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ABSTRACT
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Toward Proactive Policy Design: 
Identifying ’To-Be’ Energy-Poor 
Households Using Shap for Early 
Intervention
Identifying at-risk populations is essential for designing effective energy poverty interventions. 

Using data from the HILDA Survey, a longitudinal dataset representative of the Australian 

population, and a multidimensional index of energy poverty, we develop a machine 

learning model combined with SHAP (SHapley Additive exPlanations) values to document 

the short- and long-term effects of individual and contextual factors—such as income, 

energy prices, and regional conditions—on future energy poverty outcomes. The findings 

emphasize the importance of policies focused on income stability and may be used to 

shift the policy focus from reactive measures, which address existing poverty, to preventive 

strategies that target households showing early signs of vulnerability.
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1. Introduction1

Energy poverty, a condition where households are unable to access or af-2

ford adequate, reliable, and clean energy services, has emerged as a critical3

global issue. Recent estimates suggest that 750 million people still lack access4

to electricity worldwide, and more than 2 billion people lack access to clean5

cooking fuels (International Energy Agency (2024)). In economic literature,6

energy poverty has garnered independent attention and is now studied as a7

distinct subject. This is because energy poverty is only moderately corre-8

lated with income poverty and yet negatively related to relevant economic9

outcomes, including human capital formation (Phoumin and Kimura (2019)),10

well-being (Nguyen-Phung and Le (2024)), and health (Pondie et al. (2024)).11

In this context, the identification of populations at risk is essential for12

formulating e!ective policy interventions. While there has been significant13

research on the socioeconomic determinants of energy poverty (Fry et al.14

(2022); Awan et al. (2022); Koomson and Awaworyi Churchill (2022)), most15

studies look only at contemporaneous relationships, assuming that control16

variables fully represent the information influencing the observed outcome.17

This approach may overlook the potential role of long-memory processes and18

the enduring influence of contextual factors. If energy poverty is indeed19

a chronic state shaped by an individual’s history, such perspectives could20

provide an incomplete understanding. Evidence on the long-term e!ects of21

specific characteristics on energy poverty remains scarce, highlighting the22

need for further research in this area.23

This paper takes a step forward by analyzing the short- and a long-term24

e!ects of individual variables and contextual factors—such as income, energy25

prices, regional conditions, and other socioeconomic variables—on future en-26

ergy poverty outcomes. We use the 2007–2021 waves of the Household, In-27

come and Labour Dynamics in Australia (HILDA) Survey1, a micropanel28

survey representative of the Australian population, which allows us to track29

people over up to 15 consecutive years. Since energy poverty is a multifaceted30

construct, we utilize a Multidimensional Energy Poverty Index (MEPI) in-31

corporating five items that capture both objective (expenditure-based) and32

subjective (self-assessed) dimensions. We then use Machine Learning (ML)33

models to forecast the MEPI and employ SHapley Additive exPlanations34

(SHAP) (Lundberg and Lee (2017)) to interpret these predictions. SHAP35

1https://melbourneinstitute.unimelb.edu.au/HILDA.
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quantifies the contribution of each variable, highlighting how specific factors36

at di!erent points in time influence future energy poverty outcomes. This37

approach provides an understanding of the importance of each variable and38

the temporal dynamics shaping energy poverty trajectories.39

This paper makes three significant contributions to the literature. First,40

the paper aims to advance the methodological toolkit for studying energy41

poverty. SHAP has been applied successfully to the study of financial time42

series data (Mokhtari et al. (2019)), short-term load forecasting (Lee et al.43

(2023)), and aviation’s predictive maintenance (Alomari and Andó (2024)).44

To the best of our knowledge, this is the first analysis to combine SHAP tech-45

niques with high-quality micropanel data to identify household-level drivers46

of energy poverty. By using SHAP, the paper highlights how its application47

in energy poverty research extends beyond the capabilities of traditional an-48

alytical methods, o!ering dynamic and actionable insights for policymakers.49

Second, the paper contributes to the growing body of literature employing50

ML techniques to analyze the determinants of energy poverty. This approach51

is still limited but increasingly recognized for its potential to guide alleviation52

strategies2 (Dalla Longa et al. (2021); van Hove et al. (2022); Spandagos et al.53

(2023); Gawusu et al. (2024)). However, much of the existing ML-based evi-54

dence relies on contemporaneous relationships between explanatory variables55

and energy poverty, largely due to the prevalence of cross-sectional or short-56

duration datasets. In contrast, our study leverages a 15-year longitudinal57

dataset to explore predictive dynamics. While the previous studies utilized58

Extreme Gradient Boosting (XGBoost), k-Nearest Neighbors (k-NN), Ran-59

dom Forest (RF), and Artificial Neural Networks (ANN), this paper focuses60

on capturing temporal dependencies. By employing SHAP, we quantify and61

disentangle the contribution of each feature to predictions, both overall and62

at specific points in time, o!ering insights into how past conditions influence63

future energy poverty.64

Third, historically, public initiatives that address energy poverty—65

particularly in developed nations—have primarily focused on providing fi-66

nancial assistance and energy subsidies to individuals currently classified as67

(energy) poor. This approach operates on the assumption that immediate68

2Unlike traditional regression methods, which require prior assumptions about poten-
tial correlations and their functional forms, ML techniques allow these relationships to
naturally emerge during model training and excel at capturing complex, non-linear depen-
dencies.
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interventions can e!ectively alleviate energy poverty in the short term. How-69

ever, this focus overlooks households that are at risk of becoming energy-poor70

in the future, leaving a significant portion of the potentially vulnerable popu-71

lation unaddressed. Our approach challenges this perspective by emphasizing72

the importance of both the timing and the magnitude of key variables, such73

as income stability and energy prices, in shaping energy poverty trajectories.74

By identifying these “to-be energy-poor” households, our paper paves the75

way for more proactive policies that that tackle the historical, individual-76

level causes of energy poverty, moving beyond temporary relief measures.77

We consider Australia to be a compelling subject for our research. Es-78

calating energy costs have been a major concern over the last decade in79

Australia as electricity prices have almost tripled (Proctol (2022)). Forward80

electricity prices for 2023 delivery in Australia’s National Electric Market81

surged from approximately $48 in 2021 to $156/MWh in 2022 (the 52-week82

average), peaking around $247/MWh in October 2022 (Simshauser (2023)).83

This substantial surge, relative to household income, has placed a heavier84

burden on household budgets and exacerbated issues related to energy ac-85

cess and a!ordability (OECD (2023)). Furthermore, despite its fragmented86

system of energy assistance—varied across states and territories—existing87

programs are largely focused on mitigating costs through price subsidies and88

welfare payments for energy bills (Willand (2022)). These measures heavily89

rely on means-testing and target low-income groups (Simshauser and Miller90

(2023)), often overlooking individuals who are not currently energy-poor but91

are at risk of becoming so. By identifying to-be energy-poor individuals be-92

fore they fall into vulnerability, our paper shifts the focus from reactive policy93

