 .4833 .6168 .6867 .7280 .7950 .9079 1.0000 

 

The regression estimates according to FMOP and Ordered Probit (errors independent) 

are presented in Table 2. 
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Table 2. Regression estimates from FMOP and Ordered Probit. 

 

Feasible Multivariate 
Ordered Probit (FMOP) 

Exact 
observ. Ordered Probit (OP) 

Number of obs.=51760 
 
 

FMOP Number of obs.=51760 
McF pseudo R2=0.2523 

McK-Z R2=0.5396 
EMPLOYMENT Coeff. Std.err. z Std.err. Coeff. Std.err. z 

AGE .3137 .0059 53.50 .0038 .3236 .0032 102.36 
AGE square -.0037 .00006 -58.34 .00004 -.0038 .00003 -114.77 
D. FEMALE -.7464 .0223 -33.51 .0180 -.7727 .0115 -67.01 

D. SINGLE .0778 .0309 2.52 .0186 .0541 .0202 2.68 
D. SEPARATED .0538 .0250 2.15 .0164 .1184 .0175 6.77 

Ln(HHLABOURINC) .0071 .0015 4.65 .0009 .0150 .0013 11.31 
# of CHILDREN -.2051 .0114 -17.97 .0074 -.2571 .0077 -33.47 

YEARS EDUCATION .0789 .0039 20.03 .0031 .0742 .0021 34.97 
D. EDUC. unknown -.1172 .0459 -2.55 .0318 -.1985 .0294 -6.75 

D. EAST Germany -.0542 .0237 -2.28 .0180 -.0420 .0128 -3.28 
Cut point 1 -.5892 .0129 -45.79 -- -.5984 .0069 -86.68 
Cut point 2 .3569 .0123 29.05 -- .3753 .0066 5.68 

 

As expected the regression estimates are of the same order, because both estimators 

are consistent. The difference is clearly in the calculated standard deviations. All FMOP 

standard errors are a factor 1,5 to 2,0 larger than the OP-estimates. This is caused because 

the assumption of error independence by OP instead of the observed strong error 

correlations is tantamount to a gross exaggeration of the reliability of the data material 

when we ignore the non-zero error correlations. The difference in standard deviations is 

a warning signal. 

For curiosity we also look at the question what standard deviations we would have 

found when we would have had the non-coarsened, that is exact, data material at our 

disposal. Those standard deviations are estimated by the roots of the diagonal elements 

of 1 11 ˆ( )N X X− −′Σ  the elements of which are known. The latent error-covariance matrix Σ  

is estimated by Σ̂  according to the method described in the Appendix. We see from 

comparison that the FMOP-standard deviations (e.g. for the AGE-coefficient 0.3137) on 

the basis of the coarsened observations are much larger than the corresponding 

theoretical values (0.0038) for GLS-estimation on the exact latent data. 

The computation time in total was 8 seconds. We used a laptop. The computation 

process can be split up into two parts: the first-stage OP estimation, taking 3 seconds and 

the second-stage estimation taking another 5 seconds. 
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We see that employment increases with age until age 42, after which employment 

decreases (we excluded respondents under-18s and the over-75s). Females are less often 

employed than males. In households with children the respondents work less than in 

childless households. The more additional labour income in the household, the more the 

respondent works. The more education years one has, the more one works full-time, while 

respondents from East Germany are less employed than the West Germans. 

 

5b. Seemingly Unrelated Ordered Probit (SUOP) on a block of eight satisfaction questions. 

In the German panel questionnaire, we find a number of satisfaction questions 

referring to various life domains, like those presented in Fig. 1. Here, we apply the SUOP 

method. 

This type of questioning is abundantly used in marketing research and happiness 

research. Another very important instance, where the use of SUOP is at hand, is in the 

analysis of vignettes, also known as factorial surveys in sociological research or as 

conjoint analysis, now one of the major tools in psychology and marketing research 

(Green and Srinivasan (1978), Atzmüller and Steiner (2010), Wallander (2009), Van Beek 

et al. (1997)). 

 

How satisfied are you today with the following areas of your life? 
Please answer on a scale from 0 to 10, where 0 means completely dissatisfied and 10 means 
completely satisfied. How satisfied are you with ….. 
1. your health?       0 1 2 3 4 5 6 7 8 9 10 
2. your sleep?       0 1 2 3 4 5 6 7 8 9 10 
3. your household income?      0 1 2 3 4 5 6 7 8 9 10 
4. your personal income?      0 1 2 3 4 5 6 7 8 9 10 
5. your dwelling?       0 1 2 3 4 5 6 7 8 9 10 
6. your leisure time?      0 1 2 3 4 5 6 7 8 9 10 
7. your family life?       0 1 2 3 4 5 6 7 8 9 10 
8. your standard of living?      0 1 2 3 4 5 6 7 8 9 10 

Fig. 1. A block of satisfaction questions with respect to various life domains. 
 

The data set consists of about 15,000 observation units. Since the original formulation 

with 11 answer categories made the coarsened observations look very similar to 

continuous observations, we further coarsened the data into five response categories 

(0,1,2), (3,4),…,(9,10). In this paper we apply SUOP analysis to the above listed block of 

satisfaction questions with respect to life domains from the 2013 wave of the GSOEP 

panel. We use the following explanatory variables: age and age-squared, dummies for 
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being female, single and separated, ln(individual labour income), ln(household income 

minus individual labour income), the number of children, the number of years of 

education, living in East Germany, dummy disability status (0 (no), 1 (yes)), and health 

rating (1 (bad health),…,5 (very good health)). Our primary objective is to demonstrate 

the feasibility of SUOP. It stands to reason that for a substantive analysis of domain 

satisfactions this model specification is probably too simplistic, however, for our 

objective, testing the feasibility of SUOP, this specific choice is no problem. In order to 

avoid that every dependent variable would be explained by the same set of explanatory 

variables we chose different subsets for each equation. 

In Table 3 we present the estimates of the first two equations on Health and Sleep 

satisfaction. For the full table presenting all eight equation estimates we refer to the 

Appendix. 

In the first two columns we present the initial Probit estimates and their s.e.’s. In 

columns 3, 4 we present the corresponding SUOP-estimates and their s.e’s. The two right-

hand columns 5, 6 give the corresponding estimates by means of the ML-method. We take 

the cmp results as the touchstone of our comparison. 
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Table 3. Comparison of the parameter estimates and their s.e.’s for Ordered Probit, Method 
of Moments, and Maximum Likelihood. 
McK-Z R2 0.1489 0.1481 0.1154 
Health Satisfaction OPβ  OPσ  SUOPβ  SUOPσ  MLβ  MLσ  
Health: AGE -.0695 .0046 -.0693 .0048 -.0651 .0045 
Health: AGE2 .0006 .00005 .0006 .00005 .0006 .00005 
Health: D_FEMALE -.0182 .0175 -.0181 .0174 -.0134 .0166 
Health: D_SINGLE -.0514 .0291 -.0510 .0293 -.0570 .0278 
Health: D_SEPARATED -.1241 .0240 -.1238 .0243 -.1108 .0230 
Health: Ln_LABOURINC .0289 .0025 .0288 .0026 .0227 .0022 
Health: CHILDREN .0357 .0123 .0356 .0126 .0308 .0114 
Health: D_EAST -.1678 .0201 -.1670 .0196 -.1402 .0193 
Health: DISABLE -.7991 .0272 -.7971 .0268 -.5825 .0232 
Health: Cut point 1 -1.8277 .0184 -1.8240 .0191 -1.8163 .0181 
Health: Cut point 2 -1.1161 .0131 -1.1094 .0134 -1.1122 .0130 
Health: Cut point 3 -.3432 .0109 -.3415 .0109 -.3399 .0107 
Health: Cut point 4 .9468 .0123 .9442 .0124 .9409 .0122 
McK-Z R2 0.0278 0.0278 0.0196 
Sleep Satisfaction OPβ  OPσ  SUOPβ  SUOPσ  MLβ  MLσ  

