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ABSTRACT 
 

Instrumental Variables in Models with Multiple Outcomes: 
The General Unordered Case¹ 

 
This paper develops the method of local instrumental variables for models with multiple, 
unordered treatments when treatment choice is determined by a nonparametric version of the 
multinomial choice model. Responses to interventions are permitted to be heterogeneous in 
a general way and agents are allowed to select a treatment (e.g., participate in a program) 
with at least partial knowledge of the idiosyncratic response to the treatments. We define 
treatment effects in a general model with multiple treatments as differences in counterfactual 
outcomes that would have been observed if the agent faced different choice sets. We show 
how versions of local instrumental variables can identify the corresponding treatment 
parameters. Direct application of local instrumental variables identifies the marginal treatment 
effect of one option versus the next best alternative without requiring knowledge of any 
structural parameters from the choice equation or any large support assumptions. Using local 
instrumental variables to identify other treatment parameters requires either large support 
assumptions or knowledge of the latent index function of the multinomial choice model. 
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This paper extends the choice-theoretic analysis of local instrumental variables (LIV )

and local average treatment effect (LATE ) by Heckman and Vytlacil (2001, 2005)

developed for a two treatment model to the case of multiple treatments with choices

generated by a general multinomial choice model. Heckman and Vytlacil (2001) use

LIV to identify the marginal treatment effect (MTE ) when the treatment choice is

characterized by a binary choice threshold crossing model and interpret this version of

LIV using choice theory. Vytlacil (2002) shows that the assumptions of Imbens and

Angrist (1994) used to define LATE both imply and are implied by a nonparametric

choice model generated by an index crossing a threshold.

Heckman, Urzua, and Vytlacil (2006) analyze multiple treatment effect models.

This paper extends that paper by considering multiple treatments generated by a

general unordered choice model. We define treatment parameters for a general mul-

tiple treatment problem and present conditions for the application of instrumental

variables for identifying a variety of new treatment parameters. Our identification

conditions are weaker than the ones used in Heckman and Vytlacil (2007) who estab-

lish conditions under which it is possible to nonparametrically identify a full multi-

nomial selection model. Additionally, we illustrate the empirical consequences of our

analysis with two examples: GED certification and randomized trial with imperfect

compliance.

Our approach relies on choice theory in an essential way. One particularly helpful

result we draw on is the representation of the multinomial choices in terms of the

choice between a particular choice and the best option among all other choices. This

representation is crucial for understanding why LIV allows one to identify the MTE

for the effect of one choice versus the best alternative option. The representation was

introduced in Domencich and McFadden (1975), and has been used in the analysis

of parametric multinomial selection models by Lee (1983) and Dahl (2002). Unlike

those authors, we systematically explore treatment effect heterogeneity, consider non-
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parametric identification, and examine the application of the LIV methodology to

such models.

Our analysis proceeds as follows. We first introduce our nonparametric, multino-

mial selection model and state our assumptions in Section 1. In Section 2, we define

treatment effects in a general unordered model as the differences in the counterfactual

outcomes that would have been observed if the agent faced different choice sets, i.e.,

the effects observed if individuals are forced to choose from one choice set instead

of another. We also define the corresponding treatment parameters. Treatment ef-

fects in this context exhibit a form of treatment effect heterogeneity not present in

the binary treatment case. The new form of heterogeneity arises from agents facing

different choice sets.

Section 3 establishes that LIV and the nonparametric Wald-IV estimand produce

identification of the MTE/LATE versions of the effect of one choice versus the best

alternative option without requiring knowledge of the latent index functions gener-

ating choices or large support assumptions. Mean treatment effects comparing one

option versus the best alternative are the easiest treatment effects to study using

instrumental variable methods because we effectively collapse a multiple outcome

model to a series of two outcome models, picking one outcome relative to the rest.

In Section 4, we consider a more general case and state conditions for identifying the

mean effect of the outcome associated with the best option in one choice set to the

mean effect of the best option not in that choice set. We show that identification

of the corresponding MTE/LATE parameters requires knowledge of the latent index

functions of the multinomial choice model. Thus, to identify the parameters by using

IV or LIV requires an explicit choice model. In Section 5, we analyze the identifica-

tion of treatment parameters corresponding to the mean effect of one specified choice

versus another specified choice. Identification of marginal treatment parameters in

this case requires the use of “identification at infinity” arguments relying on large
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support assumptions, but does not require knowledge of the latent index functions

of the multinomial choice problem. This use of large support assumptions is closely

related to the need for large support assumptions to identify the full model developed

in Heckman and Vytlacil (2007). Section 6 concludes.

1 Model and Assumptions

We analyze the following model with multiple choices and multiple outcome states.

Let J denote the agent’s choice set, where J contains a finite number of elements.

The value to the agent of choosing option j ∈ J is

(1.1) Rj(Zj) = ϑj(Zj)− Vj,

where Zj are the agent’s observed characteristics that affect the utility from choosing

choice j, and Vj is the unobserved shock to the agent’s utility from choice j. To

simplify notation, we will sometimes suppress the argument and write Rj for Rj(Zj).

Let Z denote the random vector containing all unique elements of {Zj}j∈J , i.e., Z =

union of {Zj}j∈J . We also sometimes write Rj(Z) for Rj(Zj), leaving implicit that

Rj(·) only depends on those elements of Z that are contained in Zj. Let DJ ,j be

an indicator variable for whether the agent would choose option j if confronted with

choice set J :2

DJ ,j =


1 if Rj ≥ Rk ∀ k ∈ J

0 otherwise.

Let IJ denote the choice that would be made if the agent is confronted with choice

set J :

IJ = j ⇐⇒ DJ ,j = 1.
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Let YJ be the outcome variable that would be observed if the agent faced choice set

J , determined by

YJ =
∑
j∈J

DJ ,jYj,

where Yj is the potential outcome, observed only if option j is chosen. Yj is determined

by

Yj = µj(Xj, Uj),

where Xj is a vector of the agent’s observed characteristics and Uj is an unobserved

random variable.3 Let X denote the random vector containing all unique elements

of {Xj}j∈J , i.e., X = union of {Xj}j∈J . (Z,X, IJ , YJ ) is assumed to be observed.4

Define RJ as the maximum obtainable value given choice set J :

RJ = maxj∈J {Rj}

=
∑
j∈J

DJ ,jRj.

We thus obtain the traditional representation of the decision process that choice j is

optimal implies that choice j is better than the “next best” option:

IJ = j ⇐⇒ Rj ≥ RJ\j.

where J \ j denotes “J with the jth element removed”. More generally, a choice

from K is optimal if the highest value obtainable from choices in K are higher than

the highest value that can be obtained from choices outside that set,

IJ ∈ K ⇐⇒ RK ≥ RJ\K.

As we will show, this simple, well-known representation of the choice problem is the

key intuition for understanding how nonparametric instrumental variables identify
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the effect of a given choice versus the “next best” alternative.