interventions to preventive, forward-looking interventions.94

The paper shows that historical household income levels are pivotal in95

forecasting energy poverty outcomes, particularly over longer time horizons96

and in more severe cases. It also highlights the significant impact of income97

variations, independent of static income levels. This e!ect intensifies when98

transitioning from short-term to long-term poverty, suggesting that income99

volatility is particularly harmful in the long run. Additionally, energy prices100

have a moderate, non-linear e!ect in the short term but become less relevant101

for longer horizons. These findings emphasize the importance of policies102

focused on income stability and may be used to shift the policy focus from103

reactive measures, which address existing poverty, to preventive strategies104

that target households showing early signs of vulnerability.105

The paper is structured as follows: Section 2 reviews the relevant liter-106
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ature on energy poverty, its determinants, and the application of machine107

learning methods in this context. Section 3 describes the data, key variables,108

and the construction of the MEPI. Section 4 outlines the methodological ap-109

proach, including model development and the use of SHAP for interpretabil-110

ity. Section 5 presents the results, highlighting the predictive performance of111

the models and the temporal dynamics of key variables. Section 6 discusses112

sensitivity analyses and robustness checks. Finally, Section 7 concludes with113

key findings, policy implications, and limitations of the study. The paper114

includes three appendices with technical details.115

2. Review of the literature116

Energy poverty can be defined as a household’s inability to a!ord or access117

energy services needed to support adequate living conditions and human118

development. While translating into practice conceptual definitions of energy119

poverty is typically a challenge and has been the object of extensive discussion120

in the literature (for an overview see Sy and Mokaddem (2022)) the focus has121

generally been put on the inability of households to a!ord and have access122

to adequate energy services.123

The global interest in energy poverty stems from its far-reaching conse-124

quences, which are multifaceted. Research based on international macroe-125

conomic data shows that the prevalence of energy poverty negatively a!ects126

development, health outcomes, and average schooling levels (Banerjee et al.127

(2021)). Moreover, energy access and a!ordability are crucial dimensions of128

multidimensional poverty, and, as such, they can be negatively related to129

economic growth (Bao and Liao (2024)). Studies based on microeconomic130

panel data are consistent with this notion, showing that energy poverty sig-131

nificantly a!ects a number of personal-level outcomes, including subjective132

well-being (Lin and Okyere (2021)) and health (Zhang et al. (2021b); Pondie133

et al. (2024)). Energy poverty is also negatively related to children’s academic134

performance (Zhang et al. (2021a)) and human capital formation (Phoumin135

and Kimura (2019)).136

Using international comparable data, research shows that country-level137

factors such as education, governance quality, technology advancements,138

economic development, and health expenditures are relevant determinants139

of household-level energy poverty depending on the country’s GDP (Boţa-140

Avram et al. (2024)). Moreover, income inequality and, to a lesser extent,141

climate conditions also play a role (Igawa and Managi (2022)). Furthermore,142
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the sources of electricity production also contribute to shaping energy poverty143

outcomes, reflecting the importance of a country’s energy mix (Kocak et al.144

(2023)). Additionally, high energy costs, accessibility, and the types of en-145

ergy sources further shape these outcomes (Primc et al. (2021)). Ine”cient146

building structures, dwelling size, age, thermal insulation, floor area, and147

heating system can be significantly correlated with various forms of energy148

deprivation (Karpinska and Śmiech (2020)).149

At the household level, income constraints, coupled with high energy150

prices, can culminate in the di”culty of paying bills, energy debt, and151

even the disconnection of energy supplies (Awan et al. (2022); Manasi and152

Mukhopadhyay (2024)). Educational attainment is inversely correlated with153

energy poverty, primarily due to energy-saving practices and an improved154

economic situation. Education enhances knowledge and the capacity to make155

choices that benefit household welfare, leading to better living conditions156

through improved decision-making and the adoption of more e”cient energy157

sources (Crentsil et al. (2019)). Place of residence, gender, and household158

size also exhibit a statistically significant relationship with multidimensional159

poverty due to increased energy consumption needs (Abbas et al. (2020)).160

Additionally, age e!ects may arise from life cycle patterns, household ar-161

rangements, and risk-taking behavior, while poor health conditions may hin-162

der access to energy services and goods by altering spending priorities and163

consumption patterns (Fry et al. (2022)). Labor market status, as well as164

marital status, are frequently found to be significantly associated with en-165

ergy deprivation, with the e!ect being particularly pronounced in developing166

economies (Abbas et al. (2020); Awan et al. (2022); Manasi and Mukhopad-167

hyay (2024)). Cultural characteristics and parental behavior (Prakash et al.168

(2022)), and energy subsidies also contribute to shaping energy deprivation169

outcomes (Hosan et al. (2023)).170

Despite these advances, a significant gap in the literature persists: un-171

derstanding how current circumstances shape energy poverty outcomes later172

in life. The studies discussed above primarily emphasize contemporaneous173

relationships between explanatory factors and energy poverty, regardless of174

whether the findings stem from cross-sectional or panel data analyses. Stud-175

ies on energy poverty dynamics are scarce, with only a few papers addressing176

this issue through dynamic panel models in which energy poverty is allowed177

to depend on past energy poverty (Alem and Demeke (2020); Drescher and178

Janzen (2021); Halkos and Kostakis (2023)).179
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2.1. Machine learning models in energy poverty research180

A recent body of literature has introduced ML techniques to predict en-181

ergy poverty outcomes. Evidence based on an XGBoost framework to predict182

the risk of experiencing energy poverty in the Netherlands identifies income,183

house value, and house ownership as the main drivers of energy poverty184

(Dalla Longa et al. (2021)). In a similar setting, and based on 11 European185

countries, income, household size, and floor area were consistent predictors186

(van Hove et al. (2022)). Evidence based on an RF classifier across the Eu-187

ropean Union uncovers household- and country-level predictors like dwelling188

conditions, energy e”ciency, and gas supplier switching rates (Spandagos189

et al. (2023)).190

While the previous studies are based on a single energy poverty indicator,191

other studies define a multidimensional energy poverty index similar to ours.192

These studies showed that in Asian and African countries, wealth, marital193

status, and residence attributes are significant predictors of poverty (Abbas194

et al. (2020)). Recent research has further advanced these methodologies by195

employing ensemble models, such as XGBoost, combined with RF and ANN,196

revealing the critical importance of education and food security indicators in197

determining energy poverty (Gawusu et al. (2024)).198

2.2. Measurement199

The literature typically distinguishes between objective (expenditure-200

based) and subjective (self-assessed) approaches. Because poorer households201

often spend higher proportions of their budget on energy-related expenses rel-202

