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machine learning literature improves the average forecast. Compared to equal weights the 
effect of the weighting scheme on forecast accuracy is small in our application. 
 
 
JEL Classification: C53, C32 
  
Keywords: Bayesian model averaging, choice of observation window, 

long-run structural vector autoregression 
 
 
Corresponding author: 
 
M. Hashem Pesaran 
Faculty of Economics 
University of Cambridge 
Sidgwick Avenue 
Cambridge, CB3 9DD 
United Kingdom 
E-mail: hashem.pesaran@econ.cam.ac.uk  
   
 
                
 

                                                 
* The views expressed in this paper are solely our own and not necessarily shared by the Swiss 
National Bank. We are grateful to Sylvia Kaufmann, Ron Smith and participants of the Oxford 
Forecasting Workshop and the BuBa-OeNB-SNB Workshop for helpful comments. 

mailto:hashem.pesaran@econ.cam.ac.uk


1 Introduction

Forecasting macroeconomic variables is of importance for market participants and

policy makers alike. Although in general great care is taken in designing a speci�c

forecasting model, the true forecast uncertainty is often underestimated since various

sources of forecasting errors, like model uncertainty or future uncertainty, are not

taken properly into account. For a recent review of the literature on forecasting see

Elliott and Timmermann (2007).

This paper deals with forecast uncertainty in a long-run structural vector error

correction model of the Swiss economy. The model includes the e¤ective nominal

exchange rate of the Swiss franc, real gross domestic product (GDP), the real money

stock, measured by M2, the three-month interest rate, in�ation and the ratio of do-

mestic to foreign prices as endogenous variables, and foreign output, the foreign

interest rate and the oil price as exogenous variables. We �rst present an overi-

denti�ed long-run vector error correction model with exogenous variables (VECX*

model) and use it for forecasting. The model contains �ve long-run relations identi-

�ed as the purchasing power parity, money demand, ouput convergence, uncovered

interest parity, and the Fisher equation.

We then allow for forecast uncertainty along three di¤erent dimensions. First,

we deal with model uncertainty. When deciding on a speci�c model, one always has

to make choices like, e.g., the number of lags to include, the number of cointegrating

relations to assume, the long-run restrictions to impose, and the data-generating

processes to adopt for the exogenous variables. In this paper, we con�ne ourselves to

a class of similar models that di¤er only with respect to these characteristics instead

of considering entirely di¤erent model types. Statistical procedures used to select

the order of the VECX* model or the number of cointegrating relations often give

ambiguous results, such that di¤erent choices may be justi�ed. Moreover, theory

often suggests restrictions that are rejected by the data. Though imposing these

restrictions inevitably deteriorates the �t of the model, forecasting performance may

improve when imposing them. In addition, di¤erent assumptions can be maintained

regarding the data-generation process for the exogenous variables. To assess their

e¤ects on the forecasts of the endogenous variables, we consider di¤erent marginal

models for prediction of the exogenous variables. To allow for model uncertainty

we apply Bayesian model averaging and combine forecasts from several, equally

plausible, speci�cations of the model.

Second, economic relations can be subject to structural breaks. Pesaran and
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Timmerman (2007) proposed to take this into account by estimating the model over

di¤erent observation windows. While estimation is more e¢ cient if all available

data are used, the occurrence of a structural break, which often is di¢ cult to detect

with statistical methods, might bias the estimates. One pragmatic way to deal

with this is to average forecasts from models estimated over di¤erent estimation

windows. Since economic theory is more informative regarding the nature of the

long-run relations, in this exercise we do not allow for parameter uncertainty of the

long-run coe¢ cients, but consider alternative estimates of the short-run coe¢ cients

computed over di¤erent observation windows starting between 1965 and 1976.

Third, we assess the usefulness of di¤erent weighting schemes, such as equal

weights, Akaike weights and weighting schemes advanced in the machine-learning

literature (Yang 2004; Sancetta 2006).

We �nd that averaging over di¤erent models is able to reduce the forecast error

considerably. In addition, averaging over estimation windows is at least as e¤ective

as model averaging in improving forecast precision. Moreover, averaging across

these two dimensions complements each other, in the sense that averaging the model

average forecasts over di¤erent estimation windows leads to a further reduction in

the forecast error. By contrast, in our application the e¤ect of di¤erent weighting

schemes is minor. This is probably due to the fact that we consider a class of closely

related models so that the gain from excluding certain variants of the models is not

able to change forecasting performance signi�cantly.

The paper proceeds as follows. Section 2 discusses the econometric methodology

and presents the estimates for the baseline version of our forecasting model. Section

3 evaluates the forecasts from the baseline version of our model. In Section 4 we

explore the e¤ect of averaging forecasts across di¤erent models and estimation win-

dows. We �nd that the forecast average across all models and estimation windows

outperforms our long-run restricted VECX* model as well as a univariate AR(1)

benchmark model. In addition, we try di¤erent weighting schemes and assess their

in�uence on the forecasting performance of the model. Though one would expect

that excluding models that perform poorly from the average forecast should improve

results, we �nd that schemes weighting models approximately equally perform bet-

ter. Finally, Section 5 o¤ers some conclusions.
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2 The VECX* model

The model used for forecasting is a structural cointegrated vector error-correction

model that relates the core macroeconomic variables of the Swiss economy (denoted

by the vector xt) to current and lagged values of a number of key foreign variables

(denoted by the vector x�t ), which we call the Swiss VECX* model. The model is

developed along the same lines as the model for the UK in Garratt, Lee, Pesaran

and Shin (2003a, 2006).1

In the implementation of the long-run structural modelling a number of choices

have to be made, see Garratt, Lee, Pesaran and Shin (2006, pp 108-109), among

which are the choice of the core endogenous and exogenous variables, their lag

orders, the deterministics (namely the choice of intercept and linear trends), and the

sample period. The choice of the variables is in�uenced by the purpose of the model,

namely forecasting the rate of in�ation and modelling the monetary transmission

process. Therefore, the model will incorporate those key relations from economic

theory that can be expected to have an impact on the in�ation rate. One of these

relations is money demand, which postulates a long-run relation between the real

money stock, real output and the nominal interest rate. Another is the Fisher

interest-rate parity which establishes a long-run relation between the interest rate

and in�ation. Switzerland as a small, open economy can be expected to be subject to

in�uences from the exchange rate. Therefore, purchasing power parity, which links

the domestic price level to the nominal exchange rate and the foreign price level,

is also included. In addition, we consider the price of oil as the most important

commodity price, which is expected to have direct and indirect impacts on domestic

as well as on world in�ation. Finally, international business cycles and interest-rate

cycles are allowed to have an in�uence on the domestic economy by considering long-

run relations between domestic and foreign output and interest rates. The latter two

variables, together with the oil price, are regarded as weakly exogenous variables.

2.1 Econometric methodology

Starting point of the VECX* modelling strategy is a standard vector autoregressive

(VAR) model that can be written as

A(L)zt = Ddt + ut; (1)

1A more detailed documentation of the model can be found in Assenmacher-Wesche and Pesaran

(2007).
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where L is the lag operator such that Lzt = zt�1, A(L) = I0 � A1L � ::: � ApL
p

and zt = (x0t;x
�0
t )
0 consists of a kx � 1 vector of endogenous variables, xt, and a

kx� � 1 vector of exogenous variables, x�t , with kx + kx� = k. The vector dt is a

vector of deterministic variables, such as intercept and trend, and the error term,

ut, is distributed as iid(0;�).

The VECX* model starts with an explicit formulation of the long-run relation-

ships between the variables in the model, derived frommacroeconomic theory. These

long-run relations are then incorporated in an otherwise unrestricted VAR. The

cointegrating VECX* embeds the structural long-run relations as the steady-state

solutions while the short-run dynamics, about which economic theory in general is

silent, is estimated from the data without restrictions.

In error-correction form the VAR model in equation (1) can be written as

�zt = ��zt�1 +
p�1X
i=1

�i�zt�i + a0 + a1t+ ut; (2)

where the matrix � is a k � k matrix of long-run multipliers and the matrices
f�igp�1i=1 contain the short-run responses; a0 denotes a vector of constants and a1
a vector of trend coe¢ cients. To partition the system into a conditional model for

the endogenous variables, �xt, and a marginal model for the exogenous variables,

�x�t , the parameter matrices and vectors �, �i, a0, a1 and the error term ut are

partitioned conformably with zt = (x0t;x
�0
t )
0 as � = (�0

x;�
0
x�)

0, �i = (�0xi;�
0
x�i)

0,

i = 1; :::; p�1, a0 = (a0x0; a0x�0)0, a1 = (a0x1; a0x�1)0, and ut = (u0xt;u0x�t)0. The variance
matrix of ut can be written as

� =

 
�xx �xx�

�x�x �x�x�

!
;

so that

uxt = �xx��
�1
x�x�ux�t + �t;

where �t � iid(0;�xx ��xx��
�1
x�x��x�x) is uncorrelated with ux�t by construction.

By assuming that the process fx�tg1t=1 is weakly exogenous with respect to the pa-
rameters in the matrix �, we have �x� = 0. This means that the information

available from the model for �x�t is redundant for e¢ cient conditional estimation of

the parameters in the model for �xt.2 The restrictions �x� = 0 also imply that the

variables x�t are I(1) and not cointegrated.

2See the Appendix in Dees, di Mauro, Pesaran and Smith (2007).
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The system then can be written as a conditional model for the endogenous vari-

ables,

�xt = ��xzt�1 +��x
�
t +

p�1X
i=1

	i�zt�i + c0 + c1t+ �t; (3)

and a marginal model for the exogenous variables,

�x�t =

p�1X
i=1

�x�i�zt�i + ax�0 + ux�t; (4)

where � � �xx��
�1
x�x�, 	i � �xi � �xx��

�1
x�x��x�i, i = 1; :::; p � 1, c0 � ax0 �

�xx��
�1
x�x�ax0 and c1 � ax1 � �xx���1

x�x�ax�1, see Garratt, Lee, Pesaran and Shin

(2006, pp. 135-136). In the forecasting exercise below we will consider the e¤ects

on the forecasts of the endogenous variables of choosing di¤erent marginal models

for the exogenous variables, �x�t .

If the model includes an unrestricted linear trend, in general there will be

quadratic trends in the level of the variables when the model contains unit roots.

To avoid this, the trend coe¢ cients are restricted such that

c1 = �x
;

where 
 is an k � 1 vector of free coe¢ cients, see Pesaran, Shin and Smith (2000)
and Garratt, Lee, Pesaran and Shin (2006, p.136). The nature of the restrictions on

c1 depends on the rank of �x. In the case where �x is full rank, c1 is unrestricted,

whilst it is restricted to be equal to 0 when the rank of �x is zero. Under the

restricted trend coe¢ cients the VECX* model can be written as

�xt = ��x [zt�1 � 
(t� 1)] +��x�t +
p�1X
i=1

	i�zt�i + ~c0 + �t;

where

~c0 = c0 +�x
:

Note that ~c0 remains unrestricted since c0 is not restricted.