Analogous to our definition of RJ , we define RJ (z) to be the maximum obtainable

value given choice set J when instruments are fixed at Z = z,

RJ (z) = max
j∈J
{Rj(z)}.

Thus, for example, a choice from K is optimal when instruments are fixed at Z = z

if RK(z) ≥ RJ\K(z).

We invoke the following assumptions, which generalize the assumptions invoked

in Heckman and Vytlacil (2001) and later used in Heckman and Vytlacil (2005) and

Heckman, Urzua, and Vytlacil (2006) to the general unordered case.

(A-1) The distribution of ({Vj}j∈J ) is continuous,5 with support equal to <#J where

#J denotes the cardinality of the set J .

(A-2) {(Vj, Uj)}j∈J is independent of Z conditional on X.

(A-3) E|Yj| <∞ for all j ∈ J .

(A-4) Pr(IJ = j|X) > 0 for all j ∈ J .

Assumption (A-1) and (A-2) imply that Rj 6= Rk w.p.1 for j 6= k, so that

arg max{Rj} is unique w.p.1. Assumption (A-3) is required for the mean treatment

parameters to be well defined. It allows us to integrate to the limit, which is a cru-

cial step in our identification analysis. Assumption (A-4) requires that at least some

individuals participate in each program for all X.

Our definition and analysis of the treatment parameters only uses assumptions (A-

1) to (A-4). However, we will also impose an exclusion restriction for our identification

analysis. Let Z [l] denote the lth component of Z. Let Z [−l] denote all elements of

Z except for the lth component. We work with two alternative assumptions for the

exclusion restriction.6 Consider
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(A-5a) For each j ∈ J , their exists at least one element of Z, say Z [l], such that the

distribution of ϑj(Zj) conditional on (X,Z [−l]) is nondegenerate,

or

(A-5b) For each j ∈ J , their exists at least one element of Z, say Z [l], such that the

distribution of ϑj(Zj) conditional on (X,Z [−l]) is continuous.7

Assumption (A-5a) imposes the requirement that one be able to independently

vary the index for the given value function. It imposes a type of exclusion restriction,

that for any j ∈ J , Z contains an element such that (i) it is contained in Zj; (ii) it

is not contained in any Zk for k 6= j, and (iii) ϑj(·) is a nontrivial function of that

element conditional on all other regressors. Assumption (A-5b) strengthens (A-5a)

by adding a smoothness assumption. A necessary condition for (A-5b) is for the

excluded variable to have a density with respect to Lebesgue measure conditional on

all other regressors and for ϑj(·) to be a continuous and nontrivial function of the

excluded variable.8 Assumption (A-5a) will be used to identify a generalization of

the LATE parameter. Assumption (A-5b) will be used to identify a generalization of

the MTE parameter. For certain portions of our analysis we strengthen (A-5b) to a

large support condition, though the large support assumption will not be required for

most of our results. Note that the required exclusion restriction is for an exogenous

covariate that changes the value of one option but (1) does not affect the value of

the other options, and (2) does not affect the outcome. We discuss two potential

examples of such exclusion restrictions in the next section.
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2 Definition of Treatment Effects and Treatment

Parameters

Treatment effects are defined as the difference in the counterfactual outcomes that

would have been observed if the agent faced different choice sets. For any two choice

sets, K,L ⊂ J , define

∆K,L = YK − YL.

This is the effect of the individual being forced to choose from choice set K versus

choice set L. The conventional treatment effect is defined as the difference in potential

outcomes between two specified states,

∆k,l = Yk − Yl,

which is nested within this framework by taking K = {k}, L = {l}.

∆K,L will be zero for agents who make the same choice when confronted with

choice set K and choice set L. Thus, IK = IL implies ∆K,L = 0, and thus

(2.1)
∆K,L = 1(IK 6= IL)∆K\IL,L

= 1(IK 6= IL)
(∑

j∈K\IL DK,j∆j,L

)
.

In the special case where L ⊂ K, IK 6= IL implies IK ∈ K \ L, and equation (2.1)

becomes

(2.2)
∆K,L = 1(IK ∈ K \ L)∆K\L,L

= 1(IK ∈ K \ L)
(∑

j∈K\LDK,j∆j,L

)
.

Two special cases will be of particular importance for our analysis. First, consider

choice set K = {k} versus choice set L = J \{k}. In this case, ∆k,J\k is the difference

between the agent’s potential outcome in state k versus the outcome that would have
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been observed if he or she had not been allowed to choose state k. If IJ = k, then

∆k,J\k is the difference between the outcome in the agent’s preferred state and the

outcome in the agent’s “next-best” state. Second, consider the set K = J versus

choice set L = J \ {k}. In this case, ∆J ,J\k is the difference between the agent’s

best outcome and what his or her outcome would have been if state k had not been

available.

To fix ideas regarding these alternative definitions of treatment effects, we consider

two examples. The first example concerns GED certification. The GED is an exam

that certifies high school dropouts who pass a test as the equivalents of high school

graduates.9

Example: GED Certification. Consider studying the effect of GED certi-

fication on later wages. Consider the case where J = { {GED}, {HS Degree},

{Permanent Dropout}}. Let j = {GED}, k ={HS Degree}, and l ={Permanent

Dropout}. Suppose one wishes to study the effect of the GED on later earnings.

Then possible definitions of the effect of the GED include:

• ∆j,k is the individual’s outcome if he or she received the GED versus if he or

she had graduated from High School;

• ∆j,l is the individual’s outcome if he or she received the GED versus if he or

she had been a permanent dropout;

• ∆j,J\j is the individual’s outcome if he or she had received the GED versus what

the outcome would have been if he or she had not had the option of receiving

the GED;

• ∆J ,J\j is the individual’s outcome if he or she had the option of receiving the

GED versus the outcome if he or she did not have the option of receiving the

GED. Notice that ∆J ,J\j is a version of an option value treatment effect.
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In this example, we assume access to a variable that influences the value function

for GED but not the value function for the other choices and not earnings directly.

Examples of variables that might satisfy this condition include state level variation in

the age at which one can obtain the GED and state level variation in the minimum test

score for GED certification.10 The exclusion restriction in this case is that a lower

minimum age or lower minimum test score to obtain the GED makes it easier to

obtain the GED but does not directly affect the value of being a permanent dropout,

does not directly affect the value of a high school degree, and does not directly affect

the wages associated with these counterfactual states. This exclusion restriction rules

out, e.g., the possibility that a lower test score threshold for GED certification causes

some individuals who otherwise would have been permanent dropouts to not become

GED recipients but instead to become high school graduates.

