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Returns to Testosterone Across Men’s 
Earnings Distribution in the UK*

We study how population variation in testosterone levels impacts male labour market 

earnings using data from the UK Household Longitudinal Study between 2011 and 2013. 

We exploit genetic variation between individuals as instrumental variables following a 

Mendelian Randomization approach to address the endogeneity of testosterone levels. Our 

findings show that higher testosterone levels have a strong positive impact on earnings. 

Importantly, these findings are limited to men belonging to the lower quartile of the 

testosterone distribution and working in higher-paid jobs. We show that differences within 

rather than between occupations drive these findings, whereas we find limited support 

for selection into occupation or mechanisms involving individual characteristics, including 

personality traits and education.
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1 Introduction 

Testosterone has been linked to social and economic outcomes in studies dating back to the 1970s 

(Dabbs, 1992; Kreuz and Rose, 1972; Mazur and Lamb, 1980). Testosterone affects physical 

development (e.g., the development of male characteristics in utero or during puberty, muscle 

mass), but also influences behavioural responses (Phoenix et al., 1959). For example, in humans, 

testosterone has been linked to status-enhancing behaviour (Dreher et al., 2016), such as 

aggressiveness (Carré and McCormick, 2008), risk-taking (Apicella et al., 2008; Coates and 

Herbert, 2008) but also prosocial behaviour (Dreher et al., 2016; Schaal et al., 1996). 

 

This latter association between testosterone and behaviour, in particular, inspired a strand of the 

literature examining the role of testosterone for labour market outcomes (Dabbs, 1992; Dabbs Jr. 

et al., 1990). For example, studies report that higher testosterone is associated with higher rates of 

self-employment (Greene et al., 2014; Nicolaou et al., 2017), careers in “risky” occupations such 

as finance (Nye and Orel, 2015; Sapienza et al., 2009), and higher earnings (Gielen et al., 2016; 

Hughes and Kumari, 2019; Nye et al., 2017).  

 

The causality of these findings is unclear. Testosterone fluctuates substantially - over the course 

of a day, across socioeconomic transitions such as marriage or divorce (Mazur and Michalek, 

1998), and over the life course (Kanabar et al., 2022). The causes of these fluctuations are not fully 

understood, and studies disagree on the extent to which testosterone activates or reacts to particular 

behaviour. For example, the challenge hypothesis posits that testosterone levels increase when 

males1 have to compete with others, and this rise in testosterone levels activates behaviour that 

allows individuals to succeed (Archer, 2006). At the same time, there is substantial evidence that 

the outcome of a competition affects testosterone levels (Geniole et al., 2017), even when the 

outcome is entirely determined by chance (McCaul et al., 1992). Consequently, whether 

testosterone contributes to better labour market outcomes or economic success increases 

testosterone levels remains an open question. 

 
1 The hypothesis was originally proposed to explain the behaviour of male birds, but has subsequently been applied 
to humans and other animals (Wingfield, 2017). 
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This study examines the effect of testosterone on wages among British men. We use genetically 

enhanced data from the “Understanding Society” (UKHLS) study, which allows us to construct a 

polygenic score measuring men's genetic predisposition towards higher testosterone levels. We 

use this polygenic score as an instrumental variable to address the endogeneity of testosterone. Our 

results show that a higher testosterone level increases men's earnings. 

 

To identify the causal effect of testosterone, previous economics studies have relied on 

instrumental variables, for example, biomarkers such as insulin (Greene et al., 2014; Nicolaou et 

al., 2017). The 2D:4D ratio2 has been used as a proxy for prenatal testosterone exposure (Nye et 

al., 2017; Nye and Orel, 2015), but it is well-established that it does not predict hormone levels in 

adults (Hönekopp et al., 2007; Kowal et al., 2020; Zhang et al., 2020). Gielen et al. (2016) also 

consider the effects of prenatal testosterone exposure using twinning as a natural experiment. 

 

The present study considers the effects of circulating testosterone measured in adult men. The 

organizational-activational hypothesis (Arnold, 2009; Phoenix et al., 1959) posits that testosterone 

exposure during critical periods (e.g., in utero) has permanent effects on the development of tissue, 

including the brain (“organizational effects”). In adulthood, testosterone exposure then activates 

certain behavioural responses (Arnold, 2009). This implies that the effects of prenatal exposure 

may differ from the effects of exposure to circulating testosterone in adulthood, as the former 

primarily captures organizational effects and the latter focuses on activational effects.3 

 

Two recent studies also exploit genetic variants as instruments for circulating testosterone. Hughes 

and Kumari (2019) draw on the same UKHLS data used in our analysis and report a marginally 

significant increase in gross earnings with testosterone. In contrast, Harrison et al. (2021) find no 

significant effects on a substantially larger sample from the UK Biobank. 

 

We move beyond these studies by considering nonlinear effects of testosterone exposure. We use 

our instrument to estimate control function regressions (Wooldridge, 2015), which allow us to 

 
2 The 2D:4D ratio measures the relative length of the 2nd and the 4th finger (“digit”).  
3 It also implies that, ideally, prenatal exposure and exposure to circulating hormone levels in adulthood should be 
studied together. Unfortunately, our data does not allow us to measure prenatal exposure. 
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flexibly model nonlinear trends in the endogenous variable. Our results show that the positive 

effects of testosterone are concentrated at the lower end of the testosterone distribution as well as 

at the higher end of the earnings distribution. In other words, testosterone increases the likelihood 

of men with low testosterone levels to belong to the group of top earners, but we observe little to 

no effects among men with medium or high levels of testosterone, as well as men earning low 

wages.  

 

We further contribute to the literature by examining potential mechanisms that might explain the 

testosterone wage premium. First, we show that selection into occupations and job characteristics 

play at best, a minor role. We find little evidence that testosterone affects occupational choice or 

job characteristics such as working hours or performance pay. Moreover, accounting for 

occupation-fixed effects explains less than 20% of the total effect of testosterone on wages. Next, 

we consider a wide range of individual characteristics that have been linked to testosterone in 

previous studies. We find no effects of testosterone on educational attainment, cognitive 

functioning or the Big 5 personality traits. Higher testosterone levels significantly increase risk 

tolerance; however, accounting for risk tolerance does not seem to explain the positive effect of 

testosterone on wages.  

 

There are several potential mechanisms that we are not able to examine empirically due to a lack 

of data. For example, it is possible that testosterone levels are linked to occupational tasks or skills. 

It is also possible that selection into occupation occurs within the broader occupational groups 

considered here. Testosterone may also influence men's behaviour in specific situations, such as 

salary negotiations, which we cannot observe in social surveys. 

 

Regardless of the precise mechanisms, our results suggest that biological factors (such as 

hormones) are essential in determining labour market outcomes. A better understanding of the 

mechanisms behind these effects may allow us to determine to which extent such premiums are 

warranted or whether they reflect discrimination (e.g., on physical features; Hammermesh and 

Biddle, 1994) that might result in labour market inefficiencies.  
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The remainder of this paper is structured as follows: Section 2 describes the data we used and how 

we derived the polygenic scores; Section 3 presents the methodological approach, followed by a 

description of the results in Section 4. Section 5 concludes. 

 

2 Data  

2.1 The Understanding Society Survey 

Our study uses data from the longitudinal survey Understanding Society (or UK Household 

Longitudinal Study, UKHLS). The UKHLS is the successor of the British Household Panel 

Survey, which began in 2009 by interviewing about 40,000 households and around 100,000 

individuals (ISER, 2023a). The annual survey provides an extensive range of economic and socio-

demographic information for individuals and households.  

 

At waves 2 and 3, about 20,000 participants (excluding those residing in Northern Ireland) were 

invited for the so-called Nurse Health Assessment (Benzeval et al., 2014); see also Figure 1. The 

nurse visit took place approximately five months after the main wave interview, collecting 

information on the individual’s medical history as well as physical measures, such as height, 

weight, lung function, blood pressure, and grip strength. Blood samples were collected from a 

subset of about 13,000 consenting individuals during the nurse visit. Based on the blood samples, 

several biomarkers have been extracted, including measures of growth hormones (e.g., 

testosterone, DHEA’s, IGF-1). Finally, a genome-wide scan of approximately 10,000 eligible and 

consenting individuals with a blood sample was conducted on DNA samples. 
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Figure 1: The dataset structure 

 
Source: Authors own representation and Understanding Society (see https://www.understandingsociety.ac.uk/topic-
page/biomarkers-genetics-and-epigenetics/) 
 

 

2.2 Working sample  

UKHLS contains information on the respondent’s current labour force status, earnings, hours 

worked (including normal and overtime hours), and type of occupation. We restrict our working 

sample to men aged 25-64 during the nurse visit. 4 We trim the sample to employees working full-

time, and whose monthly earnings are at least £900 (2015 prices), the equivalent of earning 

minimum wage at the time of the survey interview. Using the same data and a similar econometric 

approach, we previously documented that testosterone is linked to labour force participation at the 

extensive margin (Eibich et al., 2022). In this study, we therefore focus on earnings at the intensive 

margin to complement our earlier findings. 

 

We drop self-employed individuals since this group of individuals is likely to differ from 

employees in terms of their unobservable characteristics, such as personality type, as well as their 

labour supply behaviour. Our sample is therefore comprised of individuals for whom testosterone 

does not influence their decision to take up self-employment. Our primary outcome of interest is 

an individual's total monthly gross labour market earnings, which have been log-transformed and 

 
4 We do not study the relationship between earnings and testosterone levels for women as for most women in the 
UKHLS sample testosterone levels are below the detectable threshold. 
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deflated using the Consumer Price Index inclusive of Housing costs (CPIH, figures correspond to 

2015 prices; see ONS, 2024). We focus on total log earnings as opposed to income from all sources 

which may include inter-alia unemployment benefit given our aim is to study the effects of 

testosterone and its relationship with outcomes produced in a competitive labour market setting.5 

After imposing these sample restrictions and accounting for data cleaning, our base sample 

consists of 1,621 individuals with a complete information set. 

 

2.3 Nurse Health Assessment and Biomarker Dataset 

We utilise information from the nurse visit stored in the Nurse Health Assessment dataset, 

including the time the interview took place during the day. Serum testosterone, the specific 

biomarker of interest for this study, was measured using an electrochemiluminescent immunoassay 

on the Roche Modular E170 analyser. The steroid is calculated in nanomoles per litre (nmol/l). 