2.2 Data on the core variables

We use quarterly data starting in 1965, so that after di¤erencing and accounting for

the necessary lags the model is estimated on data starting in 1965Q4. We stop the

estimation in 1999Q4 and use data from 2000Q1 to 2006Q3 to evaluate the recursive
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out-of-sample forecasting performance. The domestic variables are the logarithm of

real money balances (M2 de�nition) denoted by mt, the logarithm of real gross

domestic product (GDP), yt, the 3-month LIBOR rate, rt, and the quarterly rate

of in�ation, �t.3 These variables are treated as endogenous. Further endogenous

variables are the logarithm of the nominal exchange rate, et, and the log ratio of

the domestic to the foreign price level, pt � p�t . The exogenous variables are the
logarithm of foreign real GDP, y�t , the foreign 3-month interest rate, r

�
t , and the the

logarithm of the oil price, poilt . Interest rates are expressed as 0:25 ln(1 + R=100)

where R is the interest rate in percent per annum to make units of measurement

compatible with the rate of in�ation, which is computed as the �rst di¤erence of the

logarithm of the quarterly price level.

The foreign (star) variables are computed as weighted averages, using three-year

moving averages of the trade shares with Switzerland. For example, the foreign

output is computed as

y�t =
NX
j=1

�wjtyjt;

where yjt is the log real output of country j, and �wjt are the weights. The trade

weights are based on Switzerland�s 15 largest trade partners. The weights are com-

puted as averages of Switzerland�s imports from and exports to the country in ques-

tion divided by the total trade of all the 15 countries. Trade to these 15 countries on

average covers about 82 percent of total Swiss foreign trade. Germany is the most

important trading partner of Switzerland� accounting for a trade share of about 30

percent� followed by France, Italy and the United States. Out of the 15 trading

partners, 11 are European economies that account for as much as 83 percent of the

Swiss trade. The trade share of the US in the Swiss economy is around 9 percent,

with Asian countries picking up the rest. The exchange rate and the foreign interest

rate are averages of a reduced number of countries, given that �nancial markets are

dominated by developments in the euro area, the UK, the US, and Japan. Initially

all estimations and tests were carried out over the period 1965Q4 to 1999Q4, since

we reserve the rest of the available data to investigate the forecasting performance

of the model.
3A detailed description of the variables, their sources, and the construction of the foreign vari-

ables is given in the appendix.
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2.3 Unit root test results

We �rst need to consider the unit root properties of the core variables in the VECX*

model, which is needed if we are to make a meaningful distinction between long-run

and short-run properties of the VECX* model. Since there is considerable evidence

that price levels might be I(2), in order to avoid working with mixtures of I(1) and

I(2) variables, instead of pt and p�t we shall consider �t = pt� pt�1 and pt� p�t , and
test if the latter are all I(1). In this way, at least in principle, we could have both

the Fisher equation and the PPP holding simultaneously.

Since the power of unit root tests is often low, in addition to the standard Aug-

mented Dickey-Fuller (ADF) test, we shall also apply the generalized least squares

version of the Dickey-Fuller test (ADF-GLS) proposed by Elliot, Rothenberg, and

Stock (1996) and the weighted symmetric ADF test (ADF-WS) of Park and Fuller

(1995), which have been shown to have better power properties than the ADF test.

All tests are conducted with up to four lags. When plotting the variables it becomes

apparent that et, pt � p�t , mt, yt, y�t and p
oil
t show a trending behaviour whereas rt,

�t, r�t do not show a clearly visible trend. The regressions in levels therefore include

a trend and an intercept for the former group of variables and an intercept only

for the latter group. All ADF regressions applied to the �rst di¤erences include an

intercept. The results for the regressions in �rst di¤erences are reported in Table 1,

and for the levels they are summarized in Table 2. Entries in boldface show the lag

length which was selected by the Akaike information criterion (AIC). The sample

period for the computation of all the ADF statistics runs from 1966Q3 to 1999Q4,

so that the AIC relates to a common sample for all tests.

In establishing the unit root properties of the core variables we shall �rst check

whether their �rst di¤erences are in fact stationary. The unit root tests applied to

the levels, to be discussed subsequently, will be valid if their �rst di¤erences are

stationary. The unit root test results for the �rst di¤erences reject the presence of

unit roots in all the series, except for the ratio of domestic to foreign prices, when

the lag length recommended by the AIC is used. With fewer lags, however, the

test statistic is close to or below the 5 percent critical value for the ADF and the

ADF-WS test, while the ADF-GLS test indicates stationarity only when no lags are

included. Since the exchange rate and the price ratio should be of the same order of

integration, and there is clear indication of stationarity for changes in the exchange

rate, we proceed with the assumption that all the �rst di¤erences are stationary.

Turning to the level of the variables, the unit root test results in Table 2 suggest
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that the unit root hypothesis can not be rejected when the lag length recommended

by the AIC is used in all the variables with the exception of real money and the

domestic and foreign interest rates. Generally this result continues to hold for dif-

ferent choices of the augmentation order of the ADF tests. For in�ation the ADF

and the ADF-GLS tests do not reject the unit root null, whereas the null is rejected

if one uses the ADF-WS with the lag length selected by the AIC. Economic theory

suggests that interest rates and in�ation should be of the same order of integration.

Given the mixed statistical evidence obtained for in�ation and in order not to run

into theoretical inconsistencies, we shall suppose that in�ation and all the other

series under considerations are best approximated by I(1) processes. The error of

falsely assuming that in�ation is I(0) and the nominal interest rate is I(1) is likely

to be more serious than assuming that both series are I(1).

2.4 Lag lengths and deterministic components

The �rst stage in the empirical analysis is to determine the lag order of the underly-

ing unrestricted VAR in equation (1). Table 3 shows the results from the application

of di¤erent lag order selection criteria: the Akaike information criterion (AIC), the

�nal prediction error (FPE) (see Lütkepohl 1993), the Hannan-Quinn (HQ) criterion

and the Schwarz information criterion (SIC). The maximum lag length considered

is four because we use quarterly data. Considering a higher number of lags does not

seem appropriate as with the number of lags the number of coe¢ cients estimated

in a VAR rises quickly. The AIC and the FPE criterion point to a lag order of

two, whereas the HQ and the SIC favor a lag of order one. We proceed with a lag

length of p = 2, because overestimating the order of the VAR is much less serious

than underestimating it, see Kilian (2002). As deterministic variables a constant

and a trend are included, since trends seem to be present in the long-run output

relationship and possibly also in the PPP relation. The trend is restricted to lie in

the cointegration space, which ensures that there will be no quadratic trends in the

model.

2.5 The long-run structural model

Starting point for the estimation is the conditional vector error correction model

in equation (3). The 9 � 1 vector of variables zt = (x0t;x�0t )0 in the model contains
six endogenous variables, xt = fet;mt; yt; rt; �t; pt� p�tg and three weakly exogenous
variables, x�t = fy�t ; r�t ; poilt g.
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Having decided on p = 2 for the order of the underlying VAR(p), we now need

to consider the determination of the number of cointegrating relations. When there

are r cointegrating relations among the variables zt, the matrix �x has rank r < k

and can be written as

�x = �x�
0; (5)

where �x (kx�r) is a matrix of error correction coe¢ cients and � (k�r) is a matrix
of long-run coe¢ cients. The null hypothesis of no cointegration is investigated by

testing the rank of�x using the sample 1965Q4-1999Q4. Table 4 shows the eigenval-

ues as well as the �-max and the trace statistics together with their simulated critical

values. While the trace statistic only marginally rejects the hypothesis that r = 4 at

the 10% level of signi�cance, the maximum eigenvalue (�-max) suggests that r = 3.

However, Assenmacher-Wesche and Pesaran (2007) using data over a more recent

sample (1976 to 2004) �nd �ve cointegrating relations that is more in line with the

long run theory. In what follows we also consider �ve long run relations, as economic

theory suggests, but investigate the e¤ect of dropping cointegrating relations later

when dealing with model uncertainty.

To exactly identify r long-run relations, r restrictions (including a normalization

restriction) must be imposed on each of the r cointegrating relations. The cointegrat-

ing vectors obtained by exact identi�cation are not presented here, since they do not

have an economic interpretation. We proceed to imposing economically meaning-

ful over-identifying restrictions on � that are in accordance with theoretical priors,

namely the purchasing power parity (PPP), money demand (MD), output conver-

gence based on the gap between domestic and foreign per capita output (GAP),

interest rate parity between the domestic and foreign interest rate (UIP), and a

Fisher equation linking the domestic interest rate with in�ation (denoted by FIP).

The estimates of these relations computed over the sample period 1965Q4-1999Q4

are as follows:

PPP: et � (pt � p�t ) = b10 + 0:009t+ �1t;
MD: mt � yt = b20 � 24:89rt + �2t;
GAP: yt � y�t = b30 � 0:0036t+ �3t; (6)

UIP: rt � r�t = b40 + �4t;
FIP: rt = b50 + b55�t + �5t:

We impose a unitary income elasticity of money demand, since the estimated coef-

�cient was close to one. We do not report estimates for the constant term since it

will be re-estimated in the recursive out-of-sample forecasting exercise.
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Since analytical standard errors are valid only asymptotically and may give a

wrong impression of the coe¢ cient�s signi�cance, we bootstrap con�dence inter-

vals for the coe¢ cients. The reported con�dence intervals are obtained by a non-

parametric bootstrap with 1000 replications. The estimate of the interest-rate elas-

ticity of money demand is signi�cantly negative with a point estimate of �24:89
and a lower 95 percent con�dence bound of �32:22 and an upper 95 percent bound
of �18:00. The estimate of the trend coe¢ cient in the PPP equation is 0:009 with
bootstrapped con�dence bounds of 0:0015 and 0:0004, implying a trend appreciation

of the real Swiss franc exchange rate. The trend coe¢ cient in the output-gap equa-

tion is �0:0036 with a 95% con�dence bounds of �0:0029 to �0:0042, showing that
the Swiss economy has grown less over the sample period than its trading partners.

A likelihood ratio (LR) test of the over-identifying restrictions gives a test sta-

tistic of 106:21, which is asymptotically distributed as a �2 variate with 22 degrees

of freedom. Because the asymptotic distribution tends to over-reject, we obtain the

critical values from a non-parametric bootstrap with 1000 replications. This gives a

critical value for the LR test statistic of 61:66 for the �ve percent level of signi�cance

and of 71:04 for the one percent signi�cance level, as compared to the test statistic of

106:21. The test therefore rejects the restrictions at conventional signi�cance levels

(the p-value is 0:1 percent).

Since the purpose of this paper is to look at the e¤ect of model uncertainty

on forecast performance we impose all theoretically motivated constraints on the

long-run relations in the long-run restricted VECX*(2,2) model and investigate the

e¤ects of relaxing some of these restrictions later. Moreover, model uncertainty of

this type can be taken into account using Bayesian model averaging techniques,

which gives a theoretical framework for considering forecasts from various speci�ca-

tions (see Geweke and Whiteman 2006). We therefore not only explore the forecast

results for our long-run theory-consistent VECX*(2,2) speci�cation, but also con-

sider the e¤ects of changes in the number of cointegrating relations, the identi�cation

restrictions and the lag order on the forecasting performance of the model.