Sleep: AGE -.0380 .0041 -.0381 .0042 -.0348 .0041 
Sleep: AGE2 .0004 .00004 .0004 .00004 .0003 .00004 
Sleep: D. FEMALE -.1213 .0172 -.1213 .0172 -.1204 .0164 
Sleep: D. SINGLE .0508 .0302 .0505 .0307 .0594 .0284 
Sleep: D. SEPARATED -.0762 .0253 -.0762 .0260 -.0658 .0238 
Sleep: Ln(HH.LABOURINC) .0067 .0021 .0066 .0020 .0062 .0018 
Sleep: # of CHILDREN .0219 .0121 .0220 .0122 .0164 .0113 
Sleep: YEARS of EDUCATION .0316 .0032 .0315 .0031 .0117 .0028 
Sleep: D. EAST GERMANY -.1063 .0199 -.1065 .0196 -.0763 .0192 
Sleep: Cut point 1 -1.6918 .0175 -1.6912 .0174 -1.7036 .0174 
Sleep: Cut point 2 -.9791 .0123 -.9800 .0123 -.9831 .0123 
Sleep: Cut point 3 -.9251 .0106 -.2970 .0106 -.2940 .0104 
Sleep: Cut point 4 .7286 .0114 .7269 .0115 .7150 .0113 
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Our first conclusion is that the three methods OP, SUOP, ML yield estimates which do not 

differ significantly in most cases. This is not surprising as the three estimators are 

consistent. The standard deviations of the SUOP-estimators seem to be slightly larger than 

the ML-estimators, but the differences are mostly negligible. 

In Table 4 we present the full correlation matrices as estimated by SUOP (estimation 

according to Appendix) and ML (according to Stata), respectively. 

 

 

 

 

 

Table 4. Full error correlation matrices compared for SUOP and ML. 
Residual 

Corr. SUOP Health Sleep HH inc. Ind inc. Dwell 
ing Leisure Family 

life 
Stand. 
living 

Health 1.0000        
Sleep .5328 1.0000       

HH. inc. .3196 .2758 1.0000      
Ind. inc. .2851 .2367 .8414 1.0000     

Dwelling .3103 .2894 .4521 .3769 1.0000    
Leisure .3246 .3359 .3274 .2812 .4557 1.0000   

Family life .3585 .3295 .3327 .2838 .4526 .4743 1.0000  
Stand. living .3964 .2520 .7173 .6044 .5551 .4626 .5930 1.0000 

Residual 
Corr. ML Health Sleep HH inc. Ind inc. Dwell 

ing Leisure Family 
life 

Stand. 
living 

Health 1.0000        
Sleep .5487 1.0000       

HH. inc. .3280 .2802 1.0000      
Ind. inc. .2919 .2487 .8266 1.0000     

Dwelling .3144 .2990 .4530 .3869 1.0000    
Leisure .3301 .3463 .3323 .2899 .4635 1.0000   

Family life .3643 .3405 .3355 .2849 .4563 .4800 1.0000  
Stand. living .3973 .3492 .7099 .6118 .5582 .4610 .5930 1.0000 

 

We see that of the 75 SUOP-estimated regression coefficients 17 fall out of the ML-

confidence intervals. For the estimates of the correlation matrix we find a similar result.8 

Three of the 28 SUOP estimated correlation coefficients are just outside the ML-

confidence intervals. 

  

 
8 The cmp-procedure provides confidence intervals for the correlation estimates. 
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The polychoric correlation matrix is presented in Table 5a. 

Table 5a. The polychoric correlation matrix. 

Residual 
Corr. SUOP Health Sleep HH inc. Ind inc. Dwell 

ing Leisure Family 
life 

Stand. 
living 

Health 1.0000        
Sleep .7372 1.0000       

HH. inc. .7626 .6347 1.0000      
Ind. inc. .7389 .6028 .9418 1.0000     

Dwelling .6985 .5998 .7752 .7338 1.0000    
Leisure .6962 .6258 .7111 .6704 .7287 1.0000   

Family life .7496 .6372 .7550 .7101 .7558 .7521 1.0000  
Stand. living .8015 .6728 .9220 .8705 .8169 .7680 .8538 1.0000 

 

A naıv̈e approach is to assign the values 0,1,…,9,10 to the satisfaction values and to 

calculate the Pearson correlations on that basis. This assignment is conform to daily usage, 

where average satisfaction values in a sample are also based on this assignment practice. 

The Pearson correlations are presented in Table 5b. We see that there is a considerable 

difference between Table 5a and 5b we prefer 5a to 5b, as the cardinalization by 0,1..,10 is 

arbitrary and might be replaced by another one (0,2,3,…) yielding a different Table 5b, 

while the polyserial correlations are based on an endogenous cardinalization. We notice 

that all Pearson correlations in Table 5b are considerably smaller than the corresponding 

numbers in Table 5a. 

 

Table 5b. The Pearson correlation matrix. (scale 0-10) 
Pearsoncorr. 
scale (0-10) Health Sleep HH inc. Ind inc. Dwell 

ing Leisure Family 
life 

Stand. 
living 

Health 1.0000        
Sleep .5185 1.0000       

HH. inc. .3331 .2829 1.0000      
Ind. inc. .2899 .2575 .7761 1.0000     

Dwelling .2414 .2635 .4307 .3580 1.0000    
Leisure .2121 .2804 .2921 .2448 .4047 1.0000   

Family life .3027 .2965 .3331 .2599 .4085 .3985 1.0000  
Stand. living .3852 .3325 .7112 .5872 .5201 .3806 .5387 1.0000 

 

The computation process can be split up into three parts: the first-stage OP estimation 

took 1.8 seconds on our ASUS VivoBook 15 laptop, and the second stage SUOP-estimation 

took another 111 seconds. The whole calculation requires less than two minutes. The ML-

estimations by cmp (default) took 7 hours. In the SUOP-method we use the in-between 
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covariance matrix Σ̂  and not the full covariance estimate. The computation time depends 

on the sample size N , the size K  of the error covariance matrix, and the capacity of our 

laptop. In this example K =8. We see that for the ML-method the time increases non-

linearly with N . The number K  seems to be important as well. For K =2 equations both 

methods are roughly equally fast, where SUOP takes 11 seconds and ML-cmp 10.5 seconds 

for N =15535. For K =3 the SUOP computation increases to 16 seconds, while the ML-

method requires already 1,241 seconds. This is caused, it seems, by the fact that ML has 

to evaluate a lot of K -dimensional integrals. A colleague of ours (an expert Stata-user) 

observed, quoting the ‘options’ in the Stata text, that cmp uses the GHK-simulation method 

for evaluating the needed integrals and that in the default option cmp uses 2 N  draws 

per evaluated likelihood. In the present case this is about 250 simulations per 

observation. Capellari and Jenkins (2003) suggested that for a large number of 

observations the number of draws can be considerably reduced without severe efficiency 

loss. According to our colleague by taking 5 draws per likelihood we would reduce the 

computation time from the reported 7 hours to 8 minutes with only a slight efficiency 

reduction. That is probably still significantly slower than the new method, but the revision 

would be material. We followed this suggestion and found indeed comparable estimates 

for the coefficients β . To our surprise the standard deviations for the five draws were not 

significantly different from the 250 draws version. This seems to indicate that in the 

assessment of variance the additional contribution caused by the simulation variance is 

not taken into account. 

Clearly, if we would reduce the number of equations from eight to a more manageable 

four or two equations and/or reduce the number of observations, both the ML and the 

SUOP-methods would perform much faster. 

Our conclusion is that the SUOP-method is faster than the ML-method. We are unable 

to say whether the Stata procedure cmp is to blame and could be improved or whether 

this is a general feature of the ML-GHK procedure. It might also be that we could have 

reduced the ML-computation time by choosing specific options instead of the default 

procedure. Choosing too severe tolerance levels for the iterations involved would have 

increased the computation time in exchange for more exact confidence intervals. 

