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ABSTRACT
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Enduring Inequalities: Analyzing Energy
Poverty Inertia Across K-Means Clusters*

Evidence on how energy poverty persistence and vulnerability to key factors are distributed 

across different population groups remains scarce. This paper seeks to bridge this gap by 

analyzing the dynamics and determinants of energy poverty within population clusters. 

The significance of the paper is highlighted in the integration of a two-stage Generalized 

Method of Moments (GMM) estimation procedure with K-means cluster analysis. K-means 

clustering is a fundamental tool within AI to understand and find patterns and structure 

in data without labeled outputs. Two key findings emerge. First, the degree of energy 

poverty state dependence varies substantially across clusters, with some segments of the 

population deeply entrenched and facing significant barriers to escape. Second, variables 

critical for identifying at-risk groups, such as income and energy prices, exhibit different 

impacts across clusters. These findings highlight the need for targeted policy interventions 

tailored to the specific vulnerabilities of distinct population segments.
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1. Introduction  

 

The societal repercussions of energy poverty are profound. Energy poverty encompasses lower 

developmental outcomes, reduced educational attainment, heightened income inequality, and 

poorer health metrics on a global scale. Extensive evidence based on international macroeconomic 

data has highlighted these impacts (Banerjee et al., 2021; Lee and Yuan, 2024; Bao and Liao, 

2024), while microeconomic studies have revealed the detrimental effects of energy poverty on 

subjective well-being, health, and human capital accumulation (Zhang et al., 2021; Prakash at al, 

2022). Addressing energy poverty has thus become a top priority for governments and 

institutions, as emphasized by the International Energy Agency (IEA, 2024), leading to significant 

initiatives aimed at identifying its socioeconomic drivers. Mapping these gradients ensures that 

anti-poverty measures prioritize vulnerable populations, fostering both equity and impact. 

 

This paper provides new insights into the determinants of energy poverty and the extent of its 

persistence over time. Using panel data from HILDA, a micro-survey representative of the 

Australian population, and applying a Multidimensional Energy Poverty Index (MEPI), the study 

makes three key contributions to the literature. First, the paper introduces a methodological 

innovation by building on recent developments in the field of unsupervised machine learning 

(ML) algorithms used to group data points into a specified number of clusters based on their 

features. The significance of the study is highlighted in the clustering of individuals into different 

categories (ranging from intense to mild energy poverty) using K-means cluster analysis. K-

means is considered an important method within the AI toolkit (Çılgın and Gökçen, 2024) and 

has recently proven useful in various areas for unveiling underlying patterns in data in studies 

studies on market segmentation, consumer behavior, environmental impact, real estate 

assessments, and electricity use (Ofetotse et al., 2021; Tabianan et al., 2022; Che and Tian, 2024; 

Mardianto et al., 2024). 

 

As a second contribution, the study complements traditional analyses of energy poverty, which 

typically focus on contemporaneous effects and assume that control variables fully encapsulate 

the factors driving observed outcomes. While these approaches have provided valuable insights, 

they often adopt a static perspective that may overlook the potential for energy poverty to be self-

perpetuating—shaped not only by current conditions but also by its own history. Furthermore, 

they may fail to capture the dynamic transitions individuals undergo as they move into or out of 

poverty over time. A growing body of literature has sought to address this gap by estimating the 

state dependence of energy poverty using dynamic panel models, with the lagged dependent 

variable serving as an explanatory factor (Alem and Demeke, 2020; Drescher and Janzen, 2021; 
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Halkos and Kostakis, 2023). In this paper we estimate energy poverty dynamics through a two-

stage Generalized Method of Moments (GMM) estimation procedure (Arellano and Bond, 1991; 

Arellano and Bover, 1995). This methodological framework, enhanced by several refinements 

and sensitivity checks, effectively addresses endogeneity issues arising from reverse causality and 

unobserved heterogeneity (Leszczensky and Wolbring, 2022). It also captures the significant 

impact of prior energy poverty conditions on future outcomes. By integrating GMM with an AI-

driven clustering approach, this study moves beyond characterizing state dependence with an 

"average effect." Instead, it explores whether focusing solely on averages might obscure critical 

variations within subpopulations. 

 

As a third contribution, this study examines whether the relationship between energy poverty and 

key variables—such as income and energy prices, which are commonly used to identify at-risk 

groups—differs across distinct population segments. Because most research on energy poverty 

focuses on socio-demographic determinants at the aggregate level (Dalla Longa et al., 2021; Fry 

et al., 2022; Awan and Bilgili, 2022), there is limited evidence on how these factors influence 

specific population clusters. This study addresses this gap by documenting how key drivers 

uniquely impact different segments, offering valuable insights into the varying levels of 

vulnerability across groups. 

 

Australia offers a valuable case study for this analysis for two key reasons. First, existing 

Australian programs primarily focus on price compensation and social welfare payments to assist 

with energy bills, and have a strong targeting of low-income groups through means-testing 

(Willand et al., 2023). However, fluctuations in gas and electricity prices—and consequently in 

compensation rates—may have only minimal effects within certain groups. Similarly, there is no 

guarantee that income consistently serves as a fundamental risk factor across all clusters. As a 

result, current policies may fail to adequately address the needs of at-risk individuals who fall 

outside traditional low-income classifications. Identifying differences across clusters regarding 

energy poverty state dependence and their sensitivity to changes in income and energy prices is 

therefore critical to developing more effective energy poverty reduction strategies. Second, over 

the past decade, electricity prices in the country have nearly tripled, raising significant concerns 

about energy affordability (Proctor, 2022). By 2021, the average residential electricity price in 

Australia ($0.22 per kWh) was approximately 60% higher than the global average ($0.14 per 

kWh). This sharp increase in energy costs has placed considerable strain on household budgets, 

intensifying challenges related to energy access and affordability (OECD, 2022).  

 

This study is organized as follows. Section 2 reviews the literature and highlights the main 

determinants of energy poverty discussed in prior research. Section 3 describes the dataset and 
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the main variables used in the analysis, including the central energy poverty measure, the MEPI. 

Section 4 outlines the methodological framework, detailing the K-means clustering approach and 

the GMM econometric procedure. Section 5 presents the results and emphasizes the existing 

differences across clusters. Section 6 introduces several sensitivity checks to test the validity of 

the model and asses the robustness of the results. Section 7 presents the concluding remarks. The 

paper includes and Appendix with additional results.  

 

2. Literature review 

 

Energy poverty is a multidimensional phenomenon characterized by deprivation and vulnerability 

arising from inadequate or unaffordable energy supply. While numerous conceptual definitions 

have been proposed, translating these into actionable measures remains a significant challenge. 

Policymakers and scholars employ diverse data and definitions that vary across countries and over 

time, reflecting ongoing debates in the academic literature (Siksnelyte-Butkiene, 2021). The 

literature highlights three primary approaches to measuring energy poverty: expenditure, 

consensual, and direct measurement (Chandrashekeran et al., 2022). The expenditure approach 

compares energy costs to absolute or relative thresholds as a proxy for energy deprivation. 

Consensual metrics rely on self-reported assessments on the ability to meet basic energy needs. 