2.6 Error correction equations

Table 5 displays the estimates of the reduced-form error correction equations and

some diagnostic statistics. The deviations from the long-run relations, or the error

correction (EC) terms, enter in most equations with high levels of signi�cance. The

EC term associated with PPP helps explain the variations in the exchange rate
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and real domestic output. The EC term for real money balances has a statistically

signi�cant e¤ect in the money demand equation. The deviation of domestic from

foreign output is signi�cant in the equations for real money balances, in�ation, and

the price-di¤erential equation, while the deviation of the domestic interest rate from

the foreign interest rate contains information for the change in the exchange rate,

domestic output, the domestic interest rate, in�ation and the price di¤erential. The

EC term of the Fisher parity has an in�uence on the change in the exchange rate,

domestic output, in�ation and the price di¤erential. Apart from the error correction

coe¢ cients (except for deviations from PPP and money demand) the change in the

in�ation rate is mainly in�uenced by changes in the foreign interest rate. In�ation

is also signi�cantly a¤ected by oil prices, although the e¤ect of oil-price changes on

in�ation is quantitatively less than that of the foreign interest rate.

The R
2
of the error-correction equations ranges from 0:25 for the exchange rate

equation to 0:71 for the money demand equation. The in�ation equation �ts some-

what less well with a R
2
of 0:34 for the change in the in�ation rate. Serial correlation

is absent except in the equation for �yt and �(pt�p�t ). The test for functional form
does not reject for any of the equations. The indicated departures from normality

for et and rt are mainly due to large outliers in 1978/79 when the Swiss National

Bank switched to an exchange rate target to counter the rapid appreciation of the

Swiss franc. For yt and �t residuals show outliers at the time of the �rst oil-price

shock in 1974, which are likely to cause the rejection of normality. Output and in�a-

tion are also subject to heteroscedasticity since both series were more volatile before

1974 than thereafter. Whilst it would be possible to model some of these features

by adding more lags and by introducing dummy variables, we do not believe that

such a strategy would be of much help in forecasting. Most likely, it could involve

over-�tting and ad hoc speci�cations that could be counterproductive in forecasting.

3 Forecasting with the VECX*(2,2) model

Macroeconometric forecasting is subject to di¤erent types of uncertainties that may

impact on the accuracy of a model�s forecasts. These include future, parameter (for

a given model), and model uncertainties.4 Future uncertainty refers to the uncer-

tainty that surrounds the realization of future shocks (innovations) to the model

under consideration. Parameter uncertainty refers to the robustness of forecasts

4See, e.g., Garratt, Lee, Pesaran and Shin (2003b).
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with respect to a given set of parameter values (for a speci�c model). The standard

approach to future and parameter uncertainty is to report con�dence intervals in-

stead of point forecasts. Nevertheless, con�dence intervals are of limited usefulness

if forecasts from multiple models are considered. Model uncertainty arises because

there is no consensus about the true model. Though tests can be applied to search

for an appropriate model speci�cation, results are often inconclusive and depend on

the order the tests are performed, so that di¤erent, equally plausible, speci�cations

can be maintained at the end of the search process. In addition, macroeconometric

models are likely to be subject to structural breaks due to policy changes and shifts

in tastes and technology. As Clements and Hendry (1998, 1999, 2006) emphasize,

structural breaks are often the main source of forecast failure and represents the

most serious form of model uncertainty.

In this paper we follow Pesaran and Timmermann (2007) and attempt to deal

with model uncertainty and structural breaks by pooling of forecasts from the same

model but estimated over di¤erent sample periods, as well as by pooling of forecasts

estimated over the same sample period but obtained from di¤erent models. The

latter type of pooling has been the subject of an extensive literature on classical

methods of forecast combination and Bayesian model averaging, whilst the former

is new and to our knowledge has not been applied before.5 The pooling of fore-

casts from di¤erent estimation windows is viewed as a relatively robust and simple

procedure to dealing with possible structural breaks that are di¢ cult to detect and

to exploit in forecasting in a timely manner. See also Pesaran and Timmermann

(2007).

In the following, we shall �rst examine the forecasting performance of the VECX*(2,2)

model discussed in Section 2 that imposes the 22 over-identifying restrictions de-

rived from economic theory. We refer to these as �long-run restricted VECX*(2,2)�

forecasts. We shall then proceed to investigate how forecasts change with di¤er-

ent speci�cations of the conditional and the marginal model, and whether forecasts

improve when they are averaged over di¤erent model speci�cations. In pooling of

forecasts from di¤erent estimation windows we will consider windows starting be-

tween 1965Q4 to 1976Q4 and assess whether averaging of forecasts from di¤erent

estimation windows helps improve the forecasting performance.6 We also consider

5Timmermann (2006) surveys the literature on forecast combinations, while Geweke and White-

man (2006) discuss forecast combinations in a Bayesian setting.
6As discussed in Pesaran and Timmermann (2007), it is also possible to combine forecasts from

di¤erent estimation windows using time-varying weights based on the past performance of di¤erent
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pooling of forecasts from di¤erent models, estimated over di¤erent estimation win-

dows. We shall refer to these as AveAve forecasts to highlight the two distinct

dimensions over which the forecast averaging has been carried out. Finally, we will

assess the e¤ect on forecasting performance of using di¤erent weighting schemes to

construct the average forecast.

To construct the forecasts we need both the conditional and the marginal models

as set out in equations (3) and (4). Combing them we have

zt =

pX
i=1

�izt�i + a0 + a1t+ ut;

where zt = (x0t;x
�0
t )
0, � =

 
�x

0

!
, �1 = Im���0+�1, �i = �i��i�1, i = 2; :::; p�1,

�p = ��p�1. The coe¢ cient matrices �i; a0 and a1 include the parameters from

both the marginal and conditional models and are de�ned as �i =

 
	i +��x�i

�x�i

!
,

a0 =

 
ax0 +�ax�0

ax�0

!
and a1 =

 
�y


0

!
. In order to avoid deterministic trends in

interest rates, ax�0 is set to zero in the foreign interest-rate equation.

Our strategy for forecast evaluation is as follows: Every model is estimated to the

end of 1999Q4 and dynamic one- to eight-quarter-ahead forecasts are then produced

for 2000Q1 to 2002Q4. The sample period is extended by one observation, the short

run parameters are re-estimated to the end of 2000Q1 and another set of forecasts

is generated, this time for 2000Q2 to 2003Q1. Since the long-run coe¢ cients of the

model presumably change only slowly, we do not re-estimate them. This procedure

is repeated until the end of the available sample, 2006Q3, is reached. At the end

of the sample, however, we are not able to evaluate the forecasts for longer time

horizons. For the model estimated up to 2006Q2, for instance, we can only compare

the one-quarter-ahead forecast with the actual data for 2006Q3. For that reason, the

forecast statistics rely on a di¤erent number of forecasts for each horizon, ranging

from 27 observations for the one-quarter-ahead forecast to 20 for the eight-quarter-

ahead forecast.

The forecasting performance clearly depends on the evaluation period chosen.

In this respect, the period from 2000Q1 to 2006Q3 provides a number of challenges

for the various forecasts that we consider. Over the whole of the forecast period,

forecasts using a cross-validation approach. However, such a procedure is data intensive and does

not seem suitable for quarterly macroeconometric forecasting.
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in�ation was low and the quarterly changes of the price level �uctuated in a narrow

band between -1.0 and 2.3 percent per annum. At the same time, interest rates were

low compared to historical values whereas real money growth was strong during

2002 and 2003 and peaked at 28 percent per annum in 2003Q2. Since the evaluation

period is somewhat atypical, it would be particularly interesting to see if the AveAve

pooling of forecasts can lead to forecast improvements as compared to forecasts from

the best (in-sample) model.

3.1 Forecast statistics

We evaluate the forecasts in terms of their �bias�, �root mean squared forecast

error�(RMSFE), and their directional accuracy, or �hit rate�.

Let zt+h be the level of the variable that we wish to forecast, i.e., the level of

output, in�ation, or the interest rate. Denote the forecast of this variable formed at

time t by ẑ(t+ h; t), and de�ne the h-step ahead forecasted changes as

x̂t(h) = [ẑ(t+ h; t)� zt] =h;

and the associated h-step ahead realized changes as

xt(h) = (zt+h � zt)=h:

The h-step ahead forecast error is then computed as

et(h) = xt(h)� x̂t(h) = [zt+h � ẑ(t+ h; t)] =h:

For a forecast evaluation period from T + 1 to T + n, the RMSFE is de�ned as

RMSFE = 100

vuut(n� h)�1 T+n�hX
t=T+1

e2t (h):

For convenience, we report the RMSFE in percent. Starting our sequential out-

of-sample forecasts in 2000Q1, we can evaluate 27 one-step-ahead forecasts until

2006Q3. The �rst two-step-ahead forecast is for 2001Q2, so that for the two-step-

ahead forecasts we have 26 forecast errors and so on; thus ending up with 20 forecast

errors for the evaluation of the eight-step-ahead forecasts.

The bias measures how far the mean of the forecast is from the mean of the

actual series. Since it is dependent on the scale of the variable, we divide it by the

mean of the actual series during the forecast period:
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Bias =
(n� h)�1

PT+n�h
t=T+1 et(h)

(n� h)�1
PT+n�h

t=T+1 xt(h)
:

A positive (negative) number thus indicates that the forecast systematically under-

predicts (over-predicts) the actual values.

The third criterion of interest in evaluating forecasts is the ability of the fore-

casts to track the turning points. We therefore look at the proportion of correctly

predicted directions of change in the variable, which we call the hit rate. For the

non-trended variables in zt, (i.e., rt and �t), the event of interest is whether the

variable rises or falls over the next period (i.e., the probability that the predicted

change in the variable has the same sign as the actual change, Pr(�(�t) > 0)).

The h-step ahead forecast sign indicator equals unity if xt(h)� x̂t(h) � 0 and zero
otherwise. We report the proportion of times that the sign indicator is greater than

or equal to zero.

For output as a trended variable we consider whether output growth rises or falls

(i.e., �2yt > 0). We will report the cumulative hit ratio since it is not relevant

whether the right direction of change between, say, three quarters and four quarters

ahead, has been predicted but whether the model was able to forecast the right

direction of change between now and four quarters ahead. More precisely, this means

that we report the proportion of times that [xt(h)� xt�1(h)]� [x̂t(h)� x̂t�1(h)] � 0.

3.2 Forecast results for the VECX*(2,2) model

We consider forecast horizons of up to eight quarters ahead since this is the rele-

vant time horizon for central banks when setting interest rates. Table 6 shows the

RMSFE, the bias and the hit rate of forecasts based on the VECX*(2,2) model

for the longest estimation window, using all available data from 1965Q4 onward.

The forecasts for the exogenous variables are from a marginal model that regresses

the change in the exogenous variables, �x�t , on the change in the endogenous and

exogenous variables, �zt�1. We denote this marginal model by M�
a, which is also

estimated sequentially over the same sample period as the conditional model.7 The

�rst panel of Table 6 shows the average RMSFE per quarter in percent for the long-

run restricted VECX*(2,2) model. The average RMSFE per quarter decreases with

a longer forecast horizon. The reason is that we focus on the average change per

7We shall discuss the e¤ects of using di¤erent marginal models and estimation windows on the

forecast performance later on.
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quarter in the variable over h quarters. Though the change per quarter at longer

forecast horizons is small, this generally accumulates to a substantial deviation of

the forecast level from the actual level of the variable at long horizons. The RMSFE

for output growth is between 0.57 and 0.33 percent per quarter, whereas the RMSFE

for in�ation is 0.27 percent for the one-quarter horizon but decreases to 0.07 per-

cent at the eight-quarter-horizon. The RMSFE for the interest rate is lowest, lying

around 0.06 percent per quarter.