However, given that the cmp-outcomes have about the same confidence intervals as our 
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SUOP outcomes we do not believe that the tolerance levels chosen in cmp were more 

severe than in our method. 

 

5c. A simulated example. 

Finally, we apply the estimation method to a simulated data set. We simulated a hard 

data set of 10,000 observations. We generated the set as follows. We assumed a latent 

model 

,1 ,1 ,2 ,3 ,4 ,1

,2 ,1 ,2 ,3 ,4 ,2

,3 ,1 ,2 ,3 ,4 ,3

,4 ,1 ,2 ,3 ,4 ,4

            
    2  3 4

  2  3 4
0.5      

i i i i i i

i i i i i i

i i i i i i

i i i i i i

y x x x x
y x x x x
y x x x x
y x x x x

ε

ε

ε

ε

= + + + +

= + + + +

= − + − + +

= − + − + +

, 

where, 1x  is normal (0,1)N , where 2 10.5 1x x D= +  with D1 a dummy variable equal to +1 

or -1 with 50% each, where 3 2(0,2) 0.5x N x= + , and where 4 30.5 2x x D= − +  and D2 is 

drawn to equal +1, 0, or -1 with a chance of 1
3  each. 

The error vector ε  is i.i.d. N(0, )Σ  with 

Σ =

 1.0
 0.5  1.0
-0.5  0.3  1.0
 0.2  0.6 -0.1  1.0

 
 
 
 
 
 

. 

We notice that all four variables x  and the error vector have expectation equal to zero. 

In order to avoid that (the non-conditioned) iY  is approximately normal, we restricted 

the explanatory variables to a small number of four and we chose those variables to be 

non-normal and correlated, such that the structural part xβ ′  does not tend to normality. 

Our first aim is to look for the distribution of the exact data. The expectation ( ) 0E Y = , 

the empirical mean equals 0.0160 and the variance var(Y) equals 2.603. The correlation 

matrix of the variables X , and Y  is the 8×8 matrix in Table 1. 
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Table 6c.1. The correlation matrix of the variables (N=10,000) 
 x1 x2 x3 x4 y1 y2 y3 y4 

x1 1.0000        
x2 .8797 1.0000       
x3 -.3812 -.2516 1.0000      
x4 -.4803 -.3452 .9240 1.0000     
y1 .6278 .4450 -.1164 -.3281 1.0000    
y2 .7033 .6220 -.0943 -.2136 .4566 1.0000   
y3 .5598 .5484 -.9312 -.8929 .1250 .2659 1.0000  
y4 -.2500 -.0479 .9196 .8447 -.0921 -.2116 -.7871 1.0000 

 

Cut points are defined as 

1,1

2,1 2,2

3,1 3,2

4,1 4,2 4,3

  0
1,       1.5
1,       0.5
1.5,  0.5,  1

ν

ν ν

ν ν

ν ν ν

=

= − =

= − =

= − = − =

 

We define the response indicators: 

,1

,2

,3

,4

1,2
1,2,3
1,2,3
1,2,3,4

i

i

i

i

j
j
j
j

=

=

=

=

 

The model is iteratively estimated by the FMOP-method. ,i kj is the interval index by 

respondent i for equation k, corresponding with the four equations k=1,...,4. We start with 

iteration t=0 for 0β = . We define the under- and upper residuals 

( )

( )

,

, ,

,

,

, ,

,

( ) ( )
,( ) ( )

, ( ) ( )
,

( ) ( )
,( ) ( )

, ( ) ( )
,

( )
( )

( )

( )
( )

1 ( )

i k

i k i k

i k

i k

i k i k

i k

t t
j k i ktt t

j k i k j t t
j k i k

t t
j k i ktt t

j k i k j t t
j k i k

x
E x e

x

x
E x e

x

ϕ ν β
ε ε ν β

ν β

ϕ ν β
ε ε ν β

ν β

′− −
′≤ − = =

′Φ −

′−
′> − = =

′− Φ −





 

We define the sets of respondents 1 2
, ,,  k j k jS S  (k=1,…4; j=1,..., kJ ) who are in the response 

categories j≤  or j> respectively. We solve the equations  

 ( ) ( )
, ,

1 2
, ,

0
i k i k

k j k j

t t
j j

i S i S

e e
∈ ∈

+ =∑ ∑ 



, 1,...,4,  1,..., kk j J= =  (5c.1) 
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for ( )
,
t

k jν and find estimated cut-points ( )
,
t

k jν  in the tth iteration. These cut-points ( )
,
t

k jν  

are substituted to define the generalized residuals. The estimated generalized residuals 
( )

,i k

t
je in the tht  iteration are 

( ) ,

,

, ,

( ) ( )
1 , ,

( ) ( )
1 , 1 ,

( ) ( )

( ) ( )
i k ik

i k

i k i k

t t
j k i k j k i kt

j t t
j k i k j k i k

x x
e

x x

ϕ ν β ϕ ν β

ν β ν β

−

− −

′ ′− − −
=

′ ′Φ − −Φ −
, 

where ,i kj  is the interval index by respondent i for equation k. corresponding with the 

four equations k=1,...,4. We now define the ( )K M×  orthogonality conditions 

 
( )

,, ,
1

1 0
i k

N
t

i k m j
i

x e
N =

=∑ , 1,...,4,  1,...,k m M= =  (5c.2) 

We have now two equation systems  (5c.1) and (5c.2), which are simultaneously solved. 

Then we calculate the in-between error covariance matrix 

( ) ( ) ( )
, ,

( )
,

1

1
i k i k

N
t tt

k k j j
i

e e
N

σ
′′

=

 
Σ = =  

 
∑ . 

We repeat (5c.1) and (5c.2) with the new ( 1)tβ +  and ( 1)
,
t

k jν + , and find new estimates. We 

repeat (5c.1) and (5c.2) after weighting with the inverse covariance matrix solving 

( )
,

1( )
,

1
0

i k

N
t t

j i k
i

e x
−

=

 Σ = ∑ . 

In the end we estimate the corresponding covariance matrix of the estimators ˆ ˆ,  β ν  

by the well-known sandwich formula. 

We estimate each non-diagonal element ,k kσ ′  of the latent full covariance matrix from 

the corresponding element ,k kσ ′  of the in-between error covariance matrix. The method 

is described in detail in the Appendix. 
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Table 5c.2a. Beta’s, Standard errors and Error correlations (N=10,000) 
(Gray means, the coefficient is NOT in the 95% confidence interval of cmp) 

N=10000 beta’s 
MoM 

s.e. 
MoM 

beta’s 
cmp 

s.e. 
cmp 

Eq.y1: var. x1 0.9794 0.0264 0.9799 0.0269 
Eq.y1: var. x2 0.9910 0.0240 0.9927 0.0241 
Eq.y1: var. x3 0.9715 0.0222 0.9715 0.0223 
Eq.y1: var. x4 0.9694 0.0281 0.9703 0.0282 

Eq.y1: cutp. 1 -0.0024 0.0193 -0.0072 0.0191 

Eq.y2: var. x1 1.0329 0.0290 1.0557 0.0279 
Eq.y2: var. x2 1.9859 0.0396 1.9991 0.0387 
Eq.y2: var. x3 3.0286 0.0550 3.0558 0.0535 
Eq.y2: var. x4 4.0158 0.0733 4.0526 0.0711 

Eq.y2: cutp. 1 -1.0215 0.0321 -1.0154 0.0311 
Eq.y2: cutp. 2 1.4972 0.0386 1.5026 0.0358 

Eq.y3: var. x1 -1.0234 0.0444 -1.0065 0.0406 
Eq.y3: var. x2 2.0183 0.0640 1.9981 0.0586 
Eq.y3: var. x3 -3.0813 0.0847 -3.0441 0.0805 
Eq.y3: var. x4 4.1387 0.1152 4.0610 0.1097 