Direct measurement evaluates energy use, such as cooling and heating, against established 

benchmarks. These approaches have led to the development of both composite and single metrics, 

framing energy poverty as a broader issue encompassing vulnerability, insecurity, and energy 

justice (Guevara et al., 2023). 

 

Cross-national studies underscore that energy poverty is influenced by a range of macroeconomic 

and institutional factors, including education, governance quality, technological progress, health 

expenditures, and the level of economic development. The relationship between these factors and 

household energy deprivation often varies by GDP levels, as shown by Boţa-Avram et al. (2024). 

Income inequality, internal conflict and climatic conditions also contribute, though to varying 

degrees, depending on regional contexts (Igawa and Managi, 2022; Khalid et al., 2024). 

Moreover, the energy mix of a country—reflecting the sources used for electricity production—

plays a pivotal role in shaping energy outcomes (Kocak et al., 2023). 

 

At the regional and country level, energy poverty often stems from a complex interplay of factors 

such as energy prices, availability, and inefficiencies in building infrastructure (Cheikh et al., 

2023). Characteristics like insulation, heating systems, and floor area significantly affect 

vulnerability to energy deprivation (Karpinska and Śmiech, 2023). Meanwhile, household-
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specific drivers such as low income and high energy costs exacerbate risks, leading to unpaid 

bills, energy debts, or supply disconnections (Best and Burke, 2019). Individual attributes also 

matter: educational attainment is negatively associated with energy poverty due to its role in 

fostering energy-efficient behaviors and economic resilience (Crentsil et al., 2019). Household 

size, marital status, and location—urban or rural—further interact with energy needs and costs, 

while age influences energy deprivation through life cycle patterns and risk preferences (Abbas 

et al., 2020; Drescher and Janzen, 2021). Moreover, poor health can shift household spending 

priorities, limiting access to energy services, while income and employment status are consistent 

determinants, especially in developing countries, where energy poverty is more pervasive (Awan 

and Bilgili, 2022; Abbas et al., 2022). 

 

2.1 AI applications in energy poverty research 

 

The application of AI-based methods to predict energy poverty has gained attention recently, 

reflecting its potential to enhance both understanding and mitigation strategies. Although still in 

its infancy, this approach provides new insights into the drivers of energy poverty. For instance, 

studies using advanced ML frameworks such as XGBoost have identified critical predictors in 

diverse contexts. In the Netherlands, income, house value, and homeownership emerged as the 

most significant determinants of energy poverty (Dalla Longa et al., 2021). Complementarily, 

research utilizing Random Forest classifiers highlights the importance of both household-level 

factors, such as dwelling conditions and energy efficiency, and country-specific elements, 

including gas supplier switching rates (Spandagos et al., 2023). While the previous studies are 

based on a single energy poverty indicator, other studies define a multidimensional energy 

poverty index similar to ours. These studies have examined Asian and African contexts showing 

that wealth, marital status, and place of residence play pivotal roles (Abbas et al., 2020). 

Methodological advancements have also emerged, with ensemble models like XGBoost, Random 

Forest, and Artificial Neural Networks uncovering novel predictors, such as education and food 

security, which significantly influence energy poverty risks (Gawusu et al., 2024). 

 

Despite these advancements in the literature, our understanding of how current circumstances 

influence the dynamics of energy poverty remains limited. While existing studies provide 

valuable insights into static relationships between predictors and energy poverty, they often fail 

to capture the temporal dynamics that can reveal pathways into and out of deprivation. 

Investigating these dynamics is essential, as it holds significant potential to inform targeted 

interventions. 
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3. Data and measures 

 
We use the 2007-2021 waves of the Household, Income, and Labor Dynamics in Australia 

(HILDA) Survey, a comprehensive, nationally representative longitudinal study that examines 

the economic, social, and demographic dynamics of Australian households. Initiated in 2001 and 

conducted annually, it tracks individuals and households over time. The survey combines 

objective data, like income and employment, with subjective measures, such as well-being and 

financial stress, offering a rich dataset for understanding Australia’s social fabric. Its design 

allows for the analysis of long-term trends and causal relationships, making it an essential tool 

for researchers and policymakers. The original 2001 sample included approximately 7,600 

households and 13,000 individuals, with periodic updates to account for attrition.  

 

We employ the dataset to regress energy poverty on a number of covariates, including energy 

prices and socio-economic factors. After dropping observations with item non-response, the 

estimation sample includes 172,582 observations from 23,251 individuals across 15 years. We 

describe the main variables below.  

  

3.1 Energy poverty 

 

We use five items to construct a multidimensional energy poverty index. The literature typically 

distinguishes between objective (expenditure-based) and subjective (self-assessed) approaches. 

Expenditure-based measures label a household as energy poor when the income that households 

spend on energy is above a specific threshold. For instance, a household may be classified as 

energy poor if i) its share of income spent on energy is greater than twice the national median (the 

2M indicator), ii) its share of income spent on energy exceeds 10% (the Ten Percent Rule, TPR), 

or iii) its actual energy expenditures are above the national median and, at the same time, their 

income net of energy costs is below the official national income poverty line (the Low Income 

High Costs indicator, LIHC). Hence, our first three items are 2M, the TPR, and the LIHC 

indicators. All energy expenditures and income variables used in the paper are transformed using 

the OECD equivalence scale and normalized into real terms using the yearly consumer price 

index. These measures have been used frequently in the literature (Fry et al., 2022; Awan et al., 

2022).  

 

However, while expenditure-based measures are objective and transparent, they may overlook 

intentional reduction in energy consumption by low-income households. If vulnerable households 

limit their energy consumption to prioritise other services and goods, measures based on the actual 

energy costs may underestimate the true prevalence of energy poverty (Price et al., 2012). 
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Moreover, low-income families can resort to energy credits and repayments to smooth their 

monthly energy costs over time. In this case, a low monthly energy budget may hide a chronic 

energy deprivation status. To overcome these limitations, applied research has relied on 

individuals’ self-evaluations of their ability to afford and access specific energy services (Prakash 

et al., 2022). Hence, apart from the expenditure-based measures, we also consider two self-

assessed indicators based on the household’s inability to pay to heat their home because of a 

shortage of money (Heat) and pay electricity, gas, or telephone bills on time (Arrears). 

 

Noting that energy poverty is multifaceted, the MEPI used in the paper is based on the 

aforementioned items. Let J be a set of poverty indicators with element j, 𝑗 ∈ 𝐽, 𝑚 = 𝑐𝑎𝑟𝑑(𝐽).  

Let I be a set of individuals, with element i, 𝑖 ∈ 𝐼, and EPij denote the status of the ith individual 

in the jth indicator. If an individual i is poor under indicator j, then EPij takes the value of one, 

and zero otherwise. Following the family of indexes typically described in the literature on 

material deprivation (Dhongde et al., 2019), individual i’s weighted poverty score is given by 

 

 𝑀𝐸𝑃𝐼 = ቌ 𝑤𝐸𝑃

∈

ቍ                   ∀𝑖 ∈ 𝐼                                            (1) 

 

where 𝑤 denotes the weight assigned to the poverty indicator j, with ∑ 𝑤 = 1୨∈ . Hence, MEPI 

ranges from 0 to 1 and captures the percentage of dimensions in which the individual is deprived. 