The bias in the second panel of Table 6 shows that the mean of the forecasted

changes is fairly close to the actual mean change for output, whereas the in�ation

forecasts and, to a lesser extent, the interest-rate forecasts show larger biases. In

particular, the VECX*(2,2) model tends to over-predict across the board, which is

perhaps not surprising given the recession in 2002 and the low interest rates in 2003

and 2004, as compared to their historical levels.

The last panel of Table 6, for each variable, displays the percentage of forecasts

that correctly predict the direction of changes. Since output is a trending variable,

the calculations are based on output growth rates, whereas for in�ation and the

interest rate we focus on correct prediction of the sign of in�ation and interest rate

changes. For a random walk without a drift one would expect to predict the change in

the variable correctly in 50 percent of the cases. For output growth the model shows

a poor performance, which matches with the �nding of Ruoss and Savioz (2002) that

also professional forecasters produce wide margins of error when forecasting Swiss

GDP. By contrast, results for the interest rate and particularly in�ation forecasts

are more encouraging, at least at horizons of about one year. For in�ation over the

one-year horizon the model predicts the right direction of change in 78 percent of

the cases.

Summing up, the long-run restricted VECX*(2,2) model performs reasonably

well and we will take it as one of our reference models when investigating if fore-

casts can be improved by double averaging (i.e., by following the AveAve procedure

discussed above).

4 Pooling of forecasts

There is now a sizable literature showing that averaging over di¤erent forecasts

can lead to forecast improvements.8 The problem of interest can be described as

8The advantages of model averaging for forecasting Swiss in�ation are documented in Jordan

and Savioz (2003).
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estimating the forecast probability density function, Pr(ZT+1;h j Zw;T ), of a vector
of variables ZT+1;h = (zT+1; :::; zt+h) conditional on the available observations at

the end of period T , Zw;T = (zT�w+1; :::; zT ), where h denotes the forecast horizon,

and w is the size of the observation window. For a given model, Mm, and a given

estimation window, w, the forecast probability density function Pr(ZT+1;h j Zw;T )
can be estimated by cPr(ZT+1;h j Zw;T ;Mm), which involves estimating model Mm

over the estimation window of size w from the end of estimation sample at T . In the

face of model uncertainty, assuming that there are M models under consideration

and using Bayes formula, we have the familiar Bayesian Model Averaging expression

given by

cPr(ZT+1;h j Zw;T ) = MX
m=1

cPr(Mm j Zw;T )cPr(ZT+1;h j Zw;T ;Mm); (7)

wherecPr(ZT+1;h j Zw;T ;Mm) is the predictive density of ZT+1;h conditional on model

Mm and the observation window w, and cPr(Mm j Zw;T ) is the posterior probability
of model Mm; also estimated over the observation window w.

If a particular model,Mm; is stable over time, the best estimator of Pr(ZT+1;h j
Mm) would be based on all available information, i.e, the longest estimation win-

dow possible. Standard applications of Bayesian Model Averaging implicitly assume

that all models under considerations are stable. But in reality some or all the mod-

els under consideration could be subject to structural breaks and di¤erent choices

of estimation samples might be warranted. The optimal choice of the estimation

window depends on the nature of the breaks (their frequency and intensity) and

is in general rather di¢ cult to ascertain. In the presence of unknown structural

breaks averaging over di¤erent estimation windows is recommended (Pesaran, Pet-

tenuzzo and Timmermann 2006, Pesaran and Timmermann 2007). While leaving

out observations at the beginning of the sample will lead to less precise coe¢ cient

estimates, one probably discards observations that stem from a di¤erent regime and

thus deteriorate forecasts. If the structural breaks are unknown, there is a trade-o¤

between both e¤ects. A pragmatic solution would be to consider a number of alter-

native windows, starting from a minimum window size to the largest permitted by

the available data set. The minimum window size can be determined as a multiple

of the number of parameters being estimated, or could be based on information

regarding a known structural break nearest to the forecast date, T . The maximum

window size can be set, subject to data availability, to be su¢ ciently large so that

a satisfactory approximation to the asymptotic theory that underlie the estimation
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of model Mm can be achieved. In most macroeconomic applications, including the

one in this paper, the maximum window size coincides with the longest observation

window which is available. This might not, however, be the case when forecasting

high frequency �nancial data.

Allowing for both model and estimation window uncertainty yields the following

AveAve formula

cPr(ZT+1;h j ZT;T ) = MX
m=1

T�W+1X
w=T

cPr(Mm j Zw;T )cPr(ZT+1;h j Zw;T ;Mm);

where ZT;T = (z1; :::; zT ) denotes all the available observations, cPr(Mm j Zw;T ) is
the weight attached to model Mm, m = 1; 2; :::;M , estimated over the estimation

window w = T; T�1; :::; T�W+1, at the end of period T ; the windows are arranged
from the longest window of size T; to the shortest window of size T �W + 1.

Bayesian model averaging requires the speci�cation of the prior probability of

model Mm and of the prior probability of the model�s coe¢ cients, �m, conditional

on Mm, for m = 1; 2; :::;M . In our applications we focus on equal weights. This

approach is justi�ed if the data-generation process is subject to structural breaks

and uncertainty over which model is the right one is di¤used. It entails the risk,

however, that one considers bad models in the average that should better have been

left out. We �rst present forecasts averages that weight all forecasts equally, before

we investigate other weighting schemes that have been proposed in the literature.9

4.1 Models to be considered in the averaging process

When averaging forecasts from di¤erent model speci�cations, we �rst need to de�ne

the class of models to be considered. To improve forecast performance by pool-

ing forecasts from several models, it is important that the models considered are

statistically viable and economically meaningful. This is especially relevant when

equal weights are used since they do not take account of past model performance.

With this in mind we make the following choices. We base our choice of alternative

models on the long-run restricted VECX*(2,2) model developed in Section 2. First,

we consider uncertainty regarding the number of cointegrating relations. Second, we

will vary the order of the lags, p and q, in the VECX*(p,q) speci�cation. Third, we

shall consider di¤erent speci�cations for the model we use to forecast the exogenous

9The weighting schemes are discussed in Appendix A.3.
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variables.10

Since we will average forecasts over di¤erent model speci�cations and over dif-

ferent estimation windows, we need a terminology to distinguish between these two

types of averaging. We will refer to the average forecast over di¤erent models for

a speci�c estimation window as the AveM forecast, whereas the average forecast

over estimation windows for a speci�c model will be denoted by AveW. Moreover,

the average over models and estimation windows will be referred to as the AveAve

forecast.

4.2 Average over di¤erent model speci�cations (AveM)

In general, one would expect that imposing long-run equilibrium relations should

improve the forecasting performance of a model, at least over the medium to long

term horizons. Testing the restrictions implied by economic theory in Section 2,

however, gave ambiguous results as to whether these restrictions are consistent with

the data. Therefore, the �rst set of models we shall consider di¤er with respect

to the long-run restrictions that are imposed. While economic theory suggested

�ve long-run relations, the statistical tests pointed to the existence of only three

or possibly four cointegrating vectors. One way to deal with this uncertainty is to

estimate several models with di¤erent restrictions and to average forecasts across

these models. Since we are uncertain about the true cointegration rank, r, of �x

we consider all possible ranks between r = 1 and r = 5. When having less than �ve

cointegrating vectors, we do not know which of the over-identi�ed economic rela-

tions, i.e., PPP, money demand, output gap, uncovered interest parity or the Fisher

relation, to impose. We therefore compute forecasts with all possible combinations

of over-identifying restrictions. Speci�cally, we have �ve possible combinations of

long-run restrictions when r = 1, ten possible combinations when r = 2, and so

on. In total, this gives 31 di¤erent model speci�cations.11 In addition, we consider

models with one to �ve exactly identi�ed cointegrating vectors. This gives a total

of 36 di¤erent model speci�cations.

Averaging over di¤erent speci�cations of the long-run restrictions generally im-

proves forecasts over the VECX*(2,2) model. Table 7 shows the forecast statistics

10Of course, it would be possible to consider other alternatives, such as VECX* models in in�a-

tion and output growth but with fewer or more variables than considered in this paper. However,

this particular strategy for generating alternative forecasting models will not be pursued here.
11Precisely, there are 25 � 1 combinations since we exclude the model without any long-run

restrictions.
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for output growth, in�ation and the interest rate for the average over the 36 di¤er-

ent model speci�cations, applying equal weight to each model when computing the

average.12 At the one-year horizon, we �nd a reduction in the RMSFE of between

10 and 20 percent for output and the interest rate and of even more than 50 percent

for in�ation. Also the bias is reduced considerably for all variables. For in�ation

and the interest rate the hit rate improves and beats the random walk up to the

one-year horizon.

Next, we will consider di¤erent lag lengths for the endogenous and exogenous

variables in the conditional model. Using the estimation sample ending in 1999Q4,

the AIC and the Schwarz criterion pointed to the inclusion of two lags whereas the

HQ criterion favoured one lag. We therefore consider all possible combinations of

one and two lags for the endogenous and exogenous variables, i.e., in addition to our

long-run restricted VECX*(2,2) model we compute forecasts from a VECX*(2,1),

a VECX*(1,2) and a VECX*(1,1) model. Testing for cointegration in these addi-

tional three models (again for the estimation sample ending in 1999Q4), we �nd a

cointegration rank of either r = 3 or r = 4. We therefore compute averages over the

same 36 model speci�cations discussed above also for the VECX*(2,1), VECX*(1,2)

and VECX*(1,1) models.

Averaging over all models is likely to improve forecast performance further for

output and interest rates. In the following, we present the average RMSFEs for

the forecast up to four quarters ahead. The results pertain to the averages over

the 36 di¤erent speci�cation of the long-run relations. The �rst column in Table 8

shows that the average forecast based on the VECX*(2,2) model performs best for

in�ation, whilst those based on the VECX*(2,1) model produce best forecasts for

output and interest rates.

We next investigate the e¤ect of di¤erent marginal models for the exogenous

variables on the forecasting performance of the VECX*. We will consider two dif-

ferent speci�cations. First, we regress the change in the exogenous variables, �x�t ,

on �zt�1 (i.e., the �rst lagged change in the endogenous and exogenous variables),

see equation (4). We call this the M�
a model. Second, we include only the lagged

changes in the exogenous variables, �x�t�1 as regressors in the marginal model for

�x�t . This latter choice can be motivated by Switzerland being a small economy that

has no in�uence on foreign variables. We refer to this marginal model asM�
b model.

12We still consider a VECX* model with two lags of the endogenous and the exogenous variables

and the M�
a marginal model for the exogenous variables. Both models are estimated over the

longest estimation window, starting in 1965Q1.
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For forecasting the marginal model is estimated sequentially over the same sample

period as the conditional model in the case of both marginal models, M�
a and M

�
b .

While we include a constant in the equations (in �rst di¤erences) for foreign output

and the oil price, the equation for the foreign interest rate is estimated without a

constant in order not to generate a trend in the level of the interest rate.

To assess the improvement coming from an explicit marginal model for the ex-

ogenous variables, we also compute forecasts with the exogenous variable set to their

unconditional sample mean (M�
c). In e¤ect, this corresponds to regressing each of

the exogenous variables on a constant only. Note that also in this case the mean

is computed sequentially over the same period as the conditional model (i.e., up to

and including period T , T + 1, etc.) so that no post-sample information is used

in computing the forecasts of x�. Finally, we set the exogenous variables to their

realized values, which we call the M�
d model.

