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minimum biased estimator of the average treatment effect. We assess the finite sample 
performance of our estimator using simulated data, as well as a timely application examining 
the causal effect of the School Breakfast Program on childhood obesity. We find our new 
estimator to be quite advantageous in many situations, even when selection is only on 
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1 Introduction

Program evaluation methods in econometrics have become increasingly sophisticated. In this study, we

assess and compare the bias of estimators of three common parameters — the average treatment effect

(ATE), the average treatment effect on the treated (ATT), and the average treated on the untreated

(ATU) — that require the unconfoundedness assumption when, in fact, unconfoundedness fails. Thus,

our study represents an extension to the analysis first put forth in Black and Smith (2004) for the ATT.

In that paper, the authors show that under certain conditions, estimators of the ATT that require the

unconfoundedness assumption to be unbiased, but are biased when this assumption fails to hold, obtain a

minimum bias when the sample is restricted to observations with a probability of treatment, conditional

on covariates, close to one-half.

In this paper, we have four specific objectives. First, we assess the bias of so-called selection on

observables estimators of the ATE and ATU under the same assumptions as in Black and Smith (2004).

Second, we provide a set of assumptions — frequently invoked in applied settings — that enable us to rank

the magnitude of the bias of estimators across the three parameters. Third, we propose a new estimation

technique for researchers seeking to minimize the bias of selection on observables estimators of the ATE

when unconfoundedness fails to hold. We then compare the finite sample performance of our proposed

method by Monte Carlo methods. Finally, we compare the performance of our estimator to those currently

utilized in the literature to assess the effects of participation in the national School Breakfast Program

(SBP) on childhood obesity.

Our results should be of interest to the growing number of applied researchers relying on estimators

from the program evaluation literature, especially when the researcher is concerned that the unconfound-

edness assumption is problematic but a valid exclusion restriction is unavailable. Specifically, we offer two

recommendations to applied researchers. First and foremost, researchers ought to be skeptical of estimates

obtained using parametric methods unless the correct functional form is known. Second, our new estima-

tion technique represents an improvement over the performance of the semiparametric estimator of the

ATE proposed in Hirano and Imbens (2001). In fact, our bias minimizing approach yields a finite sample

improvement over Hirano and Imbens (2001) even when the underlying assumptions of their estimator are

valid in the population. However, our estimation technique is particularly useful when there is selection

on unobservables. While the fact that our estimator is preferable even when unconfoundedness holds may

appear striking at first glance, it is consistent with other results in the literature. In particular, Hirano

et al. (2003) find that using an estimated propensity score is preferable even when the true propensity

score is known, and Millimet and Tchernis (2007) find that over-fitting the propensity score equation is
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preferable to using the true functional form.

The remainder of the paper is organized as follow. Section 2 begins by providing a quick overview of

the potential outcomes and corresponding treatment effects framework. Next, it contains our analysis of

the bias of each of the three parameters considered herein under certain assumptions. Finally, we propose

a new estimation method in Section 2. Our estimator attempts to minimize the bias of estimators of the

ATE that rely on unconfoundedness when, in fact, this assumption is false. Section 3 presents a Monte

Carlo study comparing the performance of our proposed estimator to other estimators commonplace in the

literature. Section 4 contains the application to school nutrition programs. Section 5 concludes.

2 The Evaluation Problem

2.1 Setup

Consider a random sample of N individuals from a large population indexed by i = 1, ..., N . Utilizing

the potential outcomes framework (see, e.g., Neyman 1923; Fisher 1935; Roy 1951; Rubin 1974), let Yi(T )

denote the potential outcome of individual i under treatment T , T ∈ T . Here, we consider only the case of

binary treatments: T = {0, 1}. The causal effect of the treatment (T = 1) relative to the control (T = 0)

is defined as the difference between the corresponding potential outcomes. Formally,

τ i = Yi(1)− Yi(0). (1)

In the evaluation literature, several population parameters are of potential interest. The most commonly

used include the ATE, the ATT, and the ATU. These are defined as

τATE = E[τ i] = E[Yi(1)− Yi(0)] (2)

τATT = E[τ i|T = 1] = E[Yi(1)− Yi(0)|T = 1] (3)

τATU = E[τ i|T = 0] = E[Yi(1)− Yi(0)|T = 0]. (4)

In general, the parameters in (2) — (4) may vary with a vector covariates, X. As a result, each of the

parameters may be defined conditional on a particular value of X as follows:

τATE[X] = E[τ i|X] = E[Yi(1)− Yi(0)|X] (5)

τATT [X] = E[τ i|X,T = 1] = E[Yi(1)− Yi(0)|X,T = 1] (6)

τATU [X] = E[τ i|X,T = 0] = E[Yi(1)− Yi(0)|X,T = 0]. (7)
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The parameters in (2) — (4) are obtained by taking the expectation of the corresponding parameter in (5)

— (7) over the distribution of X in the relevant population (the unconditional distribution of X for the

ATE, and distribution of X condition on T = 1 and T = 0 for the ATT and ATU, respectively).