ative to higher-income households (Sy and Mokaddem (2022)), expenditure-203

based measures label a household as energy-poor when the income that204

households spend on energy is above a specific threshold. For instance, a205

household may be classified as energy poor if i) its share of income spent on206

energy is greater than twice the national median (the 2M indicator); ii) its207

share of income spent on energy exceeds 10% (the Ten Percent Rule, TPR);208

or iii) its actual energy expenditures are above the national median and, at209

the same time, their income net of energy costs is below the o”cial national210

income poverty line (the Low Income High Costs indicator, LIHC). These211

measures have been used extensively in the literature (Fry et al. (2022);212

Awan et al. (2022); Manasi and Mukhopadhyay (2024)).213

However, while expenditure-based measures are objective and transpar-214

ent, they may overlook intentional reduction in energy consumption by low-215

income households. If vulnerable households limit their energy consumption216
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to prioritize other services and goods, measures based on the actual energy217

costs may underestimate the true prevalence of energy poverty. Moreover,218

low-income families can resort to energy credits and repayments to smooth219

their monthly energy costs over time. To overcome these limitations, applied220

research has relied on individuals’ self-evaluations of their ability to a!ord221

and access specific energy services (Prakash et al. (2022); Spandagos et al.222

(2023)). Following this criterion, several multidimensional energy poverty223

indexes have been proposed, gathering information related to basic energy224

services, including cooking, lighting, and household appliances in developing225

countries (Abbas et al. (2020); Gawusu et al. (2024)).226

3. Data and key variables227

We use the HILDA Survey, a comprehensive, nationally representative228

longitudinal study that examines the economic, social, and demographic dy-229

namics of Australian households. Initiated in 2001 and conducted annually,230

it tracks individuals and households over time, providing important infor-231

mation about income, labor market activities, health, education, and family232

relationships, among other factors. The original 2001 sample included ap-233

proximately 7,600 households and 13,000 individuals, with periodic updates234

to account for attrition. While panel data is subject to selection and attri-235

tion bias, potentially limiting the generalizability of findings, HILDA has a236

high average retention rate of over 90% across waves. Nonetheless, to ad-237

dress concerns about attrition bias, several sensitivity checks are presented238

in Section 6.239

We utilize a balanced panel, allowing for varying durations. Our bench-240

mark analysis relies on data spanning up to T = 8 consecutive years, enabling241

us to conceptualize energy poverty at time T as a function of characteristics242

from the previous T → 1 periods. This approach yields 106,475 observations243

from a cohort of 7,977 individuals with complete records. To enhance the ro-244

bustness of our findings, in Section 6 we present additional results for panels245

spanning T = 2, T = 4, T = 12, and T = 14 years.246

We model energy poverty as a function of socioeconomic factors that are247

standard in the literature. These include household income, employment248

status, schooling, age, marital status, parenthood, health status, and house-249

hold size. We also include controls for remoteness, region of residence (the250

six states and two territories of Australia, reference: New South Wales), and251

wave-specific e!ects. Due to their potential impact on energy poverty, we use252
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annual electricity and gas prices at the state level drawn from the Australian253

Bureau of Statistics (Australian Bureau of Statistics (2024)). All income and254

price variables used in the paper are transformed using the OECD equiva-255

lence scale and normalized into real terms using the yearly consumer price256

index. We also include variables to control for macroeconomic conditions at257

the regional level. The economic cycle a!ects the chance to find and keep258

jobs, and it also impacts the likelihood of having a stable income source.259

We include controls for the regional unemployment rate, per capita GDP,260

and GDP growth. We also include the regional participation rate to capture261

competition e!ects in the labor market and the labor force share of part-time262

workers to account for the fact that areas with a higher proportion of tem-263

porary and/or part-time contracts typically experience greater uncertainty264

in work hours and income stability. In Appendix A we provide a detailed265

summary of the variables used in the analysis.266

3.1. Energy poverty267

Energy poverty is a multifaceted construct; therefore, we rely on five268

items that capture both expenditure-based and subjective dimensions. The269

expenditure-based measures include the 2M, TPR, and LIHC indicators,270

which are widely recognized in the energy poverty literature and detailed271

in Section 2.2. We also consider two self-assessed indicators based on the272

household’s inability to pay to heat their home because of a shortage of273

money (Heat) and pay electricity, gas, or telephone bills on time (Arrears).274

The MEPI index is calculated as follows: Let J = 5 represent the set of275

poverty indicators, with element j, j ↑ J and m = card(J). Let I be a set276

of individuals, with element i, i ↑ I, and T be a set of time periods, t ↑ T ,277

representing a specific moment when the survey was conducted. Let EPijt278

denote the status of the ith individual in the j-th indicator during period279

t. If an individual i is poor under indicator j in the period t, then EPijt280

takes the value of one, and zero otherwise. Following the family of indexes281

typically described in the literature on material deprivation (Dhongde et al.282

(2019)), individual i’s weighted poverty score is given by:283

MEPIit =

(
∑

j→J

wjEPijt

)
, ↓i ↑ I, t ↑ Ti; Ti ↔ T, (1)

where wj denotes the weight assigned to the poverty indicator j, with284 ∑
j→J wj = 1. Hence, the MEPIit ranges from 0 to 1 and captures the per-285

centage of dimensions in which the individual is deprived. An individual i is286
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regarded as energy poor if MEPIit > m̄, where m̄ is a cut-o! point. Thus, our287

dependent variable is a binary variable that takes value one if the individual288

is energy-poor, and zero otherwise. For the baseline parametrization, we set289

m̄ = 0. In Section 6, we provide robustness checks with alternative cut-o!290

points, namely m̄ = 0.2 and m̄ = 0.4.291

While it is common to assign equal weights to the indicators, we empha-292

size the indicators where deprivation is less common, the so-called frequency-293

based weighting approach (Decancq and Lugo (2013)). The weight given to294

an indicator is proportional to the percentage of individuals not classified as295

poor under that specific indicator within a particular state. In other words,296

wj =
(1→ nj)∑
j→J(1→ nj)

, (2)

where nj is the proportion of poor individuals in dimension j. This choice297

is motivated by the idea that not having access to common items should be298

a more relevant determinant of deprivation than less common items. Addi-299

tionally, the weights are based on the distribution of achievements in society300

without considering any value judgment about what the trade-o!s between301

items should be. For greater granularity and accuracy, the weights are cal-302

culated separately for each wave. There are two advantages to using that303

approach. Firstly, it allows the poverty of a given individual to increase if304

their conditions do not change and the conditions of all others improve. Sec-305

ondly, it adapts automatically over time, considering economic conditions306

and social and cultural preferences when accessing items.307

The MEPI shows two desirable characteristics, as it can be used to mea-308

sure the prevalence and average intensity of energy poverty in a population.309

Prevalence is given by:310

p =
q

card(I)
, (3)

where q is the number of deprived individuals, q =
∑

i→I,t→Ti
I (MEPIit > m̄),311

where the indicator function I(·) equals one if its argument holds, and zero312

otherwise. The intensity of energy poverty, i.e., the average poverty score of313

individuals identified as energy poor, is:314

a =

∑
i→I,t→Ti

MEPIit ↗ I(MEPIit > m̄)

q
. (4)