13 As at the time of forecasting the

realized values of x� are unknown, these forecasts are not feasible and are provided

a benchmark against which the other feasible marginal models can be assessed.

Averaging the forecasts from di¤erent lag speci�cations and marginal models is

also likely to result in forecast improvements. Table 8 shows that the M�
b marginal

model produces a lower RMSFE for output and the interest rate, while the M�
a

model generates better forecasts of in�ation. Perhaps not surprisingly, the RMSFE

is smallest if the realized values for the exogenous variables are used. But setting

the exogenous variables to their sample means also produces a low RMSFE that is

comparable to those of the other marginal models. A possible reason is that changes

in the exogenous variables, in particular the oil price, are close to a random walk

and thus di¢ cult to forecast. Finally, the AveM results based on forecasts across the

di¤erent marginal models are shown in the third column of Table 8. We compute

averages only over the M�
a and M

�
b models since M

�
c and M

�
c do not constitute

proper models for the exogenous variables.

The last row in each panel of Table 8 shows the RMSFE for forecasts that are

averaged across di¤erent conditional models. Of particular interest is the average

over both the di¤erent conditional and the marginal models, which is in the third

column of the last row in each panel of Table 8. Averaging over all model dimensions

produces an RMSFE that is close to the lowest of all individual RMSFEs in the table.

This leads us to expect a further improvement in forecast performance if di¤erent

estimation windows are taken into account; an issue that we will explore next.

13TheM�
d model corresponds to what is done in so-called �scenario forecasts�where the exogenous

variables are assumed to be known.
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4.3 Averages over estimation windows (AveW)

We investigate the e¤ect of changing the estimation window by estimating each

model on a sample starting in 1965Q4 and then reducing the estimation sample

successively by leaving out one year at a time at the beginning of the sample. Our

shortest estimation window starts in 1976Q4, which is just after the break-down of

the Bretton-Woods-System that has changed the behaviour of many macroeconomic

variables considerably.14 This gives a total of twelve di¤erent estimation windows.

For the over-identi�ed models, the long-run slope coe¢ cients are kept constant at

their 1965Q4-to-1999Q4 values and are not re-estimated over the shorter sample

periods.15 Since the long-run relations are based on economic theory we can ex-

pect them to be more stable across time than the short-run adjustment coe¢ cients,

which are estimated from the data without any restrictions. Moreover, there is

little agreement in economic theory on the forces that drive the short-run adjust-

ment of macroeconomic variables to their long-run equilibrium values. Note that

the just-identi�ed � vectors are re-estimated since we cannot attach an economic

interpretation to them.

Figures 1 to 3 indicate that averaging over di¤erent estimation windows improves

the forecasts. The �gures display the distribution of quarterly RMSFEs for forecasts

of in�ation, output growth and the short-term interest rate over the next year for

each model over twelve di¤erent estimation windows, starting between 1965Q4 and

1976Q4. The estimation windows are shown on the horizontal axis and the RMSFE

on the vertical axis. Since we have 36 di¤erent speci�cations for �, four di¤erent

lag lengths and two marginal models, this gives a total of 288 models for each

estimation window. The whiskers of the error bars indicate the 15th percentile and

the 85th percentile of the RMSFEs, while the lower end of the box marks the 25th

percentile and the upper end the 75th percentile. The line inside the box represents

the median. RMSFEs falling outside the 15th and the 85th percentile are marked

by dots. The RMSFE from our long-run restricted VECX*(2,2) model is identi�ed

by an asterisk. We see that for the longer estimation windows the VECX* does

not perform particularly well, whereas its RMSFE for output growth and in�ation

is in the lower quartile range for the estimation windows starting after 1974. This

suggests the presence of a structural break, but this information is, of course, not

available ex ante.
14Since the model contains a fairly large number of estimated coe¢ cients, a further reduction in

sample size does not seem appropriate.
15The constants in equation (6) are re-estimated together with the short-run coe¢ cients.
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4.4 Averaging over models and windows (AveAve)

In the following, we will discuss how forecasting performance improves when fore-

casts are averaged both across models and estimation windows. From Figures 1

to 3 it is apparent that considerable variability in RMSFEs is present, both across

the model and the window dimensions. In particular, windows starting in 1973Q4

and 1974Q4, i.e., at the time of the �rst oil-price shock, display comparatively large

RMSFEs. One can also see, however, that not all models are a¤ected in the same

way by the choice of estimation window. The straight line in Figures 1 to 3 repre-

sents the RMSFE for forecasts that are averaged both across models and estimation

windows, denoted as the �AveAve�forecast. In all cases the AveAve forecast lies in

the lower part of the distribution of RMSFEs.

Figures 4 to 6 show the RMSFE across di¤erent forecast horizons. For each

forecast horizon the AveAve RMSFE is marked by an asterisk and the AveMRMSFE

for the longest estimation window by a circle. Since we consider all forecast horizons,

we have 3456 models for each horizon. Again, the AveAve forecast performs well

compared to the RMSFE of individual models. While for in�ation the AveM forecast

for the longest window performs almost as well as the AveAve in�ation forecast. For

output growth and the interest rate averaging over estimation windows results in

a further improvement of forecasts, especially at longer forecast horizons. Note,

however, that the AveM RMSFE for in�ation is in the lowest quartile at all forecast

horizons already so that the scope for further improvement is small.

Averaging forecasts across di¤erent dimensions is an attractive strategy to im-

prove forecast performance. Though some models beat the AveAve forecast, these

models are not the same for the di¤erent variables and also change with the estima-

tion window. It is thus apparent that the ex ante information needed to pick the

best model is not available in practice. By considering the average over di¤erent

windows the forecaster is able to hedge against a bad forecasting performance from

a particular window. Since a priori one does not know how the choice of the sam-

ple period will a¤ect the forecasting performance, averaging over di¤erent windows

seems a useful practical way of dealing with this uncertainty.

4.5 Evaluating the AveAve forecast

While it is apparent that the AveM and the AveAve forecasts perform well, it is

interesting to know how much one would have gained if one had picked the best

model instead of using average forecasts. Two useful measures are the percentage of
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models that have a lower RMSFE than the AveM forecast and the di¤erence between

the average RMSFE of the models with a lower RMSFE and the AveM RMSFE.

Table 9 provides these summary statistics for the performance of the AveM forecast

relative to the individual forecasts. For in�ation and output growth, less than 25

percent of the models are able to beat the AveM forecast, while the performance

of the AveM forecast is worse for about 40 percent of the individual models for

the interest rate. When it comes to the AveAve forecast, results are even more

supportive of the averaging strategy. For in�ation and output only 11 percent of

the individual RMSFEs are lower than the AveAve forecast, whereas for the interest

rate this �gure rises to 32 of the individual models. In terms of the RMSFE, the

average gain of using the better performing models is small and amounts to about

15 percent for output and the interest rate and 25 percent for in�ation. One needs

to keep in mind, however, that the information needed to pick the best performing

model/window is ex ante not available.

We now turn to a comparison of the predictive accuracy of the AveAve fore-

casts relative to the forecasts from the long-run restricted VECX*(2,2) model, and

an alternative simple benchmark model, namely a univariate AR(1) model.16 To

assess whether the improvement in forecasting accuracy is signi�cant, we apply

the test of predictive accuracy proposed by Diebold and Mariano (1995) and its

modi�cation suggested by Harvey, Leybourne and Newbold (1997). The test is

based on a comparison of forecast errors from two di¤erent models, i and j, ac-

cording to some loss function, Lt; of the forecast errors, and tests whether the loss
di¤erential of two di¤erent forecasts is signi�cantly di¤erent from zero. We con-

sider the squared loss Lsij;t = (xt � bxt;h;i)2 � (xt � bxt;h;j)2 and the absolute loss,
Laij;t = jxt � bxt;h;ij � jxt � bxt;h;jj, where i is the AveAve forecast and j the fore-
cast from the long-run restricted VECX*(2,2) model (or a univariate AR(1) model),

respectively. When considering forecasts more than one-step ahead, the loss di¤er-

entials will be serially correlated. To estimate the variance of the loss di¤erential

we therefore use a heteroscedasticity and autocorrelation consistent estimate of the

variance and correct for serial correlation of order h�1, where h is the forecast hori-
zon. We consider only forecasts up to four steps ahead since for longer horizons the

number of independent observations becomes too small to expect signi�cant results.

Table 10 shows that the AveAve forecast outperforms the forecast of the long-

run restricted VECX*(2,2) model, which is indicated by a negative test statistic. In

16In the literature, univariate AR(1) models are often chosen as benchmark for forecast evaluation

since they are hard to outperform despite their simplicity.
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particular, the AveAve forecast is signi�cantly better than the long-run restricted

VECX*(2,2) model when considering the squared forecast errors, except for output

growth three and four quarters ahead, and in�ation one and four quarters ahead.

Dechamps (2007) notes that even for h = 1 forecast errors need not be serially uncor-

related if the parameter values of the true model are unknown, and hence a semipara-

metric estimate of the variance may also be necessary in this case. Indeed if a correc-

tion for �rst-order autocorrelation is applied, the test statistic becomes �1:914 for
the Diebold-Mariano (DM) test (�1:807 for the Harvey-Leybourne-Newbold (HLN)
test) and thus become signi�cant. Regarding the absolute loss, the AveAve forecast

is signi�cantly better than the VECX*(2,2) forecast for the interest rate and output

growth up to two quarters ahead, but not for in�ation.

Table 11 shows that, compared to the forecast from a univariate AR(1) model,

the AveAve forecast improves signi�cantly for in�ation and the interest rate but

not for output. Again, the one-step-ahead test statistics for the squared loss for

in�ation become signi�cant if serial correlation is allowed for (�4:097 for the DM
test and �3:869 for the HLN test). The fact that the AveAve forecast does not lead
to a better prediction of output growth indicates that the additional information

coming from the other variables in the model does not help to improve forecasts

over the information embodied in past output growth. This, however, might be a

consequence of the particular forecast period chosen, which includes a high degree

of uncertainty in the �nancial markets during 2001/2002, which subsequently led to

a recession, and a steep rise in the oil price in 2004 that coincided with an economic

recovery. Table 12 con�rms that the results remain unchanged when the average

over estimation windows (AveW) for the AR(1) model is considered.

Summing up, in general averaging forecasts from di¤erent windows and models

seems to perform well and is worthy of further consideration.

4.6 Results for di¤erent weighting schemes

While up to now we have used equal weights, we next turn to the question of how best

to combine the forecasts from di¤erent models, i.e., the e¤ect of di¤erent weighting

schemes on the average forecasts. In addition to equal weights we consider weighting

by the AIC criterion (see Pesaran, Schleicher, and Za¤aroni, 2007), the weighting

scheme proposed by Yang (2004) and the online weights discussed in Sancetta (2006).

A description of the weighting schemes can be found in Appendix A.3. First, we

discuss the evolution of weights during the forecast horizon before we look at the
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in�uence on the RMSFE for the in�ation forecast for up to four quarters ahead. The

alternative weighting schemes are compared with respect to the conditional models

only, and the uncertainty associated with the choice of the marginal models is dealt

with by simple averaging.