While it is common to assign equal weights to the indicators, we emphasise the indicators where 

deprivation is less common, the so-called frequency-based weighting approach (Decancq & Lugo, 

2013). The weight given to an indicator is proportional to the percentage of individuals not 

classified as poor under that specific indicator within a particular state. In other words, 𝑤 =

(ଵିೕ)

∑ (ଵିೕ)ೕ∈

 where 𝑛 is the proportion of poor individuals in dimension j. This choice is motivated 

by the idea that not having access to common items should be a more relevant determinant of 

deprivation than less common items. Additionally, the weights are based on the distribution of 

achievements in society without considering any value judgement about what the trade-offs 

between items should be. For greater granularity and accuracy, the weights are calculated 

separately for each wave. There are two advantages to using this approach. Firstly, it allows the 

poverty of a given individual to increase if their conditions do not change and the conditions of 

all others improve. Secondly, it adapts automatically over time, considering economic conditions 

and social and cultural preferences when accessing items.  
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3.2 Energy prices and other control variables 

 

We use annual electricity and gas prices at the state level drawn from the Australian Bureau of 

Statistics (ABS, 2024). The average price of gas and electricity over the sample period was $0.012 

and $0.266 per kWh, respectively. To avoid variable proliferation, in the regression stage we 

introduce just one control for energy prices, defined as a weighted average between the price of 

gas and electricity.1 Since energy prices are not available monthly, we construct a 12-month 

rolling average, �̅�௧
ଵଶ = 𝑘௧ × 𝑝௧ + (1 − 𝑘௧)𝑝௧ିଵ, where 𝑘𝑡 is the proportion of months elapsed 

from January 1 to individual’s i date of the interview in year t and 𝑝௧ is the energy price in year t. 

Thus, we do not only exploit variation in energy prices across states, but also over time and across 

individuals.  

 

As additional control variables, we consider socioeconomic factors standard when accounting for 

individual economic outcomes. These include income, schooling, age, marital status, labor status, 

health and parenthood. The relevance of these variables has been emphasized in prior research 

and described in Section 2. We also include controls for remoteness, region of residence (the six 

states and two territories of Australia, reference: New South Wales), time fixed effects and 

variables to control for macroeconomic conditions at the regional level. The economic cycle 

affects the chance to find and keep jobs, and it also impacts the likelihood of having a stable 

income source. We include controls for the regional unemployment rate, per capita GDP, and 

GDP growth. We also include the regional participation rate to capture competition effects in the 

labour market and the labour force share of part-time workers to control for the fact that areas 

with a larger proportion of temporary and/or part-time workers generally have more flexibility to 

adapt to labour market disequilibria.  

 

In Table 1, we report summary statistics. We classify respondents depending on whether they 

have some form of energy deprivation (MEPI > 0) or not (MEPI = 0). We also report summary 

statistics for the sample as a whole. Households experiencing some level of energy poverty (MEPI 

> 0) have significantly lower incomes ($65,655.2 vs. $116,404.2), aligning with the expectation 

that limited financial resources are a key driver of energy poverty. They also have fewer years of 

education on average (12.1 vs. 13.0), potentially restricting access to better job opportunities and 

income. Individuals in these households tend to be slightly older (46.4 vs. 44.7 years), possibly 

 
1 An average Australian household spends about twice as much on electricity as on gas (ABS, 2024). Accordingly, we 

assign a weight of 0.66 to electricity prices and 0.33 to gas prices. Alternative linear combinations yielded comparable 

results, and including separate controls for electricity and gas prices did not significantly improve the models' goodness 

of fit. 
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reflecting higher energy poverty among older populations with fixed or reduced incomes. There 

is also a lower proportion of married individuals (61.8% vs. 73.1%) and higher proportions of 

divorced (14.1% vs. 7.4%) and widowed individuals (4.1% vs. 1.8%), suggesting that the 

economic stability often associated with marriage reduces the risk of energy poverty. Individuals 

with MEPI > 0 show lower employment rates (57.3% vs. 75.4%) and have more children at home 

on average (1.9 vs. 1.6), which may increase energy needs and financial strain. Despite this, they 

tend to live in smaller households, potentially indicating a higher prevalence of single-parent 

families among them. They also report higher rates of ill-health (30.3% vs. 17.6%), consistent 

with evidence that health issues often exacerbate energy vulnerability.  

 

-Insert Table 1 here- 

4. Methodology 

4.1 K-means clustering 

We use the K-means clustering algorithm to group individuals based on their energy poverty 

level, measured by the MEPI. This approach enables us to analyze the inertia of energy poverty 

within each cluster and uncover patterns in the characteristics unique to each group. Given that 

each individual can belong to only one cluster and that energy poverty is subject to temporal 

fluctuations, the clustering is performed using the time-averaged MEPI for each individual over 

the 15 years covered in the panel. This choice aligns with standard practices for applying K-means 

clustering to panel data (Gök and Sodhi, 2021). 

 

The algorithm works by finding the centroids (the mean of the points of each cluster) and 

assigning each data point to the nearest centroid, each group of points assigned to a centroid 

outcome in a cluster. In our case, each centroid is initialized as a random value within the range 

of energy poverty levels. The algorithm is randomly solved several times through an iterative 

process that minimizes the sum of squared distances between the points and their respective 

cluster centroids – inertia –. Specifically, K-means partitions the data into K clusters, with each 

cluster containing elements that are similar by a distance metric (such as Euclidean distance 

measurement method). Suppose D = { 𝑥1, …, 𝑥n} corresponds to the individuals to be clustered. 

Following Wu (2012), K-means can be expressed by: 

 

min
{ೖ},ଵஸஸ

  𝜋௫

௫∈ೖ



ୀଵ

 dist(𝑥, 𝑚)                                                  (2) 
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where 𝜋௫  is the weight of 𝑥, 𝑚 is the centroid of cluster 𝐶, 𝑚 = ∑
గೣ  ௫

ೖ
௫∈ೖ

, where 𝑛 is the 

number of data objects assigned to 𝐶, 𝐾 is the number of clusters and ‘dist’ computes the distance 

between objects 𝑥 and centroid 𝑚, 1 ≤ 𝑘 ≤ 𝐾. The selection of the distance function is the 

squared Euclidean distance: ห|𝑥 − 𝑚|ห
ଶ
. 

 
To determine the optimal number of clusters (K), we follow two key criteria: clusters must contain 

at least a minimum number of individuals (set at 1000), and the optimal number of clusters must 

be identified through The Elbow Method. The method involves iterating from k=1 to k=n (here 

n=10, is the hyperparameter selected), and plotting the inertia against the number of clusters. The 

optimal number of clusters is typically identified at the “elbow point” in the plot, where the rate 

of decrease in inertia slows down, indicating diminishing returns from adding more clusters (Cui, 

2020).  