Example: Randomized Trial with Imperfect Compliance. Another exam-

ple is a randomized trial with multiple treatments and imperfect compliance. For

example, the randomized trial might provide funding for different types of treatment,

but some individuals who are provided funding might not take up the form of train-

ing for which they are funded, and others who are not funded might still receive

the training.11 For this example one possible exclusion might be that funding for a

particular treatment increases the value function of that type of treatment but does

not directly affect the value of other forms of treatment or the value of no treat-

ment, and does not directly affect earnings. For example, we might have J = { {No

Training}, {Classroom Training}, {Job Search Assistance}}. Let j = {No Training},

k ={Classroom Training}, and l ={Job Search Assistance}. In this example, ∆J ,J\k

is the individual’s outcome if he or she had the option of receiving the classroom

training versus the outcome if he or she did not have the option of receiving the

classroom training. People may be randomly assigned to either receive funding for

classroom assistance, to receive funding for job search assistance, or not to receive
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funding for any form of training. A possible exclusion restriction is that funding for

classroom training increases the value to the agent of receiving classroom training

but does not directly affect the value of no training or the value of job search assis-

tance. This exclusion restriction rules out the possibility that funding for classroom

training causes some individuals who otherwise would not have received any training

to receive no classroom training but instead to receive job search assistance. Any

value-function argument exclusion will work.

2.1 Treatment Parameters

The conventional definition of the average treatment effect (ATE ) is

∆ATE
k,l (x, z) = E(∆k,l|X = x, Z = z),

which immediately generalizes to the class of parameters discussed in this section as:

∆ATE
K,L (x, z) = E(∆K,L|X = x, Z = z).

The conventional definition of the treatment on the treated (TT ) parameter is

∆TT
k,l (x, z) = E(∆k,l|X = x, Z = z, IJ = k),

which we generalize to

∆TT
K,L(x, z) = E(∆K,L|X = x, Z = z, IJ ∈ K).

There are connections across parameters for different choice sets. For example,
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from equation (2.2), we have

∆J ,J\k = DJ ,k∆k,J\k.

Thus, there is a trivial connection between the ATE parameter for ∆J ,J\k and the

TT parameter for ∆k,J\k:

∆ATE
J ,J\k(x, z) = Pr[DJ ,k = 1|X = x, Z = z]∆TT

k,J\k(x, z).

More generally, using equation (2.2), we have for K ⊂ J ,

∆J ,J\K = 1[IJ ∈ K]∆K,J\K

so that

∆ATE
J ,J\K(x, z) = Pr[IJ ∈ K|X = x, Z = z]∆TT

K,J\K(x, z).

We will focus on ∆k,J\k, the effect of being forced to choose option k versus being de-

nied option k. However, from the above relationships, our analysis of identification for

∆TT
k,J\k(x, z) in Section 3 has implications for the identification of ∆ATE

J ,J\k(x, z). Like-

wise, our results for ∆TT
K,J\K(x, z) in Section 4 have implications for the identification

of ∆ATE
K,J\K(x, z).

We also generalize the Marginal Treatment Effect (MTE ) and Local Average

Treatment Effect (LATE ) parameters considered in Heckman and Vytlacil (2001).

We generalize the MTE parameter to be the average effect conditional on being

indifferent between the best option among choice set K versus the best option among

choice set L at some fixed value of the instruments, Z = z:

(2.3) ∆MTE
K,L (x, z) = E

(
∆K,L|X = x, Z = z, RK(z) = RL(z)

)
.
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We generalize the LATE parameter to be the average effect for someone for whom

the optimal choice in choice set K is preferred to the optimal choice in choice set L

at Z = z̃, but who prefers the optimal choice in choice set L to the optimal choice in

choice set K at Z = z:

(2.4) ∆LATE
K,L (x, z, z̃) = E

(
∆K,L|X = x, Z = z, RK(z̃) ≥ RL(z̃), RL(z) ≥ RK(z)

)
.

An important special case of this parameter arises when z = z̃ except for elements

that enter the index functions only for choices in K and not for any choice in L. In

that special case, equation (2.4) simplifies to

∆LATE
K,L (x, z, z̃) = E

(
∆K,L|X = x, Z = z,RK(z̃) ≥ RL(z) ≥ RK(z)

)
since RL(z) = RL(z̃) in this special case.

As a concrete example, return to the case of a randomized trial with imperfect

compliance. Suppose Z is a discrete variable denoting whether funding is provided for

classroom training, or for job search assistance, or no funding is provided. Let z denote

the value that funding is provided for classroom training, and z̃ denotes the value

that no funding is provided for any form of training. Let k denote classroom training.

Then ∆LATE
k,J\k(x, z, z̃) denotes the effect of choosing classroom training compared to the

option that would have been chosen if classroom training was not available, among

those who would have received classroom training if they received funding for it but

not otherwise.

We have defined each of these parameters as conditional not only on X but also

on the “instruments” Z. In general, the parameters depend on the Z evaluation

point. For example, ∆ATE
K,L (x, z) generally depends on the z evaluation point. To

see this, note that YK =
∑
k∈K

DK,kYk, and YL =
∑
l∈L

DL,lYl. Even if we assume that

Z ⊥⊥ {Yj}j∈J | X, but DK,k and DL,l depend on Z conditional on X and thus YK−YL
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in general is dependent on Z conditional on X.12 In other words, even though Z is

conditionally independent of each individual potential outcome, it is correlated with

which choice is optimal within the sets K and L and thus is related to YK− YL. This

dependence of the ATE parameters on Z is one of the differences between our analysis

for multinomial treatment and the Heckman and Vytlacil (2001) analysis for binary

treatment.

2.2 Heterogeneity in Treatment Effects

Consider heterogeneity in the pairwise treatment effect ∆j,k (with (j, k) ∈ J ) defined

as

∆j,k = Yj − Yk = µj(Xj, Uj)− µk(Xk, Uk),

which in general will vary with both observables (Xj, Xk) and unobservables (Uj, Uk).

Since we have not assumed that the error terms are additively separable, the treatment

effect will in general vary with unobservables even if Uj = Uk.

The mean treatment parameters for ∆j,k will differ if the effect of treatment is

heterogeneous and agents base participation decisions, in part, on their idiosyncratic

treatment effect. In general, the ATE, TT, and the marginal treatment parameters

for ∆j,k will differ as long as there is dependence between (Uj, Uk) and the decision

rule, i.e., if there is dependence between (Uj, Uk) and {Vl}l∈J . If we impose that

{Vl}l∈J is independent of (Uj, Uk), then the treatment effect is still heterogeneous,

but the average treatment effect, average effect of treatment on the treated, and the

marginal average treatment effects all coincide.

The literature often imposes additive separability in outcomes between observables

and unobservables. In particular, it is commonly assumed that Uj and Uk are scalar

random variables and that Yj = µj(Xj) + Uj, Yk = µk(Xk) + Uk. In that case,

a common treatment effect model is equivalent to a model with an additive error
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term that does not vary with the treatment state: Uj = Uk.13 In the special case of

additive separability, the treatment parameters for ∆j,k will be the same even if there

is dependence between {Vl}l∈J and (Uj, Uk) as long as Uj = Uk.14

There is an additional source of treatment heterogeneity in the more general case

of ∆K,L arising from heterogeneity in which states are being compared. Consider, for

example, ∆j,J\j. We have that

∆j,J\j =
∑

k∈J\j

DJ\j,k∆j,k,

which will vary over individuals even if each individual has the same ∆j,k treatment

effect. Consider the corresponding ATE and TT parameters:

∆ATE
j,J\j(x, z) = E(∆j,J\j|X = x, Z = z)

=
∑

k∈J\j
Pr(IJ\j = k | X = x, Z = z)E(∆j,k | X = x, Z = z, IJ\j = k),

and

∆TT
j,J\j(x, z)

= E(∆j,J\j|X = x, Z = z, IJ = j)

=
∑

k∈J\j
Pr(IJ\j = k|X = x, Z = z, IJ = j)E(∆j,k|X = x, Z = z, IJ = j, IJ\j = k).