Eq.y3: cutp. 1 -0.9753 0.0447 -0.9675 0.0428 
Eq.y3: cutp. 2 0.5115 0.0407 0.4993 0.0387 

Eq.y4: var. x1 -1.0079 0.0212 -1.0078 0.0209 
Eq.y4: var. x2 0.4957 0.0169 0.4931 0.0165 
Eq.y4: var. x3 -1.0180 0.0173 -1.0143 0.0171 
Eq.y4: var. x4 0.9727 0.0224 0.9696 0.0218 

Eq.y4: cutp. 1 -1.5233 0.0282 -1.5198 0.0273 
Eq.y4: cutp. 2 -0.5125 0.0233 -0.5165 0.0223 
Eq.y4: cutp. 3 1.0335 0.0253 1.0289 0.0245 

 
Estimated Full correlation matrix 

MoM 
Estimated Full correlation matrix 

cmp 
1.0000    1.0000    
0.4496 1.0000   0.4703 1.0000   

-0.5450 0.2527 1.0000  -0.4841 0.2306 1.0000  
0.1934 0.5877 -0.0846 1.0000 0.2110 0.6266 -0.0857 1.0000 
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Table 5c.2b. Beta’s, Standard errors and Error correlations (N=5,000) 
(Base dataset of 10000 case, only every second case is used) 

N=5000 beta’s 
MoM 

s.e. 
MoM 

beta’s 
cmp 

s.e. 
cmp 

Eq.y1: var. x1 1.0192 0.0385 1.0161 0.0392 
Eq.y1: var. x2 0.9952 0.0341 0.9949 0.0344 
Eq.y1: var. x3 0.9598 0.0319 0.9573 0.0312 
Eq.y1: var. x4 0.9484 0.0398 0.9460 0.0397 
Eq.y1: cutp. 1 -0.0330 0.0273 -0.0361 0.0270 
Eq.y2: var. x1 1.0832 0.0418 1.0969 0.0402 
Eq.y2: var. x2 1.9317 0.0552 1.9383 0.0534 
Eq.y2: var. x3 3.0125 0.0790 3.0381 0.0749 
Eq.y2: var. x4 4.0011 0.1053 4.0333 0.0997 
Eq.y2: cutp. 1 -1.0462 0.0462 -1.0508 0.0442 
Eq.y2: cutp. 2 1.4679 0.0542 1.4743 0.0501 
Eq.y3: var. x1 -1.0418 0.0636 -1.0452 0.0567 
Eq.y3: var. x2 1.9988 0.0847 2.0070 0.0807 
Eq.y3: var. x3 -3.0718 0.1113 -3.0620 0.1128 
Eq.y3: var. x4 4.1625 0.1512 4.1297 0.1548 
Eq.y3: cutp. 1 -0.9182 0.0619 -0.8988 0.0598 
Eq.y3: cutp. 2 0.6152 0.0562 0.6031 0.0554 
Eq.y4: var. x1 -0.9814 0.0300 -0.9829 0.0292 
Eq.y4: var. x2 0.4882 0.0238 0.4860 0.0233 
Eq.y4: var. x3 -1.0281 0.0246 -1.0261 0.0244 
Eq.y4: var. x4 0.9506 0.0322 0.9492 0.0306 
Eq.y4: cutp. 1 -1.5350 0.0398 -1.5408 0.0390 
Eq.y4: cutp. 2 -0.5381 0.0327 -0.5369 0.0321 
Eq.y4: cutp. 3 1.0050 0.0362 1.0132 0.0343 

 
Estimated Full correlation matrix 

MoM 
Estimated Full correlation matrix 

cmp 
1.0000    1.0000    
0.5288 1.0000   0.4930 1.0000   

-0.3185 0.3089 1.0000  -0.3905 0.3245 1.0000  
0.3014 0.6468 -0.1165 1.0000 0.2201 0.6138 -0.0981 1.0000 

0.3014: 95% confidence interval cmp [0.1462 : 0.2916] 
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Table5c.2c. Beta’s, Standard errors and Error correlations (N=2,000) 
(Base dataset of 10000 case, only every fifth case is used) 

N=2000 beta’s 
MoM 

s.e. 
MoM 

beta’s 
cmp 

s.e. 
cmp 

Eq.y1: var. x1 0.9929 0.0574 0.9814 0.0590 
Eq.y1: var. x2 0.9259 0.0507 0.9186 0.0509 
Eq.y1: var. x3 0.9448 0.0512 0.9392 0.0483 
Eq.y1: var. x4 0.9605 0.0628 0.9593 0.0609 
Eq.y1: cutp. 1 -0.0165 0.0418 -0.0081 0.0414 
Eq.y2: var. x1 0.9729 0.0643 0.9747 0.0588 
Eq.y2: var. x2 1.9411 0.0822 1.9198 0.0827 
Eq.y2: var. x3 2.9799 0.1168 2.9654 0.1138 
Eq.y2: var. x4 3.9235 0.1548 3.9077 0.1502 
Eq.y2: cutp. 1 -1.0068 0.0705 -0.9718 0.0677 
Eq.y2: cutp. 2 1.4167 0.0828 1.4069 0.0746 
Eq.y3: var. x1 -1.0846 0.0992 -1.0725 0.0990 
Eq.y3: var. x2 2.1905 0.1320 2.2170 0.1474 
Eq.y3: var. x3 -3.3765 0.1985 -3.4092 0.2109 
Eq.y3: var. x4 4.4998 0.2566 4.5139 0.2813 
Eq.y3: cutp. 1 -1.2270 0.1100 -1.2034 0.1120 
Eq.y3: cutp. 2 0.5252 0.0976 0.5239 0.0939 
Eq.y4: var. x1 -0.9667 0.0465 -0.9641 0.0458 
Eq.y4: var. x2 0.4765 0.0372 0.4680 0.0362 
Eq.y4: var. x3 -1.0109 0.0378 -0.9994 0.0386 
Eq.y4: var. x4 0.9413 0.0511 0.9278 0.0472 
Eq.y4: cutp. 1 -1.5391 0.0629 -1.5537 0.0605 
Eq.y4: cutp. 2 -0.5099 0.0509 -0.5206 0.0493 
Eq.y4: cutp. 3 0.9616 0.0541 0.9675 0.0527 

 
Estimated Full correlation matrix 

MoM 
Estimated Full correlation matrix 

cmp 
1.0000    1.0000    
0.5982 1.0000   0.5334 1.0000   

-0.2635 0.3972 1.0000  -0.3878 0.2402 1.0000  
0.3114 0.6242 0.0889 1.0000 0.2159 0.6098 -0.0263 1.0000 

 

  



35 

 

Table5d. 2d. Beta’s, Standard errors and Error correlations (N=1,000) 
(Base dataset of 10000 case, only every tenth case is used) 

N=1000 beta’s 
MoM 

s.e. 
MoM 

beta’s 
cmp 

s.e. 
cmp 

Eq.y1: var. x1 0.9058 0.0798 0.8950 0.0820 
Eq.y1: var. x2 0.9667 0.0719 0.9531 0.0718 
Eq.y1: var. x3 0.8916 0.0726 0.8826 0.0651 
Eq.y1: var. x4 0.9127 0.0880 0.9065 0.0839 
Eq.y1: cutp. 1 0.0109 0.0581 0.0193 0.0578 
Eq.y2: var. x1 1.0706 0.0998 1.0462 0.0885 
Eq.y2: var. x2 1.8804 0.1089 1.8831 0.1162 
Eq.y2: var. x3 2.9807 0.1617 2.9809 0.1636 
Eq.y2: var. x4 3.9341 0.2122 3.9386 0.2157 
Eq.y2: cutp. 1 -1.0250 0.0946 -1.0196 0.0955 
Eq.y2: cutp. 2 1.3482 0.1172 1.3420 0.1055 
Eq.y3: var. x1 -1.1157 0.1235 -1.1258 0.1419 
Eq.y3: var. x2 2.1102 0.1724 2.1565 0.1987 
Eq.y3: var. x3 -3.2868 0.2639 -3.3482 0.2912 
Eq.y3: var. x4 4.4391 0.3299 4.5149 0.3847 
Eq.y3: cutp. 1 -1.1548 0.1573 -1.1448 0.1512 
Eq.y3: cutp. 2 0.5539 0.1232 0.5435 0.1322 
Eq.y4: var. x1 -1.0006 0.0658 -1.0014 0.0664 
Eq.y4: var. x2 0.4593 0.0526 0.4538 0.0507 
Eq.y4: var. x3 -1.0533 0.0529 -1.0494 0.0562 
Eq.y4: var. x4 0.9190 0.0742 0.9095 0.0665 
Eq.y4: cutp. 1 -1.6660 0.0938 -1.7127 0.0892 
Eq.y4: cutp. 2 -0.5368 0.0729 -0.5796 0.0724 
Eq.y4: cutp. 3 1.0163 0.0762 1.0410 0.0778 