 

Figure 1 shows the inertia for the analysed data, and the “elbow point” is where the inertia stops 

decreasing significantly. This point can be interpreted as a good candidate for the optimal number 

of clusters. Fulfilling the two criteria outlined above, K = 4 is the number of clusters best selected 

in the algorithm. To assess whether the clusters remain distinct and internally consistent, we 

compute the Silhouette Coefficient of each cluster. The silhouette score measures the similarity 

of each point in a cluster to points in neighbouring clusters, with values ranging from -1 to 1. A 

score close to -1 suggests that a point may have been incorrectly assigned to a cluster, while a 

value close to 0 indicates that the point is on the boundary between clusters, so its belonging is 

unclear, or clusters are overlapping. Scores close to +1 mean that the point is well separated from 

neighbouring clusters, indicating a strong and well-defined clustering. In this case, the inertia 

reductions for K = 3 and 4 are strong, as shown in Figure 1, and it is at K = 4 that the trend is 

broken. The Silhouette Coefficient of these clusters is 0.689 and 0.676, respectively. Although 

the score of 4 clusters is slightly lower than the 3-cluster score, it still scores relatively well, 

suggesting that the clusters are still well separated and coherent. For this paper, it is a reasonable 

choice because the aim is to capture more nuances in the data.  

 

-Insert Figure 1 here- 

 

Table 2 shows the distribution of individuals by cluster. The 23,251 individuals in the sample 

were grouped into 4 clusters based on their time-averaged energy poverty score. The cluster with 

the highest density of individuals (56.2%) is cluster k=1, with the lowest average MEPI (0.143). 

This is followed by cluster k =3 with 23.6% of respondents and a mean MEPI of 0.093 and cluster 

k =0, with 15.6% of the sample and MEPI = 0.215. The remaining 4.5% of the sample individuals 
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(k =2) are the poorest in energy, with an average MEPI of 0.418.  Figure 2 shows each cluster 

with its respective centroid and the individuals density corresponding to each cluster. 

 

-Insert Table 2 here- 

-Insert Figure 2 here- 

 

4.2 The GMM estimator 

 

Energy poverty at time t is specified 

  𝑀𝐸𝑃𝐼௧ = 𝜌𝑀𝐸𝑃𝐼௧ିଵ + 𝑋′௧𝛽 + 𝑐 + 𝑢௧                           (3) 

(𝑖 = 1, … . , 𝑁); (𝑡 = 2, … , 𝑇), where 𝑋௧ is the set of covariates; 𝑐 denotes individual-specific 

unobserved heterogeneity; and 𝑢௧  is assumed to be a normally distributed error term 𝑁(0, 𝜎௨
ଶ). 

This specification does not deal with the initial condition problem, i.e., the possibility that energy 

poverty at the start of the observation period is endogenously determined by the individual’s past 

history. In such case, the unobserved heterogeneity and the initial value of the dependent variable 

are expected to be correlated, 𝐸(𝑀𝐸𝑃𝐼ଵ 𝑐) ≠ 0. Similarly, the specification does not rule out the 

potential correlation between the unobserved heterogeneity and the regressors, i.e.,  𝐸(𝑋௧ 𝑐) ≠

0. Moreover, a consistent estimation of Eq. (1) crucially relies on the correct specification of 

𝑐 and the assumption that 𝐸(𝑀𝐸𝑃𝐼௧ିଵ𝑢௧) = 0.   To address these concerns, we resort to a GMM 

estimation procedure that purges the individual-specific effect from the model, 

 

  ∆𝑀𝐸𝑃𝐼௧ = 𝜌∆𝑀𝐸𝑃𝐼௧ିଵ + ∆𝑋′௧𝛽 + ∆𝑢௧            (4) 

  

Noting that in the resulting model there is still correlation between the differenced lagged variable 

and the disturbance process (the former contains 𝑀𝐸𝑃𝐼௧ିଵ and the latter contains 𝑢௧), we 

instrument ∆𝑀𝐸𝑃𝐼௧ିଵ with all lags of  𝑀𝐸𝑃𝐼௧ି, for 𝑗 ≥ 2. We employ a two-step GMM 

approach, incorporating a second-order transformation known as 'forward orthogonal deviations'. 

This technique involves subtracting the average of all future available observations from the 

current value of a variable, as opposed to subtracting the previous observations. By utilizing the 

two-step GMM model, we mitigate unnecessary data loss. The two-step GMM estimator is 

unbiased and consistent under the assumption of no second-order serial correlation in the error 

term, 𝐸(𝑀𝐸𝑃𝐼௧ି∆𝑢௧) = 0  ∀𝑗 ≥ 2,  a moment condition that can be tested. Strictly exogenous 

regressors are assumed to be uncorrelated with 𝑢௧ and are used as instruments for themselves. It 

is possible that some regressors are weakly exogenous, that is, they are correlated with past errors, 
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𝐸(𝑥௧ା௦𝑢௧) ≠ 0  for 𝑠 > 0, but uncorrelated with contemporaneous and future errors, 

𝐸(𝑥௧ା௦𝑢௧) = 0   for 𝑠 ≤ 0; 𝑡 + 𝑠 > 0. If a regressor is presumed to be correlated with the 

contemporaneous error, it is considered endogenous. In such instances, only lagged values can be 

employed as valid instruments. 

 

To select the optimal combination of exogenous and endogenous regressors, we conducted an 

extensive series of sensitivity checks, using tests for serial correlation in first-differenced errors 

and the Hansen’s J-test of overidentifying restrictions as our primary screening criteria. The most 

robust combination assumed that all individual variables were strictly exogenous. Nonetheless, in 

the Appendix, we provide additional sensitivity analyses under varying assumptions for the 

regressors, and also include a second lag of the dependent variable. We employ standard 

instruments for strictly exogenous regressors, collapsed instruments for the remaining regressors, 

and Windmeijer-corrected robust standard errors. To mitigate the efficiency loss associated with 

instrument proliferation—an issue that can result in overfitting endogenous variables without 

adequately addressing their endogenous components— we collapse the instruments and restrict 

the maximum lags to three periods, as detailed by Kripfganz & Schwarz (2019). 

5. Results 

Before presenting the regression results separately by group, it is convenient to examine potential 

divergences in the socio-economic profile of the different clusters. Figure 3 presents summary 

statistics for the categorical variables and continuous variables used in the paper. The results 

suggest the presence of four hypothetical Types: the “Unemployed and Income Poor” (Cluster 0), 

the “Young professionals and affluent” (Cluster 1) the “Sick and Vulnerable” (Cluster 2) and the 

“Stable workers with moderate income” (Cluster 3).   

 

Cluster 0 (average MEPI = 0.215) represents individuals facing significant economic constraints, 

characterized by low income, limited education, and a low employment rate. Cluster 1 (MEPI = 

0.014) includes relatively young individuals with high employment rates, good health, and strong 

educational backgrounds. This group benefits from stable family structures, being more likely to 

be married and less likely to be divorced, and has fewer children compared to other clusters. 