Testosterone levels vary across men and are considered normal within a range between 9-25 

nmol/l. Testosterone varies by time of day, such that values in the morning are higher than those 

found in the afternoon or evening (see Table 1 of Eibich et al., 2022). For our analysis, we retain 

individuals whose nurse interview occurred between 09:00 and 20:00.6  

 

Individual’s testosterone level also declines with age (Kanabar et al., 2022). To adjust for these 

diurnal patterns and age trend, we create 5-year age bands (25-29, 30-34, etc.) and estimate a 

separate regression for each age group in which we regress testosterone on the interview time 

(centred around 10:00). For each individual we calculate the deviation from the predicted 

interview-time corrected mean testosterone level of the corresponding age group. Finally, we 

standardise our adjusted measure of testosterone by dividing our estimate by the age-band-specific 

standard deviation.  

 

 
5 It is likely the mechanisms which link testosterone and total income are distinct to those for earnings.  
6 Around 2% of the survey participants had their interview outside this time window. Roughly half of them had their 
interview between 01:00 and 02:00. Specific care must be undertaken when including these persons as their 
testosterone level is measured before their sleep, resulting in lower testosterone levels compared to those interviewed 
a few hours later. 
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2.4 Genetic data  

We draw on genetic data collected during the Health and Biomarker Survey to address the 

endogeneity between earnings and testosterone. Access to the data was granted by the UKHLS 

Genetics Committee. Our approach is to investigate whether genetic variants that partly explain 

the variance of serum testosterone affect labour market earnings. This method, which uses genetic 

markers as so-called Instrumental Variables (IV) is known as Mendelian Randomisation (MR) 

(Burgess and Thompson, 2015) and is outlined formally in Section 4. 

 

Genetic variation arises due to single nucleotide polymorphisms (SNPs), where each SNP 

represents a difference in a single DNA building block (i.e., a nucleotide) and is randomly assigned 

at conception. We use the genetic data to construct so-called polygenic scores (PGS).7 A PGS 

provides an estimate of an individual’s genetic predisposition to a particular trait (i.e., phenotype) 

and is derived based on their genotype profile, combined with effect sizes calculated from a 

Genome Wide Association Study (GWAS). To construct these scores, which typically sum 

multiple SNPs, we follow the classic approach, commonly referred to as Clumping and Threshold 

('C+T'), which allows for effect sizes (multiplied by individual’s respective SNP) to be summed 

together and combined with selection based on p-value (Choi et al., 2020). For analysis purposes, 

all PGS are standardised to facilitate interpretation.   

 

The first PGS is based on the GWAS conducted by (Ohlsson et al., 2011), which identified three 

genetic variants to use as instruments. These are rs12150660 and rs6258 in the SHGB gene on 

chromosome 17 and rs5934505 near FAM9B on the X chromosome.8 In the UKHLS data, 

rs12150660 was imputed, whereas rs6258 and rs5934505 were genotyped (Hughes and Kumari, 

2019). Such imputation is typical given the resources required to sequence SNPs, therefore in 

studies using a MR approach which involve multiple SNPs to generate an adequately powered 

PGS unmeasured SNPs are imputed based on a reference dataset taking into account possible 

 
7 Individual's genetic data were genotyped using the Illumina HumanCore Exome, and imputation was carried out in 
Minimac 5-12-29 to the European component of 1000 genomes (Hughes and Kumari, 2019). Samples are checked to 
ensure genetic data is consistent with key information provided, such as gender and ethnicity. Quality control checks 
removed SNPs with a minor allele frequency of <1%, call rate threshold <98%, Hardy-Weinberg Equilibrium p<10-

4, or cluster separation score <0.4 (Hughes and Kumari, 2019). 
8 The effect allele in the Ohlsson et al. (2011) study refers to the minor allele (A1). The dosages provided in UKHLS 
refer to those recorded in A2. Dosages are adjusted (flipped) accordingly.  
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linkage to measured SNPs (see Benzeval et al., 2014). Imputation is not based on testosterone or 

any other factor related to our outcome of interest. Ohlsson et al. (2011) and Hughes and Kumari 

(2019) show that the single combined polygenic score explains approximately 3% of the variance 

in circulating serum testosterone. Working with the UKHLS Genetics team, we created an updated 

version of the polygenic score using the same genetic variants that were used by Hughes and 

Kumari (2019).  

 

The second polygenic score is based on the GWAS conducted by Harrison et al. (2021) using the 

UK Biobank. In this study, for men a much larger number of SNPs (70) were identified that held 

genome-wide significance with respect to total testosterone. These SNPs jointly explained 6.83% 

of the variation in total testosterone. At the time of writing, UKHLS only contained a measure of 

total (as opposed to bioavailable) testosterone, which we used for analysis purposes.9 Whilst not 

all SNPs identified are available in the UKHLS data, 51 (approximately 73%) were. Additionally, 

we were able to proxy a further 9 SNPs (subject to a minimum correlation R2 of 0.8), allowing us 

to create a polygenic score based on this much larger GWAS study.10,11,12 However, we note that 

the most powerful single SNP identified by Ohlsson et al. (2011), rs12150660, which explains 

1.7% of circulating total testosterone alone, is not available in the UK Biobank and thus not used 

in the creation of the PGS that follows the Harrison et al. (2021) study. This, combined with the 

fact that not all SNPs identified in Harrison et al. (2021) are available in UKHLS, means that the 

association between the PGS score and testosterone (i.e., the first-stage regression) in our study is 

smaller than the association (and hence explained variation in testosterone) reported in the original 

study and that based on the PGS developed by Hughes and Kumari (2019), as shown in Table 2.13  

 

 
9 Whilst total and bioavailable testosterone (loosely bound to albumin or tightly bound to SHGB) are highly correlated, 
the latter is available for biological processes and hence is perceived as providing a better construct for determining 
causal processes (Harrison et al., 2021).  
10 We account for Linkage Disequilibrium (LD) in the context of proxy SNPs by checking which allele in the proxy 
SNP is in LD with the effect allele in the GWAS. 
11 One must determine the dosage of the effect allele for each SNP within the PGS. In some cases, this is a partial 
number due to imputation (in the case of deriving the SNP based on Harrison et al. (2021)), and we retain imputed 
values to account for this uncertainty.  
12 The list of SNPs used to derive the PGS based on the Harrison et al. (2021) study is available on request.  
13 It is not possible to combine PGS or include both instruments for regression purposes due to the risk of linkage 
between genetic variants in both PGSs, leading to violations of the exclusion restriction.  
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3 Descriptive Statistics 

Table 1 presents descriptive statistics of key socioeconomic and demographic characteristics based 

on our estimation sample. The average age among males at the time of the respective nurse and 

mainstage interview is 45, and total gross monthly labour earnings are close to £3,000 (2015 

prices). Approximately one third of the sample reports working in a managerial or professional 

occupation and two fifths hold a degree. Roughly 65% are legally married, and one in five males 

reports their main residence as being in London or the South East.  

 

Table 1: Descriptive statistics at the time of nurse and mainstage interview 

  Testosterone level (binary) 
 Full Sample Medium/high Low t-test 
Age 44.64 44.76 44.19 0.914 
 (10.21) (10.27) (9.98) (0.361) 
Total earnings (in £)‡ 2963.43 3021.48 2737.20 3.018*** 
 (1532.53) (1576.31) (1326.51) (0.003) 
Occupation: ISCO 1 or 2 
(Managers/Professionals) 

0.367 
(0.482) 

0.373 
(0.484) 

0.344 
(0.476) 

0.958 
(0.338) 

Degree (incl. other 
higher) 

0.408 
(0.492) 

0.411 
(0.492) 

0.396 
(0.490) 

0.498 
(0.619) 

Married 0.646 0.637 0.680 -1.444 
 (0.478) 0.481 0.467 (0.149) 
London / South East 0.200 0.203 0.187 0.640 
 (0.400) (0.402) (0.391) 0.522 
Personality traits     
Prepared to take risks† 5.826 5.874 5.636 1.281 
 (2.331) (2.350) (2.251) (0.200) 
Cognitive numeric ability 
(correct answers) † 

4.136 
(0.918) 

4.155 
(0.917) 

4.062 
(0.918) 

1.623 
(0.105) 

Testosterone (nmol/l) 14.90 16.55 8.46 32.235*** 
 (5.22) (4.43) (2.15) (0.000) 
N 1,621 1,290 331  
Source: UKHLS, own calculations. Notes:  † Refers to a subset of individuals. ‡ deflated using the Consumer Price 
Index inclusive of Housing costs (see ONS, 2024). Numbers in () are std dev and for the t-test the respective p-
value. Significance of the t-test: *** p<0.01, ** p<0.05, * p<0.1 

 

In Columns 3 and 4 of Table 1 we split the sample and define individuals as having low 

(medium/high) testosterone if their adjusted testosterone level belongs to the 1st or 2nd (3rd and 
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above) decile of the respective distribution.14 When comparing the samples, we observe a 

significant difference in total gross monthly earnings which equates to around a £300 per month, 

approximately 10% of average earnings across the full sample. In the bottom part of Table 1, we 

include two markers of personality traits: risk-taking behaviour and cognitive numeric skills. In 

this case we do not observe a difference in average levels of either trait at conventional levels of 

significance. 

 

4 Methods 

4.1 Mendelian Randomization 

Previous studies document that testosterone is associated with many characteristics that are in turn 

linked to income, e.g., occupation (Dabbs, 1992; Dabbs Jr. et al., 1990), risk-taking (Apicella et 

al., 2008; Coates and Herbert, 2008; Stenstrom et al., 2011), generosity (Ou et al., 2021), or 

cognition (Brosnan et al., 2011; Chance et al., 2000). While these characteristics may explain a 

hypothetical effect of testosterone on earnings, they also raise concerns about causality. Mazur and 

Michalek (1998) show that testosterone levels change following marriage or divorce, which more 

broadly suggests that social and economic factors influence testosterone as well. Thus, it is not 

clear to what extent some of the findings in this literature should be interpreted as causal effects 

of testosterone or whether they might reflect omitted variable bias or reverse causality.  