Even in the case where {Uj}j∈J is independent of {Vj}j∈J , so that E(∆j,k|X = x, Z =

z, IJ\j = k) = E(∆j,k|X = x, Z = z, IJ = j, IJ\j = k), in general ∆ATE
j,J\j(x, z) 6=

∆TT
j,J\j(x, z) since in general Pr(IJ\j = k | X = x, Z = z) 6= Pr(IJ\j = k|X = x, Z =

z, IJ = j). The ATE and TT parameters differ in part because they place different

weights on the alternative pairwise treatment effects, and differ even in the case where

the pairwise (j versus k) treatment effects are common across all individuals. That

ATE might not equal TT even when all pairwise treatment effects are common across
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individuals is another one of the distinctions between our analysis for multinomial

treatments and the Heckman and Vytlacil (2001) analysis for binary treatments.

In summary, ∆j,k will be heterogeneous depending on the functional form of the

µj(·) and µk(·) equations and on the pairwise dependence between the Uj and Uk

terms. The ∆j,k mean treatment parameters will also vary depending on the de-

pendence between {Vl}l∈J and (Uj, Uk). For ∆j,J\j, there is an additional source of

heterogeneity—which option is optimal in the set J \ j. Even if there is no het-

erogeneity in the pairwise ∆j,k terms, there will still be heterogeneity in ∆j,J\j, and

heterogeneity in the corresponding mean treatment parameters.

3 LIV and Nonparametric Wald Estimands for

One Choice vs the Best Alternative

We first consider identification of treatment parameters corresponding to averages

of ∆j,J\j using either a discrete change (Wald form for the instrumental variables

estimand) or using the local instrumental variables (LIV ) estimand.15 The discrete

change instrumental variables estimand will allow us to recover a version of the local

average treatment effect (LATE ) parameter.16 Impose assumption (A-5a), and let

Z [l] denote the excluded variable for option j with properties assumed in (A-5a).

Define

∆Wald
j (x, z[−l], z[l], z̃[l]) =

E(Y |X = x, Z = z̃)− E(Y |X = x, Z = z)

Pr(DJ ,j = 1|X = x, Z = z̃)− Pr(DJ ,j = 1|X = x, Z = z)
,

where z = (z[−l], z[l]), z̃ = (z[−l], z̃[l]), and where for notational convenience we are

assuming that Z [l] is the last element of Z. Note that all components of z and z̃ are

the same except for the lth component. Without loss of generality, we assume that

ϑj(z̃) > ϑj(z).
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If there were no X regressors, and if Z was a scalar, binary random variable, then

∆Wald
j (x, z[−l], z[l], z̃[l]) would be the probability limit of the Wald form of two-stage

least squares regression (2SLS). With X regressors, and with Z a vector possibly in-

cluding continuous components, it no longer corresponds to a Wald/2SLS, but rather

to a nonparametric version of the Wald estimator where the analyst nonparametri-

cally conditions on X and on Z taking one of two specified values.

The local instrumental variables estimator (LIV ) estimand introduced in Heck-

man (1997), and developed further in Heckman and Vytlacil (1999, 2000) and Florens,

Heckman, Meghir, and Vytlacil (2002), allows us to recover a version of the Marginal

Treatment Effect (MTE ) parameter. Impose (A-5b), and let Z [l] denote the excluded

variable for option j with properties assumed in (A-5b). The results will be invariant

to which particular variable satisfying (A-5b) is used if there is more than one variable

with the property assumed in (A-5b). Define

∆LIV
j (x, z) ≡ ∂

∂z[l]E(Y |X = x, Z = z)

/
∂

∂z[l]Pr(DJ ,j = 1|X = x, Z = z).

∆LIV
j (x, z) is thus the limit form of ∆Wald

j (x, z[−l], z[l], z̃[l]) as z̃[l] approaches z[l]. Given

our previous assumptions, one can easily show that this limit exists w.p.1. LIV

corresponds to a nonparametric, local version of indirect least squares. It is a function

of the distribution of the observable data, and it can be consistently estimated using

any nonparametric estimator of the derivative of a conditional expectation.

Given these definitions, we have the following identification Theorem which is also

included in Heckman, Urzua, and Vytlacil (2006).

Theorem 1. 1. Assume (A-1)-(A-4) and (A-5a). Then

∆Wald
j (x, z[−l], z[l], z̃[l]) = ∆LATE

j,J\j (x, z, z̃)

where z̃ = (z[−l], z̃[l]) and z = (z[−l], z[l]).

2. Assume (A1)-(A-4) and (A-5b). Then
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∆LIV
j (x, z) = ∆MTE

j,J\j (x, z).

Proof. See the Appendix.

The basic idea is that in this case we can bring the J outcome model into a two

outcome model using outcome j versus the next best outcome for all j = 1, . . . , J .

∆LATE
j,J\j (x, z, z̃) is the average effect of switching to state j from state IJ\j for

individuals who would choose IJ\j at Z = z but would choose j at Z = z̃. ∆MTE
j,J\j (x, z)

is the average effect of switching to state j from state IJ\j (the best option besides

state j) for individuals who are indifferent between state j and IJ\j at the given

values of the selection indices (i.e., at Z = z, {ϑk(Zk) = ϑk(zk)}k∈J ).

The average effect of state j versus state IJ\j (the next best option) is a weighted

average over k ∈ J \ j of the effect of state j versus state k, conditional on k being

the next best option, weighted by the probability that k is the next best option. For

example, for the LATE parameter,

∆LATE
j,J\j (x, z, z̃) = E

(
∆j,J\j|X = x, Z = z,Rj(z̃) ≥ RJ\j(z) ≥ Rj(z)

)
=
∑

k∈J\j

[
Pr
(
IJ\j = k|Z = z, Rj(z̃) ≥ RJ\j(z) ≥ Rj(z)

)
× E

(
∆j,k|X = x, Z = z,Rj(z̃) ≥ RJ\j(z) ≥ Rj(z), IJ\j = k)

]
.

where we are using the result that RJ\j(z) = RJ\j(z̃) since z = z̃ except for one

component that only enters the index for the jth option. How heavily each option

is weighted in this average depends on the probability Pr
(
IJ\j = k|Z = z,Rj(z̃j) ≥

Rk(zk) ≥ Rj(zj)
)
, which in turn depends on {ϑk(zk)}k∈J\j. The higher ϑk(zk), hold-

ing the other indices constant, the larger the weight given to state k as the base

state.