 
Estimated Full correlation matrix 

MoM 
Estimated Full correlation matrix 

cmp 
1.0000    1.0000    
0.7347 1.0000   0.5360 1.0000   

-0.3041 0.0570 1.0000  -0.3291 0.2410 1.0000  
0.1500 0.6412 -0.1904 1.0000 0.2013 0.5261 -0.1288 1.0000 

0.7347: 95% confidence interval cmp [0.3862 : 0.6583] 
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Table5c. 2e. Beta’s, Standard errors and Error correlations (N=1,000) 
(A new created dataset of 1000 cases) 

N=1000 beta’s 
MoM 

s.e. 
MoM 

beta’s 
cmp 

s.e. 
cmp 

Eq.y1: var. x1 0.9490 0.0846 0.9536 0.0827 
Eq.y1: var. x2 0.9997 0.0726 1.0142 0.0747 
Eq.y1: var. x3 0.9368 0.0702 0.9446 0.0696 
Eq.y1: var. x4 0.9916 0.0871 0.9944 0.0908 
Eq.y1: cutp. 1 0.0282 0.0604 0.0380 0.0599 
Eq.y2: var. x1 0.8773 0.0956 0.8964 0.0795 
Eq.y2: var. x2 1.9966 0.1537 1.9868 0.1219 
Eq.y2: var. x3 2.9308 0.2170 2.9092 0.1597 
Eq.y2: var. x4 3.8298 0.2892 3.8065 0.2112 
Eq.y2: cutp. 1 -0.9652 0.0989 -0.9571 0.0952 
Eq.y2: cutp. 2 1.2944 0.1303 1.3508 0.1049 
Eq.y3: var. x1 -1.0870 0.1472 -1.0583 0.1484 
Eq.y3: var. x2 2.1040 0.2332 2.1304 0.2109 
Eq.y3: var. x3 -3.2458 0.2952 -3.2709 0.2838 
Eq.y3: var. x4 4.2512 0.4029 4.3088 0.3815 
Eq.y3: cutp. 1 -1.0302 0.1601 -1.0904 0.1513 
Eq.y3: cutp. 2 0.6065 0.1224 0.5906 0.1338 
Eq.y4: var. x1 -0.9638 0.0650 -0.9645 0.0649 
Eq.y4: var. x2 0.4585 0.0521 0.4732 0.0518 
Eq.y4: var. x3 -0.8987 0.0531 -0.9015 0.0500 
Eq.y4: var. x4 0.9384 0.0712 0.9204 0.0672 
Eq.y4: cutp. 1 -1.4835 0.0854 -1.4945 0.0842 
Eq.y4: cutp. 2 -0.5339 0.0690 -0.5255 0.0680 
Eq.y4: cutp. 3 0.8221 0.0821 0.8277 0.0699 

 
Estimated Full correlation matrix 

MoM 
Estimated Full correlation matrix 

cmp 
1.0000    1.0000    
0.5582 1.0000   0.3511 1.0000   

-0.5354 0.4227 1.0000  -0.5507 0.1285 1.0000  
0.3158 0.7640 -0.3565 1.0000 0.1896 0.6688 -0.1589 1.0000 

0.5582: 95% confidence interval cmp [ 0.1834 : 0.4989] 
0.4227: 95% confidence interval cmp [-0.1869 : 0.4199] 
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Table5c.2f. Beta’s, Standard errors and Error correlations (N=1,000) 
(Again a new created dataset of 1000 cases) 

 beta’s 
MoM 

s.e. 
MoM 

beta’s 
cmp 

s.e. 
cmp 

Eq.y1: var. x1 0.9592 0.0809 0.9417 0.0800 
Eq.y1: var. x2 0.9477 0.0738 0.9352 0.0708 
Eq.y1: var. x3 0.9064 0.0648 0.8982 0.0652 
Eq.y1: var. x4 0.9397 0.0831 0.9374 0.0833 
Eq.y1: cutp. 1 0.0766 0.0588 0.0701 0.0577 
Eq.y2: var. x1 0.9359 0.0837 0.9287 0.0860 
Eq.y2: var. x2 2.0244 0.1159 2.0294 0.1236 
Eq.y2: var. x3 2.8800 0.1441 2.8982 0.1618 
Eq.y2: var. x4 3.8478 0.1961 3.8657 0.2161 
Eq.y2: cutp. 1 -0.9785 0.0996 -0.9942 0.0962 
Eq.y2: cutp. 2 1.4898 0.1128 1.4802 0.1161 
Eq.y3: var. x1 -0.8380 0.1291 -0.8675 0.1328 
Eq.y3: var. x2 1.8184 0.1703 1.8429 0.1721 
Eq.y3: var. x3 -2.8861 0.2167 -2.8964 0.2404 
Eq.y3: var. x4 3.8474 0.2721 3.8491 0.3136 
Eq.y3: cutp. 1 -1.0368 0.1240 -1.0327 0.1390 
Eq.y3: cutp. 2 0.3357 0.1239 0.3267 0.1197 
Eq.y4: var. x1 -1.0838 0.0679 -1.0809 0.0705 
Eq.y4: var. x2 0.5400 0.0531 0.5334 0.0530 
Eq.y4: var. x3 -1.0304 0.0550 -1.0243 0.0558 
Eq.y4: var. x4 1.0777 0.0685 1.0711 0.0698 
Eq.y4: cutp. 1 -1.5268 0.0823 -1.5160 0.0856 
Eq.y4: cutp. 2 -0.4549 0.0726 -0.4652 0.0695 
Eq.y4: cutp. 3 1.0477 0.0764 1.0275 0.0767 

 
Estimated Full correlation matrix 

MoM 
Estimated Full correlation matrix 

cmp 
1.0000    1.0000    
0.6303 1.0000   0.6316 1.0000   

-0.1647 0.5655 1.0000  -0.1230 0.2274 1.0000  
0.1451 0.6184 0.0078 1.0000 0.1891 0.5982 0.0324 1.0000 

(0.5655: 95% confidence interval cmp [-0.1068 : 0.5155) 
 

We conclude that the method is stable in the number N of observations and it does not 

differ significantly from the cmp-estimates. 
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6. Concluding remarks. 

In this paper we suggest a new approach to the statistical analysis of ordinal data, 

where the errors are supposed to be correlated. The basic idea is that the ordinally 

observed dependent variables reflect latent continuously-valued random variables Y  and 

that the observations are coarsened corresponding to an interval grid { }1 1
( , ]

J

j j j
ν ν− =

=  of 

Y  on the real axis, where the unknown cut-points ν  have to be estimated as well. Each 

observed category corresponds to one interval on the real axis. For cases where Y  is 

more-dimensional, say K, and errors are correlated there is mostly a formidable 

impediment. The usual ML-estimation procedure requires to evaluate likelihoods, which 

are multivariate normal  integrals  over K -dimensional blocks. If this has to be performed 

this is very cumbersome and time -consuming. In this paper we show that estimation of 

the latent generating model behind the coarsened observations of dependent variables 

can be done in a much simpler way than usual without the need for multi-dimensional 

integration or large-scale simulations. 