 

Recent studies on testosterone and economic outcomes have addressed this endogeneity problem 

in different ways, e.g., with testosterone injections in a randomized experiment (Dreher et al., 

2016), by using the 2D:4D ratio as a proxy for prenatal exposure to sex hormones (Neyse et al., 

2021), or through Mendelian Randomization analysis (Eibich et al., 2022; Harrison et al., 2021; 

Hughes and Kumari, 2019).  

 

Mendelian Randomization (MR) analysis uses genetic variants that are associated with a certain 

phenotype as instrumental variables (IV) for this phenotype. A person's genome is determined at 

 
14 Our main findings are robust to changing the threshold for defining whether an individual has low testosterone 
(we test a range of thresholds between the 15th and 30th percentile of the testosterone distribution; results available 
on request).  
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conception through random recombination of their parents' genes; therefore, the presence or 

absence of specific genetic variants in a person's genome is also random conditional on ancestry. 

Under the standard IV assumptions, estimating the causal effects of the relevant phenotype is 

possible. In the MR framework, these assumptions require that (1) the genetic variants are 

sufficiently strong predictors of the phenotype under study,15 (2.a) the presence of these genetic 

variants can be considered as random conditional on parents’ genes,16 (2.b) the specific genetic 

variants are not associated with other phenotypes that might be related to the outcome under study, 

and (3) the direction of the association between genetic variants and phenotype is the same for all 

individuals in the sample. Under these three assumptions, IV models estimate a local average 

treatment effect. For MR analyses, this implies that we estimate the causal effect for individuals 

whose treatment status is determined by their genetic predisposition towards the phenotype, which 

is constant over a person's life course. We discuss the plausibility of the standard IV assumptions 

in more detail in Section 4.3. 

 

4.2 Estimation 

We estimate our IV regression models using control functions (Wooldridge, 2015). In the first 

stage of the model, we regress testosterone 𝑇𝑖 on the polygenic score 𝑃𝐺𝑆𝑖 while controlling for k 

different characteristics 𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑘𝑖: 

𝑇𝑖 = 𝛽0 + 𝜃𝑃𝐺𝑆𝑖 + ∑ 𝑥𝑗𝑖𝛽𝑗

𝑘

𝑗=1

+ 𝑒𝑖 (1) 

Our baseline models control for the first 10 principal components of the genome of individual i 

and age group.17 Controlling for the principal components is common practice in Mendelian 

 
15 Although the detection of relevant genetic variants in a genome-wide association study (GWAS) implies that there 
is a robust correlation between genetic variants and phenotype, it is possible that this correlation cannot consistently 
be replicated, e.g., because of differences in the composition of the populations of the MR sample and the GWAS 
sample, or because samples used for the GWAS tend to be much larger than samples used for other analyses, including 
MR analyses. 
16 This assumption is violated if testosterone affects parents’ testosterone levels, which in turn influences parenting 
styles, and this is related to assortative mating in the parent generation. Such dynastic effects imply a relationship 
between the instrument and the outcome that does not work through the treatment which, if true, would violate the 
independence assumption. 
17 Although our measure of testosterone is already adjusted for age differences, we nevertheless control for age to 
account for the lifecycle profile of earnings in the second stage of the model. 



12 
 

Randomization analyses to account for population stratification (Davies et al., 2018). 18 Using the 

first stage regression in eq. (1), we predict residuals �̂�𝑖 to estimate the structural earnings equation: 

ln(𝑖𝑛𝑐𝑖) = 𝛾0 + 𝜏𝑓(𝑇𝑖) + ∑ 𝑤𝑗𝑖𝛾𝑗

𝑘

𝑗=1

+ 𝜌�̂�𝑖 + 𝑢𝑖 (2) 

In eq. (2), we regress log income on a flexible function of testosterone 𝑓(𝑇𝑖), covariates 𝑤𝑗𝑖 

(identical to those included in the vector 𝑥𝑖 in the first stage regression) and the predicted residual 

from the first stage �̂�𝑖. 𝜏 is a vector of one or more parameters (depending on the functional form 

of testosterone) that captures the causal effect of testosterone on earnings.  

 

Intuitively, the first stage regression decomposes the observed variation in testosterone levels into 

a random part (explained by the PGS and the control variables), and an endogenous part (captured 

by the residual 𝑒𝑖), and we then control for the endogeneity of testosterone in the structural 

equation by including the predicted residual as a covariate. If we use the same functional form for 

testosterone in the first stage and the structural equation (𝑓(𝑇𝑖) = 𝑇𝑖, i.e., a linear trend) and we 

control for the same set of covariates in both regressions (i.e., {𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑘𝑖} =

{𝑤1𝑖, 𝑤2𝑖, … , 𝑤𝑙𝑖}), then the control function estimate will be identical to the 2SLS estimate.  

 

An important advantage of control functions over 2SLS estimation is that the former allows us to 

flexibly consider different functional forms for testosterone in the structural equation (2). There is 

no reason to think that testosterone should have a linear effect on earnings. Assuming other 

functional forms in a 2SLS regression model would require constructing additional instruments 

for nonlinear terms (e.g., quadratic or cubic polynomials). While, e.g., quadratic terms of the PGS 

can serve as instruments for squared testosterone levels, these will likely be weak instruments 

because there is limited variation in the polygenic scores and consequently the PGS does not 

predict nonlinear terms in testosterone well (see Figure 2). Consequently, control function 

estimates of such models are likely more efficient (but potentially less robust) than 2SLS estimates 

(Wooldridge, 2015). Finally, the estimated parameter on the predicted residuals, �̂�, allows for a 

simple Hausman test of the endogeneity of testosterone – i.e., if �̂� is statistically significant, we 

 
18 Intuitively, the principal components control for ancestry because certain genetic variants occur more frequently in 
some population groups. 
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can reject the hypothesis that testosterone is exogenous in the structural equation. We note that the 

usual standard errors of the estimates of the structural equation do not account for the estimation 

of �̂�𝑖 in the first stage regression. We, therefore, use bootstrapped standard errors based on 1,000 

replications.  

 

4.3 Plausibility of IV assumptions  

The estimates of �̂� in eq. (2) have a causal interpretation assuming the genetic variants we use in 

the Mendelian Randomisation approach satisfy the conditions for being valid instruments. Namely, 

the instruments should meet the following criteria: (1) relevance, (2a) independence, (2b) 

excludability and (3) monotonicity. Considering relevance, Figure 2 shows a positive association 

between an individual's adjusted testosterone level and their polygenic score. This is confirmed in 

the first stage regression results. Yet, we note that while our estimated first-stage effect is highly 

significant, our genetic variants only explain limited variation in testosterone and might suffer 

from weak instrument problems (Keane and Neal, 2023; Stock and Yogo, 2005). A weak first 

stage exacerbates the finite sample bias of 2SLS estimates and can invalidate statistical inference 

(Lee et al., 2022). It is common practice to screen for instrument relevance based on the sample F-

statistic and various threshold values proposed in the literature (Montiel Olea and Pflueger, 2013; 

Stock and Yogo, 2005); however, Angrist and Kolesár (2024) show that in a just-identified IV 

model such pretesting is problematic, and screening on the estimated sign of the instrument is 

sufficient.  

 

Keane and Neal (2023) show that inference based on 2SLS estimates can be invalid even if the 

sample F-statistic exceeds commonly used threshold values and recommend the use of alternative 

estimators (e.g., LIML) or tests (e.g., Anderson-Rubin) that are robust to weak instrument 

problems. Unfortunately, to the best of our knowledge, there is little guidance in the literature on 

addressing weak instrument problems in control function regressions. Burgess and Thompson 

(2012) show in their simulations that the control function estimator performs better than the 2SLS 

estimator, but their setting differs in several aspects from our study.19 As part of the robustness 

 
19 For example, they only consider the control function estimator for regressions involving a binary outcome and do 
not consider non-linear trends in the endogenous variable. 
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checks, we perform a simulation study to understand better the properties of our control function 

approach when the instrument is weak.  

 

We assume independence is likely to hold as a person’s genome is a random (re)combination of 

their parent’s genes conditional on ancestry. Whilst assortative mating and dynastic effects could 

lead to a relationship between the instrument and the outcome that does not operate through the 

offspring’s testosterone level, we note that spousal correlations of genotypes for observable traits 

such as BMI, depression or even education are at best modest (Conley et al., 2016). We therefore 

consider it unlikely that there is non-negligible assortative mating on genetic variants related to 

(unobservable) testosterone levels in men. As part of our robustness checks, we control for parental 

education, which could mediate the relationship between parental genes and offspring earnings, 

and note our main findings remain unchanged. Using UKHLS data, Hughes and Kumari (2019) 

show that their PGS (constructed using the same GWAS by Ohlsson et al. (2011)) is not associated 

with various confounders, such as self-reported health and marital status. This partly addresses our 

concern regarding exclusion restrictions.  

 

We further consulted the GWAS catalogue (Sollis et al., 2023) to examine whether any of the 

genetic variants used in the construction of our PGS has been identified as a correlate of other 

traits that might plausibly violate the exclusion restriction. The studies listed in the database 

suggested that one of the genetic variants (rs5934505) is correlated with creatinine (Sakaue et al., 

2021), which in turn has previously been linked to labour market outcomes (Böckerman et al., 

2017). Creatinine levels are related to muscle mass (Samoszuk et al., 2020), which suggests that 

the association between rs5934505 and creatinine could reflect an effect of testosterone on 

creatinine levels through increases in muscle mass. In this case, the exclusion restriction would 

not be violated. However, to rule out such concerns, we conduct additional sensitivity analyses in 

which we condition on creatinine, which is also measured at the time of the nurse visit. We also 

conduct an analysis in which we construct our PGS excluding the genetic variant rs5934505. The 

main substantive findings are robust to both adjustments and results can be found in Table A.3. 

Finally, to lend further support to our analytical approach we check for mutually independent 

distributions to confirm that our genetic variants are not in linkage disequilibrium, a core 
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assumption for MR estimators (VanderWeele et al. 2014; Sanderson et al. 2022).20 Separately, we 

estimate Pearson correlations between each of the genetic variants used in the analysis and find 

these are very close to zero.  

 

Violation of monotonicity would imply that for some individuals the genetic variants used to 

construct our polygenic score are predictive of lower (rather than higher) testosterone levels, which 

does not appear to be plausible given Figure 2. 