For each individual, we observe the triple {Yi, Ti,Xi}, where Yi is the observed outcome, Ti is a binary

indicator of the treatment received, and Xi is a vector of covariates. The only requirement of the covariates

included in Xi is that they are pre-determined (that is, they are unaffected by Ti) and do not perfectly

predict treatment assignment. The relationship between the potential and observed outcomes is given by

Yi = TiYi(1) + (1− Ti)Yi(0) (8)

which makes clear that only one potential outcome is observed for any individual. As such, estimating τ

is not trivial as there is an inherent missing data problem; some assumptions are required to proceed.

One such assumption is unconfoundedness or selection on observables (Rubin 1974; Heckman and

Robb 1985). Under this assumption, treatment assignment is said to be independent of potential outcomes

conditional on the set of covariates, X. As a result, selection into treatment is random conditional on X

and the average effect of the treatment can be obtained by comparing outcomes of individuals in different

treatment states with identical values of the covariates. To solve the dimensionality problem that is

likely to arise if X is a lengthy vector, Rosenbaum and Rubin (1983) propose using the propensity score,

P (Xi) = Pr(Ti = 1|Xi), instead of X as the conditioning variable.

2.2 Bias When Unconfoundedness Fails

Given knowledge of the propensity score, or an estimate thereof, and sufficient overlap between the distri-

butions of the propensity score across the T = 1 and T = 0 groups (typically referred to as the common

support condition; see Dehejia and Wahba (1999) or Smith and Todd (2005)), the parameters discussed

above can be estimated in a number of ways under the unconfoundedness assumption (D’Agostino (1998)

and Imbens (2004) offer summaries). Regardless of which such technique is employed, each will be biased

if the unconfoundedness assumption fails to hold.

Black and Smith (2004) consider the bias when estimating the ATT under unconfoundedness and the
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assumption is incorrect. The bias of the ATT at some value of the propensity score, P (X), is given by

BATT [P (X)] = bτATT [P (X)]− τATT [P (X)]

= {E[Y (1)|T = 1, P (X)]− E[Y (0)|T = 0, P (X)]}

− {E[Y (1)|T = 1, P (X)]− E[Y (0)|T = 1, P (X)]}

= E[Y (0)|T = 1, P (X)]− E[Y (0)|T = 0, P (X)] (9)

where bτATT refers some propensity score based estimator of the ATT (e.g., propensity score matching or
inverse propensity score weighting).

To better understand the behavior of the bias, Black and Smith (2004) make the following two assump-

tions:

(A1) Potential outcomes and latent treatment assignment are additively separable in observables and

unobservables

Y (0) = g0(X) + ε0

Y (1) = g1(X) + ε1

T ∗ = h(X)− u

T =

⎧⎨⎩ 1 if T ∗ > 0

0 otherwise

(A2) ε0, ε1, u ∼ N3(0,Σ), where

Σ =

⎡⎢⎢⎢⎣
σ20 ρ01 ρ0u

σ21 ρ1u

1

⎤⎥⎥⎥⎦ .
Given A1 and A2, (9) simplifies to

BATT [P (X)] = E[ε0|T = 1, P (X)]− E[ε0|T = 0, P (X)]

= ρ0uσ0
φ(h(X))

Φ(h(X))[1−Φ(h(X))] (10)

where φ(•) and Φ(•) are the standard normal density and cumulative density function, respectively. As

noted in Black and Smith (2004), BATT [P (X)] is minimized when h(X) = 0, which implies that P (X) =
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0.5. Thus, the authors recommend that researchers estimate τATT using the ‘thick support’ region of the

propensity score (e.g., P (X) ∈ (0.33, 0.67)).

Prior to continuing, it is important to note that if the ATT varies with X (and, hence, P (X)), then

using only observations on the thick support estimates a different parameter than the population ATT given

in (3). Indeed, the procedure suggested in Black and Smith (2004) accomplishes the following. It searches

over the parameters defined in (6) to find the value of P (X) for which the τATT [P (X)] can be estimated

with the least bias. This subtle, or perhaps not so subtle, point is very intriguing. Stated differently,

when unconfoundedness fails, τATT , the population ATT, cannot be estimated in an unbiased manner

using estimators that rely on this assumption. Rather than invoking different assumptions to identify the

population ATT (e.g., those utilized by selection on unobservables estimators), the Black and Smith (2004)

approach identifies the parameter that can be estimated with the smallest bias under unconfoundedness.

Whether or not the parameter being estimated with the least bias, eτATT = E[E[τ i|P (X), T = 1]], where
the outer expectation is over X|0.33 < P (X) < 0.67 and T = 1, is an interesting economic parameter is a

different question. The key point, however, is that when restricting the estimation sample to observations

with propensity scores contained in a subset of the unit interval, the parameter being estimated will differ

from the population ATT unless the treatment effect does not vary with X (i.e., E[τ i|P (X), T = 1] =

E[τ i|T = 1]).