The average population MEPI is then:315

MEPI = a↗ p. (5)
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The advantages of these axiomatic properties have been highlighted in316

previous work of Crentsil et al. (2019).317

4. Methodological approach318

We employed ML techniques to model energy poverty at time T as a319

function of historical socioeconomic and demographic variables from the pre-320

ceding years. Importantly, no data from year T were used in the predictions,321

ensuring that our forecasting is based entirely on prior historical data. Al-322

though the model’s accuracy can be improved by including contemporaneous323

characteristics, we refrain from doing so for two main reasons. First, our fo-324

cus is on the role of historical factors. Introducing contemporaneous variables325

could potentially mask the contribution of lagged e!ects, especially if auto-326

correlation exists in the data. Second, and more relevant, including contem-327

poraneous variables may introduce reverse causality between energy poverty328

and socio-demographic variables, such as health and schooling (Phoumin and329

Kimura (2019); Pondie et al. (2024)). By only considering past variables, we330

eliminate the risk of current energy poverty influencing these characteristics.331

We then integrate the ML techniques with an interpretability framework.332

This integration allows us not only to predict energy poverty outcomes but333

also to understand the contribution of each historical factor to these predic-334

tions. This involves a systematic process of data preparation, model devel-335

opment, and the application of feature importance and explainability tech-336

niques.337

4.1. Data preparation338

To capture the temporal dynamics of the variables, we created lagged339

features, which serve as the input to the predictive models. Generically,340

for each original feature, we obtained new features representing their values341

from each of the previous years. This transformation ensures that the model342

has access to the full temporal history of each variable, enabling it to learn343

patterns and relationships that may influence the energy poverty indicator in344

the T -th year. We split the dataset into training, validation, and test subsets345

to facilitate model development and evaluation. For our baseline estimates346

(T = 8), out of the 7,977 participants in our dataset, 6,382 (80%) were347

randomly selected for training and validating the predictive models, while348

the remaining 1,595 participants (20%) were included in the test set. The349
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test set was held out and used exclusively to evaluate the final performance350

of the models, providing an unbiased estimate of their forecasting accuracy.351

To avoid data leakage across the splits, each individual was assigned ex-352

clusively to one subset, ensuring that no participant’s data appeared in more353

than one split. Additionally, we removed any user identifiers from the data354

to prevent the models from learning user-specific patterns, which could limit355

their generalizability. The year variable (“wave” variable) was also excluded356

from the input features to ensure that the models focus on patterns within357

the socioeconomic and demographic variables rather than relying on specific358

temporal markers.359

Before training the models, we standardized the data to ensure consis-360

tency and reliability in our modeling process. This involved removing the361

median and scaling the data according to the interquartile range, a method362

particularly e!ective at managing outliers and recommended as a best prac-363

tice in machine learning (Sullivan et al. (2021)). Such standardization is364

crucial in predictive modeling; it normalizes all input features to a similar365

scale, thereby enhancing the model’s generalization capabilities and prevent-366

ing variables with larger magnitudes from disproportionately influencing the367

learning process (Mahmud Sujon et al. (2024)). To prevent data leakage,368

the scaling parameters were calculated using only the training set and then369

applied to the test sets.370

Feature engineering was explored in this study to improve the forecasting371

power of our models. Specifically, we expanded the set of socioeconomic, ge-372

ographical, and contextual factors by including a range of interaction terms373

and decomposing variables into levels and yearly variations. While this ap-374

proach increased the model’s ability to identify energy-poor households to375

78.04% compared to the final model (cf. Table 1), it reduced the overall376

accuracy, with the ability to correctly classify non-energy-poor households377

dropping to 59.31%. Moreover, the increased complexity introduced by ad-378

ditional variables would pose practical challenges for policymakers, making379

the results harder to interpret and apply. Consequently, we retained the380

model configuration that provided a better balance between performance381

and practical usability for policy design. The results of the models with the382

expanded feature set can be provided by the authors upon request.383

4.2. Model development384

We treat the energy poverty forecasting task as a classification problem.385

Specifically, households are classified as energy-poor depending on whether386
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their MEPI is greater than m̄ (cut-o! point), where m̄ = 0 for the baseline387

model.388

The dataset used in this study exhibited a significant class imbalance,389

with most participants (73.55%) being classified as not energy-poor and a390

smaller proportion (26.45%) classified as energy-poor. This imbalance poses391

challenges for predictive modeling, as standard machine learning methods392

tend to favor the majority class, potentially leading to poor performance in393

identifying the minority class (Provost (2000)). To address this issue, we394

tested three ensemble classifiers, namely random under-sampling boost clas-395

sifiers (Sei!ert et al. (2010)), balanced bagging classifier (for a review on396

bagging classifiers, see, e.g., Galar et al. (2012)), and easy ensemble classifier397

(Liu et al. (2009)). Due to space constraints, we describe here only the bal-398

anced bagging classifier. The descriptions of the other classifiers are provided399

in Appendix B.400

A balanced bagging classifier is an ensemble technique that combines the401

predictions of multiple base models, e.g., decision trees, in order to improve402

the robustness and accuracy of the outcomes. This method specifically ad-403

dresses class imbalance by ensuring that each decision tree in the ensemble404

is trained on a balanced subset of the dataset. These subsets are created by405

resampling the original training data, wherein each subset contains a rep-406

resentative distribution of both minority (energy-poor) and majority (not407

energy-poor) classes. In order to further refine the modeling approach, we408

implemented the classifiers in an One-vs-the-Rest (OvR) binary classification409

framework (Murphy (2012)). OvR decomposes the problem into multiple410

binary classification tasks, where each class is treated as a separate binary411

problem against all other classes. Although OvR is commonly used for multi-412

class classification tasks, this methodology fits one classifier per class, which413

enables the models to focus on the distinctions between the two groups.414

We optimized the hyperparameters of our classifiers using a grid search,415

which tested various configurations to identify settings that maximize model416

performance. For details on the specific hyperparameters and grid configura-417

tions, see Appendix B. We employed 5-fold cross-validation on the training418

dataset to ensure the robustness of the hyperparameters across di!erent data419

splits, selecting the best set based on the highest Receiver Operating Char-420

acteristic - Area Under Curve (ROC AUC) score. This metric is crucial for421

datasets with class imbalances, like the HILDA Survey, as it fairly assesses422

the model’s discriminatory power between energy-poor and non-energy-poor423

households.424
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The final model was trained on the complete training set using the identi-425

fied optimal hyperparameters and subsequently evaluated on a held-out test426

set of 1,595 participants. This approach ensured an unbiased assessment of427

the model’s forecasting accuracy. All experiments were conducted with a428

fixed seed to guarantee reproducibility.429

4.3. Feature importance and explainability430

To interpret the forecast of our model and understand the contributions of431

individual features, we employ the SHAP. SHAP is a well-known method for432

explainability in the literature due to its theoretical consistency and ability433

to provide both local and global explanations of model behavior (Lundberg434

and Lee (2017)). It is rooted in cooperative game theory and assigns each435

feature a contribution value toward the model’s prediction, being thus model436

agnostic. The SHAP value (ω) for a given feature k is given by,437

ωk =
∑

S↑N\{k}

|S|!(|N |→ |S|→ 1)!