 

5 Results 

5.1  First stage 

Figure 2 depicts the relationship between the polygenic score (PGS) based on the GWAS 

conducted by Ohlsson et al. (2011) and deviations from average adjusted serum testosterone 

levels.21 Higher values of the PGS are clearly associated with positive deviations from the reported 

average (adjusted) testosterone levels. It is unsurprising that the trend is approximately linear since 

the PGS is based on a linear combination of individual SNPs. However, we note that the Ohlsson 

et al. (2011) score is constructed using only three genetic variants, and consequently, the 

distribution of the PGS is multimodal (see Figure A.1 in the appendix). In addition to a linear trend, 

we therefore also consider including the PGS as a categorical variable using three categories 

(PGS<5, 5≥PGS<50 and PGS≥50), which reflects the limited variation in the score (see Figure 

A.1).22 

 
20 Linkage disequilibrium occurs when two or more genetic variants are correlated, which could imply a violation of 
the IV validity assumption. 
21 For Figure 2, we first calculate the deviation from the adjusted testosterone level, which ranges from -2.4 up to 4.2. 
We create 0.1 unit bins and calculate the mean PGS score for each bin separately. 
22 The PGS scores used to define the three categories reflect the 0-40th percentile, 41st-84th percentile and 85th percentile 
and above of the underlying distribution, respectively. These result in categories with 331, 986, and 304 observations 
for estimation purposes. 
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Figure 2: Deviation from average (adjusted) testosterone levels and the Ohlsson et al. (2011) 
polygenic score 

 
Source: UKHLS, own calculations. Notes: Figure 2 depicts the deviation from the average level of adjusted 
testosterone within each PGS score bin. The scatterplot is overlayed with fitted values from a linear regression of the 
former variable on the latter. 
 

Table 2 shows estimates from a regression of adjusted serum testosterone levels on the PGS. We 

present estimates for both scores based on Ohlsson et al. (2011) and Harrison et al. (2021). For the 

Ohlsson-PGS, we consider binary indicators for medium and high values of the PGS in addition 

to the linear functional form to account for the multimodal distribution of the score. Both PGS 

definitions have a strong positive effect on testosterone levels, i.e., individuals with a genetic 

predisposition towards higher testosterone levels have higher serum testosterone levels in the 

UKHLS sample. These estimates are highly statistically significant. The R2 shows that the Ohlsson 

et al. (2011) PGS explains a larger share of the variance in testosterone levels than the modified 

Harrison et al. (2021) PGS. We see minimal differences in model fit between the two specifications 

for the Ohlsson et al. (2011) PGS. The model explains only around 5% of the variation in 

testosterone levels – testosterone levels vary substantially across individuals and are influenced by 

a range of factors, and we would therefore expect that even in a more saturated model, a large 

proportion of the variation in testosterone levels remains unexplained. We also estimate the 

squared semipartial correlation coefficient, which can be interpreted as a partial R2. It suggests that 

the Ohlsson-PGS alone explains about 4.4% of the variation in testosterone levels. 
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Table 2: First stage regression 

Dependent variable: Adjusted serum testosterone levels 

  
PGS based on Ohlsson et al. (2011) 

 

PGS based on 
Harrison et al. 

(2021) 

  

Linear PGS Categorical PGS 
 

Linear PGS 

PGS  0.199***   0.141*** 
 (0.023)   (0.023) 
     

Low PGS  Baseline   

Medium PGS  0.278***   
  (0.054)   

High PGS  0.606***   

   (0.071)   

N 1,621 1,621  1,621 

R2 0.050 0.051  0.028 

Squared semipartial correlation 0.044   0.023 

F statistic  74.45 38.10  38.08 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. 
The table shows estimates of a linear regression controlling for the first ten genetic principal components and age 
group. Testosterone levels are adjusted for mean differences by time of the nurse visit and age group, as well as 
differences in standard deviations across age groups. Robust standard errors in parentheses. Significance: *** 
p<0.01, ** p<0.05, * p<0.1 

 

5.2 Effects of testosterone on earnings 

Table 3 shows estimates of the effect of testosterone on earnings from our control function 

regressions using the Ohlsson-PGS as an instrumental variable for serum testosterone levels. 

Control function estimation allows us to model flexibly the functional form of testosterone in our 

second-stage regression. We consider five different specifications: (i) linear, (ii) quadratic, and 

(iii) cubic trends in testosterone; separate binary indicators for men with (iv) medium and high 

testosterone levels, as well as a combined binary variable for (v) medium/high vs. low testosterone 

levels. 

 

The estimated residual from the first stage regression is negative in all specifications, which 

indicates that OLS estimates would suffer from a downward bias.23 Our control function estimates 

 
23 For estimation purposes the PGS enters the first stage regression as a linear covariate.   
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indicate that higher testosterone levels lead to increased earnings. The estimated coefficients using 

a linear trend are large but not statistically significant, whereas all other specifications show highly 

significant effects of testosterone.  

 

The categorical specification in Table 3 suggests that the difference in earnings between men with 

low and high testosterone levels is not significant. This is also observed in Figure A.2 in the online 

appendix, which shows an inverse U-shaped relationship between predicted earnings and 

testosterone levels using the estimated coefficients from a model including a quadratic trend in 

testosterone.24 The quadratic trend implies an average marginal effect (AME) of testosterone of 

0.065 when evaluated at the mean of the testosterone distribution. In contrast, the effect at the 25th 

and 75th percentile is 0.095 and 0.039, respectively, indicating that the marginal effect of 

testosterone on earnings is stronger for men with lower testosterone levels. For the following 

analysis, we use a quadratic trend as our preferred functional form for testosterone because a 

quadratic polynomial might capture the functional form of testosterone more flexibly than dummy 

variables for broad categories when we consider other outcomes as potential mechanisms. 

 
24 We obtain a very similar figure using the cubic trend (not shown, however available on request). 
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Table 3: Effect of testosterone on income 

Dependent variable: Ln(total income) 

  
Linear 
trend 

Quadratic 
trend 

Cubic 
trend 

Categorical Binary 

T 0.057 0.065 0.055   

 (0.059) (0.061) (0.059)   

T2  -0.022*** -0.031***   

  (0.008) (0.010)   

T3   0.005   

   (0.005)   

Low T    Baseline -0.117*** 
     (0.036) 
Medium T   0.104***  

    (0.037)  

High T    0.050  

    (0.070)  

Medium/High T    Baseline 
      

First-stage residual -0.055 -0.050 -0.055 -0.009 -0.028* 
 (0.060) (0.061) (0.059) (0.023) (0.016) 

N 1,621 1,621 1,621 1,621 1,621 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. 
The table shows control function estimates using a linear regression model. The model controls for the first ten 
genetic principal components and age. Standard errors based on 1,000 bootstrap replications in parentheses. 
Significance: *** p<0.01, ** p<0.05, * p<0.1 

 

5.3 Effects of testosterone across the earnings distribution  

Next, we consider whether our main findings vary across the earnings distribution. To do this, we 

estimate a distributional regression splitting our main sample in two: individuals belonging to the 

(bottom) top quartile of the earnings distribution are defined as being (low) high earners.25 Table 

A.1 reports estimation results based on our preferred quadratic specification. In the case of low 

earners, we find the coefficient estimates on the first and second order term for testosterone are 

 
25 Distributional regression offers several advantages versus alternative estimators such conditional quantile regression 
given our research context, for example modelling the entire conditional distribution of testosterone (see, e.g., Koenker 
et al., 2013).  
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close to zero and insignificant. In contrast, for high earners, the coefficients are similar in 

magnitude and trend to our main findings in Table 3.26 

 

5.4 Mechanisms 

Next, we consider selection into occupations and individual characteristics as potential 

mechanisms for the positive effect of testosterone on earnings. Selection into occupation implies 

that testosterone levels influence men’s choices of occupations and jobs, in which case the positive 

effect of testosterone on earnings might occur because men with higher testosterone levels choose 

better compensated jobs.27 Alternatively, our findings may be driven by the effect of testosterone 

on individual characteristics, which in turn affect their performance and compensation.  

 

These two pathways are closely related and cannot always be disentangled – e.g., testosterone 

might influence risk-taking behaviour, and men with high testosterone levels might systematically 

choose occupations in which risk-taking is rewarded (e.g., sales or self-employment). In the 

following, we show that there is limited selection into occupation. Consistent with this, we also 

demonstrate that most of the effect of testosterone on earnings occurs within occupational groups. 

We then consider several individual characteristics that have been associated with testosterone in 

previous studies and examine whether testosterone affects individual traits for men within the same 

occupational group. 

 

5.4.1 Selection into jobs and occupations 

We examine the effect of testosterone on occupational choice by estimating a multinomial logistic 

regression model using the first digit of the ISCO08 code as a categorical measure of occupation. 

As before, we control for the estimated residuals from the first stage regression of testosterone on 

the Ohlsson-PGS to address endogeneity. Table 4 shows the estimated coefficients on the quadratic 

trend in testosterone levels for all occupational groups. Group 1 (“Managers”) serves as the 

reference group. We find a negative linear term for group 5 (“Service and sales workers”) and 

 
26 We note that the AMEs at the 25th, mean and 75th percentile of adjusted testosterone distribution for both low 
and high earners, reported in Table A.2 are insignificant.  
27 Reasons for such selection into better compensated jobs could be status-seeking behaviour, higher willingness to 
take riskier jobs, or aptitude for specific skills and tasks that are highly valued by employers. 
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positive quadratic terms for groups 7 (“Craft and related trades workers”) and 8 (“Plant and 

machine operators and assemblers”). While these estimates suggest that selection into occupation 

might be present, the pattern is not clear, and we note that most of the significant coefficients are 

only significant at the 10 percent level. The AMEs (see Table A.4) suggest that men with medium 

or high levels of testosterone are less likely to select into group 5 (“Service and sales workers”) as 

opposed to group 1 (“Managers”). For all other groups, AMEs are small (<5 percentage points) 

and statistically insignificant.  