Cluster 2 (MEPI = 0.418) is a segment disadvantaged in health, income and energy poverty. These 

individuals often face compounded challenges such as economic inactivity, low education levels, 

and ill-health, which limit employment opportunities. This cluster also tends to include older, 

unmarried individuals, with a significant presence of women. Finally, Cluster 3 (MEPI = 0.093) 

includes mostly employed individuals with relatively stable economic conditions, though less 

affluent than Cluster 1. While most are employed, some are economically inactive. This cluster 
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exhibits stable family structures, with a high proportion of married individuals and relatively few 

divorcees, reflecting a moderate level of economic security but greater vulnerability compared to 

the more affluent clusters. An important takeaway from Figure 3 is that energy prices remain 

consistent across clusters, indicating that the differences in the underlying likelihood of 

experiencing energy poverty stem from socioeconomic and demographic factors rather than 

varying energy price rates among different groups. 

 

-Insert Figure 3 here- 

 

5.1 The determinants of energy poverty  

 

In Table 3 we present results from the GMM estimator. The lagged dependent variable, 

representing state dependence, indicates a significant energy poverty inertia among individuals in 

Australia, even after accounting for a broad range of socio-economic determinants. Across all 

clusters, individuals with a high MEPI at time 𝑡−1 tend to exhibit relatively high MEPIs at time 

t. However, the magnitude of this effect varies across clusters, reflecting differences in the 

persistence of energy poverty. Cluster 0 exhibits the highest inertia (0.108), pointing to deeply 

entrenched energy poverty in this group, while Cluster 1 shows the lowest state dependence 

(0.052). To contextualize these findings, we reference three earlier studies, though 

methodological differences—such as reliance on a binary definition of energy poverty (yes/no) 

and the use of Wooldridge’s conditional maximum likelihood estimator—make direct 

comparisons challenging. Drescher and Janzen (2021), using data from the German Socio-

Economic Panel, report state dependence effects of 3.8 to 7.5 percentage points (pp) in energy 

poverty likelihood. This aligns with the low persistence observed in Clusters 1 and 2 for Australia, 

reflecting conditions typical of developed nations with strong social safety nets. In contrast, Alem 

and Demeke (2020), employing data from the Ethiopian Urban Socio-economic Survey, estimate 

lagged poverty effects between 9.8 and 16.4 pp, highlighting greater persistence in lower-income 

settings. Similarly, Halkos and Kostakis (2023) report an approximate 12 pp effect for Greece, a 

middle-income country. Hence, the high state dependence observed in Cluster 0 aligns more 

closely with estimates from low- and middle- income contexts, thus suggesting significant 

socioeconomic disparities within Australia. 

 

-Insert Table 3 here- 

 

The effect of income also differs significantly across clusters. Cluster 2 ("Sick and vulnerable") 

shows the strongest negative effect (-0.249), indicating that improvements in income are 

particularly critical for reducing energy poverty in this group, given their low income levels and 
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high vulnerability. Cluster 0 ("Unemployed and income poor") also exhibits a strong negative 

effect (-0.185), while Cluster 3 ("Stable workers with moderate income") shows a moderate 

negative effect (-0.137), reflecting that income improvements are still relevant but less critical 

compared to the more vulnerable clusters. While the negative relationship between income and 

energy poverty is well-documented (Churchill and Smyth, 2021; Dalla Longa et al., 2021; van 

Hove et al., 2022) and forms the foundation for income-based policies to address energy poverty 

(Simshauser and Miller, 2023), most studies in the literature depict this relationship in a linear, 

average fashion. Our findings suggest significant heterogeneity in the income-energy poverty 

relationship across individual profiles, supporting the need for targeted, cluster-specific policy 

interventions. 

 

Energy prices are a key tool for policy and the monitoring of at-risk groups. The results in Table 

3 highlight the vulnerability of different clusters to energy cost fluctuations. Cluster 2 shows an 

acute sensitivity to energy price increases likely due to their constrained resources and higher 

energy needs. The estimate indicates that a 1% increase in the energy price leads to 0.0034 points 

increase in the MEPI, which represents a 0.34 pp variation. Cluster 0 also experiences a significant 

rise (0.21 pp), emphasizing their vulnerability to energy costs, while the effect in Cluster 3 is 

smaller but still positive (0.063 pp). In sharp contrast, Cluster 1 presents a small negative effect 

(-0.0274 pp), suggesting that this group is least affected by energy price increases and may even 

benefit slightly, perhaps due to efficient energy use and price resilience.  

 

As for the remaining socio-economic variables, we also detect relevant differences. In Cluster 0, 

there is a significant dependency on unemployment and ill-health. Clusters 1 and 3 show greater 

sensitivity to aging, widowhood, and divorce, while having children at home raises the energy 

poverty score in Cluster 3. All clusters except Cluster 2 respond positively to favorable aggregate 

conditions such as labor market flexibility (part-time employment rate) and GDP growth to a 

lesser extent. Additionally, Cluster 3 is negatively impacted by labor market competition, as 

reflected by the participation rate, consistent with the fact that this group primarily consists of 

employed individuals. To illustrate these differences, Figure 4 presents a summary of the relative 

sizes of the coefficients by cluster. For a given covariate (e.g., energy prices), the coefficients are 

summed to total 100%, with the colors indicating the relative contribution of each cluster within 

that 100%. This visualization highlights the varying importance of each covariate across clusters, 

emphasizing the heterogeneity in the underlying relationships. 

 

-Insert Figure 4 here- 
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5.2 Model validation and sensitivity checks  

 

In the lower section of Table 3, we report the diagnostic tests for the GMM model, including the 

test for serial correlation in the first-differenced errors and Hansen’s J-test of overidentifying 

restrictions. The results indicate no evidence of second-order serial correlation, supporting the 

validity of the lagged instruments used in the model, as their relevance depends on the error term 

not being serially correlated beyond the first order. Additionally, Hansen’s J-test fails to reject the 

null hypothesis that the instruments are uncorrelated with the error term, confirming their 

appropriateness. These diagnostics suggest that the model satisfies the key assumptions 

underpinning GMM estimation, ensuring that the estimates are not biased by instrument invalidity 

or misspecified error structures. 

 

In the Appendix, we present results from variations of the GMM estimator, incorporating 

alternative assumptions. Table A1 reports the outcomes for a model that includes a second lag of 

the dependent variable. The diagnostic results are less satisfactory, showing evidence of second-

order autocorrelation in two clusters (Clusters 0 and 3) and a rejection of the Hansen’s J-test of 

overidentifying restrictions at the 10% significance level in Cluster 1. Furthermore, the second 

lag of the dependent variable is not statistically significant at the 5% level in three of the clusters, 

lending support to the poverty dynamics assumed in the baseline specification. Despite these 

limitations, the results remain broadly consistent with those of the baseline model, with Clusters 

0 and 2 exhibiting significant sensitivity to income and energy prices and state dependence being 

most pronounced in Cluster 0. In Table A2, we explore a model where income and the 

employment variables are assumed to be endogenous. For Cluster 0, the Hansen’s J-test suggests 

model misspecification, as the null hypothesis is rejected. Nevertheless, the estimated coefficients 

remain largely consistent with those obtained in the baseline model. Finally, Table A3 presents 

results under the assumption of endogeneity for the full set of individual regressors. This 

specification does not produce any meaningful differences in the main conclusions of the paper, 

reinforcing the robustness of the baseline findings. 