In our approach we depart from the requirement that the difference between the 

observation Y  and its predictor Xβ′ , that is ( )Y Xβ′− , cannot be further explained by X

. This is translated into the zero-covariance conditions (2.5) and gives those conditions a 

significance on their own. When the errors are normally distributed this coincides with 

the ML-conditions. 

The identifying moment conditions are found by substituting the residuals in the 

regular zero covariance-conditions for exact data by the corresponding generalized 

residuals corresponding to the ordinal data. 

The approach closely resembles the traditional GLS- and SUR-approaches used to 

estimate linear models on exactly observed dependent variables. 

For this method an assumption about the marginal distributions of the error vector is 

required. We choose for normality, which enables us to use (3.6). Although we restricted 

ourselves to assuming normal errors, it is not difficult to generalize this method for other 

error distributions as well, where the logistic and the lognormal are the foremost 

candidates (see in those cases, e.g., Maddala (1983, p.369) for the formulae of the 

generalized residuals). The estimation method remains unchanged. 

This approach seems to smoothly close the gap between the analysis on exactly 

observable data and qualitative ordinal data. We saw in the above examples that the effect 
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on variances (confidence bands and intervals) caused by SUOP compared to OP is in some 

cases small and in other cases large. The regression coefficients are mostly similar, which 

is not surprising as both estimators are consistent estimators. This is also the case for the 

comparison between traditional OLS and SUR estimates in traditional econometrics. The 

advantage lies in the possibility to account for error correlations, caused by using the 

additional information supplied by the error correlations. Standard error deviations are 

assessed without assuming a specific structure of the covariance matrix before estimation. 

In the panel data example in Section 6a it appears that the standard deviations of the 

estimates are doubled or more taking error correlation into account. Hence, in this case 

the reliability reduction when taking error correlations into account is huge. 

In this paper we focus on the qualitative versions FMOP and SUOP of FGLS and SUR. 

However, this method seems generally appropriate for two broad types of model 

estimation situations characterized by Roodman (2011) as: 

“1) those in which a truly recursive data-generating process is posited 

and fully modeled, and 

2) those in which there is simultaneity but instruments allow the construction 

of a recursive set of equations, as in two-stage least squares (2SLS).” 

Our method may be compared with the methods, (based on the GHK algorithm), 

developed by Capellari and Jenkins (2003), based on simulated moments (Hajivassiliou 

and McFadden (1998), and Roodman (2007, 2020)). Those methods aim at getting 

numerical estimates of the log-likelihood by simulation and finding, by variation of the 

unknown parameters to be estimated, which parameter values maximize the simulated 

log-likelihood of the sample. This requires the repeated evaluation of multiple normal 

integrals and makes the procedure time-consuming. In our approach we do not need to 

evaluate multiple integrals nor large-scale simulations, and therefore the method is not 

restricted with respect to the size K  of the equation system. Moreover, we can handle an 

arbitrary number ( 2)J >  of outcome categories. We do not have to restrict ourselves to 

dichotomous (biprobit) data only. The method can be used for any number of equations 

K  and any number of interval categories kJ . For instance, in our SUOP-example (Section 

6.b) we estimated eight equations, 75 effects and 32 cut points simultaneously. It is 

obvious that direct observation is a limiting case of coarsening and consequently the 

methos may also be used when the data set consists of a mixture of directly observed and 
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ordinal data. Classical least-squares based estimation methods on exactly observed data 

may be seen as a specific limiting case. 

Our estimation method appears to require only a few minutes of computing time, 

which compares favorably with the traditional methods each of which requires much 

more time. The method may be interpreted as a generalization of classical least squares 

models that deal with exact observations to include the estimation of models on the basis 

of more-dimensional ordered probit-type observations.  

In this paper we restricted ourselves to the most straightforward OP observation 

mode.  In a forthcoming study we will generalize this approach to tackle the case where 

the sample consists of a mixture of categorical, censored, and exactly observed data. 
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Appendix. 
 
A. Estimation of the latent error covariance matrix Σ. 

 
For the estimation of the latent covariance matrix starting from the estimated b̂ -

estimates and the in-between covariance matrix Σ̂ we propose the following method. We 
make use of the fact that in order to estimate the true error covariances ,k kρ ′  by ,ˆk kρ ′  for 

two OP-equations we notice that for each pair ,k k′  we only have to look for the bivariate 
marginal distribution of ,k kε ε ′ . Consider for instance a cluster of three observations (1, 2, 
3). The sample likelihood is 1 1 2 2 3 3 1,2,3( ,  ,   ;0, )P S S Sε ε ε∈ ∈ ∈ Σ , where 

1 1 ,1 ,1 ,1( ]
i ij i i j iS x xν β ε ν β−= − < ≤ −  and 2S  and 3S  similarly defined. However, the bivariate 

marginal likelihood provides the same information on 1,2σ  as the trivariate full likelihood. 

In the K -dimensional covariance matrix there are ( 1) / 2K K −  different non-diagonal 
elements For instance, if K =8 as in the model in Section 6, this boils down to 28 simple 
two-dimensional estimations. 

Applying the Gram-Schmidt decomposition, there holds for the pair ,k kε ε ′  

 2
, , , , ,. 1i k k k i k i k k kε ρ ε η ρ′ ′ ′= + −  (A.1) 

where , ,,i k i kε η  are independent (0,1)N  drawings.9 The coefficient 2
,1 k kρ ′−  guarantees 

that 2
,( ) 1i kσ ε ′ = . We have , , ,( . )i k i k k kE ε ε ρ′ ′= . When we consider the estimated in-between 

error covariance . , ,( , )k k i k i kEρ ε ε′ ′= , then its value depends only on the two one-

dimensional grids ik and i,k’  and ,k kρ ′ . We may now simulate , ,,i k i kε ε ′  for various values 
of ,k kρ ′  by means of (A.1), and calculate the corresponding in-between covariances 

, , ,
1

1 .
N

k k i k i k
i

e e
N

ρ ′ ′
=

= ∑ , corresponding to the grids ik and i,k’. We notice that the dependent 

variable vector ,i kY  is observed according to a uniform i -independent grid k

{ } { }( ) ( ) ( )
1 1 1

( , ]
J Jk k k

j j jj j

k kν ν− = =
= = S , while the errors ,i kε  are observed according to i -dependent 

individual grids 
ik { } { }( ) ( ) ( )

1 , , ,1 1
( ,  ]

J Jk k k
j i k j i k j i kj j

k kx x xν β ν β β− = =
= − − = −S . 

We consider the set of all two-dimensional grids for all observation units.  { ik , i,k’} 1
N
i=

= k,k’ 
We write for the sample in-between covariance 

, , , , , ,
1

1 .( ). .( ) ( )
N def

k k i k k k i k k k k k
i

e e f
N

ρ ρ ρ ρ′ ′ ′ ′ ′
=

= =∑ . 

We estimate the value of the latent ,k kρ ′  by comparing the observed sample in-

between covariance ,
ˆ

k kρ ′  with its simulated counterpart ,k kρ ′  for various values of the 
 

9 We use standard normal draws for , ,,  i k i kε η ′ , because in (A.1) the simulated errors have to be (0,1)N . 
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latent ,k kρ ′ . It appears that there is one value ,ˆk kρ ′  solving , ,
ˆ( )k k k kf ρ ρ′ ′= . In order to gain 

insight into the relation between the latent ,k kρ ′  and the corresponding in-between 
covariance ,k kρ ′  we did some simulation experiments for three different two-dimensional 
grids. In Table A1 we present three different two-dimensional grids with the different 

,k kρ ′  values for different values of ,k kρ ′ . We describe one example in detail. Consider the 

two-dimensional grid with 1 {( ,0], (0, )}= −∞ ∞ , 2  {( ,0], (0, )}= −∞ ∞  in the middle part of 
Table A1. We simulate a sample from a two-dimensional normal distribution with a 
correlation with ρ =0.1. We find an in-between covariance ρ =0.043. For ρ =0.2 we find 
a corresponding value of ρ =0.087, and so on. In Table A1 we present the relation between 

ρ  and ρ  for three different two-dimensional grids. We found that the function ( ),k kf ρ ′

= ,k kρ ′  is monotonically increasing in ,k kρ ′  for all grids we tested. See also Aitkin(1964). 