The LIV and Wald estimands depend on the evaluation point for z. Alternatively,

one can define averaged versions of the LIV and Wald estimands that will recover
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averaged versions of the MTE and LATE parameters,

∫
∆Wald

j (x, z[−l], z[l], z̃[l])dFZ[−l](z[−l])

=
∫

∆LATE
j,J\j (x, z, z̃)dFZ[−l](z[−l])

= E
(
∆j,J\j|X = x,Rj(Z

[−l], z̃[l]) ≥ RJ\j(Z
[−l]) ≥ Rj(Z

[−l], z[l])
)
,

and

∫
∆LIV

j (x, z)dFZ(z) =

∫
∆MTE

j,J\j (x, z)dFZ(z)

= E
(
∆j,J\j|X = x,Rj(Z) = RJ\j(Z)

)
.

An examination of the proof of Theorem 1 shows the role of the exclusion re-

striction, that Z [−l] be excluded from the outcome equation and the value function of

other options besides option j. The role of the first aspect of the exclusion restriction,

that Z [−l] be excluded from the outcome equation, is completely standard. If this ex-

clusion did not hold, then shifting Z [−l] would not only change the fraction of people

entering treatment j but would also shift Y directly, and it would not be possible to

disentangle the indirect effect of Z [−l] through treatment choice from the direct effect

on Y . The second aspect of the exclusion restriction, that Z [−l] be excluded from the

value function of other options besides option j, is perhaps less familiar but is equally

important in this context. Given this exclusion restriction, shifting Z [−l] only shifts

the value of option j relative to the other options, and does not shift the value of the

other options relative to each other. If this exclusion did not hold, shifting Z [−l] would

not only cause some people to switch into/out of option j, but also cause some people

to switch between the other options, and it would not be possible to disentangle the

effect of Z [−l] shifting people into/out of option j versus shifting people between the

other options.

In the GED example above, if the age at which one is allowed to take the GED
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changes only the value of a GED but not the value of being a permanent dropout

or the value of a high school diploma, then a drop in the minimum age of GED

certification only causes individuals to shift from permanent dropout to GED and

from high school graduate into GED, but does not cause individuals to shift from the

permanent dropout state to the high school graduate state. On the other hand, if the

minimum age of GED receipt also changes the value of being a permanent dropout or

the value of being a being a high school graduate, then changes in the minimum age

of GED receipt would also cause individuals to shift from permanent dropout to high

school graduate (or vice versa). In this case, it would be impossible to disentangle

the effect of a change in the minimum age for GEDs due to the flow of people into or

out of GED status from the effect of a change in the minimum age of GED through

people switching from being permanent dropouts to becoming high school graduates.

As another example, again consider our job training example with imperfect com-

pliance. If funding for classroom training only affects the value of classroom training

but not the value of no training or the value of job search assistance (JSA), then pro-

vision of funding for classroom training will cause people to switch from no training

and from JSA into classroom training. On the other hand, if provision of funding for

classroom training also affects the value of JSA, then provision of classroom funding

will not only cause individuals to shift from other categories to classroom training

but also induce shifts from no training to JSA (or vice versa). In that case, it is not

possible to disentangle the indirect effect of provision of funding for classroom train-

ing through increased receipt of classroom training from the effect of people switching

from no training to JSA (or vice versa).

Thus far we have only considered identification of marginal treatment effect pa-

rameters, LATE and MTE, and not of the more standard treatment parameters like

ATE and TT. However, following Heckman and Vytlacil (1999, 2001), LATE can

approximate ATE or TT arbitrarily well given the appropriate support conditions.
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Theorem 1 shows that we can use Wald estimands to identify LATE for ∆j,J\j, and

we can thus adapt the analysis of Heckman and Vytlacil to identify ATE or TT for

∆j,J\j. Suppose that Z [l] denotes the excluded variable for option j with properties

assumed in (A-5a), and suppose that: (i) the support of the distribution of Z [l] condi-

tional on all other elements of Z is the full real line; and (ii) ϑj(zj)→∞ as z[l] →∞,

and ϑj(zj) → −∞ as z[l] → −∞. Then ∆ATE
j,J\j(x, z) and ∆LATE

j (x, z[−l], z[l], z̃[l])

are arbitrarily close when evaluated at a sufficiently large value of z̃[l] and a suffi-

ciently small value of z[l]. Following Heckman and Vytlacil (1999), ∆TT
j,J\j(x, z) and

∆LATE
j (x, z[−l], z[l], z̃[l]) are arbitrarily close for sufficiently small z[l]. Using Theorem

1, we can use Wald estimands to identify the LATE parameters, and thus can use

the Wald estimand to identify the ATE and TT parameters provided that there is

sufficient support for the Z. While this discussion has used the Wald estimands, al-

ternatively we could also follow Heckman and Vytlacil (1999) in expressing ATE and

TT as integrated versions of MTE. By Theorem 1, we can use LIV to identify MTE

and can thus express ATE and TT as integrated versions of the LIV estimand. We

next consider a more general class of treatment effects.

4 Identification: Effect of Best Option in K Versus

Best Option not in K

We just presented an analysis of identification for treatment parameters defined as

averages of ∆j,J\j, the effect of choosing option j versus the preferred option in J

if j was not available. We now consider ∆K,J\K, the effect of choosing the preferred

choice among set K versus the preferred choice among J if no option in K were

available. Thus, in this section we compare sets of options, and not just a single

option compared to the rest.

We first start with an analysis that varies the {ϑk(·)}k∈J indices directly. This
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analysis would be useful if one first identifies the index function, e.g. through an

identification at infinity argument.17 We then perform an analysis shifting Z directly.

We show that it is possible to identify MTE and LATE averages of the ∆K,J\K effect

if one has knowledge of the {ϑk(·)}k∈J index functions but is not possible using shifts

in Z without knowledge of the index functions. The one exception to this result

is the special case already considered, when K = k, i.e., the set only contains one

element, in which case it is possible to identify the marginal parameters using shifts

in Z directly without knowledge of the index functions.

Let ϑJ (Z) denote a random vector stacking the indices, ϑJ (Z) = union of {ϑk(Z) :

k ∈ J }. Let ϑJ be a vector denoting a potential evaluation point of ϑJ (Z), ϑJ =

{ϑk : k ∈ J }, so that ϑJ (Z) = ϑJ denotes the event {ϑk(Z) = ϑk : k ∈ J }.18 Let

ϑJ + h denote {ϑk + h : k ∈ J }. We now define a version of the Wald estimand that

uses the indices directly as instruments instead of using Z as instruments:

∆̃Wald
K (x, ϑJ , h) ≡
E(Y |X = x, ϑK(Z) = ϑK + h, ϑJ\K(Z) = ϑJ\K)− E(Y |X = x, ϑJ (Z) = ϑJ )

Pr(IJ ∈ K|X = x, ϑK(Z) = ϑK + h, ϑJ\K(Z) = ϑJ\K)− Pr(IJ ∈ K|X = x, ϑJ (Z) = ϑJ )
.