|N |! [f(S ↘ {k})→ f(S)] , (6)

where N is the set of all features, S is a subset of features excluding feature438

k, and f(S) is the model’s prediction based only on the features in the subset439

S. This equation ensures that each feature’s contribution is fairly allocated440

by accounting for all possible combinations of features.441

We use SHAP values to evaluate the importance of each input variable442

in the model and to identify when a particular variable had the most sig-443

nificant influence on the predictions. We did not perform feature selection444

before training the models, despite its potential to improve the overall model445

performance. This decision ensured that no variables were excluded prema-446

turely, allowing the model to consider all socioeconomic, geographical, and447

contextual factors and their interactions. With this approach, we can iden-448

tify not only which variables to target for interventions but also the optimal449

timing for these interventions.450

5. Results451

5.1. Models evaluation452

Among the models evaluated, the balanced bagging classifier achieved the453

highest average ROC AUC of 73.22% ± 4.48%, outperforming the random454

under-sampling boost classifier (69.50% ± 6.22%) and the easy ensemble455
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Table 1: Predictive performance of the balanced bagging classifier model across varying
time windows.

Window size (T ) Sensitivity (%) Specificity (%) ROC AUC (%)

2 70.39 69.23 69.81
4 70.82 73.65 72.24
8

73.25 66.77 70.01
(baseline)

12 71.60 65.79 68.69
14 78.74 66.31 72.52

Notes: This table highlights the trade-o!s between sensitivity, specificity, and
ROC AUC. Sensitivity reflects the model’s ability to correctly identify energy-
poor households, while specificity measures its ability to correctly identify
non-energy-poor households. ROC AUC evaluates the model’s overall capacity
to discriminate between energy-poor and non-energy-poor households across
varying decision thresholds. These results were obtained from the evaluation
of unseen data (i.e., unseen participants).

classifier (70.59% ± 4.82%). Based on these findings, the balanced bagging456

classifier was selected for detailed analysis. Performance metrics for the other457

models are provided in Appendix B Table C.3. A grid search was conducted458

to optimize the balanced bagging classifier’s configuration for the baseline459

window. The best setup included 100 estimators with bootstrapping of fea-460

tures but not samples. Each estimator sampled 50% of the data, and the461

sampling strategy ensured an equal representation of energy-poor and non-462

energy-poor instances. Replacement was used in the resampling process.463

Table 1 presents the performance metrics. Sensitivity reflects the model’s464

ability to identify energy-poor households, specificity measures its ability to465

identify non-energy-poor households, and ROC AUC assesses overall discrim-466

ination performance. The baseline window (T = 8) achieved a ROC AUC of467

70.01%, with a sensitivity of 73.25% and a specificity of 66.77%.468

The results in Table 1 reveal how window size influences performance.469

Shorter windows (T = 2) yield balanced sensitivity (70.39%) and specificity470

(69.23%), with a ROC AUC of 69.81%. At T = 4, specificity improves sig-471

nificantly to 73.65%, leading to a higher ROC AUC of 72.24%. The baseline472

window (T = 8) prioritizes sensitivity, achieving the highest value 73.25%,473

but with a slightly lower specificity. For longer windows (T = 12 and T = 14),474

performance varies: T = 14 achieves the highest ROC AUC of 72.52% by475
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increasing sensitivity to 78.74%, though specificity stabilizes at 66.31%. On476

the other hand, T = 12 obtains the lowest ROC AUC.477

Overall, shorter windows (T = 2) favor specificity, while longer windows478

enhance sensitivity. This can be related to the nature of shorter windows479

capturing more immediate and recent information, which tends to reduce480

false positives and improve specificity. In contrast, longer windows incor-481

porate cumulative historical data, allowing the model to better detect pat-482

terns associated with energy poverty over time, which enhances sensitivity483

by reducing false negatives. The choice of window size thus depends on the484

specific policy objective, whether it prioritizes minimizing false positives or485

false negatives.486

5.2. Main explanatory factors and initial policy recommendations487

In this section, we analyze the predictive power of the model’s features,488

while the discussion of their directional e!ects is addressed in the next sec-489

tion.Figure 1 shows those factors that contribute at least 1 % to the observed490

outcome over the entire 8-year time window, ranked by order of importance.491

Household income emerges as the most critical determinant, contributing492

38.84% to the total predictive importance. Notably, changes in household493

income rank as the second most influential predictor, accounting for 11.29%.494

Variables with medium explanatory power include the part-time employ-495

ment rate (7.31%), which underscores the role of labor market dynamics496

in shaping energy poverty, and household size (6.82%), likely due to the497

balance between higher energy consumption needs and economies of scale.498

Energy prices (5.80%) emerge as the fifth predictive factor, and years of ed-499

ucation (5.67%) emphasize the interplay between human capital and energy500

poverty. Lower-contribution factors include poor health (3.09%), employ-501

ment status (2.78%), macroeconomic indicators such as the unemployment502

rate (2.53%), Gross State Product (GSP) per capita (2.38%), GSP per capita503

growth (2.26%), and the total labor force participation rate (2.11%). Finally,504

demographic and family characteristics such as the number of children at505

home, age groups, and marital status round out the analysis.506

Figure 2 breaks down the results from Figure 1 across the di!erent time507

lags. Household income consistently stands out as the most critical predic-508

tor, with its impact peaking at T → 1 (10.85%) and gradually diminishing509

over longer lag periods (T → 2 : 8.55%, T → 3 : 4.50%, T → 4 : 4.41%, T → 5 :510

4.17%, T → 7 : 3.99%). Household income changes are also among the top511
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Figure 1: Relative contribution (%) of predictive variables for energy poverty outcomes

across a 8-year time window.