Di¤erent weighting schemes imply markedly di¤erent weights with which the

forecasts from a particular model enter the average. Figure 7 shows the evolution

of the weights for the longest estimation window over the forecast period. Since it

is impossible to depict the weight for each individual model, we show the sum of

weights for the VECX*(2,2), the VECX*(2,1), the VECX*(1,2) and the VECX*(1,1)

models. The online weights stay close to the equal weights, whereas the AIC weights

tend to place most of the weights on the VECX*(1,2) model with only the long-

run output gap relation imposed. The weighting scheme by Yang (2004) starts out

with equally weighted models for the �rst period but re-adjusts weighting quickly,

favouring a single model type at the time.

In choosing the weights, the forecaster faces a trade-o¤. On the one hand,

the worst (historically) performing models should be excluded from the combined

forecast. On the other hand, if model averaging is to provide a hedge against the

failure of a particular model, convergence of the weights to a single model is not

attractive. Since the AIC weights use the exponential di¤erence between model m�s

AIC and the maximum AIC over all models, small di¤erences in the log-likelihood

will result in a large change in the weight. There is no guarantee, however, that

the historically best model according to the AIC will always produce good forecasts.

Therefore, weighting schemes that retain a broader portfolio of models, even if their

performance was not among the best ones, may work better in practice.

Table 13 shows the RMSFE for the in�ation forecast up to four quarters ahead

with di¤erent weighting schemes. Apparently, equal weights perform quite well

when compared to more sophisticated weighting schemes.17 The online-weighting

scheme is able to reduce the RMSFE slightly as compared to equal weights for some

of the estimation windows but not for the AveAve forecast. By contrast, the AIC

weights and the weighting schemes by Yang (2004) are unable to outperform equal

weighting. This may be due to the fact that we consider quite similar models so

that the advantages of keeping a large portfolio of models outweigh the bene�t of

excluding the worst performing ones.

17This result is often found in the forecast combination literature though not completely under-

stood yet (see Timmermann 2006).
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5 Conclusions

In this paper, we developed a long-run structural model for Switzerland and tested

for long-run relationships derived from economic theory. We found �ve cointegrating

relations that we identi�ed as PPP, money demand, international output growth,

uncovered interest parity and the Fisher interest parity. We then investigated fore-

casting performance of di¤erent versions of this model, maintaining di¤erent assump-

tions with respect to the long-run relations, the lag length and the speci�cation of

the marginal model. Furthermore, we considered forecasts constructed from models

that were estimated over di¤erent estimation windows.

We found that forecast averaging is able to improve forecasting performance and

provides a hedge against poor forecast outcomes. While averaging across di¤erent

models lowers the RMSFE of forecasts, averaging over estimation windows leads

to an additional reduction in the forecast error and is thus at least as important

as model averaging. Finally, we found that equal weights perform reasonably well

when aggregating forecasts. The rationale behind this �nding is that convergence

of weights towards a single model is not attractive in practice if the researcher does

not know whether the true model is among the set of models under consideration.

In that case a portfolio of models is likely to cope better with unexpected future

events when it comes to forecasting.

A Appendix: Sources and Construction of Data

A.1 Swiss Data

All Swiss data are from the data base of the Swiss National Bank (SNB). Money is

M2 in the de�nition of 1995, excluding Liechtenstein. The short-term interest rate

is the end-of-month three-month London Interbank O¤ered Rate (3M LIBOR) for

Swiss francs, denoted by R. The interest rate is expressed as 0:25 ln(1 +R=100), so

that it is in the same unit of measurement as the in�ation rate. The price level is

the consumer price index (CPI) with the base of December 2005 = 100. Output is

the seasonally adjusted quarterly real gross domestic product (GDP) computed by

the SECO (Secrétariat d�Etat à l�économie) from 1981 onward. Quarterly output

estimates before 1981 were interpolated from the o¢ cial annual data by the SNB.

For the CPI an adjustment was made to overcome breaks due to new data col-

lection procedures at the Swiss Federal Statistical O¢ ce. From 2000 on the CPI
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includes end-of-season sales. This introduces substantial seasonality into the sub-

index for clothing and footwear, as can be seen in Figure A.1. In addition, the data

Figure A.1: Price index clothing and footwear
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collection had been shifted from the end of the month to the beginning of the month

in January 2002, which introduces another break into the series. We adjust for these

changes by shifting the series by one month backward between January 2000 and

January 2002, the period indicated by the vertical lines in Figure A.1. The result-

ing missing value is �lled by inserting the December 2001 value of the sub-index.

The series is smoothed by computing a 12-month backward moving average. The

smoothed sub-index is added to the CPI without clothing and footwear, using the

weight of this sub-index in the CPI. Figure A.2 shows the original and the adjusted

CPI series. Though the weight of the clothing-and-footwear sub-index is less than

5 percent since 2000, it is clearly visible that the adjustment considerably reduces

the seasonal variability of the in�ation rate since 2002.

Monthly data for M2, the CPI and the 3M LIBOR are aggregated into quarterly

averages of monthly �gures. In�ation is the quarterly per cent di¤erence of the CPI.

A.2 Foreign Data

The foreign price level, the exchange rate and foreign GDP are constructed using

trade weighted data from Switzerland�s 15 most important trading partners. These

are (in the order of their importance) Germany, France, Italy, the United States,

the United Kingdom, Austria, the Netherlands, Japan, Belgium, Spain, Sweden,

Hongkong, China, Ireland and Denmark. Trade data are from the Eidgenössische

Zollverwaltung. Trade is de�ned as the sum of imports and exports from and to
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Figure A.2: Monthly in�ation rate without (solid line) and with adjustment (dashed

line) of the CPI
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a speci�c country. The countries considered have an average share of at least 1

percent in total Swiss foreign trade during 1974 to 2006. Together, the 15 countries

considered account for about 82 percent of total Swiss foreign trade. For Ireland,

Hongkong and China, trade data were not available before 1988. For these countries,

the trade shares were set to the January 1988 value for the period before 1987.

This avoids level e¤ects that would otherwise appear if the trade weights for these

countries were set to zero over the time where data are not available. The trade

weights used in the aggregation are three-year moving averages of the trade share

of the respective country in Switzerland�s total trade with these 15 countries.

The foreign price level is the trade-weighted aggregate of the consumer price

indices, and foreign GDP is the trade-weighted aggregate of the real GDP indices

of the 15 main trading partners. The CPI and real GDP data are from the Main

Economic Indicator data base of the OECD. Missing data have been supplemented

with IFS and BIS data. For countries where the GDP data were not seasonally

adjusted at the source, the X12 procedure was used to seasonally adjust the original

series. When quarterly data were not available, annual data were interpolated.18

The resulting GDP series was converted to an index with the base year 2000 and

then aggregated using the three-year moving averages of the trade weights. This

avoids the use of exchange rates to convert GDP into a common currency.

The exchange rate is the weighted average of the exchange rate of the Swiss Franc

vis-a-vis Switzerland�s 15 main trading partners. After the transition to European

18This was the case for the Netherlands and Denmark until 1976, for Belgium until 1979, for

Ireland and Hong Kong until 1985, and for China until 1999.
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monetary union, the exchange rate for the members of the European Monetary

Union are replaced by the Euro exchange rate, converted with the o¢ cial conversion

rates of the national currencies to the Euro at the start of the European Monetary

Union in 1999.

In contrast to the CPI, the exchange rate and GDP, the foreign interest rate is

a weighted average of the three-month interest rate in only three areas, namely the

euro area, the UK and the US. Before the existence of European Monetary Union,

the euro area interest rate is proxied by a weighted average of the short-term interest

rates of the countries that entered the EMU and are among Switzerland�s 15 main

trading partners. The weights are the shares of the EMU countries, the UK and the

US in Swiss foreign trade with these countries. While the EMU countries receive a

share of about 82 percent, the weight of the UK is 6 percent and the US �nancial

variables make up 10 percent of the total. The interest rates are from the BIS

data base. Like the domestic interest rate, the foreign interest rate is expressed as

0:25 ln(1 +R�=100), where R� is the foreign interest rate per annum in percent.

Also for the foreign variables, the monthly series for the CPI, the interest rate and

the exchange rate are aggregated with monthly trade weights and then transformed

into quarterly averages.

A.3 Weighting schemes

Let fmth be the mth model�s h-step ahead forecast of a scalar random variable, z,

formed at date t for date t + h, with m = 1; 2; :::;M , t = 1; 2; :::. Let !mth > 0,
MP
m=1

!mth = 1, be the weight to be attached to this forecast at time t in arriving at

the pooled forecast de�ned by

ft;h(!) =
MX
m=1

!mthfmth:

Many di¤erent weighting schemes can be considered.

One possibility is to use equal weighted combinations de�ned as

ft;h(1=M) =
1

M

MX
m=1

fmth:

Another one is to approximate Pr(Mm j ZT;T ) by Akaike weights or Schwartz
weights. The latter give a Bayesian approximation when the estimation sample is

su¢ ciently large (see Pesaran, Schleicher and Za¤aroni, 2007).
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Here, we will consider AIC weights that are computed as follows:

!m;t�1 =
exp(�m;t�1)PM
j=1 exp(�j;t�1)

;

where �m;t�1 = AICm;t�1 � maxj(AICj;t�1) and AICm;t�1 = LLm;t�1 � �m and

LLm;t�1 indicates the maximized logarithm of the likelihood function of model m

with �m parameters.19

Yang (2004) proposes the following weights for h = 1 (see his equation (4) on

page 186)

�!m;t =

�m
t�1Q
�=1

sm�

exp

�
�1
2

t�1P
�=1

(z� � fm� )2=s2m�
�

MP
j=1

�j
t�1Q
�=1

sj�

exp

�
�1
2

t�1P
�=1

(z� � fj� )2=s2j�
� ;

where fmt is the one-step ahead forecast of zt formed at time t, and the model priors,

�m, can be set to 1=M . This formula uses an expanding window for the construction

of weights and can be modi�ed to use a rolling window of size h,

�!m;t =

�m
t�1Q

�=t�h
sm�

exp

(
�1
2

t�1P
�=t�h

(z� � fm� )2=s2m�

)
MP
j=1

�j
t�1Q

�=t�h
sj�

exp

(
�1
2

t�1P
�=t�h

(z� � fj� )2=s2j�

) ;

An h-step ahead version can be written as

�!mth =

�m
t�hQ

�=t�h�h+1
sm�

exp

(
�1
2

t�hP
�=t�h�h+1

(z� � fm�h)2=s2m�h

)
MP
j=1

�j
t�hQ

�=t�h�h+1
sj�

exp

(
�1
2

t�hP
�=t�h�h+1

(z� � fj�h)2=s2j�h

) ;

where s2m�h are computed from an expanding window (or a rolling window of size

h0 > h)

s2m�h =

��hP
i=��h0�h+1

(zi � fmih)2

h0
;

where h0 = � � h in the case of an expanding window.
19For the exactly identi�ed models, �m is given by �m = kkx(p�1)+(k+kx+1)r�r2+(kx�+1)kx.
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Alternatively, weighting schemes from machine learning literature can be used.