∆̃Wald
K (x, ϑJ , h) corresponds to the effect of a shift in each index in K upward by h

while holding each index in J \K constant. We define a version of the LIV estimand

using indices directly. We define ∆̃LIV
K (x, ϑJ ) through a limit expression:

∆̃LIV
K (x, ϑJ ) = lim

h→0
∆̃Wald
K (x, ϑJ , h).

Likewise, we define versions of the LATE and MTE parameters that are functions of

the ϑ indices instead of functions of z evaluation points,

∆̃LATE
K,L (x, ϑJ , h) = E

(
∆K,L|X = x, ϑJ (Z) = ϑJ , RK(Z) + h ≥ RL(Z) ≥ RK(Z)

)
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∆̃MTE
K,L (x, ϑJ ) = E

(
∆K,L|X = x, ϑJ (Z) = ϑJ , RK(Z) = RL(Z)

)
We state the following identification Theorem:

Theorem 2.

1. Assume (A-1) to (A-4) and (A-5a). Then:

∆̃Wald
K (x, ϑJ , h) = ∆̃LATE

K,J\K(x, ϑJ , h),

2. Assume (A-1) to (A-4) and (A-5b). Then:

∆̃LIV
K (x, ϑJ ) = ∆̃MTE

K,J\K(x, ϑJ )

Proof. Follows with trivial modifications from the proof of Theorem 1.

Now consider the same analysis shifting Z directly instead of shifting the in-

dices directly. First consider LATE. If one knew what shifts in Z corresponded to

shifting each index in K upward by the same amount while holding each index in

J \K constant, then one could apply the previous analysis to recover E
(
∆K,J\K|X =

x, ϑJ (Z) = ϑJ , RK(Z) + h ≥ RJ\K(Z) ≥ RK(Z)
)
. However, unless K is a singleton,

without knowledge of the index functions one does not know what shifts in Z will

have this property. One possible approach would be to only shift elements of Z that

are elements of Zk for k ∈ K but are excluded from Zj for j ∈ J \K. However, unless

the shifts move the indices for choices in K all by the same amount, the shift in Z will

result in movement not only from the set J \K to the set K but also cause movement

between choices within K. Thus, one can use shifts in Z to recover a LATE -type

parameter for ∆K,J\K only if either (i) the index functions are known, or (ii) K = k,

i.e., the set K contains only one element.

Thus far, we have only considered identification of marginal treatment effect pa-

rameters for ∆K,J\K and not of the more standard treatment parameters ATE and

TT for ∆K,J\K. As in the previous section, we can follow Heckman and Vytlacil
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(1999) in expressing ATE and TT as integrated versions of MTE or show that ATE

and TT can be approximated arbitrarily well by LATE parameters. Given appro-

priate support conditions, we can again identify MTE over the appropriate range or

identify the appropriate LATE parameters and thus identify ATE and TT given the

required support conditions.

5 Identification: Effect of One Fixed Choice Ver-

sus Another

Consider evaluating the effect of fixed option j versus fixed option k, ∆j,k, i.e., the

effect for the individual of having no choice except to choose state j versus no choice

except to choose state k. We show that it is possible to identify averages of ∆j,k

if one has sufficient support conditions. These conditions supplement the standard

IV conditions developed for the binary case (Heckman, Urzua, and Vytlacil, 2006)

with the conditions more commonly used in semiparametric estimation. We start by

considering the analysis assuming knowledge of the ϑ index functions, and then show

that knowledge of the ϑ index functions is not necessary.

For notational purposes, for any j, k ∈ J , define Uj,k = Uj−Uk, and let ϑj,k(Z) =

ϑj(Zj)−ϑk(Zk). One could follow our previous strategy to identify treatment parame-

ters for ∆j,k if one could shift ϑj−ϑk = ϑj,k while holding constant {ϑl,m}(l,m)∈J×J\(j,k),

i.e., while holding all other utility contrasts fixed.19 However, given the structure of

the latent variable model determining choices, these are incompatible conditions. To

see this, note that ϑj,k = ϑl,k − ϑl,j for any l, and thus ϑj,k cannot be shifted while

holding ϑl,j and ϑl,k constant.20

To bypass this problem we develop a limit strategy to make the consequences of

shifting indices negligible. This strategy relies on an identification at infinity argu-

ment. For example, consider the case where J = {1, 2, 3}, and consider identification
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of the MTE parameter for option 3 versus option 1. Recall that DJ\3,l is an indicator

variable for whether option l would be chosen if option 3 were not available, so that

DJ\3,l∆3,J\3 =
∑

l∈J\3
DJ\3,l∆3,l. Since 1 and 2 are the only options if 3 is not available,

it follows that ∆3,J\3 = DJ\3,1∆3,1 +DJ\3,2∆3,2, and we have

E
(
∆3,J\3 | X = x, ϑJ (Z) = ϑJ , R3(Z) = RJ\3(Z)

)
= E

(
DJ\3,1∆3,1 | X = x, ϑJ (Z) = ϑJ , R3(Z) = RJ\3(Z)

)
+ E

(
DJ\3,2∆3,2 | X = x, ϑJ (Z) = ϑJ , R3(Z) = RJ\3(Z)

)
.

The smaller ϑ2 (holding ϑ1 and ϑ3 fixed), the larger the probability that the “next

best option” is 1 and not 2. Note that E (∆3,1 | X = x, ϑJ (Z) = ϑJ , R3(Z) = R1(Z))

does not depend on the ϑ2 evaluation point given our independence assumption (A-2)

so that

E (∆3,1 | X = x, ϑJ (Z) = ϑJ , R3(Z) = R1(Z))

= E
(
∆3,1 | X = x, ϑJ\2(Z) = ϑJ\2, R3(Z) = R1(Z)

)
.

Thus, by Assumptions (A-2)–(A-3) and the Dominated Convergence Theorem, we

have that

lim
ϑ2→−∞

E
(
DJ\3,1∆3,1 | X = x, ϑJ (Z) = ϑJ , R3(Z) = RJ\3(Z)

)
= E

(
∆3,1 | X = x, ϑJ\2(Z) = ϑJ\2, R3(Z) = R1(Z)

)
while

lim
ϑ2→−∞

E
(
DJ\3,2∆3,2 | X = x, ϑJ (Z) = ϑJ , R3(Z) = RJ\3(Z)

)
= 0,

25



so that

lim
ϑ2→−∞

E
(
∆3,J\3 | X = x, ϑJ (Z) = ϑJ , R3(Z) = RJ\3(Z)

)
= E

(
∆3,1 | X = x, ϑJ\2(Z) = ϑJ\2, R3(Z) = R1(Z)

)
.

In other words, as the value of option 2 becomes arbitrarily small, the probability of

the “next best option” being 1 becomes arbitrarily close to one, and thus the MTE

parameter for option 3 versus the next best option becomes arbitrarily close to the

MTE parameter for option 3 versus option 1.