Notes: i) The figure presents the top predictors with a summed normalized im-
portance of at least 1% for energy poverty outcomes; ii) Source: HILDA 2007–2021
waves.

predictors, particularly at T→1 (2.55%) and T→2 (2.21%). Additional contri-512

butions come from household income changes at T → 3 and T → 6, suggesting513

that historical fluctuations in income continue to influence household energy514

vulnerability years later. Energy prices operate mainly through a one-year515

lag, highlighting the e!ects of short-term fluctuations. Household size at516

T →1 (1.80%) and T →2 (1.22%) reflect the immediate impact of family com-517

position on energy poverty. The part-time employment rate also emerges518

as an important variable, particularly at T → 2 (1.55%) and T → 6 (1.50%),519

pointing to the relevance of the regional employment structure for household520

energy vulnerability.521

Overall, from a policy perspective, the results o!er a set of initial insights.522
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Figure 2: Relative contribution (%) of predictive variables for energy poverty outcomes

across an 8-year time window—discriminated by period.

Notes: (i) The figure presents the normalized importance of predictive variables
for energy poverty outcomes across individual time lags. Only predictors with a
normalized importance of at least 1% at any lag are shown; (ii) The su”x “T → j”
indicates the time lag of the feature relative to the prediction for year T ; (iii)
Source: HILDA 2007–2021 waves.

First, the strong association between income across all lags and current en-523

ergy poverty suggests that income can serve as an indicator to identify in-524

dividuals at risk of energy poverty, even in the long-term. Second, Figure 3525

focuses on the top 5 contributing variables and their relative contribution526

over time. The growing importance of household income and income changes527

toward T → 1 suggests that policies aimed at stabilizing income in the short528

term can have a great impact on mitigating immediate energy poverty risks.529

According to our results, such policies may benefit not only those with low530

incomes but also individuals with moderate incomes who experience above-531
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average income volatility. Third, the contribution of energy prices to energy532

poverty rises from T → 3 onwards, reflecting the fact that the energy burden533

over the last 3 years is partly responsible for current energy poverty out-534

comes. Therefore, price stabilization strategies that extend beyond just one535

year or rely on occasional interventions could be beneficial for policy. Finally,536

the contribution of household size also grows steadily over the time window,537

suggesting that energy poverty is critically influenced by recent adjustments538

in household arrangements and the changes in energy needs and economies539

of scale associated with them. In the next section, we identify key household540

sizes.541
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Figure 3: Evolution of the relative contribution (%) of the top five predictive variables for

energy poverty outcomes across a 8-year time window.

Notes: i) the figure highlights the temporal trends, persistence, and shifts in the
influence of di!erent variables across the individual time lags; ii) Source: HILDA
2007–2021 waves.

5.3. How key predictive variables shape energy poverty outcomes542

This section explores how key predictive variables influence their SHAP543

contributions. A positive SHAP value indicates a higher probability of energy544
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poverty, while a negative value reflects a reduced risk. The results, shown545

in Figure 4, are suggestive of some non-linear relationships. To facilitate546

interpretation, a fourth-degree least squares polynomial fit was applied to547

highlight the main trends. However, caution is advised at the plot extremes,548

where sparse data points may undermine the reliability of interpolations. As549

household income increases, the SHAP value decreases sharply. However,550

this e!ect is more intense at low and moderate income levels than at high551

incomes. Similarly, the scatter plot for yearly income variations is suggestive552

of a somewhat asymmetric e!ect, with income losses being relatively more553

relevant for energy poverty than income gains. This pattern reinforces earlier554

insights that interventions like income insurance, unemployment benefits, or555

programs aimed at shielding households from income shocks are essential for556

mitigating these risks.557

The part-time employment rate contributes to the energy poverty risk,558

particularly in areas where the part-time employment rate exceeds 30%. One559

possible explanation is that part-time jobs reflect labor market and income560

instability. These positions often lack critical benefits, such as health insur-561

ance or retirement plans, which heightens financial vulnerability. Addition-562

ally, fluctuating hours and earnings further amplify economic uncertainty.563

At lower part-time employment rates (below 25%), SHAP values remain rel-564

atively stable, indicating a minimal influence. These findings indicate that565

policies promoting income stability, benefits for part-time workers, and ac-566

cess to full-time employment opportunities are crucial for tackling energy567

poverty in regions with high part-time employment rates. Additionally, the568

results in Figure 3 reveal that regional labor market dynamics can have de-569

layed impacts on energy poverty, suggesting that such policies could produce570

lasting e!ects.571

The relationship between household size and SHAP values highlights a572

clear risk group: people living alone or in two-person households. This is573

likely because fixed energy costs pose a disproportionately heavy burden on574

them. As household size increases to 3–4 members, the likelihood of energy575

poverty decreases, likely reflecting economies of scale in energy consumption,576

which reduce the per-capita cost burden.577

Lastly, energy prices display a notable pattern, suggesting that below578

a certain threshold, they are not relevant for energy poverty. At low price579

levels, SHAP values remain relatively stable, but they increase steadily above580

$0.228 and rise significantly beyond $0.266. This is a relevant finding, as581

most representations in the literature describe the e!ect of energy prices on582
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Figure 4: Relationship between key predictive variables and SHAP values for energy

poverty outcomes.

Notes: i) Each point represents a household, with the x-axis indicating the fea-
ture value and the y-axis showing the SHAP value, which reflects the feature’s
contribution to the forecasting. Positive SHAP values indicate a higher likelihood
of energy poverty, while negative values suggest a reduced risk. The plots high-
light how changes in the variables influence the model’s forecasts; ii) The dashed
lines summarize the underlying trends and were calculated using a least squares
polynomial fit of degree 4. The interpolations at the extremes of the plots may
lack reliability due to the sparse data points in these regions, potentially leading
to less accurate representations of the trend; iii) Source: HILDA 2007–2021 waves.
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energy poverty in a linear, average manner. However, the results indicate583

that the relationship between energy prices and energy poverty is non-linear584

and nearly flat within certain ranges. In this context, energy subsidies and585

price controls may be ine!ective within these ranges, whereas informational586

campaigns and targeted support for individuals exposed to high prices could587

play a crucial role.588

6. Sensitivity checks589

In this section, we conduct a series of supplementary analyses. Specif-590

ically, we explore the sensitivity of the results to variations in i) the time591

length considered for the analysis and ii) the chosen cut-o! point for defining592

the energy poverty line. We also examine to what extent our findings might593

be a!ected by selection and attrition bias.594

In Figure 5 we depict the relative contribution of the predictive variables595

for alternative time spans. The results show robust consistency across scenar-596

ios, with household income emerging as the most significant determinant of597

energy poverty, irrespective of the time span. Notably, the predictive power598

of income changes significantly, increasing more than threefold from about599

5% when T = 2 to over 17% when T = 12 or T = 14. This suggests that600

income volatility and the uncertainty it creates are crucial factors influencing601

long-term energy poverty outcomes.602

Additionally, energy prices are relatively important in the short term (6–603

7%), but their relevance decreases over the long-term (< 4%). Similarly,604

improvements in education levels are more strongly associated with short-605

term energy poverty outcomes than with long-term ones. Household size606

maintains a consistent level of importance across both short- and long-term607

periods, reinforcing its stable role as a determinant of energy poverty.608

In Figure 6 we discriminate across the di!erent time lags. Perhaps the609

most relevant finding is that household income in the immediate past (T →610

1, T →2, T →3) holds less accumulated relevance for long-term energy poverty611

outcomes compared to short-term outcomes. This underscores the notion612

that energy poverty is influenced by a “long memory” process, where the613

individual’s entire history—albeit with diminishing weight—plays a critical614

role. Lagged energy prices are in the list of top contributors for energy615

poverty outcomes at T = 2 and T = 4. However, they disappear for T = 14,616

suggesting that in the long-term, the structural aspects of the individual are617

relatively more relevant than energy prices.618
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Figure 5: Relative contribution (%) of predictive variables for energy poverty outcomes

across alternative time windows.