One such scheme uses the following algorithm (Sancetta 2006): Let t = � be the

initial forecast date and set !m�h = 1=M . For date t = � + h; � + h+ 1, ...; use the

following formula to update the weights

!mth = �t;t�h;he!m;t�h;h, if e!m;t�h;h � 


M
, for t = � ; � + 1; :::;

=



M
if e!m;t�h;h < 


M

where e!m;t�h;h = !m;t�h;h exp
�
�t�hfm;t�h;h(zt�h � ft�h;h)

	
MP
m=1

!m;t�h;h exp
�
�t�hfm;t�h;h(zt�h � ft�h;h)

	 ;
zt�h is the realized value of z at the end of date t� h,

�t;t�h;h =

1�
�


M

� MP
m=1

I( 

M
� e!m;t�h;h)

MP
m=1

e!m;t�h;hI(e!m;t�h;h � 

M
)

;

�t = At
��:

Note that by construction the new weights satisfy e!m;t�h;h > 0, and MP
m=1

e!m;t�h;h = 1.
In the empirical application we set A = 105, � = 0:5 and 
 = 0:05.20

20It is interesting to note that results remain basically una¤ected if we change the weights ex-post

by choosing � = f0:5; 0:4; 0:3; 0:2g and 
 = f0:05; 0:10g.
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Table 1: Unit root tests for the �rst di¤erences
ADF

�e �m �y �r �� �p-�p� �y� �r� �poil C

0 -9.34 -4.15 -9.97 -9.30 -15.86 -4.71 -8.34 -6.87 -10.41 -2.86

1 -7.99 -4.29 -7.69 -6.55 -12.84 -3.33 -5.46 -6.32 -8.53 -2.86

2 -6.38 -3.97 -4.71 -5.75 -7.99 -2.55 -4.27 -6.00 -6.11 -2.88

3 -6.28 -4.64 -4.23 -5.62 -7.52 -2.56 -3.27 -4.55 -5.61 -2.88

4 -6.08 -4.12 -4.37 -5.69 -6.42 -2.12 -3.69 -5.30 -5.73 -2.88

ADF-GLS

�e �m �y �r �� �p-�p� �y� �r� �poil C

0 -9.02 -4.09 -9.45 -9.65 -14.36 -2.95 -7.67 -6.18 -10.43 -2.02

1 -7.58 -4.21 -7.12 -6.31 -10.46 -2.01 -4.94 -5.54 -8.54 -2.04

2 -5.95 -3.89 -4.27 -5.49 -6.05 -1.46 -3.80 -5.08 -6.11 -2.07

3 -5.74 -4.52 -3.79 -5.30 -5.23 -1.46 -2.86 -3.75 -5.61 -1.99

4 -5.42 -4.00 -3.86 -5.28 -4.15 -1.13 -3.16 -4.25 -5.73 -2.02

ADF-WS

�e �m �y �r �� �p-�p� �y� �r� �poil C

0 -9.59 -4.35 -10.23 -9.60 -16.16 -4.57 -8.56 -7.29 -10.69 -2.51

1 -8.22 -4.49 -7.98 -6.73 -13.08 -3.17 -5.62 -6.43 -8.78 -2.51

2 -6.50 -4.18 -4.93 -5.95 -8.16 -2.28 -4.36 -6.13 -6.32 -2.51

3 -6.49 -4.85 -4.45 -5.81 -7.72 -2.31 -3.32 -4.64 -5.83 -2.53

4 -6.29 -4.33 -4.58 -5.88 -6.60 -1.78 -3.69 -5.42 -5.94 -2.50
Note: ADF denotes the Augmented Dickey-Fuller Test, ADF-GLS the generalized least

squares version of the ADF test, and ADF-WS the weighted least squares ADF test. The

�rst column shows the number of lags included when computing the test statistics. All

regressions include an intercept. The sample period runs from 1966Q4 to 1999Q4. The

column C shows the 95% simulated critical values. Entries in boldface denote the lag

length selected by the AIC criterion.
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Table 2: Unit root tests for the levels

ADF

e m y r � p-p� y� r� poil T C

0 -1.41 -1.46 -2.57 -2.40 -4.52 0.05 -2.86 -1.79 -1.56 -3.49 -2.86

1 -1.86 -3.57 -2.73 -3.10 -3.39 -0.90 -2.67 -3.36 -1.68 -3.42 -2.86

2 -1.66 -3.36 -2.67 -3.61 -2.47 -1.27 -2.64 -3.24 -1.50 -3.48 -2.88

3 -1.72 -3.50 -3.13 -3.74 -2.71 -1.69 -2.60 -3.07 -1.62 -3.39 -2.88

4 -1.49 -2.94 -3.20 -3.56 -2.38 -1.65 -2.62 -3.84 -1.51 -3.34 -2.88

ADF-GLS

e m y r � p-p� y� r� poil T C

0 -1.52 -1.15 -1.24 -2.43 -3.86 -0.27 0.15 -1.80 -1.26 -3.0 -2.02

1 -1.93 -3.15 -1.44 -3.12 -2.83 -1.03 -0.25 -3.18 -1.41 -3.00 -2.04

2 -1.74 -2.93 -1.40 -3.61 -2.00 -1.39 -0.53 -3.05 -1.23 -2.97 -2.07

3 -1.81 -3.04 -1.92 -3.74 -2.20 -1.84 -0.72 -2.88 -1.39 -2.94 -1.99

4 -1.59 -2.50 -1.99 -3.55 -1.88 -1.80 -1.03 -3.53 -1.29 -2.95 -2.02

ADF-WS

e m y r � p-p� y� r� poil T C

0 -1.69 -1.38 -1.24 -2.62 -4.68 0.19 1.32 -2.08 1.57 -3.31 -2.51

1 -2.11 -3.55 -1.55 -3.30 -3.56 -0.82 0.51 -3.46 -1.71 -3.25 -2.51

2 -1.92 -3.33 -1.49 -3.82 -2.67 -1.18 0.07 -3.44 -1.54 -3.28 -2.51

3 -1.99 -3.50 -2.23 -3.95 -2.92 -1.63 -0.25 -3.28 -1.68 -3.22 -2.53

4 -1.79 -2.90 -2.36 -3.77 -2.59 -1.59 -0.75 -4.04 -1.59 -3.25 -2.50

Note: ADF denotes the Augmented Dickey-Fuller Test, ADF-GLS the generalized least

squares version of the ADF test, and ADF-WS the weighted least squares ADF test. The

�rst column shows the number of lags included in the test. The regressions include a trend

and an intercept for e, p� p�, m, y, y�and poil, and an intercept only for r, �, and r�.
The sample period runs from 1966Q3 to 1999Q4. The column T gives the 95% simulated

critical values for the test with intercept and trend, the column C the 95% simulated

critical values for the test including an intercept only. Entries in boldface denote the lag

length selected by the AIC criterion.
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Table 3: Lag order selection criteria

Lag length AIC Log(FPE) HQ SC

1 -61.61 -61.60 -60.85 -59.73

2 -61.95 -61.92 -60.69 -59.86

3 -61.89 -61.82 -60.14 -57.71

4 -61.82 -61.67 -59.58 56.31

Note: AIC is the Akaike information criterion, FPE is the �nal prediction error, HQ the

Hannan-Quinn criterion and SC the Schwarz criterion. The sample period is 1965Q4 to

1999Q4.

Table 4: Cointegration tests
Rank Eigenvalue Trace Critical �-max Critical

statistic value 90% statistic value 90%

0 0.492 261.26 171.50 92.83 57.52

1 0.359 168.43 131.73 60.87 50.54

2 0.286 107.56 95.29 46.21 42.93

3 0.192 61.34 66.30 29.23 35.84

4 0.117 32.10 40.35 17.08 27.28

5 0.104 15.03 19.63 15.02 19.63
Note: The sample period is 1965Q4 to 1999Q4. Critical values simulated using 1000

replications.
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Table 5: Reduced-form error-correction equations
Equation �et �mt �yt �rt ��t �(pt � p�t )
�̂1;t�1

�0:178�
(0:053)

�0:004
(0:029)

0:066�

(0:024)
�0:002
(0:005)

�0:006
(0:011)

0:011
(0:010)

�̂2;t�1
�0:018
(0:034)

�0:077�
(0:019)

�0:008
(0:016)

�0:001
(0:004)

0:001
(0:007)

�0:004
(0:007)

�̂3;t�1
0:016
(0:071)

�0:100�
(0:039)

�0:060
(0:033)

0:001
(0:007)

0:042�

(0:014)
0:040�

(0:014)

�̂4;t�1
�2:640�
(0:917)

0:973
(0:504)

�0:951�
(0:424)

�0:222�
(0:096)

�0:800�
(0:188)

�0:368�
(0:176)

�̂5;t�1
2:506�

(0:632)
0:837
(0:347)

0:611�

(0:292)
0:028
(0:066)

0:614�

(0:129)
0:330�

(0:122)

�et�1
0:272�

(0:089)
�0:157�
(0:049)

0:045
(0:041)

0:032�

(0:009)
0:019
(0:018)

0:012
(0:017)

�mt�1
�0:026
(0:132)

0:537�

(0:073)
�0:023
(0:061)

�0:008
(0:014)

�0:006
(0:027)

�0:032
(0:025)

�yt�1
�0:280
(0:207)

0:039
(0:114)

�0:237�
(0:096)

0:004
(0:022)

�0:011
(0:042)

0:034
(0:040)

�rt�1
�2:204�
(0:836)

�0:470
(0:514)

0:299
(0:433)

0:124
(0:097)

�0:086
(0:192)

�0:344
(0:180)

��t�1
�0:374
(0:487)

0:097
(0:268)

�0:152
(0:225)

�0:054
(0:051)

�0:085
(0:100)

�0:170
(0:094)

�(pt�1 � p�t�1) 1:953�

(0:525)
0:287
(0:289)

0:292
(0:242)

0:029
(0:055)

�0:089
(0:108)

0:648�

(0:101)

�y�t
0:024
(0:306)

�0:271
(0:168)

0:994�

(0:141)
0:055
(0:032)

0:081
(0:063)

0:068
(0:059)

�y�t�1
�0:505
(0:343)

�0:081
(0:188)

0:177
(0:158)

�0:017
(0:036)

0:072
(0:070)

�0:043
(0:066)

�r�t
3:482�

(1:125)
�2:596�
(0:618)

�0:056
(0:520)

0:720�

(0:117)
0:535�

(0:230)
0:174
(0:216)

�r�t�1
1:034
(1:443)

0:900
(0:793)

0:646
(0:667)

�0:222
(0:150)

�0:207
(0:295)

0:221
(0:278)

�poilt
0:004
(0:012)

�0:010
(0:007)

0:008
(0:006)

0:002
(0:001)

0:005�

(0:002)
0:001
(0:002)

�poilt�1
0:027�

(0:012)
0:001
(0:006)

0:013�

(0:005)
0:0002
(0:001)

�0:002
(0:002)

�0:002
(0:002)

Constant �0:213
(0:871)

1:327�

(0:479)
0:739
(0:403)

�0:016
(0:091)

�0:515
(0:178)

�0:478�
(0:168)

�R2 0.25 0.71 0.39 0.37 0.34 0.69

SC: �2(4) 3.34 4.81 18.79 3.79 7.22 11.95

FF: �2(1) 0.49 0.11 0.56 0.65 1.49 0.02

N: �2(2) 98.73 2.01 11.38 25.81 11.71 5.97

HS: �2(1) 0.03 0.01 11.61 2.98 12.77 0.87
Note: The error correction terms, �i, are de�ned in eq. (2.5). An asterisk denotes signi�-

cance at the 5% level. SC is a test for serial correlation, FF a test for functional form, N a

test for normality and HS a test for heteroscedasticity. Critical values are 3.84 for �2(1),