 

We conduct several additional analyses to ensure that our conclusions are robust to the choice of 

the analytical model. We estimate an ordered logistic regression model, which assumes that the 

ISCO08 1-digit groups are ordered by occupational status. Then, we consider a binary distinction 

between Groups 1 and 2 (managers and professionals) and all other occupational groups. Finally, 

we repeat these analyses using the 5-group version of the NSSEC (“National Statistics Socio-

economic Classification”) as an alternative measure of occupational class. The results are similar 

to those presented in Table 4 – we find a significant quadratic term in testosterone in the ordered 

logistic regressions for both the ISCO08 and the NSSEC, yet the AMEs tend to be very small and 

statistically insignificant. Neither the coefficients (see Table A.5) nor the AMEs28 are significant 

when using a binary classification. We do not find any significant effects when estimating the 

effect of testosterone on occupation of an individual’s first job.29

 
28 Available on request. 
29 Results are available on request. 
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Table 4: Effect of testosterone on current occupation 

Dependent variable: 1-digit ISCO08 code of the current job 

ISCO group 1 2 3 4 5 6 7 8 9 

T Baseline 0.059 0.300 0.492 -0.932* -1.103 0.059 0.535 -0.086 
  (0.434) (0.412) (0.556) (0.554) (53.010) (0.464) (0.440) (0.487) 

T2 Baseline 0.049 0.006 0.091 0.081 -0.089 0.106* 0.127** 0.056 

  (0.071) (0.066) (0.089) (0.080) (273.00) (0.063) (0.060) (0.068) 
N   1,621 

Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. The 
table shows control function estimates using a multinomial logistic regression model. The model controls for the first 
ten genetic principal components and age. Standard errors based on 1,000 bootstrap replications in parentheses. 
Significance: *** p<0.01, ** p<0.05, * p<0.1 
 

 

We also consider whether testosterone affects the choice of jobs with specific characteristics within 

the broader occupational groups. We use outcome variables that measure total working hours, 

whether a respondent's job regularly requires working overtime, or whether a respondent's 

compensation involves a performance pay component and wage growth.30 All regressions control 

for occupational group and marginal effects are reported at the mean. In this case, we find that 

higher testosterone levels only increase the probability of working overtime (see Table A.6).  

 

Finally, we examine whether the effects of testosterone are driven by differences within or between 

occupations by re-estimating Table 3 with a set of occupation-fixed effects based on the first digit 

of the ISCO08 code. The estimates in Table 5 are qualitatively similar to the overall earnings 

effects reported in Table 3. A back-of-the-envelope calculation based on the estimates in the last 

column using a binary variable for medium/high testosterone levels suggests that variation in 

earnings between occupations explains less than 20% of the overall effect of testosterone on 

earnings. Calculating the average marginal effects for our preferred specification using a quadratic 

polynomial, we find that controlling for occupation does not affect our estimates of the effect of 

testosterone at the lower end of the distribution (0.095 without controls for occupation vs. 0.090 

with controls at the 25th percentile), but the effect of testosterone at the mean and upper end of the 

 
30 Wage growth is measured by the change in hourly wages between waves B (2010-11) and L (2020-21) for 
individuals who report earnings at both survey waves. 
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distribution is slightly larger (0.065 without controls vs. 0.070 with controls at the mean; 0.039 vs. 

0.052 at the 75th percentile).  

 

In summary, we consistently find that testosterone has a significant impact on occupational choice, 

albeit the pattern is not very clear and the AMEs for most occupational groups are close to zero 

and statistically insignificant. Moreover, our results suggest that a large proportion of the effect of 

testosterone on earnings occurs within occupations. Taken together, this implies that selection into 

occupation plays at most a minor role in explaining the returns to testosterone. 

 

Table 5: Effect of testosterone on income - within occupation 

Dependent variable: Ln(total income) 

  
Linear 
trend 

Quadratic 
trend 

Cubic 
trend Categorical Binary 

T 0.065 0.070 0.066   
 (0.050) (0.047) (0.049)   

T2  -0.015** -0.018**   
  (0.007) (0.009)   

T3   0.002   
   (0.004)   

Low T    Baseline -0.093*** 
     (0.032) 
Medium T   0.089***  
    (0.033)  

High T    0.077  
    (0.060)  

Medium/High T 
  

 Baseline 
      

First-stage residual -0.067 -0.063 -0.0647 -0.022 -0.026* 
 (0.051) (0.049) (0.0495) (0.020) (0.016) 

N 1,621 1,621 1,621 1,621 1,621 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. The 
table shows control function estimates using a linear regression model. The model controls for the first ten genetic 
principal components and age. We include fixed effects for the first digit of the ISCO code. Standard errors based 
on 1,000 bootstrap replications in parentheses. Significance: *** p<0.01, ** p<0.05, * p<0.1 
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5.4.2 Individual characteristics 

We explore a range of individual characteristics that might plausibly link testosterone and 

earnings. First, we analyse the effects of testosterone on educational attainment. Even though 

testosterone levels in our study were measured when most individuals have already completed 

FT education, the effects in our regression models are identified by variations in testosterone 

levels due to genetic differences. These genetic differences are stable over the life course; 

hence, they identify variations in testosterone levels that can be considered stable over time. 

However, it is important to bear in mind that the effect of genetic variants on phenotypes may 

change over the lifecycle; for example, certain (different) variants may code for testosterone 

early in life and so affect outcomes such as education and first job, which we are unable to 

capture.31 

 

Table A.7 reports estimates from a control function ordered probit regression for educational 

attainment. We do not find any significant effects of testosterone on educational attainment. 

We also consider personality traits based on the Big-5 Inventory (Openness, Neuroticism, 

Extraversion, Conscientiousness, and Agreeableness; see Table A.8) or cognitive functioning 

(results available on request) as potential mechanisms, but we do not find any evidence that 

these individual traits are linked to testosterone levels.32  

 

Evidence suggests testosterone is linked to individual risk-taking behaviour which may in turn 

influence labour market outcomes including earnings (Apicella et al., 2008; Coates and 

Herbert, 2008; Ronay and Von Hippel, 2010; Stenstrom et al., 2011). UKHLS measures self-

reported individual risk attitude at wave 1 of the survey (approximately 1-2 years prior to the 

nurse visit) using the following survey instrument: “Are you generally a person who is fully 

prepared to take risks or do you try to avoid taking risks”? Individuals answer on a 0-10 scale, 

with 0 corresponding to avoiding taking risks and 10  being fully prepared to take risks, 

respectively.33 Table A.9 shows higher levels of risk-taking behaviour are positively associated 

with earnings. The magnitude of coefficient estimates is between 0.2 and 0.3 and generally 

 
31 The GWAS of Ohlsson et al. (2011) is based on Caucasian men of European descent. 
32 Cognitive functioning is measured in two ways. The first measures individuals’ practical numerical knowledge 
and is a count measure based on the number of problems solved. The second is based on the cognitive testing 
measures developed for the US Health and Retirement Study, in which individuals are scored based on a number 
series test. Higher values reflect better fluid reasoning and the ability to solve novel problems. Further details 
regarding the cognitive measures collected in UKHLS can be found in McFall (2013).  
33 The risk-taking question is included as part of the self-completion survey. 
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trends upwards across risk categories, which corresponds to an increase in earnings of around 

3% at the mean. Importantly, conditional on risk attitude, the qualitative nature of our findings 

with respect to testosterone remains unchanged.   

 

Our analyses of potential mechanisms suggest that neither selection into occupational groups 

nor differences in individual characteristics seem to explain the testosterone wage premium. 

There are a few possible explanations for this: First, our sample size only allows us to consider 

relatively broad occupational groups. It might be possible that testosterone affects the selection 

of men into more narrowly defined occupational groups within the same 1-digit ISCO08 

category. We also only observe a few selected job characteristics. It seems highly plausible, 

e.g., that variation in tasks and occupational skills, which may interact with a biological marker 

such as testosterone, is linked to differences in earnings. Further, testosterone has important 

“activating” effects, i.e., a person's behavioural response in specific situations (e.g., 

negotiations, confrontations) depends on their testosterone level. Such behavioural responses 

are plausibly linked to personality traits, but their transitory nature makes retrospective 

measurement in a survey challenging. 

 

5.5 Sensitivity analysis 

We first consider the sensitivity of our results to the restrictions imposed on our working 

sample. We then show that our results are unaffected by the transformation of testosterone, 

before discussing several checks of the IV assumptions and estimation procedures. 

 

5.5.1 Sample restrictions 

First, we extend our sample to include all individuals aged 16-64 at the time of their nurse visit. 

The first column of Table A.10 shows that the estimated regression coefficients assuming a 

quadratic functional form in the second stage are almost identical to those reported in Table 3.  

 

Next, we include men working part-time and earning less than £900 per month. The second 

column of Table A.10 shows that in this case for the second stage, both the first and second 

order term for testosterone are significant at the 5% level; we note that the magnitude of the 

former is over twice that relative to the findings reported in Table 3. Importantly, the average 

marginal effect is positive and significant at the 25th, mean and 75th percentile of testosterone 

distribution (0.174, 0.145 and 0.120, respectively) and consistent with our main findings that 



 

26 
 

the effects are strongest in the lower part of the earnings distribution. We next relax the 

condition that the nurse visit took place between 09:00 and 20:00 to allow for the possibility 

of including, for example, shift workers. In this case, column 4 of Table A.10 shows the main 

findings and coefficient estimates remain essentially unchanged. Finally, we restrict the sample 

to men whose testosterone level falls between 9-25 nmol/l which is considered normal based 

on clinical guidelines (see Benzeval et al., 2014). Column 5 of Table A.10 shows that despite 

the magnitude of the second order polynomial term on testosterone being roughly twice the 

size versus that reported in Table 3, the qualitative nature of the findings remain unchanged. 

 

The longitudinal dimension of UKHLS allows us to assess whether our main findings extend 

beyond the closest mainstage survey interview adjacent to the nurse visit. Conceptually, our 

instrument predicts the stable component of testosterone levels among working age men, which 

in turn influences earnings and this relationship should thus hold across the lifecycle. Table 

A.11 in the Appendix reports the likelihood of an individual belonging to the top 10% of the 

age-earnings distribution across survey waves 5-12 (2014-2021). The results show the 

qualitative nature of our main findings concerning the relationship between testosterone and 

earnings holds up to wave 8, approximately five years following the nurse visit. It is important 

to note that we do not account for labour market transitions, nor survey attrition and restrict 

attention to individuals who report earnings at each wave.  