Notes: i) This figure presents the top predictors with a summed normalized
importance of at least 1% for energy poverty outcomes. ii) Source: HILDA 2007–
2021 waves.
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Figure 6: Relative contribution (%) of predictive variables for energy poverty outcomes
across a T-year time window- discriminated by period.
Notes: i) This figure presents the normalized importance of predictive variables for en-
ergy poverty outcomes across individual time lags. Only predictors with a normalized
importance of at least 1% at any lag are shown; ii) The su”x “T → j” indicates the time
lag of the feature relative to the prediction for year T ; iii) Source: HILDA 2007–2021
waves.

24



0 10 20 30 40

Summed Normalized Importance (%)

Household Income

Household Income Change

Household Size

Years of Education

Poor Health

Employment Status

Married Status

GSP Per Capita Growth

Part-Time Employment Rate

Energy Price

Total Labor Force Participation Rate

Unemployment Rate

GSP Per Capita

Divorced Status

Age Group 36-45

Age Group 46-55

Children Presence at Household

V
ar
ia
b
le

41.54%

10.14%

6.77%

5.54%

4.60%

3.96%

3.88%

3.04%

3.00%

2.89%

2.78%

2.65%

1.97%

1.53%

1.22%

1.19%

1.15%

(a) (m̄ = 0.2)

0 10 20 30 40 50

Summed Normalized Importance (%)

Household Income

Household Income Change

Household Size

Total Labor Force Participation Rate

Married Status

Employment Status

Unemployment Rate

GSP Per Capita Growth

Years of Education

Poor Health

Part-Time Employment Rate

GSP Per Capita

Age Group 26-35

Children Presence at Household

Energy Price

Age Group 36-45

V
ar
ia
b
le

50.30%

9.83%

7.55%

3.63%

3.08%

2.97%

2.83%

2.79%

2.75%

2.41%

2.08%

1.80%

1.65%

1.56%

1.45%

1.20%

(b) (m̄ = 0.4)

Figure 7: Relative contribution (%) of predictive variables for energy poverty outcomes
across a 8-year time window for di!erent cut-o! values.
Notes: This figure presents the normalized contribution of predictive variables for energy
poverty outcomes across individual time lags. Only predictors with a normalized impor-
tance of at least 1% at any lag are shown. The results are for a T = 8 year time window.

In Figure 7 we conduct additional sensitivity checks and present results619

using more stringent criteria for energy poverty (m̄ = 0.2 and m̄ = 0.4). The620

estimates are based on T = 8, as in the baseline estimates. The contribution621

of income rises from approximately 39% in the baseline estimates (m̄ = 0)622

to 50.3% when m̄ = 0.4. Reversely, the contribution of energy prices falls623

from 5.8% in the baseline model to 1.5% when m̄ = 0.4, suggesting that en-624

ergy prices are not a primary driver of severe energy poverty. Additionally,625

marriage emerges as a protective factor against stricter definitions of poverty626

(>2.5%), highlighting its bu!ering e!ect in more vulnerable contexts. Fi-627

nally, Figure 8 documents the timing e!ects, with income in the previous628

year gaining importance when accounting for the most stringent definition629

of energy poverty.630

6.1. Is attrition endogenous?631

Although the average entry rate (individuals not in the sample in the632

previous period who are in the current period) and exit rate (individuals633

who leave the sample) are very moderate in our sample (8.9% and 7.4%,634

respectively), the nonrandom exit and entry of individuals for reasons related635

to energy poverty is a potential concern. To address this issue, we conducted636

a regression using a dummy variable that equals one if the individual exits637

the sample in the following year and zero otherwise, against energy poverty638
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Figure 8: Relative contribution (%) of predictive variables for energy poverty outcomes
across a 8-year time window for di!erent cut-o! values - discriminated by period.
Notes: Notes: This figure presents the normalized contribution of predictive variables for
energy poverty outcomes across individual time lags. Only predictors with a normalized
importance of at least 1% at any lag are shown. The results are for a T = 8 year time
window.

and all controls and obtained a coe”cient equal to -0.003 (p → value =639

0.454). In other words, leaving the sample is not significantly related to640

energy poverty. We proceeded likewise with individuals entering the sample,641

and energy poverty showed a significant negative e!ect -0.005 (p → value =642

0.082). . This suggests that the incorporation of new panelists in the sample643

over the years is not completely random, with a slight tendency to incorporate644

people who are less likely to su!er energy poverty. These individuals may be645

either less di”cult to contact or more ready to join the panel, although once646

they decide to participate, their attrition is mostly random.647

7. Discussion and conclusions648

This study highlights the potential of AI-based methodologies, particu-649

larlySHAP, for analyzing the dynamics of energy poverty. It examines the650

short- and long-term e!ects of key variables and contextual factors—such651

as income, energy prices, and regional conditions—on future energy poverty652

outcomes. By capturing both the timing and magnitude of past events, the653

study o!ers a perspective on how these factors shape energy poverty over654

time. This approach sets our research apart from previous studies, which655

predominantly rely on static models or contemporaneous relationships be-656

tween energy poverty and explanatory variables.657
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The paper shows that current energy poverty is the outcome of historical658

trajectories. The results are robust to a battery of sensitivity checks, includ-659

ing alternative definitions of multidimensional energy poverty and varying660

time spans. Income levels emerge as the most critical factor, particularly for661

long-term outcomes and under strict definitions of poverty. While the con-662

temporaneous relation between income and energy poverty has been high-663

lighted in previous work (Dalla Longa et al. (2021); van Hove et al. (2022)),664

our results uncover the association between income across all lags and cur-665

rent energy poverty. From a policy design perspective, we provide evidence666

that income can serve as an e!ective screening tool for identifying ’future’667

energy-poor individuals—those at risk of becoming energy-poor in the years668

ahead. Moreover, our results emphasize the critical role of income changes.669

Historical income fluctuations have lasting e!ects on household energy vul-670

nerability, persisting over time. This insight introduces a new dimension to671

combating energy poverty, showing that beyond income levels, individuals672

experiencing income volatility and uncertainty constitute a high-risk group.673

Consistent with numerous studies, we find a positive association between674

energy prices and energy poverty (Primc et al. (2021); Spandagos et al.675

(2023)). However, our study adds that energy prices have a significant im-676

pact in the short term and under less stringent definitions of poverty. In con-677