We conclude that for a given grid (1, 2) the function ( )f ρ = ρ  is monotonically 
increasing in ρ .  
 
Table A1. Relation between covariance ρ  and in-between covariance ρ . 

grid ρ  ρ  grid ρ  ρ  grid ρ  ρ  
ν11=-0.5 0.1 0.075 ν1=0.0 0.1 0.043 ν11=-1.0 0.1 0.032 
ν12= 0.0 0.2 0.141  0.2 0.087 ν12= 2.0 0.2 0.051 
ν13= 0.75 0.3 0.198  0.3 0.128  0.3 0.092 
 0.4 0.290 ν2=0.0 0.4 0.167 ν21=-2.0 0.4 0.119 
ν21=-0.75 0.5 0.342  0.5 0.224 ν22= 1.0 0.5 0.140 
ν22=-0.5 0.6 0.451  0.6 0.264  0.6 0.167 
ν23= 0.5 0.7 0.505  0.7 0.321  0.7 0.189 
N=10,000 0.8 0.601 N=10,000 0.8 0.367 N=10,000 0.8 0.217 
 0.9 0.681  0.9 0.457  0.9 0.219 

 
The solution ,ˆk kρ ′  of , ,

ˆ( )k k k kf ρ ρ′ ′=  is, using Slutsky’s Law, a consistent estimator 

,ˆk kρ ′  of the population parameter ,k kρ ′ . Doing this for each non-diagonal element of Σ , 
we estimate the underlying non-diagonal elements of the full correlation matrix Σ . The 
diagonal elements are equal to one by assumption. This yields a consistent estimator ˆ

εΣ  
of the error covariance matrix εΣ . Confidence intervals can be found by the delta-method. 

Fig. A1 shows the graph of the function ( ),k kf ρ ′  for the left grid in Table A1. 
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Fig. A1. ρ as a function of ρ  
 

In Table 4 we presented the full correlation matrices calculated by SUOP and by cmp. 
In Table A2. below we present the in-between covariance matrix and the full covariance 
matrix for the five-year panel considered in Section 6a. We notice the fact that the grid-
wise observation causes a considerable loss of information. About 60% of the information 
is lost. The estimates are not based on structural assumptions like ‘random effects’ or 
errors where the correlations are specific functions of the time difference. Actually, this 
result could be used to estimate and test specific functional specifications of the 
covariance matrix. From table A2. it is already obvious that ‘random effects’ is to be 
rejected for this panel structure, because in that case the non-diagonal elements would 
have to be roughly equal to each other. 
 

Table A2. In-between and full covariance matrices for the five-year panel 
 In-between covariance matrix Full covariance matrix 

 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013 
2009 .6434     1.0000     
2010 .4852 .6292    .8899 1.0000    
2011 .4123 .4841 .6289   .7984 .8945 1.0000   
2012 .3771 .4210 .4793 .6277  .7490 .8133 .8910 1.0000  
2013 .3413 .3725 .4156 .4944 .6321 .7064 .7482 .7970 .9270 1.0000 
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B. Table 3 complete. 
 
 

Table 3. Comparison of the parameter estimates and their s.e.’s for Ordered Probit, 
Method of Moments, and Maximum Likelihood. 