With this point in mind, we now consider the bias for the ATE and the ATU since the ATT is not the

only parameter of interest in applied settings. For the ATU, it is trivial to show that

BATU [P (X)] = E[ε1|T = 1, P (X)]− E[ε1|T = 0, P (X)]

= ρ1uσ1
φ(h(X))

Φ(h(X))[1−Φ(h(X))] (11)

which is also minimized when h(X) = 0, or P (X) = 0.5. However, it is useful to note that

BATU [P (X)] = E[δ + ε0|T = 1, P (X)]− E[δ + ε0|T = 0, P (X)]

= BATT [P (X)] + E[δ|T = 1, P (X)]− E[δ|T = 0, P (X)]

where δ = ε1 − ε0 is the unobserved, individual-specific gain from treatment. Thus, the magnitude of the

bias of the ATU may either be larger or smaller than the corresponding bias of the ATT. If we add the

following assumption:
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(A3) Non-negative selection into the treatment on individual-specific, unobserved gains

E[δ|T = 1, P (X)] > E[δ|T = 0, P (X)]

then BATU [P (X)] > BATT [P (X)] for all P (X).1

Now consider the ATE. Utilizing the fact that τATE[P (X)] = P (X)τATT [P (X)]+[1−P (X)]τATU [P (X)],

and rewriting Y (1) = g1(X) + (δ + ε0), the bias for the ATE is given by

BATE[P (X)] = ρ0uσ0

½
φ(h(X))

Φ(h(X))[1− Φ(h(X))]

¾
+ [1− P (X)]

½
ρδuσδ

φ(h(X))

Φ(h(X))[1− Φ(h(X))]

¾
= {ρ0uσ0 + [1− P (X)]ρδuσδ}

½
φ(h(X))

Φ(h(X))[1− Φ(h(X))]

¾
. (12)

Equation (12) leads to three salient points. First, the bias of the ATE is minimized when h(X) = 0

only in the case where ρδu = 0 (i.e., no selection on unobserved, individual-specific gains to treatment).

Second, under A1 — A3, BATU [P (X)] > BATE[P (X)] > BATT [P (X)]. Third, the value of P (X) that

minimizes the bias of the ATE is not fixed; rather, it depends on the signs and magnitudes of ρ0uσ0 and

ρδuσδ. Simulations (see Figures 1 and 2) reveal that BATE[P (X)] displays the following properties:

(i) if ρ0uσ0 = 0, then limP (X)−→1BATE[P (X)] = 0

(ii) if ρ0uσ0 = −ρδuσδ, then limP (X)−→0BATE [P (X)] = 0

(iii) if ρ0uσ0 > 0, then P ∗ = argminBATE [P (X)] is

(a) strictly greater than 0.5

(b) decreasing in ρ0uσ0 (holding ρδuσδ fixed)

(c) increasing in ρδuσδ (holding ρ0uσ0 fixed)

(iv) if ρ0uσ0 < 0, then P ∗ = argminBATE [P (X)] is

(a) above or below 0.5, but monotonically increasing, for ρ0uσ0 ∈ (−ρδuσδ, 0)

(b) strictly less than 0.5, but decreasing in ρ0uσ0 (holding ρδuσδ fixed) for ρ0uσ0 < −ρδuσδ

(c) decreasing in ρδuσδ (holding ρ0uσ0 fixed) for ρ0uσ0 < −ρδuσδ.

where P ∗ is the value of the propensity score that minimizes the bias in (12). We refer to P ∗ as the bias

minimizing propensity score (BMPS). See Figure 3 for a complete characterization of P ∗.

1See Heckman and Vytlacil (2005) for further discussion on this assumption.
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2.3 Estimation

To assess the bias of selection on observables estimators of the ATE when unconfoundedness fails, we

utilize the normalized inverse probability weighted estimator of Hirano and Imbens (2001). Horvitz and

Thompson (1952) show that the ATE may be expressed as

τATE = E

∙
Y · T
P (X)

− Y · (1− T )

1− P (X)

¸
, (13)

with the sample analogue given by

τ̂HT =
1

N

NX
i=1

"
YiTi

P̂ (Xi)
− Yi(1− Ti)

1− P̂ (Xi)

#
. (14)

The estimator in (14) is the unnormalized estimator as the weights do not necessarily sum to unity. To

circumvent this issue, Hirano and Imbens (2001) propose an alternative estimator, referred to as the

normalized estimator, which is given by

τ̂HI =

"
NX
i=1

YiTi

P̂ (Xi)

,
NX
i=1

Ti

P̂ (Xi)

#
−
"

NX
i=1

Yi(1− Ti)

1− P̂ (Xi)

,
NX
i=1

(1− Ti)

1− P̂ (Xi)

#
. (15)

Millimet and Tchernis (2007) provide evidence of the superiority of the normalized estimator in practical

settings.

Under unconfoundedness, the normalized estimator in (15) provides an unbiased estimate of τATE .