 

5.3 Assessing endogeneity in sample attrition 

 

Although the sample exhibits moderate levels of attrition, with entry and exit rates averaging 

8.7% and 7.2%, respectively, there remains a concern about whether these dynamics are 

systematically influenced by factors related to energy poverty. To investigate this, we conducted 

a series of analyses to determine whether sample attrition is random or exhibits a degree of 

endogeneity. First, we assessed the likelihood of individuals leaving the sample by regressing an 
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indicator variable for sample exit in the following year on energy poverty status and a set of 

control variables. The coefficient for energy poverty was statistically insignificant (-0.004, p-

value = 0.387) suggesting that the likelihood of leaving the sample is unrelated to energy poverty. 

This finding alleviates concerns about selective dropout based on energy vulnerability. 

 

We then turned to the entry process, analysing whether energy poverty influences the probability 

of joining the sample. Here, energy poverty showed a small but statistically significant negative 

effect (-0.006, p-value = 0.058), indicating that individuals who are less likely to experience 

energy poverty are slightly overrepresented among new entrants. This non-random selection 

could reflect ease of recruitment, as individuals in more stable socioeconomic situations may be 

more accessible to participate in longitudinal studies. While this potential bias in new panelist 

inclusion warrants acknowledgment, the randomness of attrition post-recruitment supports the 

representativeness of the sample over time.  

6. Conclusions 

This paper examined the dynamics of energy poverty by integrating advanced machine learning 

methods with a dynamic Generalized Method of Moments (GMM) model. Using data from 

HILDA, representative of the Australian population, and a multidimensional index of energy 

poverty, the paper identified key determinants of energy poverty and examined its persistence 

across different population groups.  

 

The study contributes to the existing literature by addressing key limitations of traditional 

analyses. It introduces an innovative methodology that leverages unsupervised clustering 

algorithms, such as K-means, to segment the population into relevant clusters. In combination 

with a dynamic panel model, this enables the identification of substantial differences in state 

dependence and the factors driving energy poverty within each group, challenging the 

conventional reliance on population averages and contemporaneous, static effects. 

 

The results of this study identify four clusters —the "Unemployed and Income Poor," "Young 

Professionals and Affluent," "Sick and Vulnerable," and "Stable Workers with Moderate 

Income"—. These clusters are associated to different latent levels of energy poverty. The results 

emphasize the diversity of energy poverty dynamics across clusters. For example, the 

"Unemployed and Income Poor" group experiences the highest level of persistence, with current 

deprivation heavily influenced by past conditions. In contrast, the "Young Professionals and 

Affluent" group demonstrates resilience, with low energy poverty persistence and reduced 

sensitivity to income and energy price fluctuations. The "Sick and Vulnerable" group, meanwhile, 
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is marked by acute sensitivity to income and energy prices, reflecting their precarious economic 

and health circumstances. 

 

These differences are critical for policy design, as they show that one-size-fits-all solutions are 

inadequate. The results document the persistent nature of energy poverty in certain clusters, 

revealing that this condition is often more strongly tied to historical deprivation than to 

contemporaneous factors like income or energy prices. Hence, policies must move beyond static 

approaches, with particular attention to structural interventions for clusters “trapped” in energy 

poverty. Moreover, by distinguishing between clusters, the paper demonstrates that commonly 

employed policy levers, such as income support or energy subsidies, have vastly different effects 

across groups. For example, income support may have the strongest effect on reducing energy 

poverty among the "Sick and Vulnerable," while energy price interventions are most impactful 

for the "Unemployed and Income Poor". This highlights the need for highly targeted interventions 

tailored to the specific characteristics of each segment. For some clusters, policies addressing 

affordability may be effective, while for others, where energy poverty is driven by structural 

issues, such measures may prove insufficient. The pronounced persistence of energy poverty in 

certain groups suggests that policies aimed solely at mitigating current deprivation need to be 

complemented by strategies targeting its root causes. Structural improvements, such as enhancing 

energy infrastructure, providing access to efficient energy systems, and addressing systemic 

barriers to employment, may be essential to break the cycle of energy poverty in these 

populations.  

 

This study has several limitations that warrant further investigation. The findings emphasize the 

importance of understanding why certain groups remain trapped in energy poverty, suggesting 

the need for future research to investigate the structural, institutional, and cultural factors 

perpetuating this persistence. Although these factors were not explicitly analyzed, they likely play 

a critical role in shaping outcomes. Additionally, while clustering enhances precision by 

segmenting the population, it does not address intra-cluster heterogeneity, potentially overlooking 

important regional or geographic variations. Furthermore, the study abstracts from the financial 

strategies and economic behaviors households may employ to mitigate the impact of adverse life 

events, despite evidence that variables such as income and employment significantly influence 

how individuals navigate energy challenges (Burlinson et al., 2024). Future research could bridge 

these gaps by incorporating spatial data and integrating both structural and idiosyncratic factors, 

offering a more nuanced understanding of the mechanisms driving energy poverty. 
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Tables 

 

Table 1. Summary statistics by energy poverty status   

 

Notes: Standard errors in parentheses. 

 

 

 

 

Table 2. Distribution of individuals across clusters and average MEPI by group   

Cluster k=0: k =1: k =2: k =3 

Nº. of individuals 3,631 13,076 1,051 5,493 

% of individuals 15.6% 56.2% 4.5% 23.6% 

Average MEPI 0.2153 0.0143 0.4180 0.0928 

 

Notes: Distribution of individuals among the four clusters (k=0 to k=3), along with the average MEPI for 

each group. 

 

 

All MEPI > 0 MEPI = 0

MEPI 0.077 0.271 0.000
(0.146) (0.151) (0.000)

Household income 102003.654 65655.224 116404.246
(86,716.2) (48,174.6) (94,067.1)

Energy Price 0.242 0.241 0.242
(0.017) (0.017) (0.017)

Years of education 12.720 12.076 12.975
(2.468) (2.282) (2.492)

Age 45.17 46.39 44.68
(15.369) (15.846) (15.148)

Married 0.699 0.618 0.731
(0.459) (0.486) (0.443)

Divorced 0.093 0.141 0.074
(0.290) (0.348) (0.262)

Widowed 0.024 0.041 0.018
(0.154) (0.198) (0.131)

Employed 0.702 0.573 0.754
(0.457) (0.495) (0.431)

Unemployed 0.032 0.052 0.024
(0.176) (0.221) (0.154)

Children at home 1.667 1.898 1.575
(1.491) (1.564) (1.450)

Ill-health 0.212 0.303 0.176
(0.409) (0.459) (0.381)

Household size 1.812 1.739 1.841
(0.580) (0.594) (0.573)
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Table 3. GMM estimates for energy poverty, by cluster 

 

Notes: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 

Cluster 0 Cluster 1 Cluster 2 Cluster 3
MEPIt-1 0.1080*** 0.0524*** 0.0722*** 0.0950***

(0.0163) (0.0088) (0.0260) (0.0090)

Ln (Household income) -0.185*** -0.0401*** -0.249*** -0.137***
(0.0068) (0.0018) (0.0151) (0.0039)

Ln (Energy Price) 0.210*** -0.0274** 0.340*** 0.0634**
(0.0527) (0.0136) (0.106) (0.0251)

Ln (Years of education) -0.143 -0.0110 -0.0620 -0.0388
(0.123) (0.0166) (0.218) (0.0554)