 

5.5.2 Transformation of testosterone 

MR exploits genetic variants as instruments, which should be independent of age and time of 

day effect. We therefore re-estimate equation (2) using raw rather than standardised 

testosterone adjusted for individual’s age and time of nurse visit. Table A.12 shows the results 

are largely consistent with our main findings, though we note the first order term is smaller in 

magnitude and significant.  

 

5.5.3 IV assumptions 

The MR literature has proposed several robustness checks to detect pleiotropic effects, which 

would violate the exclusion restriction. However, most of these methods (e.g., MR-Egger 

regression) are only applicable in settings with a large number of genetic variants (Bowden et 
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al., 2015). 34 Here, we combine only three genetic variants into a single score, and we therefore 

rely on more traditional approaches from the IV literature to assess the robustness of our 

findings. Separately, evidence suggests that the level of bias in the structural equation is directly 

related to the strength of the association between genetic variants, in our case, the PGS and the 

phenotype (Burgess et al., 2011). To minimise such bias, the authors suggest that researchers 

should use individual-level data where possible. 

 

Following Hughes and Kumari (2019) we consider a range of variables which, based on 

existing evidence, could potentially confound the relationship between testosterone and 

earnings. Table A.15 in the Appendix reports findings from separate reduced form regression 

estimates of selected sociodemographic characteristics on the PGS. UKHLS contains detailed 

information regarding individual-level characteristics, including marital status, self-reported 

health, smoking behaviour and medication (for central nervous system and beta-blockers). We 

find no association between such variables and our PGS; though we cannot fully rule out that 

other dimensions of health might be affected.  

 

Confounding may also arise due to genetic effects by ancestry not captured by principal 

components, for example, at the family level (Morris et al., 2020) due to environmentally 

mediated effects that induce correlation in parents’ PGSs. Another possibility is single-trait or 

cross-trait assortative mating in the parents’ generation. Data constraints imply we cannot rule 

out that family-level effects bias our results. However, UKHLS collects retrospective data on 

parental education and economic status. Including these additional characteristics in our 

regression allows us to control for the impact of parental genes that are mediated by parental 

outcomes which influence offspring labour earnings. Table A.16 shows that after controlling 

for parental education and economic status, the main findings remain unchanged; noting that 

parental education and maternal presence in the household are strongly correlated with male 

offspring labour market earnings conditional on testosterone level.  

 

In Section 4.3, we highlighted that our main findings are robust to controlling for creatinine, 

which has been linked with labour market outcomes (Böckerman et al., 2017). Separately, the 

qualitative nature of our findings remains unchanged if we construct the PGS using only 

 
34 For these reasons, we do not report the findings based on MR-Egger-type tests, though results are available on 
request.   
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genetic variants associated with testosterone alone. We also tested for a statistical association 

between testosterone and creatinine to better understand the causal pathway between 

testosterone and earnings. Table A.13 reports estimates from a regression of creatinine on 

testosterone and finds no statistical association based on our main sample. Finally, we find no 

association between creatinine and our PGS conditional on testosterone (see Table A.14). 

These findings, combined with the results in Appendix Table A.3 suggest that, based on our 

sample data, (i) creatinine has an independent effect on individual earnings, and (ii) it is 

unlikely to be on the causal pathway between testosterone and earnings and, thus, does not 

violate the exclusion restriction.  

 

To assess the sensitivity of our findings to weak instrument problems, we conduct a small 

simulation study to compare the performance of our CF estimator to a 2SLS estimator using 

the squared PGS as an additional instrument (see appendix B for a detailed description of the 

approach and the results). First, we find that the 95% confidence interval achieves nominal 

coverage for both estimators, regardless of the instrument's strength. As expected, the power 

to reject the null hypothesis and the confidence interval's size depends on the instrument's 

strength. We also find that our CF estimator substantially outperforms the alternative 2SLS 

estimator even for weak first stages.  

 

5.5.4 Model specification  

The CF approach and specification outlined in equations (1) and (2) implies a linear correlation 

between the first and second stage residual terms. However, additional endogeneity may arise 

for example due to omitted variables which have a quadratic effect on earnings. Table A.17 

and Table A.18 report estimated coefficients and AMEs of the effect of testosterone on earnings 

(with and without controls for ISCO respectively) when we include both the first and second 

order polynomial of the residual in the second stage regression. First, we note that neither the 

first nor second order term is significant at conventional levels, suggesting no relevant 

endogeneity is detected. Whilst the absolute magnitude of the coefficient on the quadratic term 

for testosterone is twice as large as that reported in Table 3; the AME effects and qualitative 

nature of the findings mirror our main results. Taken together the analysis suggest endogeneity 

of this type is unlikely to bias our estimates and supports our choice of regression specification. 
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6 Discussion 

Biological processes can play an important role in determining labour market outcomes 

(Böckerman et al., 2017; Gielen et al., 2016). We show that testosterone, a hormone that is 

linked to both physical development and individual behaviour, has a causal effect on British 

men’s labour market earnings. We exploit variation in genetic markers of testosterone 

following a Mendelian Randomisation approach and estimate control function regressions, 

which allow us to flexibly control for the functional form of testosterone. Previous studies 

using a similar identification strategy only considered linear relationships between testosterone 

and earnings and found limited (Hughes and Kumari, 2019) or no effects (Harrison et al., 2021). 

We provide evidence that the relationship between earnings and testosterone appears to be non-

linear. Consistent with Gielen et al. (2016)’s findings on prenatal testosterone exposure, we 

find positive returns to circulating testosterone for men—however, these effects appear to be 

limited to the top half of the earnings distribution. Importantly, we find that the marginal effects 

are highest among males with relatively low testosterone levels. We do not observe significant 

returns at higher levels of the male testosterone distribution. The returns to testosterone are 

economically important: our preferred regression specification suggests that moving from the 

25th percentile of the testosterone distribution to the 30th percentile would lead to an increase 

in earnings by £277 or 9.7%, which is larger than Dolton and Sandi (2017)’s estimate of the 

returns to education for British men (6%). 

 

Our analysis of potential mechanisms allows us to rule out several important pathways that 

have been proposed in the literature. First, our findings remained almost unchanged once we 

control for occupational group. Moreover, we find minimal evidence that testosterone is 

associated with selection into occupation; implying that our results instead reflect a testosterone 

wage premium which occurs within occupational groups. We also find no evidence of a link 

between testosterone and other job characteristics, e.g., working hours, performance pay, or 

wage growth. We can further rule out educational attainment, cognitive functioning, or Big 5 

personality traits as relevant mechanisms, as they appear to be unrelated to testosterone in our 

analysis. However, the effect of genetic variants on testosterone may change over the 

lifecourse. Put another way, variants different to those used in this paper may be associated 

with testosterone at an earlier point in the lifecycle, which in turn influences socioeconomic 

outcomes, but our analysis cannot capture this.  
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In line with previous studies (Sapienza et al., 2009; Stenstrom et al., 2011), we find testosterone 

is associated with risk tolerance. However, controlling for risk tolerance does not seem to affect 

our estimates, which suggests that other mechanisms might be at play. For example, our data 

does not allow us to examine selection into occupations below the level of 1-digit ISCO88 

codes. It is possible that men with higher testosterone levels select into higher paid occupations 

and jobs within the broader groups examined here. Similarly, it is possible that testosterone 

might affect selection into jobs involving specific tasks or requiring certain skills, which are 

highly valued by employers. Testosterone may also activate advantageous behavioural 

responses in certain situations, such as salary negotiations, that are not well captured in our 

data.  

 

Our measure of testosterone further restricts our analysis. Here, we only consider total serum 

testosterone measured at a single point in time. Alternative measures, such as bioavailable or 

free testosterone, might more accurately capture the underlying biological processes (Harrison 

et al., 2021). Following the organizational-activational hypothesis, it also appears necessary to 

consider both the effects of prenatal exposure (Gielen et al., 2016) and the effects of circulating 

testosterone jointly. Replicating our results on a larger sample would allow a more in-depth 

consideration of, e.g., effect heterogeneity. Finally, our results only apply to men, since 

testosterone levels of most women in the UKHLS data are below the detectable threshold. It 

would be highly interesting to examine whether similar effects on earnings can be found for 

women. 

 

Methodologically, we note that CF estimators impose additional structural assumptions on the 

first stage compared to 2SLS estimates (Wooldridge, 2015). This assumption plausibly holds 

here, since our first stage closely resembles the regression models used to construct our 

instrument, i.e., the polygenic score (Ohlsson et al., 2011). Assessing whether the usual IV 

assumptions hold appears to be more problematic since most diagnostics and tests proposed in 

the literature either focus on 2SLS estimation or only consider a single (often binary) 

endogenous variable.  

 

Most genetic variants only predict very limited variation in phenotypes, and this is also the case 

here – our preferred first stage specification only explains around 5% of the variation in 

circulating testosterone. We conduct a simulation study to examine how weak instrument 

problems might affect our CF regressions. Similar to Burgess and Thompson (2012), we find 
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that our CF estimator outperforms an alternative 2SLS specification. However, we cannot 

entirely rule out that our results are affected by weak instrument problems. Replicating our 

analysis on a larger sample might further mitigate concerns about weak instruments. 

Considering the validity assumption, we provide some evidence that our instrument does not 

correlate with other known correlates of testosterone. Moreover, our polygenic score only relies 

on a small number of genetic variants, which do not seem to correlate with phenotypes 

unrelated to testosterone. In summary, we argue that the IV assumptions should plausibly hold. 

Yet, further guidance is urgently needed on how these assumptions should be assessed for 

control function estimators involving flexible specifications in the endogenous variable.  