When this assumption fails, the bias is given (12). To minimize the bias, we propose to estimate (15) using

only observations with a propensity score in a neighborhood around the BMPS, P ∗. Formally, we propose

the following minimum biased estimator of the ATE:

τ̂MB[P
∗] =

"X
i∈Ω

YiTi

P̂ (Xi)

,X
i∈Ω

Ti

P̂ (Xi)

#
−
"X
i∈Ω

Yi(1− Ti)

1− P̂ (Xi)

,X
i∈Ω

(1− Ti)

1− P̂ (Xi)

#
(16)

where

Ω = {i|P̂ (Xi) ∈ C(P ∗)},

and C(P ) denotes a neighborhood around P . In the estimation below, we define C(P ∗) as

C(P ∗) = {P̂ (Xi)|P̂ (Xi) ∈ (P, P )},

where P = max{0.02, P ∗ − αθ}, P = min{0.98, P ∗ + αθ}, and αθ > 0 is the smallest value such that at

7



least θ percent of both the treatment and control groups are contained in Ω. In the exercises below, we set

θ = 0.05, 0.10, and 0.25. For example, if θ = 0.05, we find the smallest value, α0.05, such that 5% of the

treatment group and 5% of the control group have a propensity score in the interval (P, P ). Thus, smaller

values of θ should reduce the bias at the expense of higher variance. Note, we trim observations with

propensity scores above (below) 0.98 (0.02), regardless of the value of θ, to prevent any single observations

from receiving too large of a weight.

As defined above, the set Ω is unknown since, in general, P ∗ is unknown. To estimate the set Ω, we

propose to estimate P ∗ assuming A1, A2, and functional forms for g0(X), g1(X), and h(X) using the

Heckman bivariate normal (BVN) selection model. Specifically, assuming

g0(X) = Xβ0

g1(X) = Xβ1

h(X) = Xγ

then

yi = Xiβ0 +XiTi(β1 − β0) + βλ0(1− Ti)

∙
−φ(Xiγ)

1−Φ(Xiγ)

¸
+ βλ1Ti

∙
φ(Xiγ)

Φ(Xiγ)

¸
+ ηi (17)

where φ(·)/Φ(·) is the inverse Mills’ ratio, η is a well-behaved error term, and

βλ0 = ρ0uσ0 (18)

βλ1 = ρ0uσ0 + ρδuσδ.

Thus, OLS estimation of (17) after replacing γ with an estimate obtained from a first-stage probit model

yields consistent estimates of ρ0uσ0 and ρδuσδ. With these estimates, one can use (12) to obtain an estimate

of P ∗.2

Our proposed estimator immediately raises a question: If one is willing to maintain the assumptions

underlying the BVN selection model in (17), why not just use the OLS estimates of (17) to estimate the

ATE? Perhaps one should. If the assumptions underlying the BVN selection model are valid, then one

should; the ATE is estimated by

τ̂BVN = X
³bβ1 − bβ0´ . (19)

However, if these assumptions fail, then perhaps the estimator in (15) or (16) will perform better in practice.

2To estimate P ∗, we conduct a grid search over 1,000 equally-spaced values of h(·) from -5 to 5. If P ∗ is above 0.98, we
truncate it to 0.98; if P ∗ is below 0.02, we truncate it to 0.02.
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To better understand the finite sample performance of these estimators, we now turn to our Monte Carlo

study.

3 Monte Carlo Study

3.1 Setup

To assess the performance of the various estimators, we use five experimental designs. However, for each

experimental design, we use two data-generating processes (DGPs): (i) a constant treatment effect setup

(i.e., τ i = τ for all i), and (ii) a heterogeneous treatment effect setup, where the heterogeneity is due to

unobserved, individual-specific gains to treatment (i.e., τ i varies across i, but this variation is unrelated to

variation in observables, X). Thus, we are focusing on cases where all of the estimators being compared

are estimating the same underlying parameter, τATE = E[τ i].

Each experiment entails simulating 500 data sets containing

x1, x2
iid∼ N(0, 4)

and

h(X) = x1 + x2 − 0.5(x21 − x22) + x1x2

T ∗ = h(X)− u

T =

⎧⎨⎩ 1 if T ∗ > 0

0 otherwise

for 1000 observations. Furthermore, in the constant treatment effect setup:

Y (0) = g0(X) + ε0 = h(X) + ε0

Y (1) = g1(X) + ε0 = 1 + h(X) + ε0

which implies that τ i = 1 for all i and τATE = E[τ i] = 1. In the heterogeneous treatment effect setup:

Y (0) = g0(X) + ε0 = h(X) + ε0

Y (1) = g1(X) + ε1 = 1 + h(X) + ε1

which implies that τ i = 1 + ε1i − ε0i = 1 + δi and τATE = E[τ i] = 1 (assuming E[δi] = 0, as discussed

9



below).

Our five experimental designs are:

1. All assumptions of the BVN selection model are correct. In particular, in the constant treatment

effect setup,

ε0, u ∼ N2(0,Σ)

where

Σ =

⎡⎣ 1 ρ0u

1

⎤⎦ .
In the heterogeneous treatment effect setup,

ε0, ε1, u ∼ N3(0,Σ)

where

Σ =

⎡⎢⎢⎢⎣
1 0.5 ρ0u

1 ρ1u

1

⎤⎥⎥⎥⎦ .
In addition, in both cases, the correct functional forms of the first-stage propensity score equation

and the second-stage outcome equation in (17) are assumed to be known.