McK-Z R2 0.1489 0.1481 0.1154 
Health Satisfaction OPβ  OPσ  SUOPβ  SUOPσ  MLβ  MLσ  
Health: AGE -.0695 .0046 -.0693 .0048 -.0651 .0045 
Health: AGE2 .0006 .00005 .0006 .00005 .0006 .00005 
Health: D_FEMALE -.0182 .0175 -.0181 .0174 -.0134 .0166 
Health: D_SINGLE -.0514 .0291 -.0510 .0293 -.0570 .0278 
Health: D_SEPARATED -.1241 .0240 -.1238 .0243 -.1108 .0230 
Health: Ln_LABOURINC .0289 .0025 .0288 .0026 .0227 .0022 
Health: CHILDREN .0357 .0123 .0356 .0126 .0308 .0114 
Health: D_EAST -.1678 .0201 -.1670 .0196 -.1402 .0193 
Health: DISABLE -.7991 .0272 -.7971 .0268 -.5825 .0232 
Health: Cut point 1 -1.8277 .0184 -1.8240 .0191 -1.8163 .0181 
Health: Cut point 2 -1.1161 .0131 -1.1094 .0134 -1.1122 .0130 
Health: Cut point 3 -.3432 .0109 -.3415 .0109 -.3399 .0107 
Health: Cut point 4 .9468 .0123 .9442 .0124 .9409 .0122 
McK-Z R2 0.0278 0.0278 0.0196 
Sleep Satisfaction OPβ  OPσ  SUOPβ  SUOPσ  MLβ  MLσ  
Sleep: AGE -.0380 .0041 -.0381 .0042 -.0348 .0041 
Sleep: AGE2 .0004 .00004 .0004 .00004 .0003 .00004 
Sleep: D. FEMALE -.1213 .0172 -.1213 .0172 -.1204 .0164 
Sleep: D. SINGLE .0508 .0302 .0505 .0307 .0594 .0284 
Sleep: D. SEPARATED -.0762 .0253 -.0762 .0260 -.0658 .0238 
Sleep: Ln(HH.LABOURINC) .0067 .0021 .0066 .0020 .0062 .0018 
Sleep: # of CHILDREN .0219 .0121 .0220 .0122 .0164 .0113 
Sleep: YEARS of EDUCATION .0316 .0032 .0315 .0031 .0117 .0028 
Sleep: D. EAST GERMANY -.1063 .0199 -.1065 .0196 -.0763 .0192 
Sleep: Cut point 1 -1.6918 .0175 -1.6912 .0174 -1.7036 .0174 
Sleep: Cut point 2 -.9791 .0123 -.9800 .0123 -.9831 .0123 
Sleep: Cut point 3 -.9251 .0106 -.2970 .0106 -.2940 .0104 
Sleep: Cut point 4 .7286 .0114 .7269 .0115 .7150 .0113 
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McK-Z R2 0.1345 0.1342 0.1133 
Household Income Satisfaction OPβ  OPσ  SUOPβ  SUOPσ  MLβ  MLσ  
HH inc.: AGE -.0648 .0045 -.0649 .0048 -.0593 .0045 
HH inc.: AGE2 .0008 .00005 .0008 .00005 .0007 .00005 
HH inc.: D. FEMALE .0837 .0175 .0836 .0175 .0764 .0167 
HH inc.: D. SINGLE -.1398 .0304 -.1404 .0308 -.1326 .0279 
HH inc.: D. SEPARATED -.2582 .0255 -.2583 .0264 -.2404 .0237 
HH inc.: Ln(LABOURINC) .0396 .0026 .0395 .0027 .0349 .0025 
HH inc.: Ln(HH.LABOURINC) .0261 .0021   .0261 .0021 .0262 .0014 
HH inc.: # of CHILDREN -.0088 .0122 -.0085 .0122 -.0212 .0095 
HH inc.: YEARS of EDUCATION .0808 .0033 .0806 .0034 .0693 .0032 
HH inc. :D. EAST GERMANY -.3862 .0201 -.3867 .0200 -.3472 .0185 
HH-inc.: Cut point 1 -1.7878 .0179 -1.7106 .0174 -1.7012 .0175 
HH-inc.:Cut point 2 -1.0544 .0129 -1.0564 .0128 -1.0323 .0126 
HH-inc.:Cut point 3 -.2814 .0108 -.2858 .0107 -.2743 .0103 
HH-inc.:Cut point 4 .9480 .0123 .9442 .0126 .9020 .0121 
McK-Z R2 0.1503 0.1495 0.1306 
Individual Income Satisfaction OPβ  OPσ  SUOPβ  SUOPσ  MLβ  MLσ  
Ind. inc.: AGE -.0562 .0045 -.0562 .0048 -.0565 .0045 
Ind. inc.: AGE2 .0008 .00005 .0008 .00005 .0007 .00005 
Ind. inc.: D. FEMALE -.1239 .0174 -.1239 .0173 -.1180 .0169 
Ind. inc.: D. SINGLE -.0595 .0290 -.0602 .0292 -.0613 .0277 
Ind. inc.: D. SEPARATED -.1016 .0240 -.1016 .0245 -.0885 .0233 
Ind. inc.: Ln(LABOURINC) .0727 .0026 .0725 .0028 .0728 .0025 
Ind. inc.: # of CHILDREN .0311 .0121 .0314 .0119 .0277 .0102 
Ind. inc.: YEARS of EDUCATION .0752 .0033 .0749 .0034 .0670 .0032 
Ind. inc.: D. EAST GERMANY -.2912 .0200 -.2916 .0198 -.2561 .0189 
Ind. inc.: DISABLILITY RATE -.1510 .0270 -.1513 .0272 .0430 .0177 
Ind. Inc.: Cut point 1 -1.3425 .0147 -1.3428 .0144 -1.2938 .0141 
Ind. Inc.: Cut point 2 -.7372 .0117 -.7401 .0116 -.7361 .0114 
Ind. inc.: Cut point 3 -.0300 .0107 -.0358 .0106 -.0442 0103 
Ind. inc.: Cut point 4 1.1096 .0129 1.1043 .0133 1.0914 .0130 
McK-Z R2 0.0566 0.0564 0.0475 
Dwelling Satisfaction OPβ  OPσ  SUOPβ  SUOPσ  MLβ  MLσ  
Dwelling: AGE -.0432 .0047 -.0424 .0049 -.0397 .0046 
Dwelling: AGE2 .0006 .00005 .0006 .00005 .0005 .00005 
Dwelling: D. FEMALE .0333 .0183 .0332 .0182 .0409 .0168 
Dwelling: D. SINGLE -.2409 .0313 -.2414 .0322 -.2312 .0282 
Dwelling: D. SEPARATED -.2384 .0265 -.2384 .0266 -.2126 .0242 
Dwelling: Ln(LABOURINC) .0179 .0027 .0178 .0027 .0151 .0026 
Dwelling: Ln(HH.LABOURINC) .0134 .0022   .0133 .0022 .0142 .0020 
Dwelling: # of CHILDREN -.0079 .0127 -.0077 .0127 -.0159 .0109 
Dwelling: YEARS of EDUC. .0313 .0034 .0312 .0034 .0213 .0033 
Dwelling: DISABLILITY RATE -.1317 .0283 -.1320 .0287 .0258 .0245 
Dwelling: Cut point 1 -2.1862 .0261 -2.1806 .0256 -2.1637 .0252 
Dwelling: Cut point 2 -1.6332 .0172 -1.6321 .0170 -1.6211 .0169 
Dwelling: Cut point 3 -.9408 .0123 -.9453 .0122 -.9364 0121 
Dwelling: Cut point 4 .2504 .0106 .2477 .0107 .2360 .0105 
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McK-Z R2 0.0902 0.0901 0.0940 
Leisure Time Satisfaction OPβ  OPσ  SUOPβ  SUOPσ  MLβ  MLσ  
Leisure: AGE -.0433 .0043 -.0432 .0044 -.0406 .0042 
Leisure: AGE2 .0006 .00005 .0006 .00005 .0005 .00005 
Leisure: D. FEMALE -.0353 .0175 -.0352 .0175 -.0257 .0160 
Leisure: Ln(LABORINC) -.0273 .0026 -.0272 .0028 -.0299 .0025 
Leisure: Ln(HH.LABOURINC) .0047 .0019   .0047 .0020 .0051 .0018 
Leisure: # of CHILDREN -.0847 .0114 -.0848 .0116 -.0896 .0102 
Leisure: YEARS of EDUCATION .0055 .0033 -.0056 .0032 -.0043 .0031 
Leisure: D. EAST GERMANY -.1293 .0202 -.1288 .0200 -.0921 .0185 
Leisure: DISABLE RATE -.1039 .0277 -.1036 .0287 .0498 .0249 
Leisure: Cut point 1 -1.8463 .0194 -1.8454 .0200 -1.8090 .0188 
Leisure: Cut point 2 -1.2129 .0136 -1.2092 .0138 -1.2051 .0133 
Leisure: Cut point 3 -.4716 .0109 -.4687 .0110 -.4846 .0108 
Leisure: Cut point 4 .6486 .0113 .6499 .0113 .6359 .0114 
McK-Z R2 0.0834 0.0834 0.0763 
Family Life Satisfaction OPβ  OPσ  SUOPβ  SUOPσ  MLβ  MLσ  
Family life: AGE -.0572 .0048 -.0573 .0048 -.0534 .0046 
Family life: AGE2 .0006 .00005 .0006 .00005 .0005 .00005 
Family life: D. SINGLE -.4871 .0297 -.4880 .0295 -.4665 .0270 
Family life: D. SEPARATED -.5665 .0260 -.5666 .0267 -.5420 .0236 
Family life: Ln(LABOURINC) .0013 .0027 .0012 .0028 -.0012 .0025 
Fam. life: Ln(HH.LABOURINC) .0167 .0022   .0166 .0022 .0180 .0020 
Family life: YEARS of EDUC. .0040 .0034 .0038 .0034 -.0084 .0032 
Family life: D. EAST GERMANY -.1370 .0209 -.1376 .0208 -.1049 .0192 
Family life: DISABLE RATE -.1290 .0281 -.1293 .0289 .0321 .0239 
Family life: Cut point 1 -2.1949 .0250 -2.1905 .0244 -2.1609 .0240 
Family life: Cut point 2 -1.6631 .0172 -1.6638 .0169 -1.6476 .0168 
Family life: Cut point 3 -.9763 .0125 -.9813 .0124 -.9741 .0123 
Family life: Cut point 4 .1778 .0106 .1749 .0107 .1609 .0105 
McK-Z R2 0.1193 0.1187 0.0965 
Standard of Living Satisfaction OPβ  OPσ  SUOPβ  SUOPσ  MLβ  MLσ  
Stand.living: AGE -.0760 .0047 -.0758 .0048 -.0699 .0045 
Stand.living: AGE2 .0008 .00005 .0008 .00005 .0008 .00005 
Stand.living: D. FEMALE .1111 .0180 .1108 .0180 .1113 .0155 
Stand.living: D. SINGLE -.2982 .0293 -.2984 .0292 -.2762 .0266 
Stand.living: D. SEPARATED -.3720 .0259 -.3712 .0265 -.3415 .0234 
Stand.living: Ln(LABOURINC) .0312 .0026 .0310 .0027 .0269 .0025 
Std.living: Ln(HH.LABOURINC) .0225 .0021   .0225 .0022 .0228 .0017 
Stand.living: YEARS of EDUC. .0714 .0034 .0711 .0034 .0576 .0032 
Stand.living: D. EAST GERM. -.3197 .0205 -.3199 .0201 -.2755 .0180 
Stand.living: Cut point 1 -2.2120 .0254 -2.1991 .0251 -2.2096 .0242 
Stand.living: Cut point 2 -1.6048 .0167 -1.6018 .0164 -1.5980 .0163 
Stand.living: Cut point 3 -.8760 .0119 -.8219 .0118 -.8087 .0117 
Stand.living: Cut point 4 .5312 .0111 .5264 .0113 .5095 .0109 
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