 

In conclusion, we show that there is a testosterone wage premium for British men. Whether 

this premium is warranted or represents discrimination will depend on the mechanisms linking 

testosterone to men's earnings. Our analysis rules out several plausible mechanisms proposed 

in the literature, such as education, occupation or personality traits. While we cannot identify 

the precise mechanism, it is noteworthy that this premium occurs primarily for higher earning 

men with relatively low testosterone levels, which contradicts some widely held stereotypes 

about “testosterone-fuelled” behaviour. Focusing on the lower end of the testosterone 

distribution might be a helpful starting point for future studies which seek to identify the 

relevant mechanisms. 
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Appendix – Tables 
 

Table A.1: Effects of testosterone across the earnings distribution 

Dependent variable: Ln(total income) 
  Low earners High earners 
T 0.009 0.015 

 (0.055) (0.052) 

T2 0.006 -0.024*** 

 (0.007) (0.007) 
First-stage residual 0.000 0.021 

 (0.056) (0.053) 
N 1,621 1,621 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. 
The table shows control function estimates using a linear regression model. The model controls for the first ten 
genetic principal components and age. Standard errors based on 1,000 bootstrap replications in parentheses. 
Significance: *** p<0.01, ** p<0.05, * p<0.1 

 

Table A.2: Effects of testosterone across the earnings distribution – marginal effects 

Dependent variable: Ln(total income) 
  Low earners High earners 
25th percentile 0.000 0.048 

 (0.056) (0.052) 

Mean 0.009 0.015 

 (0.054) (0.051) 
75th percentile 0.016 -0.013 

 (0.054) (0.051) 
N 1,621 1,621 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. 
The table shows control function estimates using a linear regression model. The model controls for the first ten 
genetic principal components and age. Standard errors based on 1,000 bootstrap replications in parentheses. 
Significance: *** p<0.01, ** p<0.05, * p<0.1 
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Table A.3: Effect of testosterone on income – testing plausibility of IV assumptions 

Dependent variable: Ln(total income) 

  
Excluding rs5934505 Controlling for 

Creatinine 
T 0.143* 0.066 

 (0.086) (0.061) 

T2 -0.020** -0.020** 

 (0.008) (0.008) 
First-stage residual -0.132 -0.053 

 (0.088) (0.062) 
N 1,621 1,621 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. 
The table shows control function estimates using a linear regression model. The model controls for the first ten 
genetic principal components and age. Standard errors based on 1,000 bootstrap replications in parentheses. 
Significance: *** p<0.01, ** p<0.05, * p<0.1 
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Table A.4: Average marginal effects for the multinomial logistic regression model of 1-digit ISCO group on testosterone 

Dependent variable: 1-digit ISCO08 code of the current job 
ISCO group 1 2 3 4 5 6 7 8 9 
AME evaluated at…                 
25th percentile 0.022 0.012 0.042 0.020 -0.104 -0.022 0.001 0.036 -0.006 

 (0.043) (0.037) (0.028) (0.022) (0.065) (0.052) (0.038) (0.027) (0.034) 
50th percentile -0.011 0.000 0.030 0.024 -0.064* -0.019 -0.000 0.051 -0.012 

 (0.042) (0.036) (0.036) (0.034) (0.035) (0.032) (0.036) (0.039) (0.029) 
75th percentile -0.035 -0.008 0.015 0.029 -0.041** -0.013 -0.000 0.069 -0.016 
  (0.037) (0.036) (0.041) (0.049) (0.018) (0.020) (0.038) (0.054) (0.026) 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. The table shows average marginal effects derived from 
control function estimates using a multinomial logistic regression model. The model controls for the first ten genetic principal components and age. Standard errors based 
on 1,000 bootstrap replications in parentheses. Significance: *** p<0.01, ** p<0.05, * p<0.1 
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Table A.5: Alternative classifications of occupation  

 

Table A.6: Effect of testosterone on job characteristics (AME) 

Dependent 
variable 

Total working 
hours 

Job regularly 
requires 
working 
overtime 

Performance 
pay component 

Wage growth 

T 1.067 0.121** -0.016 -0.080 
 (0.971) (0.053) (0.057) (0.109) 
N 1,619 1,590 1,119 591 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. 
The table shows control function estimates using a linear regression model. The model controls for the first ten 
genetic principal components and age. Standard errors based on 1,000 bootstrap replications in parentheses. 
Significance: *** p<0.01, ** p<0.05, * p<0.1 

 

  ISCO  NSSEC  
 Ordered model Binary split  Ordered model Binary split 
T 0.052 -0.091 0.036 -0.146 
  (0.199) (0.248) (0.223) (0.307) 
T2 0.061** -0.060 0.085*** -0.041 
  (0.029) (0.040) (0.033) (0.043) 
      

N 1,621 1,621 1,621 1,621 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) 
GWAS. The table shows control function estimates using an ordered logistic regression (columns 1 and 3) or 
a linear regression model (columns 2 and 4). The binary split for ISCO groups contrasts groups 1 and 2 
("Managers" and "Professionals") to the remaining 6 groups. The binary split for the NSSEC contrasts group 
1 (“Management and Professional”) to the remaining 4 groups. The model controls for the first ten genetic 
principal components and age. Standard errors based on 1,000 bootstrap replications in parentheses. 
Significance: *** p<0.01, ** p<0.05, * p<0.1 
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Table A.7: Testosterone and educational attainment 

 AME of testosterone evaluated at: 
Qualification level 25th percentile Mean 75th percentile 
Degree -0.025 -0.040 -0.051 
 (0.042) (0.038) (0.035) 
Other higher degree -0.003 -0.006 -0.009 
 (0.004) (0.005) (0.007) 
A-level etc. 0.003 0.003 0.001 
 (0.006) (0.003) (0.003) 
GCSE etc. 0.012 0.019 0.023 
 (0.019) (0.017) (0.015) 
Other qualification 0.009 0.015 0.021 
 (0.014) (0.014) (0.016) 
No qualification 0.005 0.009 0.014 
 (0.008) (0.009) (0.013) 
N 1,621 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. 
The table shows average marginal effects for the six categories of educational attainment estimated from a 
control function ordered probit regression. The model controls for the first ten genetic principal components 
and age. Standard errors based on 1,000 bootstrap replications in parentheses. Significance: *** p<0.01, ** 
p<0.05, * p<0.1 

 

Table A.8: Testosterone and personality traits 

 AME of testosterone evaluated at: 
Big-5 Inventory 25th percentile Mean 75th percentile 
Openness 0.125 0.134 0.141 
 (0.144) (0.139) (0.137) 
Neuroticism 0.024 0.059 0.088 
 (0.162) (0.159) (0.161) 
Extraversion -0.101 -0.058 -0.022 
 (0.155) (0.149) (0.149) 
Conscientiousness  -0.020 -0.027 -0.033 
 (0.124) (0.122) (0.123) 
Agreeableness 0.006 -0.004 -0.013 
 (0.123) (0.121) (0.123) 
N 1,482 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. 
The table shows average marginal effects for the personality traits measured based on the Big-5 Inventory 
estimated from a control function ordered probit regression. The model controls for the first ten genetic 
principal components and age. Standard errors based on 1,000 bootstrap replications in parentheses. 
Significance: *** p<0.01, ** p<0.05, * p<0.1 
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Table A.9: Testosterone and risk-taking behaviour 

Dependent variable: Ln(total income) 

Risk score 
 

0 reference 
1 0.241* 
 (0.137) 
2 0.202* 
 (0.116) 
3 0.237** 
 (0.11) 
4 0.225** 
 (0.112) 
5 0.107 
 (0.103) 
6 0.268** 
 (0.105) 
7 0.291*** 
 (0.103) 
8 0.345*** 
 (0.104) 
9 0.365*** 
 (0.125) 
10 0.258** 

 (0.116) 
T 0.099 

 (0.064) 

T2 -0.030*** 

 (0.010) 
First-stage residual -0.077 

 (0.065) 
N 1,621 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. 
The table shows control function estimates using a linear regression model. The model controls for the first ten 
genetic principal components and age. Standard errors based on 1,000 bootstrap replications in parentheses. 
Significance: *** p<0.01, ** p<0.05, * p<0.1 
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Table A.10: Effect of testosterone on income – sample restrictions 

Dependent variable: Ln(total income) 

  
Sample: 

aged 16-64 
Part-time 
(<£900) 

Nurse 
visit 

Sample: testosterone 
9-25 nmol/l 

T 0.056 0.145** 0.066 0.0855 

 (0.058) (0.074) (0.061) (0.088) 

T2 -0.020** -0.021** -0.018** -0.046** 

 (0.008) (0.009) (0.008) (0.018) 
First-stage residual -0.045 -0.138* -0.056 -0.048 

 (0.059) (0.077) (0.062) (0.091) 
N 1,692 1,748 1,654 1,386 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. 
The table shows control function estimates using a linear regression model. The model controls for the first ten 
genetic principal components and age. Standard errors based on 1,000 bootstrap replications in parentheses. 
Significance: *** p<0.01, ** p<0.05, * p<0.1 

 

Table A.11: Testosterone and belonging to the top 10% of the age-earnings distribution 

Wave AME of testosterone N 
5 0.034 1,337 
 (0.042)  
6 0.031 1,221 
 (0.044)  
7 0.029 1,140 
 (0.049)  
8 0.052 1,069 
 (0.045)  
9 -0.031 974 
 (0.046)  
10 0.028 896 
 (0.046)  
11 -0.005 835 
 (0.046)  
12 0.059 750 
 (0.055)  
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. 
The model controls for the first ten genetic principal components and age. Standard errors based on 1,000 
bootstrap replications in parentheses. Significance: *** p<0.01, ** p<0.05, * p<0.1 
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Table A.12: Effect of testosterone on income – transformation of testosterone 

Dependent variable: Ln(total income) 
  raw testosterone levels 
T 0.031** 

 (0.015) 

T2 < -0.001** 

 (0.000) 
First-stage residual -0.0120 

 (0.0121) 
N 1,692 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. 
The table shows control function estimates using a linear regression model. The model controls for the first ten 
genetic principal components and age. Standard errors based on 1,000 bootstrap replications in parentheses. 
Significance: *** p<0.01, ** p<0.05, * p<0.1 
  

 

Table A.13: The relationship between creatinine on testosterone 

Dependent variable: creatinine 
T -0.455  

 (0.326) 
N 1,692 
Source: UKHLS, own calculations. Notes: Above shows a regression of testosterone on creatinine (also 
controlling for age and time of the day). Significance: *** p<0.01, ** p<0.05, * p<0.1 
  

 

Table A.14: The relationship between creatinine on PGS and testosterone 

Dependent variable: creatinine 
PGS (Ohlsson et al., 2011) 0.110 

  (0.311) 
T -0.544* 

 (0.329) 
N 1,621 
Source: UKHLS, own calculations. Notes: Above shows a regression of testosterone on creatinine (also 
controlling for age and time of the day). Significance: *** p<0.01, ** p<0.05, * p<0.1 
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Table A.15: Relationship between sociodemographic characteristics and PGS score 