2. All assumptions of the BVN selection model are correct except the second-stage outcome equation in

(17) is mis-specified. Specifically, the error distributions are identical to experiment #1, and the

first-stage propensity score equation is assumed to be known, but x21, x
2
2, and x1x2 are omitted from

the set of covariates included in (17).

3. All assumptions of the BVN selection model are correct except the first-stage propensity score equation

and the second-stage outcome equation in (17) are mis-specified. Specifically, the error distributions

are identical to experiment #1, but x21, x
2
2, and x1x2 are omitted from the set of covariates included

in both the first-stage propensity score equation and (17).

4. All assumptions of the BVN selection model are correct except the errors are uniformly distributed.

In particular, in the constant treatment effect setup,

ε0, u ∼ U2(0,Σ)
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where

Σ =

⎡⎣ 1 ρ0u

1

⎤⎦ .
In the heterogeneous treatment effect setup,

ε0, ε1, u ∼ U3(0,Σ)

where

Σ =

⎡⎢⎢⎢⎣
1 0.5 ρ0u

1 ρ1u

1

⎤⎥⎥⎥⎦ .
In both cases, the correct functional forms of the first-stage propensity score equation and the second-

stage outcome equation in (17) are assumed to be known.

5. All assumptions of the BVN selection model are correct except the errors are uniformly distributed

and the second-stage outcome equation in (17) is mis-specified. Specifically, the error distributions

are identical to experiment #4, and the first-stage propensity score equation is assumed to be known,

but x21, x
2
2, and x1x2 are omitted from the set of covariates included in (17).

Each experiment is conducted for several combinations of true values for ρ0uσ0 and ρδuσδ, including

the case where unconfoundedness holds. To assess the performance of the estimators, we report the mean

estimates of ρ0uσ0 and ρδuσδ, and the mean values of αθ, θ = 0.05, 0.10, and 0.25. In addition, we report

the mean bias, the mean absolute error (MAE), and the mean squared error (MSE) for each estimator.

Note, for the constant treatment effect setup, we estimate ρ0u and (19) using

yi = Xiβ0 +XiTi(β1 − β0) + βλ

½
(1− Ti)

∙
−φ(Xiγ)

1− Φ(Xiγ)

¸
+ Ti

∙
φ(Xiγ)

Φ(Xiγ)

¸¾
+ ηi (20)

where βλ = ρ0uσ0.

3.2 Results

The results for the five experimental designs are presented in Tables 1-5. Table 1 is the benchmark case;

the DGPs satisfy the assumptions of the BVN model, and the correct functional forms are utilized in the

first-stage probit model for the propensity score and second-stage equation for the outcome. As mentioned

above, even absent an exclusion restriction in the first-stage, we expect the BVN estimator to outperform

the other estimators given the efficiency gain from imposing restrictions that hold in the DGP.
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The results in Table 1 confirm our expectations. In all cases except one, bτBVN has the smallest

bias. In addition, bτBVN has the smallest MAE and MSE in all cases, including the two cases where

unconfoundedness holds (ρ0uσ0 = 0 in the constant treatment effect setup and ρ0uσ0 = ρδuσδ = 0 in

the heterogeneous treatment effect setup). However, if one restricts attention to only the estimators that

require unconfoundedness for unbiasedness, our estimator, bτMB, outperforms the Hirano and Imbens (2001)

estimator, bτHI , in all cases when there is at least some selection on unobservables. Moreover, even when

selection on unobservables holds, our minimum biased estimator still outperforms bτHI for at least some

value of θ.

Among the minimum biased estimators, utilizing a smaller value of θ is preferable in terms of bias,

MAE, and MSE in the majority of cases when selection on unobservables is ‘sufficiently’ large. However, a

larger value of θ is preferable in terms of MSE under unconfoundedness or when selection on unobservables

is ‘sufficiently’ weak. For example, bτMB,0.05 or bτMB,0.10 yields the smallest bias, MAE, and MSE when

ρ0uσ0 > 0 and ρδuσδ > 0 in the heterogeneous treatment effect setup; bτMB,0.05 or bτMB,0.10 yields the

smallest bias and MAE in the constant treatment effect setup when ρ0uσ0 > 0.5 (but a higher MSE

when ρ0uσ0 = 0.25). Conversely, when unconfoundedness holds in either the heterogeneous or constant

treatment effect setup, bτMB,0.25 yields the smallest MAE and MSE. Thus, when using weighting estimators

of the ATE, our minimum biased estimator is preferable on both bias and efficiency grounds relative to

Hirano and Imbens (2001) estimator, and the value of θ should be decreasing in the amount of selection

on unobservables suspected by the researcher.

Prior to continuing, it is worth emphasizing the point that the ‘optimal’ θ does not go to unity when

unconfoundedness holds. Thus, even when selection on observables holds in the population, finite sample

performance can be improved by removing any within sample correlation among the errors. This finding

is consistent with the results in Hirano et al. (2003), who find that using an estimated propensity score

is preferable even when the true propensity score is known, and Millimet and Tchernis (2007), who show

that over-fitting the propensity score equation is preferable to using the true functional form.