We can identify the MTE parameter for option 3 versus the next best option using

the LIV estimand as in Theorem 1, and thus conditioning on ϑ2 arbitrarily small we

have that the LIV estimand is arbitrarily close to the MTE parameter for option 3

versus option 1. This analysis requires the appropriate support conditions in order

for the limit operations to be well defined. The following Theorem formalizes this

idea for the more general case where J is a general finite set.

Theorem 3. Assume (A-1) to (A-4) and (A-5b). Assume that, for any t ∈ <,

P r
(
ϑl(Zl) ≤ t

∣∣ϑj(Zj), ϑk(Zk)
)
≥ 0 ∀ l ∈ J \ {j, k}.

Then

lim
max

l∈J\{j,k}
{ϑl}→−∞

∆̃LIV
j (x, ϑJ ) = E

(
∆j,k

∣∣X = x, ϑj,k(Z) = ϑj,k, Rj(Z) = Rk(Z)
)

for any

x ∈ lim
t→−∞

Supp(X|ϑj(Zj) = ϑj, ϑk(Zk) = ϑk, max
l∈J\{j,k}

{ϑl(Z)} ≤ t).

Proof. By a trivial modification to the proof of Theorem 1, we have that ∆̃LIV
j (x, ϑJ ) =
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E(∆j,J\j|X = x, ϑJ (Z) = ϑJ , Rj(Z) = RJ\j(Z)
)
. The remainder of the proof follows

from an immediate extension of the 3-option case analyzed in the text.

Thus, for x values in the appropriate limit support, we can approximate E
(
∆j,k

∣∣X =

x, ϑj,k(Z) = ϑj,k, Rj(z) = Rk(z)
)

arbitrarily well by ∆LIV
j (x, ϑJ ) for an arbitrarily

small maxl∈J\{j,k}{ϑl}.

This analysis uses the ϑ index functions directly, but the results can be restated

without using the ϑ functions directly. Again consider the three-choice example. The

central aspect of the identification strategy is to “zero-out” the second choice by

making ϑ2 arbitrarily small, allowing one to then use the LIV estimand to identify

the MTE parameter for the first option versus the third as if the second choice was

not an option. If we do not know the ϑ2 function, we cannot condition on it. However,

if we know that ϑ2 is decreasing in a particular element of Z, say Z [l], where Z [l] does

not enter the index function for choices 1 and 3 and where ϑ2(z2)→ 0 as z[l] → −∞,

then we can follow the same strategy as if we knew the ϑ2 index except conditioning

on Z [l] being small instead of conditioning on ϑ2 being small. The idea then naturally

extends to the case of more than three options.

It is useful to compare and contrast the support condition here with those used by

Heckman and Vytlacil (2007) to identify the full nonparametric selection model. In

the case of three options, in order to identify the marginal treatment effect for choice

1 versus 3 in this paper we need to have a large support assumption on one index –

the index for option 2 while holding constant the Z variables that enter the indices

for options 1 and 3. In contrast, the required support assumption to identify the full

nonparametric selection model is stronger. The condition in that case requires a large

support assumption on all three indices.

We can follow Heckman and Vytlacil (1999) in following a two step identification

strategy for ATE and TT parameters of ∆j,k, first identifying the appropriate MTE or

LATE parameters and then using them to identify ATE and TT given the appropriate
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support conditions. Notice that the support conditions are now stronger than what

are required to identify the ATE and TT parameters of ∆j,J\j. For identification

of the ATE and TT parameters of ∆j,J\j, we require a large support assumption

only on the jth index. In particular, we require that it is possible to condition on Z

values that make ϑj arbitrarily small or arbitrarily large while holding the remaining

indices fixed. In contrast, for identification of the ATE and TT parameters of ∆j,k,

we require a large support assumption on each index. We require that for each index

we can condition on Z values that make ϑ arbitrarily small or arbitrarily large while

holding the remaining indices fixed. The reason for this stronger condition is that for

∆j,k we need to use an identification at infinity strategy on all but the j and k indices

to even obtain the marginal parameters, and then need an additional identification at

infinity step to use the marginal parameters to recover the ATE and TT parameters.

6 Conclusion

This paper extends local instrumental variables analysis to a model with multiple

treatments in which treatment choices are determined by a general multinomial choice

model. Our analysis extends the analysis developed by Heckman, Urzua, and Vytlacil

(2006) to a general unordered case. Local instrumental variables identify the marginal

treatment effect corresponding to the effect of one option versus the best alternative

option without requiring large support assumptions or knowledge of the parameters

of the choice model. This preserves the spirit of the LATE analysis of Imbens and

Angrist (1994) and the analysis of Heckman and Vytlacil (2001, 2005). More generally,

LIV identifies the marginal treatment effect corresponding to the effect of choosing

between one choice set versus not having that choice set available. However, in

the general case, identification of the more general parameters requires knowledge

(identification) of the structural, latent index functions of the multinomial choice
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model. LIV can also provide identification of the effect of one specified choice versus

another, requiring large support assumptions but not knowledge of the latent index

functions. In order to identify some treatment parameters we require identification

of the latent index functions generating the multinomial choice model or else having

large support assumptions. This connects the LIV analysis in this paper to the more

ambitious but demanding identification conditions for the full multinomial selection

model developed in Heckman and Vytlacil (2007) .

Dept. of Economics, University of Chicago, 1126 E. 59th Street, Chicago, IL

60637, U.S.A.; jjh@uchicago.edu,

Dept. of Economics, Northwestern University, 2001 Sheridan Road, Evanston, IL

60208, U.S.A.; s-urzua@northwestern.edu,

Dept. of Economics, Yale University, 30 Hillhouse Avenue, New Haven, CT

06520, U.S.A.; edward.vytlacil@yale.edu

29



Appendix

Proof of Theorem 1

Proof. The basic idea of the proof is that we can bring the model back to a two choice

set up of j versus the “next best” option. We prove the result for the second assertion,

that ∆LIV
j (x, z) recovers the marginal treatment effect parameter. The first asser-

tion, that ∆Wald
j (x, z[−l], z[l], z̃[l]) recovers a LATE parameter, follows from a trivial

modification to the same proof strategy. Recall that RJ\j(z) = maxi∈J\j {Ri(z)} and

that IJ\j = arg maxi∈J\j (Ri(Z)). We may write Y = YIJ\j + DJ ,j(Yj − YIJ\j ). We

have

Pr (DJ ,j = 1 | X = x, Z = z) = Pr
(
Rj(zj) > RJ\j(z) | X = x, Z = z

)
= Pr

(
ϑj(zj) ≥ RJ\j(z)− Vj | X = x, Z = z

)
.

Using independence assumption (A-2), RJ\j(z)− Vj is independent of Z conditional

on X, so that

Pr (DJ ,j = 1 | X = x, Z = z) = Pr
(
ϑj(zj) ≥ RJ\j(z)− Vj | X = x

)
.