5.99 for �2(2) and 9.49 for �2(4). Constant not shown. The sample period is 1965Q4 to

1999Q4.
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Table 6: Forecast statistics for long-run restricted VECX*(2,2) model with over-

identi�ed �
Horizon # yt �t rt

RMSFE in %

1 step ahead 27 0.572 0.272 0.070

2 step ahead 26 0.457 0.155 0.068

3 step ahead 25 0.428 0.122 0.066

4 step ahead 24 0.402 0.101 0.068

8 step ahead 20 0.328 0.069 0.063

Bias

1 step ahead 27 0.462 16.096 13.247

2 step ahead 26 0.481 14.225 5.245

3 step ahead 25 0.468 18.285 3.128

4 step ahead 24 0.456 17.771 2.605

8 step ahead 20 0.370 17.940 2.134

Hit rate

1 step ahead 27 42.31 76.92 50.00

2 step ahead 26 40.00 76.00 52.00

3 step ahead 25 41.67 62.50 58.33

4 step ahead 24 34.78 78.26 52.17

8 step ahead 20 26.32 47.37 5.26
Note: Sequential out-of-sample forecasts from 2000Q1 to 2006Q3, estimation period

1965Q4 to 1999Q4. The forecast statistics pertain to forecasts for h steps ahead, di-

vided by the forecast horizon, h. Forecasts of the exogenous variables come from the

M�
a marginal model. # indicates the number of point forecasts available to compute the

RMSFE.

40



Table 7: Average forecast over di¤erent � of VECX*(2,2) model
Horizon # yt �t rt

RMSFE in %

1 step ahead 27 0.540 0.236 0.067

2 step ahead 26 0.407 0.113 0.062

3 step ahead 25 0.363 0.082 0.058

4 step ahead 24 0.327 0.066 0.060

8 step ahead 20 0.232 0.039 0.062

Bias

1 step ahead 27 0.291 7.140 10.429

2 step ahead 26 0.239 5.678 4.209

3 step ahead 25 0.139 6.551 2.592

4 step ahead 24 0.050 6.488 2.198

8 step ahead 20 -0.294 8.280 1.905

Hit rate

1 step ahead 27 38.46 73.08 57.69

2 step ahead 26 44.00 72.00 60.00

3 step ahead 25 50.00 62.50 62.50

4 step ahead 24 43.48 78.26 52.17

8 step ahead 20 31.58 47.37 10.53
Note: Sequential out-of-sample forecasts from 2000Q1 to 2006Q3, estimation period

1965Q4 to 1999Q4. The forecast statistics pertain to forecasts for h steps ahead, di-

vided by the forecast horizon, h. Forecasts of the exogenous variables come from the

M�
a marginal model. # indicates the number of point forecasts available to compute the

RMSFE.
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Table 8: RMSFE for forecast average across di¤erent model dimensions
Horizon M�

a M�
b Average M�

c M�
d

yt

VECX*(2,2) 0.327 0.318 0.315 0.314 0.335

VECX*(2,1) 0.315 0.307 0.302 0.306 0.330

VECX*(1,2) 0.352 0.336 0.342 0.331 0.271

VECX*(1,1) 0.331 0.313 0.319 0.314 0.299

Average 0.325 0.316 0.316 0.313 0.305

�t

VECX*(2,2) 0.066 0.069 0.067 0.065 0.044

VECX*(2,1) 0.068 0.069 0.068 0.066 0.045

VECX*(1,2) 0.072 0.075 0.073 0.073 0.068

VECX*(1,1) 0.075 0.077 0.076 0.075 0.064

Average 0.069 0.071 0.070 0.069 0.052

rt

VECX*(2,2) 0.060 0.058 0.058 0.057 0.027

VECX*(2,1) 0.056 0.053 0.054 0.054 0.028

VECX*(1,2) 0.063 0.060 0.061 0.058 0.026

VECX*(1,1) 0.060 0.056 0.058 0.057 0.024

Average 0.059 0.056 0.058 0.056 0.025
Note: Sequential out-of-sample forecasts from 2000Q1 to 2006Q3. The table shows the

average RMSFE per quarter for the four-quarter-ahead forecast. M�
a and M

�
b indicate

the marginal models described in Section 4.1,M�
c andM

�
d set the exogenous variables to

their sample mean or their realized value, average indicates the average over theM�
a and

M�
b marginal models. The marginal models are estimated over the same sample as the

conditional model. All results are averaged over the di¤erent choices for �.
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Table 9: Summary of performance of Ave forecast relative to individual forecasts

across estimation windows
yt �t rt

Window Percent Exceedence Percent Exceedence Percent Exceedence

1965 Q4 13.542 0.057 16.667 0.021 31.944 0.006

1966 Q4 13.542 0.057 19.097 0.021 30.903 0.007

1967 Q4 11.458 0.057 15.972 0.022 32.986 0.007

1968 Q4 8.681 0.055 19.444 0.020 30.556 0.008

1969 Q4 13.889 0.061 18.403 0.019 26.736 0.010

1970 Q4 27.431 0.081 16.667 0.021 30.208 0.008

1971 Q4 31.250 0.086 13.194 0.025 42.014 0.008

1972 Q4 29.167 0.085 7.986 0.027 46.181 0.007

1973 Q4 16.667 0.070 18.403 0.040 50.000 0.010

1974 Q4 6.250 0.051 5.556 0.021 30.556 0.010

1975 Q4 14.236 0.025 4.861 0.021 31.944 0.007

1976 Q4 15.972 0.023 7.292 0.020 31.944 0.007

AveAve 10.619 0.054 10.735 0.017 32.060 0.010

AveAve RMSFE 0.313 0.069 0.054
Note: Sequential out-of-sample forecasts from 2000Q1 to 2006Q3. Forecasts are averaged

over all models and pertain to the four-quarter-ahead forecast. Percent shows the share of

models whose RMSFE is below the model average RMSFE. Exceedence gives the average

RMSFE loss of not using those models that perform better than the model average. For

comparison, the last row shows the RMSFE of the model average.
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Table 10: Predictive accuracy of AveAve forecast against long-run restricted

VECX*(2,2) model
Horizon yt �t rt

DM HLN DM HLN DM HLN

Squared loss

1 -1.992 -1.954 -0.780 -0.766 -1.827 -1.793
2 -2.216 -2.088 -2.300 -2.167 -3.355 -3.160
3 -1.674 -1.507 -1.857 -1.670 -2.574 -2.316
4 -1.562 -1.334 -1.664 -1.421 -2.142 -1.829

Absolute loss

1 -2.789 -2.737 -0.471 -0.462 -2.361 -2.317
2 -2.016 -1.900 -1.509 -1.422 -3.855 -3.632
3 -1.257 -1.131 -1.633 -1.469 -4.057 -3.651
4 -1.491 -1.273 -1.799 -1.536 -2.868 -2.449
Note: DM indicates the Diebold-Mariano (1995) test statistic, HLN the modi�ed test

statistic as proposed by Harvey, Granger and Newbold (1997). Signi�cant test statistics

at the 5% level are denoted in boldface. A negative entry indicates that the AveAve

forecast outperforms the alternative model.
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Table 11: Predictive accuracy of AveAve forecast against AR(1) model
Horizon yt �t rt

DM HLN DM HLN DM HLN

Squared loss

1 -0.255 -0.251 -1.657 -1.626 -3.233 -3.173
2 -0.789 -0.743 -3.393 -3.197 -2.555 -2.407
3 -0.144 -0.130 -3.730 -3.356 -2.111 -1.900
4 0.337 0.287 -5.380 -4.594 -1.940 -1.657

Absolute loss

1 0.556 0.546 -1.941 -1.905 -4.893 -4.801
2 -0.592 -0.558 -4.354 -4.102 -3.110 -2.930
3 -0.414 -0.372 -4.095 -3.685 -2.821 -2.538
4 -0.291 -0.249 -40.988 -35.001 -2.837 -2.423
Note: The AR(1) model is estimated over the longest estimation window. DM indicates

the Diebold-Mariano (1995) test statistic, HLN the modi�ed test statistic as proposed

by Harvey, Granger and Newbold (1997). Signi�cant test statistics at the 5% level are

denoted in boldface. A negative entry indicates that the AveAve forecast outperforms the

alternative model.

Table 12: Predictive accuracy of AveAve forecast against AveW of AR(1) model
Horizon yt �t rt

DM HLN DM HLN DM HLN

Squared loss

1 -0.273 -0.268 -1.540 -1.511 -3.000 -2.944
2 -0.528 -0.498 -3.007 -2.833 -2.415 -2.275
3 -0.153 -0.138 -3.246 -2.921 -1.980 -1.781
4 0.048 0.041 -4.895 -4.180 -1.768 -1.509

Absolute loss

1 0.598 0.587 -1.844 -1.810 -4.581 -4.495
2 -0.410 -0.386 -3.514 -3.311 -2.734 -2.576
3 -0.171 -0.154 -3.388 -3.048 -2.514 -2.262
4 -0.184 -0.158 -30.328 -25.897 -2.586 -2.208
Note: DM indicates the Diebold-Mariano (1995) test statistic, HLN the modi�ed test

statistic as proposed by Harvey, Granger and Newbold (1997). Signi�cant test statistics

at the 5% level are denoted in boldface. A negative entry indicates that the AveAve

forecast outperforms the alternative model.
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Table 13: RMSFE for in�ation in per cent for Ave forecast
Estimation window Equal weights AIC weights Yang (2004) Online weights

1965 Q4 0.068 0.071 0.086 0.067

1966 Q4 0.069 0.072 0.079 0.068

1967 Q4 0.068 0.070 0.077 0.067

1968 Q4 0.069 0.072 0.085 0.068

1969 Q4 0.069 0.074 0.092 0.069

1970 Q4 0.068 0.074 0.076 0.068

1971 Q4 0.068 0.072 0.074 0.067

1972 Q4 0.069 0.071 0.078 0.067

1973 Q4 0.070 0.072 0.087 0.069

1974 Q4 0.080 0.073 0.091 0.076

1975 Q4 0.078 0.093 0.085 0.075

1976 Q4 0.077 0.082 0.082 0.075

AveAve 0.069 0.073 0.076 0.069
Note: Sequential out-of-sample forecasts from 2000Q1 to 2006Q3. The table shows the

RMSFE for di¤erent estimation windows and di¤erent models. Forecasts are averaged

over theM�
a andM

�
b marginal models, applying equal weights. The marginal models are

estimated over the same sample period as the conditional model.
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Figure 1: RMSFE for output growth across estimation windows and AveAve

RMSFE
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Figure 2: RMSFE for in�ation across estimation windows and AveAve RMSFE
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Figure 3: RMSFE for interest rate across estimation windows and AveAve RMSFE
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Figure 4: Distribution of RMSFEs for output growth across forecast horizons

50



Figure 5: Distribution of RMSFEs for in�ation across forecast horizons
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Figure 6: Distribution of RMSFEs for interest rate across forecast horizons
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Figure 7: Evolution of weights over forecasting period
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