Table 2 provides the results from our second experimental design. Recall, the only deviation from the

design employed in Table 1 is that now the second-stage outcome equation in (17) and (20) is mis-specified;

we omit x21, x
2
2, and x1x2 from the estimation. Thus, this corresponds to a situation where a researcher

incorrectly assumes a linear functional form in the second-stage.

Note two important details before turning to the results. First, the first-stage probit model for the

propensity score is specified correctly. As a result, the model now contains three exclusion restrictions in

the probit equation, although they are not ‘valid’ exclusion restrictions since x21, x
2
2, and x1x2 also have a

direct effect on y. Second, because the propensity score equation is correctly specified, the performance of
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bτHI will be identical to that in Table 1; the difference in the experimental designs does not impact this

estimator. However, our estimator, bτMB, is affected because the estimate of the BMPS, P ∗, depends on

the estimates from the second-stage equation in (17) and (20). Thus, whether our estimator continues to

outperform bτHI is not clear a priori.

In terms of the results, three findings stand out. First, bτBVN does significantly worse than any of

the other estimators in terms of bias, MAE, and MSE. Specifically, the MAE ranges from roughly ten

to 100 times as large; the MSE is 100 to 1000 times as large. Second, our estimator, bτMB, continues to

outperform bτHI in all cases. Thus, our estimator continuous to constitute an improvement upon bτHI even

when unconfoundedness holds (for at least some value(s) of θ).

Finally, while not universal, a smaller value θ is generally preferable in terms of bias, MAE, and

MSE as the degree of selection of unobservables increases; bτMB,0.25 yields the smallest MAE only when

unconfoundedness holds or when ρ0uσ0 = 0 and ρδuσδ = 0.15 and the smallest MSE only in two other

cases where the extent of selection of unobservables is not ‘sufficiently’ large (the constant treatment effect

setup with ρ0uσ0 = 0.25 and the heterogeneous treatment effect setup with ρ0uσ0 = 0.15 and ρδuσδ = 0).

Thus, as the extent of selection on unobservables gets stronger, one wants to restrict the estimation sample

to observations closer to the estimated BMPS, P ∗.

Table 3 presents the results for the same DGPs as in the two preceding tables except now both the

first-stage probit model and the second-stage outcome equation are mis-specified. Specifically, both are

estimated incorrectly assuming a linear functional form; x21, x
2
2, and x1x2 are omitted. Unfortunately,

this might be the most relevant case for applied researchers. The results are easily summarizable. First,

none of the estimators perform well, but bτBVN does significantly worse than the other estimators. Second,bτMB,0.05 yields the lowest bias, MAE, and MSE in all cases. Relative to bτMB,0.05, the MAE (MSE) of bτHI

is roughly two to three (four to ten) times larger.

The results in Table 3 should have been expected given the prior results in Table 2. The common

omitted covariates from both the first- and second-stage equations generate a strong correlation between

the error terms in the potential outcome equation in the untreated state and treatment assignment equation

even if ρ0uσ0 = 0 in the population. Thus, given the mis-specification, all cases in experimental design

correspond to the case of ‘sufficiently’ strong selection on unobservables. In this case, as we saw in Table

2, θ = 0.05 is preferable.

Table 4 displays the results from the next experimental design. Here, we revert back to the benchmark

case in that we assume the correct functional form for both the first-stage propensity score model and

second-stage outcome equation are known. However, the error terms are no longer normally distributed;

rather, they are drawn from a correlated multivariate uniform distribution. The results are interesting.
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First, bτBVN clearly dominates the other estimators, even when unconfoundedness holds. Presumably this

is because the (incorrect) normality assumption invoked in the first-stage probit model is a reasonable

approximation.3 Second, our estimator continues to outperform bτHI when unconfoundedness holds (for

θ = 0.10 or 0.25), and when it does not (for all values of θ).

Third, as in the previous cases, within our estimator a smaller value θ is preferable in terms of MAE and

MSE as the degree of selection of unobservables increases. For instance, bτMB,0.25 and bτMB,0.10 yield the

smallest MAE and MSE (within our estimator) in the constant treatment effect setup when unconfounded-

ness holds, but bτMB,0.10 is preferable in the other two cases. In the heterogeneous treatment effect setup,bτMB,0.25 yields the smallest MAE and MSE (within our estimator) when ρ0uσ0 = 0 and ρδuσδ = 0 or 0.25,

or when ρ0uσ0 = 0.15 and ρδuσδ = 0. bτMB,0.05 yields the smallest MAE and MSE (within our estimator)

when ρ0uσ0 = 0.30 and ρδuσδ = 0.50. Thus, there is essentially a negative, monotonic relationship between

the ‘optimal’ θ and the extent of selection on unobservables. Specifically, θ = 0.25 minimizes the MAE and

MSE (relative to the other values of θ employed) when unconfoundedness holds; θ = 0.05 minimizes the

MAE and MSE when selection on unobservables is ‘sufficiently’ strong; θ = 0.10 does best when selection

on unobservables is present, but a bit ‘weaker.’