Age -0.0005 0.0012 0.0276 0.0092**
(0.0101) (0.0021) (0.0178) (0.0036)

Age2 -6.59e-05 2.38e-05** -0.0003* -5.81e-05*
(7.63e-05) (1.13e-05) (0.0002) (3.01e-05)

Married 0.0174 -0.0003 -0.0450 -0.0084
(0.0221) (0.0034) (0.0592) (0.0113)

Divorced -0.0110 0.0093* -0.0992 0.0032
(0.0288) (0.0055) (0.0718) (0.0152)

Widowed -0.0023 0.0379** -0.0803 0.0488*
(0.0493) (0.0174) (0.0825) (0.0283)

Employed 0.0091 0.0002 -0.0190 -0.0124**
(0.0106) (0.0022) (0.0206) (0.0056)

Unemployed 0.0329** 0.0017 -0.0551** 0.0091
(0.0132) (0.0033) (0.0259) (0.0080)

Children at home -0.0175 -0.0046 0.0247 0.0134*
(0.0267) (0.0029) (0.0618) (0.0079)

Ill-health 0.0169** 0.0004 0.0282* 0.0046
(0.0066) (0.0013) (0.0150) (0.00338)

Ln (Household size) -0.0760*** -0.0039 -0.0999*** -0.0253***
(0.0152) (0.0025) (0.0296) (0.0049)

Participation rate 0.0160 -0.0045 0.0281 0.0129*
(0.0120) (0.0034) (0.0253) (0.0066)

Part-time rate -0.0150* -0.0063** -0.0156 -0.0145***
(0.0078) (0.0028) (0.0168) (0.0052)

Unemployment rate -0.0085 -0.0002 0.0086 0.00552
(0.0088) (0.0022) (0.0165) (0.0056)

Per capita GDP 1.50e-06 1.01e-06 -1.52e-05 3.26e-07
(9.34e-06) (3.09e-06) (1.71e-05) (5.55e-06)

GDP growth -0.0078* -0.0013 0.0043 -0.0022
(0.0043) (0.0012) (0.0080) (0.0021)

Constant 0.7630 0.8370*** 0.4420 0.5650
(0.7410) (0.2340) (1.5850) (0.4010)

Year fixed-effects Yes Yes Yes Yes
Region fixed-effects Yes Yes Yes Yes
No autocorrelation of order 1  0.0000  0.0000  0.0000  0.0000
No autocorrelation of order 2  0.1438  0.1355  0.7433  0.7826
Valid overidentifying 0.1095  0.4911  0.1275 0.4321
Observations 22,652 97,622 4,794 47,514
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Figures  

 

Figure 1. Inertia by number of clusters 

 

 

Notes: The Elbow Method determines the optimal number of clusters by iterating from 𝑘=1 to 𝑘=𝑛 (here 

𝑛=10) and identifying the "elbow point", where the decrease in inertia significantly slows. The optimal 

number of clusters can be highlighted using a red line on the plot, 𝐾=4 is selected as the optimal number of 

clusters. 

 

 

Figure 2. Energy poverty centroids by clusters  

 
Notes: The figure illustrates the energy poverty centroids for the four clusters identified in the k-means 

analysis. Each centroid represents the average values of the variables within its respective cluster, 

summarizing the key characteristics of individuals assigned to that group. Data points are grouped based 

on their similarity, with each point assigned to the nearest centroid. The centroids depicted in the figure 

serve as the central "profiles" around which each cluster is formed. 
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Figure 3. Summary statistics by cluster 

 
 

  

 

 

Notes: Summary statistics across clusters. The first panel is a radar chart depicting categorical attributes. 

The remaining panels are boxplots to show the distribution and variability of variables across clusters. 

These visualizations summarize key demographic and socioeconomic patterns for each cluster. 
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Figure 4. Summary of coefficients by cluster 

 

 

 

Notes: Percentage contribution of each variable's coefficients to the four identified clusters (C0, C1, C2, 

C3). Variables are shown along the y-axis, while the x-axis represents the coefficient percentages, with 

positive and negative values indicating the direction of their effect. Each horizontal bar totals 100%, divided 

proportionally among the clusters. This visualization highlights how key variables contribute differently 

across clusters.  
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Appendix 

Table A1. GMM estimates for energy poverty by cluster – Including two lags of the dependent 

variable 

 

Notes: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1. 

Cluster 0 Cluster 1 Cluster 2 Cluster 3

MEPIt-1 0.111*** 0.0688*** 0.0163 0.0985***

(0.0199) (0.0105) (0.0426) (0.0105)

MEPIt-2 0.0233 0.0206*** 0.0221 0.0154*

(0.0154) (0.0070) (0.0290) (0.0086)

Ln (Household income) -0.194*** -0.0428*** -0.241*** -0.137***
(0.0079) (0.0020) (0.0166) (0.0042)

Ln (Energy Price) 0.224*** -0.0188 0.290** 0.0918***
(0.0540) (0.0151) (0.124) (0.0262)

Ln (Years of education) -0.273 -0.0204 -0.0189 -0.0027
(0.175) (0.0176) (0.216) (0.0641)

Age -0.0018 0.0044** 0.0457** 0.0078**
(0.0110) (0.0021) (0.0217) -0.0037

Age2 -8.24e-05 4.01e-07 -0.0006*** -2.90e-05

-1.01E-05 (1.14e-05) -1.03E-05 (3.28e-05)

Married 0.0433 -0.003 0.0199 -0.0078
(0.0276) -0.0034 (0.0852) (0.0121)

Divorced 0.0054 0.0031 -0.0417 1.80e-05
(0.0332) (0.0058) (0.0906) (0.0160)

Widowed 0.0112 0.0434** 0.0034 0.0754**
(0.0548) (0.0185) (0.0976) (0.0332)

Employed 0.0052 -0.0025 -0.0027 -0.0110*
(0.0116) (0.0022) (0.0244) (0.0066)

Unemployed 0.0303** 0.0001 -0.0482 0.0073
(0.0142) (0.0035) (0.0299) (0.0097)

Children at home 0.0292 -0.00141 0.0273 0.0206**
(0.0316) (0.0028) (0.0673) (0.0096)

Ill-health 0.0096 0.0008 0.0124 0.005
(0.0073) (0.0014) (0.0171) (0.0039)

Ln (Household size) -0.0741*** -0.0072*** -0.139*** -0.0258***
(0.0154) (0.0021) (0.0317) (0.0054)

Participation rate 0.00580 -0.0002 0.0435 0.0161**
(0.0126) (0.0033) (0.0269) (0.0068)

Part-time rate -0.0253*** -0.0032 -0.0187 -0.0152***
(0.0094) (0.0028) (0.0188) (0.0055)

Unemployment rate 0.0012 0.00112 0.0246 0.0093*
(0.0086) (0.0021) (0.0172) (0.0056)

Per capita GDP 1.03e-05 -2.12e-07 -1.71e-06 -3.18e-06
(1.08e-05) (3.30e-06) (2.26e-05) (6.11e-06)

GDP growth -0.0079* -0.0007 0.0009 -0.0008
(0.0047) (0.0012) (0.0104) (0.0022)