Outcome variable PGS 
score 

N 

Medication: Beta blocker -0.155 1,692 
 (0.149)  
Medication: Central nervous system 0.071 1,692 
 (0.085)  
Self-rated health (binary) -0.109 1,692 
 (0.072)  

Self-rated health (continuous) 0.0349 1,692 

 (0.022)  
Married 0.029 1,692 
 (0.050)  
Smoking 0.040 954 

 (0.064)  
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. 
The table shows control function estimates using a linear regression model. The model controls for the first ten 
genetic principal components and age. Standard errors based on 1,000 bootstrap replications in parentheses. 
Significance: *** p<0.01, ** p<0.05, * p<0.1 
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Table A.16: Testosterone and parental education and economic status 

Dependent variable: Ln(total income) 

Father working when 14 
 

Father working reference 
Father not working or deceased  -0.018 
 (0.053) 
Father not living with respondent so don't know or missing 0.102 
 (0.078) 

Mother working when 14  
Mother working reference 
Mother not working or deceased  -0.031 
 (0.028) 
Mother not living with respondent so don't know or missing  -0.288*** 
 (0.104) 

Father's educational qualifications  
Did not go to school at all/left school with no qualifications or 
certificates reference 

Left school with some qualifications or certificates 0.062 
 (0.038) 
Gained further qualifications or certificates after leaving school 0.108*** 
 (0.035) 
Gained a university degree or higher degree 0.236*** 
 (0.054) 

Mother's educational qualifications  
Did not go to school at all/left school with no qualifications or 
certificates reference 

Left school with some qualifications or certificates 0.098*** 
 (0.038) 
Gained further qualifications or certificates after leaving school 0.104** 
 (0.043) 
Gained a university degree or higher degree 0.173*** 
 (0.067) 

T 0.059 
 (0.056) 

T2 -0.021** 

 (0.008) 
First-stage residual -0.048 

 (0.057) 
N 1,340 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. 
The table shows control function estimates using a linear regression model. The model controls for the first ten 
genetic principal components and age. Standard errors based on 1,000 bootstrap replications in parentheses. 
Significance: *** p<0.01, ** p<0.05, * p<0.1 
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Table A.17: Effect of testosterone and residuals on earnings 

 
 

AME of testosterone evaluated at: 

 Quadratic 
trend 25th percentile Mean 75th percentile 

T 0.0677 0.123* 0.0676 0.0208 

 (0.0583) (0.0699) (0.0589) (0.0673) 

T2 -0.0408    

 (0.0266)    
First order 
polynomial term 
in the first stage 
residual 

-0.0527 
(0.0597)    

Second order 
polynomial term 
in the first stage 
residual 

0.0196 
(0.0275)    

N 1,621 1,621 1,621 1,621 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. 
The table shows control function estimates using a linear regression model. The model controls for the first ten 
genetic principal components and age. Standard errors based on 1,000 bootstrap replications in parentheses. 
Significance: *** p<0.01, ** p<0.05, * p<0.1 

 
Table A.18: Effect of testosterone and residuals on earnings- within occupation 

 
 

AME of testosterone evaluated at: 

 Quadratic 
trend 25th percentile Mean 75th percentile 

T 0.0732 0.129** 0.0732 0.0260 

 (0.0469) (0.0606) (0.0500) (0.0565) 

T2 -0.0410*    

 (0.0233)    
First order 
polynomial term 
in the first stage 
residual 

-0.0669 
(0.0480)    

Second order 
polynomial term 
in the first stage 
residual 

0.0279 
(0.0236)    

N 1,621 1,621 1,621 1,621 
Source: UKHLS, own calculations. Notes: The PGS was constructed based on the Ohlsson et al. (2011) GWAS. 
The table shows control function estimates using a linear regression model. The model controls for the first ten 
genetic principal components and age. We include fixed effects for the first digit of the ISCO code. Standard 
errors based on 1,000 bootstrap replications in parentheses. Significance: *** p<0.01, ** p<0.05, * p<0.1 
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Appendix – Figures 

Figure A.1: Distribution of the polygenic score 

 
Source: UKHLS, own calculations. Notes: Figure A.1 depicts the distribution of polygenic scores based on the 

estimation sample.  

 

Figure A.2: Predicted earnings and testosterone levels 

 
Source: UKHLS, own calculations. Notes: Figure A.2 depicts the predicted relationship between earnings and 

testosterone level.  
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Appendix B: Simulation study on weak instruments in a control function regression 

 

To assess how the strength of the instrument affects the performance of our control function 

estimator we undertake a simulation study. The data-generating process used for this simulation 

study closely follows the set-up in Keane and Neal (2023) with one important exception –  our 

interest in the control function estimator is motivated by the ability to flexibly model the functional 

form of the endogenous variable in the structural equation, and we therefore include a quadratic 

trend in the endogenous variable in the second stage regression. 

 

Here, 𝑦 ∈ ℝ is our outcome of interest and it is generated following the structural equation: 

𝑦𝑖 = 0.3𝑡𝑖 + 0.03𝑡𝑖
2 + 𝑢𝑖 (1) 

with 𝑢𝑖~𝑁(0,1). The endogenous variable 𝑡 ∈ ℝ is determined as a function of the instrumental 

variable 𝑧 ∈ ℝ based on the following first-stage equation: 

𝑡𝑖 = 𝜋𝑧𝑖 + 𝑒𝑖,    (2) 

 

with 𝑧𝑖~𝑁(0,1), 𝑒𝑖 = 𝜌𝑢𝑖 + √1 − 𝜌2 𝜂𝑖, and 𝜂𝑖~𝑁(0,1). In this setting, the endogeneity of 𝑡𝑖 in 

eq. (1) stems from the correlation of the error terms of the structural equation, 𝑢𝑖, and the first-

stage, 𝑒𝑖. The parameter 𝜌 controls the degree of endogeneity. We set 𝜌 = 0.5. The coefficient 𝜋 

in the first-stage allows us to control the size of the population F-statistic, 𝐹𝑝𝑜𝑝 = 𝑁𝜋2.  

 

For our simulation, we generate a random sample of size 𝑁 = 1,000 using random draws for 𝑧, 𝑢 

and 𝜂. We consider eight different values for 𝜋,  corresponding to population F-statistics of 1, 3, 

5, 10, 20, 50, 100 and 1000.35 For each value of 𝜋, we then calculate 𝑒, 𝑧 and 𝑦. We estimate the 

structural equation using both our control function estimator (with standard errors based on 200 

bootstrap replications) as well as a 2SLS estimator with robust standard errors. For 2SLS 

estimation, we use 𝑧𝑖
2 as an additional instrument for 𝑡𝑖

2. 

 

 
35 These values are: 0.031622777, 0.054772256, 0.070710678, 0.1, 0.141421356, 0.223606798, 0.316227766 and 1. 
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We repeat this process using 1,000 randomly generated datasets. We evaluate the performance of 

both estimators by calculating summary statistics across these 1,000 simulations for each level of 

the population F-statistic using the Stata package ‘simsum’ (White, 2010).  

 

The results are presented in Table B.1 below. First, we note that both estimators achieve nominal 

coverage of the 95% confidence interval for both the linear and quadratic term of the endogenous 

variable. However, the power to reject the null hypothesis using a 5% confidence level is generally 

poor for 𝐹 < 100, and for the quadratic term the 2SLS estimator performs poorly even with 𝐹 =

1000. As expected, bias of the point estimate and width of the 95% confidence interval decrease 

with increasing strength of the instrument. Notably, for 𝐹 ≥ 3, the control function estimator 

outperforms the 2SLS estimator for the linear term, and the control function estimator always 

performs better than the 2SLS estimator for the quadratic term of the endogenous variable. 

 

While these results suggest that the bias and precision of our control function estimator depend on 

the strength of the instrument, they also show that even for weak instruments the nominal 95% 

confidence interval achieves correct coverage ensuring valid inference, and our control function 

estimator outperforms the 2SLS estimator in almost all scenarios considered here.  
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Table B.1: Comparison of estimators under different scenarios of instrument strength 

 2SLS Control Function 

Population 
F-statistic 

Mean of 
point 

estimate 

Relative 
bias 

Mean 
width of 
95% CI 

% 
coverage 

of nominal 
95% CI 

% 
power 
of 5% 
level 
test 

Mean of 
point 

estimate 

Relative 
bias 

Mean 
width of 
95% CI 

% 
coverage 

of nominal 
95% CI 

% 
power 
of 5% 
level 
test 

Parameter: 𝛽𝑡𝑖=0.3 
1 0.251 0.165 949.367 99.0 3.8 0.621 1.068 64.765 99.2 2.3 
3 0.044 0.853 1525.510 98.7 4.6 0.191 0.362 42.157 98.7 4.4 
5 0.233 0.223 676.003 98.8 6.2 0.242 0.192 31.175 98.1 7.9 

10 0.209 0.302 742.052 98.5 9.5 0.243 0.189 16.517 97.0 16.0 
20 0.249 0.169 174.480 98.2 13.1 0.274 0.087 3.816 96.6 29.8 
50 0.229 0.237 453.794 97.7 32.5 0.293 0.022 0.615 96.0 52.6 

100 0.286 0.047 3.945 96.9 64.4 0.298 0.007 0.408 95.7 78.5 
1000 0.300 0.001 0.125 94.7 100.0 0.300 0.002 0.124 94.3 100.0 

Parameter: 𝛽𝑡𝑖
2=0.03 

1 0.558 17.594 1234.659 100.0 0.0 0.031 0.020 0.076 94.6 35.2 
3 0.628 19.942 2418.448 100.0 0.0 0.031 0.020 0.076 95.1 36.0 
5 1.912 62.733 5183.746 100.0 0.0 0.031 0.019 0.076 94.6 36.4 

10 1.094 35.468 2409.435 100.0 0.0 0.031 0.018 0.076 94.6 36.4 
20 -0.433 15.448 939.711 100.0 0.0 0.031 0.017 0.075 94.6 37.4 
50 0.467 14.557 2578.053 99.8 0.2 0.030 0.014 0.073 93.9 38.2 

100 -0.025 1.821 15.828 99.4 1.0 0.030 0.010 0.069 94.2 41.1 
1000 0.028 0.052 0.089 95.9 24.5 0.030 0.008 0.038 95.0 85.4 

 

 