Our final experimental design combines the error mis-specification from the previous DGP, with the

functional form mis-specification of the second-stage outcome equation analyzed in the second experiment.

The results are provided in Table 5. Again, several interesting findings emerge. First, as in Table 2, bτBVN
performs significantly worse than the other estimators. Thus, while error mis-specification (of the type

analyzed here) is not particularly problematic for the BVN estimator, mis-specification of the outcome

equation is very troublesome. Second, our estimator continues to outperform bτHI when unconfoundedness

holds (for θ = 0.10 and 0.25), and when it does not (for all values of θ). In the heterogeneous treatment

effect setup under unconfoundedness, the MAE and MSE of bτHI is 1.3 and 1.5 times higher, respectively,

than of bτMB,0.25. Finally, there continues to exist a negative, monotonic relationship between the ‘optimal’

θ and the extent of selection on unobservables as in Table 4.

3.3 Discussion

The simulation results presented, while clearly not exhausting all situations applied researchers confront,

suggest a number of guidelines that researchers ought to find useful. First and foremost, researchers ought

to be very wary when using the BVN estimator. Aside from the reliance on distributional assumptions,

our study indicates that utilizing the proper functional form in the outcome equation is crucial. It is

so crucial that we obtain drastically better estimates utilizing semiparametric estimators that require

3 In test runs using our DGP, we do, however, reject normality of u using the test developed in Royston (1991).
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unconfoundedness even when unconfoundedness does not hold.

Second, regardless of whether the outcome equation used in the BVN model is correctly specified,

restricting the sample to only those observations whose propensity score lies in a certain region of the unit

interval, where the restricted region is determined utilizing estimates obtained from the estimation of the

BVN model, improves the performance of the semiparametric estimator proposed in Hirano and Imbens

(2001). Thus, our bias minimizing approach yields a finite sample improvement over Hirano and Imbens

(2001) even when the underlying assumptions of that estimator are valid in the population.

Finally, how ‘tight’ to restrict the sample used in the estimation depends on the underlying correlation

structure of the unobservables in the model. Among the cases considered here, the ‘optimal’ restriction

becomes tighter as the degree of selection on unobservables increases. When unconfoundedness holds,

utilizing θ = 0.25 achieves the best performance of the values considered here. However, when selection on

unobservables is present, but is ‘modest’ in some sense, utilizing θ = 0.10 tends to do best, while θ = 0.05

is preferable under relatively ‘strong’ selection on unobservables.

In light of these recommendations, one might wonder why restricting the sample to an interval deter-

mined by estimates obtained from the BVN model, even when the BVN model is mis-specified and the

resulting estimates seem quite biased, yields an improvement over the Hirano and Imbens (2001) estimator.

Do our results indicate that restricting the estimation sample to observations with a propensity score lying

in some subset of the unit interval would improve on the finite sample performance of the Hirano and

Imbens (2001) estimator?

Tables 6-10 get at this question a bit. Specifically, we compare the results of our minimum biased

estimator obtained in Tables 1-5 with those obtained fixing the BMPS, P ∗, at its true value (i.e., the

optimal value using the values of ρ0uσ0 and ρδuσδ from the DGP).4 The results indicate three findings.

First, when the parametric assumptions are all valid (Table 6) or only the error distribution is mis-specified

(Table 9), there is little substantive difference in performance between using our estimated P ∗ and the true

P ∗. This is not surprising given our previous finding that bτBVN performs well in this two experiments.

Second, when both the outcome equation is mis-specified with or without the error distribution also being

mis-specified (Tables 7 and 10), the is a definite gain to knowing the true P ∗. Note, this is a not an

indictment of our estimation procedure, but it does show that the performance of our estimator, albeit

better than the Hirano and Imbens (2001) estimator, can do even better with an improved estimate of

P ∗. Finally, when both the propensity score equation and the outcome equation are mis-specified (Table

7), using the true P ∗ does significantly worse relative to using our estimated P ∗. As a result, when we

4Note, when unconfoundness holds, P ∗ does not take on a unique value, but all values of P ∗ minimize the bias (and the
bias is zero). Thus, we focus only on the cases where unconfoundedness does not hold.
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are using poor estimates of the propensity score — because the equation is mis-specified — we are better off

choosing the estimation sample using the estimated P ∗ based on the same mis-specified model, rather than

choosing the estimation sample using the true P ∗ combined with the poorly estimated propensity scores.

In sum, then, our minimum biased estimator proves to be beneficial when unconfoundedness holds,

but especially when it does not. Moreover, practitioners would be wise to assess the sensitivity of the

estimators to various values of θ. We now illustrate this approach with an application.

4 Application

4.1 Background

To illustrate the estimation approach advocated herein using actual data, we revisit the analysis of school

nutrition programs and childhood obesity in Millimet et al. (2008; hereafter MTH). As is quite evident

from recent media reports, childhood obesity is deemed to have reached epidemic status (see Rosin (2008)

for a review). In light of this, school nutrition programs, particularly the School Breakfast Program (SBP),

have garnered much interest. We are interested in the role of this program in the obesity crisis.