ϑk(·) does not depend on z[l] for k 6= j by assumption (A-5b), and thus RJ\j(z) does

not depend on z[l], and we therefore with an abuse of notation write RJ\j(z
[−l]) for

RJ\j(z). Write F (·;x, z[−l]) for the distribution function of RJ\j(z
[−l])−Vj conditional

on X = x. Then

Pr (DJ ,j = 1 | X = x, Z = z) = F (ϑj(zj);x, z
[−l]),
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and

∂

∂z[l]
Pr (DJ ,j = 1 | X = x, Z = z) =

[
∂

∂z[l]
ϑj(zj)

]
f(ϑj(zj);x, z

[−l])),

where f(·;x, z[−l]) is the density of RJ\j(z
[−l])− Vj conditional on X = x. Consider

E (Y | X = x, Z = z) = E
(
YIJ\j | X = x, Z = z

)
+E

(
DJ ,j(Yj − YIJ\j ) | X = x, Z = z

)
.

As a consequence of (A-1)-(A-3) and (A-5b) we have that E
(
YIJ\j | X = x, Z = z

)
does not depend on z[l]. Using the assumptions and the law of iterated expectations,

we may write

E
(
DJ ,j(Yj − YIJ\j ) | X = x, Z = z

)
=

∫ ϑj(z)

−∞ E(Yj − YIJ\j | X = x, Z = z, RJ\j(z
[−l])− Vj = t)f(t;x, z[−l])dt

=
∫ ϑj(z)

−∞ E(Yj − YIJ\j | X = x, Z [−l] = z[−l], RJ\j(z
[−l])− Vj = t)f(t;x, z[−l])dt.

Thus,

∂

∂z[l]
E (Y | X = x, Z = z)

= E
(
Yj − YIJ\j | X = x, Z [−l] = z[−l], Rj(z) = RJ\j(z)

)[ ∂

∂z
[l]
j

ϑj(zj)

]
f(ϑj(zj)).

Combining results, we have

∂

∂z[l]
E(Y |X = x, Z = z)

/
∂

∂z[l]
Pr(DJ ,j = 1|X = x, Z = z)

= E
(
Yj − YIJ\j | X = x, Z [−l] = z[−l], Rj(z) = RJ\j(z)

)
.
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Finally, noting that

E
(
Yj − YIJ\j | X = x, Z [−l] = z[−l], Rj(z) = RJ\j(z)

)
= E

(
Yj − YIJ\j | X = x, Z = z,Rj(z) = RJ\j(z)

)

provides the stated result. The proof for the LATE result follows from the parallel

argument.

Notes

1This project was supported by NSF grants SES-0241858, SES-0099195, and SES-

9709873, and NIH grant R01-HD043411, and a grant from the American Bar Foun-

dation. An early version of this paper was presented at the World Congress of the

Econometric Society, London, September 2005.

2We will impose conditions such that ties, Rj = Rk for j 6= k, occur with proba-

bility zero.

3More generally, we can allow Uj to be an unobserved random vector.

4One possible extension is to the case where one does not observe which choice

was made, but only whether one particular choice was made, i.e., one observes DJ ,0

but not IJ . The analysis of Thompson (1989) suggests that this extension should be

possible.

5Absolutely continuous with respect to Lebesgue measure on <#J .

6We work here with exclusion restrictions in part for ease of exposition. By adapt-

ing the analysis of Cameron and Heckman (1998) and Heckman and Navarro (2007),

one can modify our analysis for the case of no exclusion restrictions if Z contains a

sufficient number of continuous variables and there is sufficient variation in the ϑk

function across k.
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7Absolutely continuous with respect to Lebesgue measure.

8(A-5b) can be easily relaxed to the weaker assumption that the support of ϑj(Zj)

conditional on (X,Z [−l]) contains an open interval, or further weakened to the as-

sumption that the conditional support contains at least one limit point. In these

cases, the analysis of this section goes through without change for analysis for points

within the open interval or more generally for any limit point.

9For a detailed discussion of GED certification, see Cameron and Heckman (1993).

10See Heckman and LaFontaine (2008) for further examples.

11See Heckman, Hohmann, Smith, and Khoo (2000) for an analysis of noncompli-

ance in the case of job training programs, along with a summary of evidence on the

widespread problem of noncompliance.

12An exception is if K = {k}, L = {l}, i.e., both sets are singletons.

13More generally, if Uj, Uk are vector valued, then additive separability becomes

Yj = µ1j(Xj) + µ2j(Uj), Yk = µ1k(Xk) + µ2k(Uk), and the standard result becomes

that a common treatment effect is equivalent to µ2j(Uj) = µ2k(Uk).

14Because the literature often assumes additive separability in outcome equations,

questions of a common treatment effect becomes a question of whether the addi-

tively separable error terms differ by treatment state. If the errors terms differ by

treatment state, there will be differences in the treatment parameters according to

whether the differences in the error terms are stochastically dependent on the par-

ticipation decision. Aakvik, Heckman, and Vytlacil (1999) examine the case where

the outcome variable is binary so that an additive separability assumption is not

appropriate and Heckman and Vytlacil (2001, 2005) consider cases without additive

separability. Bhattacharya, Shaikh, and Vytlacil (2008), Vytlacil, Santos, and Shaikh

(2007) and Vytlacil and Yildiz (2007) develop the case where Uj = Uk but the model

is not additively separable.

15The estimand is the population version of the estimator.
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16We are using the Z directly in the following manipulations instead of manipulat-

ing the {ϑl(Zl)}l∈J indices. One can modify the following analysis to use {ϑl(Zl)}l∈J ,

with the disadvantage of requiring identification of {ϑl(Zl)}l∈J (e.g. by an identifica-

tion at infinity argument) but with the advantage of being able to follow the analysis

of Heckman and Navarro (2007) in not requiring an exclusion restriction if Z contains

a sufficient number of continuous variables and there is sufficient variation in the ϑk

function across k.

17See Heckman and Vytlacil (2007).

18Note that in our notation, RJ = max{Rj}k∈J is a scalar, while ϑJ (Z) = {ϑk(Z) :

k ∈ J } is a vector.

19Alternatively, one can allow ϑl,m(z) 6= ϑl,m(z′) if Pr(εl,m ∈ [ϑl,m(z), ϑl,m(z′]) = 0.

Such a possibility would be ruled out except “at the limit” by the standard assumption

that the support of εl,m is connected. Even without such an assumption, such a

possibility occurring simultaneously for all (l,m) ∈ J × J \ {j, k} for a particular

z, z′ seems extremely implausible, and we will therefore not consider this possibility

further.

20This restriction is specific to the multinomial choice model we consider, and is not

a restriction of sequential models. In sequential models, unexpected innovations in

agent information sets will act to shift the current decision without affecting previous

decisions. Consider the following sequential model of GED certification. In the first

period, the agent chooses to graduate from high school or to drop out of high school.

If the agent drops out of high school in the first period, he or she has the option in the

second period of attaining GED certification or remaining a dropout permanently. An

unexpected shock in the second period to the relative value of GED certification versus

permanent dropout status will shift the GED/permanent dropout choice without

changing the probability of high school graduation.
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