Constant 1.116 0.587*** -2.229 0.423
(0.834) (0.226) (1.581) (0.436)

Year fixed-effects Yes Yes Yes Yes
Region fixed-effects Yes Yes Yes Yes
No autocorrelation of order 1  0.0000  0.0000  0.0000  0.0000
No autocorrelation of order 2 0.0936 0.2461  0.5202  0.0200
Valid overidentifying 0.1829  0.0879 0.1920 0.2335
Observations 16,779 78,395 3,331 37,988
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Table A2. GMM estimates for energy poverty by cluster – Endogenous income & employment 

 

Notes: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

Cluster 0 Cluster 1 Cluster 2 Cluster 3

MEPIt-1 0.0856*** 0.0623*** 0.0488*** 0.103***

(0.0121) (0.0064) (0.0169) (0.0079)

Ln (Household income) -0.253*** -0.0309*** -0.274*** -0.130***
(0.0226) (0.0051) (0.0260) (0.0154)

Ln (Energy Price) 0.157*** -0.0011 0.282*** 0.0513***
(0.0302) (0.0039) (0.0558) (0.0135)

Ln (Years of education) 0.0036 -0.0136 -0.0695 0.0099
(0.0816) (0.0117) (0.1450) (0.0438)

Age 0.0193*** 0.0029*** 0.0200* 0.0128***
(0.0057) (0.0009) (0.0108) (0.0027)

Age2 -0.0002*** 0.0000 -0.0003*** -0.0001***

(0.0001) (0.0000) (0.0001) (0.0000)

Married -0.0011 -0.0035* -0.0274 -0.0063
(0.0161) (0.0021) (0.0284) (0.0077)

Divorced -0.0063 0.0028 -0.0958** 0.0077
(0.0217) (0.0039) (0.0391) (0.0115)

Widowed 0.0265 0.0344** -0.0899* 0.0520*
(0.0384) (0.0145) (0.0474) (0.0268)

Employed -0.0836*** -0.0081 0.0028 -0.0570***
(0.0277) (0.0079) (0.0285) (0.0175)

Unemployed -0.188*** 0.0063 -0.0546 -0.0378
(0.0435) (0.0178) (0.0398) (0.0390)

Children at home -0.0537** -0.0024 -0.0028 0.0051
(0.0231) (0.0027) (0.0339) (0.0083)

Ill-health 0.0131** 0.0006 0.0320*** 0.0027
(0.0055) (0.0011) (0.0100) (0.0030)

Ln (Household size) -0.0462*** -0.0079*** -0.106*** -0.0270***
(0.0103) (0.0013) (0.0173) (0.0041)

Participation rate 0.0187*** 0.0021** 0.0247** 0.0071**
(0.0057) (0.0008) (0.0115) (0.0031)

Part-time rate -0.0116** -0.0026*** -0.0047 -0.0053**
(0.0046) (0.0007) (0.0073) (0.0023)

Unemployment rate -0.0012 0.0006 0.0097 0.0020
(0.0047) (0.0007) (0.0091) (0.0026)

Per capita GDP -0.0000 -0.0000*** -0.0000 -0.0000**
(0.0000) (0.0000) (0.0000) (0.0000)

GDP growth -0.0038 0.0002 -0.0018 0.0010
(0.0026) (0.0003) (0.0047) (0.0011)

Constant 1.410*** 0.399*** 0.4310 1.059***
(0.4250) (0.0711) (0.8550) (0.2260)

Year fixed-effects Yes Yes Yes Yes
Region fixed-effects Yes Yes Yes Yes
No autocorrelation of order 1  0.0000   0.0000  0.0000 0.0000
No autocorrelation of order 2 0.6778 0.2862  0.1591  0.0898
Valid overidentifying  0.0035  0.1490 0.4630 0.8527
Observations 22,652 97,622 4,794 47,514
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Table A3. GMM estimates for energy poverty by cluster – Endogenous regressors 

 

Notes: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

Cluster 0 Cluster 1 Cluster 2 Cluster 3

MEPIt-1 0.0732*** 0.0595*** 0.0119*** 0.0993***

(0.0083) (0.0051) (0.0013) (0.0063)

Ln (Household income) -0.204*** -0.0237*** -0.244*** -0.120***
(0.0099) (0.0027) (0.0014) (0.0076)

Ln (Energy Price) 0.1640*** -0.0032 0.2570*** 0.0398***
(0.0192) (0.0027) (0.0045) (0.0104)

Ln (Years of education) -0.1180 -0.0098 0.555*** 0.2170
(0.1980) (0.0237) (0.0243) (0.1410)

Age 0.0113*** 0.0005 0.0245*** 0.0070**
(0.0043) (0.0009) (0.0010) (0.0028)

Age2 -0.0001*** 0.0000*** -0.0003*** -0.0000

(0.0000) (0.0000) (0.0000) (0.0000)

Married -0.0377 0.0000 -0.0763*** -0.0289*
(0.0283) (0.0047) (0.0060) (0.0168)

Divorced 0.0063 -0.0038 -0.161*** -0.0331
(0.0447) (0.0094) (0.0056) (0.0302)

Widowed -0.0828 0.0717*** -0.187*** 0.0056
(0.0540) (0.0101) (0.0073) (0.0634)

Employed -0.0487*** 0.0060 0.0062*** -0.0423***
(0.0148) (0.0046) (0.0019) (0.0118)

Unemployed -0.0298 0.0028 -0.0394*** 0.0403*
(0.0208) (0.0106) (0.0032) (0.0210)

Children at home 0.0488 0.0144*** -0.0942*** 0.0192
(0.0341) (0.0047) (0.0056) (0.0157)

Ill-health 0.0379** -0.0026 -0.0215*** -0.0002
(0.0148) (0.0022) (0.0019) (0.0098)

Ln (Household size) -0.0789*** -0.0063*** -0.0961*** -0.0170***
(0.0103) (0.0014) (0.0022) (0.0041)

Participation rate 0.0134*** 0.0013** 0.0070*** 0.0059**
(0.0038) (0.0006) (0.0009) (0.0023)

Part-time rate -0.0069** -0.0014*** 0.0027*** -0.0036**
(0.0030) (0.0005) (0.0006) (0.0017)

Unemployment rate -0.0026 -0.0003 0.0076*** 0.0023
(0.0032) (0.0005) (0.0008) (0.0018)

Per capita GDP -0.0000*** -0.0000*** -0.0000*** -0.0000***
(0.0000) (0.0000) (0.0000) (0.0000)

GDP growth -0.0009 0.0002 0.0055*** 0.0010
(0.0013) (0.0002) (0.0004) (0.0007)

Constant 1.707*** 0.345*** 0.284*** 0.4940
(0.4980) (0.0685) (0.0722) (0.3660)

Year fixed-effects Yes Yes Yes Yes
Region fixed-effects Yes Yes Yes Yes
No autocorrelation of order 1  0.0000  0.0000  0.0000 0.0000
No autocorrelation of order 2 0.9332 0.1855 0.0952 0.1482
Valid overidentifying  0.0003 0.0210 1.0000 0.6206
Observations 22,652 97,622 4,794 47,514
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