trast, their influence diminishes when addressing long-term energy poverty678

or more severe cases. Furthermore, our findings suggest the existence of a679

price threshold beyond which energy prices become particularly detrimen-680

tal. In this context, measures such as energy subsidies, price controls, and681

informational campaigns specifically aimed at individuals facing high energy682

prices could play a critical role.683

The AI-approach used in the paper provides insights that may be used to684

shift the policy focus from reactive measures, which address existing poverty,685

to preventive strategies that target households showing early signs of vul-686

nerability. Specifically, our findings suggest that policymakers can enhance687

resilience and reduce long-term socioeconomic disparities by balancing im-688

mediate relief measures—such as energy price support, energy benefits, and689

income transfers—with structural policies addressing systemic vulnerabilities690

identified in our study, particularly income volatility, labour market condi-691

tions and small households.692

This exploratory study has several limitations that warrant further in-693

vestigation. A key shortcoming is the failure to account for the endogeneity694

of life events, such as income shocks, which may be driven by unobserved695
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behaviors, situational factors, or omitted variables. Addressing these issues696

in future research is essential and could involve incorporating more advanced697

econometric and AI techniques to ensure a better understanding of the mech-698

anisms at work. Another limitation is the uniform treatment of households,699

which overlooks heterogeneity in responses to energy poverty predictors. Fac-700

tors such as income, age, education, and personal traits likely influence how701

individuals experience and respond to energy challenges (Cong et al. (2022)).702

Future research could improve the granularity and relevance of conclusions703

by conducting separate analyses based on these dimensions. Finally, this704

study is focused on a single dataset, the HILDA Survey. While this dataset705

provides rich, longitudinal information about Australian households, testing706

the methodology on additional datasets from other regions and contexts with707

varying degrees of energy poverty would help assess the generalizability of708

the findings and derive equally meaningful insights for other jurisdictions.709
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Appendix B. Model selection and grid search parameters738

To identify the optimal models and hyperparameter configurations for739

predicting energy poverty, a grid search approach was implemented. This740

process systematically tested combinations of model parameters and evalu-741

ated their performance using cross-validation.742

We used 5-fold cross-validation on the training dataset to ensure that743

the models were tested on various data splits and that the hyperparameters744

chosen were robust across di!erent subsets of data. The best set of hyperpa-745

rameters was then chosen based on the highest average Receiver Operating746

Characteristic - Area Under Curve (ROC AUC) score from the validation747

folds. The ROC AUC score measures the model’s ability to discriminate748

between energy-poor and non-energy-poor households.749

For all models, the grid search incorporated time window sizes and cut-o!750

points to capture the temporal dynamics of energy poverty predictors. Ad-751

ditionally, the grid search utilized the one-vs-rest framework, which creates752

a binary classifier for each class.753

The grid search was applied to three machine learning models commonly754

used for imbalanced classification tasks. All models were optimized and755

trained using Python, and the scikit-learn library for model implementation756

and evaluation. The models and their corresponding parameter grids are757

described below.758

Appendix B.1. Model A: Random under-sampling boost759

The random under-sampling boost classifier is an ensemble method that760

combines boosting with random under-sampling to address class imbalance761

e”ciently. Based on the AdaBoost algorithm, the classifier under-samples the762

training data during each boosting iteration in order to guarantee an equal763

representation of the minority (energy-poor) and majority (not energy-poor)764

classes. Weak classifiers, such as decision trees, are iteratively trained, with765

misclassified instances receiving higher weights. The final model aggregates766

predictions from all weak classifiers through weighted voting.767

The grid search included the following parameters:768

• Number of estimators: 50, 100, 200769

• Learning rate: 0.01, 0.1, 1.0770

• Algorithm type: SAMME, SAMME.R771
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• Sampling strategy: Auto, 0.5, 1.0772

• Replacement: True, False773

Appendix B.2. Model B: Easy ensemble774

The easy ensemble classifier (Liu et al. (2009)) works by creating multiple775

balanced subsets of the training data through under-sampling of the majority776

class (in the case of this work, the not energy-poor class). For each balanced777

subset, an AdaBoost learner (which, in this context, uses a decision tree778

as the base estimator) is trained. The outcomes from all subsets are then779

combined to form a robust ensemble, and thus, prediction. As a result, the780

classifier ensures that the model remains sensitive to the energy-poor class781

(minority) while maintaining robust overall performance.782

The grid search explored the following parameters:783

• Number of estimators: 10, 50, 100784

• Sampling strategy: Auto, 0.5, 1.0785

• Replacement: True, False786

Appendix B.3. Model C: Balanced bagging787

A balanced bagging classifier (Galar et al. (2012)) is an ensemble tech-788

nique that combines the predictions of multiple base models, e.g., decision789

trees, in order to improve the robustness and accuracy of the outcomes. This790

method specifically addresses class imbalance by ensuring that each decision791

tree in the ensemble is trained on a balanced subset of the dataset. These792

subsets are created by resampling the original training data, wherein each793

subset contains a representative distribution of both minority (energy-poor)794

and majority (not energy-poor) classes.795

The parameter grid included the following parameters:796

• Number of estimators: 10, 50, 100797

• Maximum samples: 0.5, 1.0798

• Maximum features: 0.5, 1.0799

• Bootstrap sampling: True, False800

• Bootstrap feature selection: True, False801
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• Sampling strategy: Auto, 0.5, 1.0802

• Replacement: True, False803

Appendix C. Model performance across time windows and cut-o!804

value805

This appendix presents the performance results of all models tested in806

the study, evaluated across various cut-o! values (m̄) and time windows (T ).807

The results are summarized in terms of sensitivity, specificity and ROC AUC.808

The best model was selected based on the highest average ROC AUC value,809

calculated independently of specific cut-o! values and time windows. This810

approach ensures that the chosen model has consistently strong performance811

across all configurations tested.812

Those performance metrics used in this evaluation are briefly described813

below:814

Sensitivity: The percentage of correctly identified energy-poor households815

among all actual energy-poor households. Higher sensitivity indicates816

better identification of the minority (energy-poor) class.817

Specificity: The percentage of correctly identified non-energy-poor house-818

holds among all actual non-energy-poor households. Higher specificity819

reflects fewer false positives.820

ROC AUC: (Receiver Operating Characteristic - Area Under Curve)821

A measure of the model’s overall ability to discriminate between822

energy-poor and non-energy-poor households across varying thresholds.823

Higher values indicate better discrimination.824
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