Since extensive institutional details are provided in MTH, we simply provide a brief sketch of the SBP

here. The SBP is federally funded, overseen by the US Department of Agriculture, administered by state

education agencies, and been in existence for several decades. Participation by schools — both public and

private — is voluntary (unless mandated by the state). If schools do participate, they are reimbursed a

fixed amount per breakfast served. However, to qualify for reimbursement, the meals must meet federal

nutrition guidelines. Finally, students residing in households with family incomes at or below 130% of

the federal poverty line are eligible for free meals, while those in households with family incomes between

130% and 185% of the federal poverty line are entitled to reduced price meals. Schools are reimbursed at

a higher rate per free or reduced price meals served. Currently, about 10 million students eat breakfast at

school on any given day (covering about 80% of all schools).

Researchers interested in analyzing the causal effect of participation in either program have been con-

cerned with the possible non-random selection of students into the program. MTH find evidence of positive

selection on weight (in levels and growth rates) into the SBP (see also Bhattacharya et al. (2006)). In

light of the Monte Carlo results above, this suggests a lower value of θ is more appropriate when analyzing

the impact of participation in the SBP.
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4.2 Data

The data are obtained from Early Childhood Longitudinal Study-Kindergarten Class of 1998-99 (ECLS-K)

and are identical to MTH; thus, we only provide limited details. We measure of participation in the SBP at

the earliest possible date, which is in spring kindergarten. Our outcomes of interest are measures of child

health in spring third grade or the change from fall kindergarten to spring third grade. As such, we are

analyzing more of the long-run relationship between child health and participation in these two programs.

Specifically, we utilize seven measures of child health:

(i) body mass index (BMI) in levels in spring third grade,

(ii) BMI in logs in spring third grade,

(iii) growth rate in BMI (i.e., change in log BMI) from fall kindergarten to spring third grade,

(iv) BMI in percentile in spring third grade,

(v) change in BMI percentile from fall kindergarten to spring third grade,

(vi) indicator for overweight status in spring third grade, and

(vii) indicator for obesity status in spring third grade,

where we define overweight (obesity) as having a BMI above the (85th) 95th percentile.5

To control for student, parental, and environmental factors, the following covariates are included in X:

child’s race (white, black, Hispanic, Asian, and other) and gender, child’s birthweight, household income,

mother’s employment status, mother’s education, number of children’s books at home, mother’s age at first

birth, an indicator if the child’s mother received WIC benefits during pregnancy, region, city type (urban,

suburban, or rural), and the amount of food in the household.6

Given the nature of our data, children with missing data for gender and race are dropped from our

sample. Missing values for the remaining control variables are imputed and imputation dummies are added

to the control set. The final sample contains 13,534 students, of which 3,161 participate in the SBP. Table

11 provides summary statistics.

4.3 Results

The results are presented in Table 12. We report OLS estimates of the ATE in addition to the estimators

considered in the Monte Carlo study. Given the increase in sample size relative to the Monte Carlo study,
5Percentiles are obtained using the -zanthro- command in Stata.
6Except for maternal employment, all controls come from either the fall or spring kindergarten survey.
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we also set θ = 0.01 and 0.03. In addition, we report the coefficient estimates on the selection terms

included in the BVN model, as well as the corresponding BMPS, P ∗, and bias obtained from (12). Finally,

all standard errors and 90% confidence intervals are obtained using 500 bootstrap repetitions.7

Turning to Table 12, three findings stand out. First, consonant with MTH, there is evidence of selection

on unobservables. Specifically, \ρ0uσ0 is positive and statistically significant in five of the seven models.

While \ρδuσδ is negative in six of the seven models, the estimates are never statistically significant. Thus,

the evidence suggest that unobservables associated with higher weight in the untreated state are positively

correlated with treatment participation. However, there is no statistically meaningful evidence that children

select into the treatment on the basis of unobserved, individual-specific effects of treatment.

Second, the estimated ATE is positive and statistically significant across all outcomes when using bτHI

or bτOLS . However, in light of the BVN estimates discussed above, as well as the evidence provided in

MTH, it is unlikely that these estimators are unbiased. The BVN estimates of the ATEs, on the other

hand, are negative in five of seven models, although the estimates are very imprecise; the standard errors

are between 13 and 17 times larger than those for bτHI .

Finally, our minimum biased estimators yield estimates that are always statistically insignificant. This

arises for two reasons. First, given the evidence provided here and in MTH concerning selection on

unobservables, the point estimates when θ = 0.05, for example, are smaller than the corresponding Hirano

and Imbens (2001) estimator in five of seven cases. Moving to θ = 0.01, the point estimates become even

smaller, and are negative, in four of seven cases. Second, the standard errors when θ = 0.05 are roughly

two to three times larger than for bτHI ; the standard errors are roughly twice as large when θ = 0.01 than

when θ = 0.05. Nonetheless, the fact that the point estimates diminish in the majority of cases as θ gets

smaller, and four are negative for the smallest value of θ, is consistent with our expectations and illustrates

the usefulness of our approach.

5 Conclusion

Black and Smith (2004) propose restricting the estimation sample to observations with propensity scores

around one-half when estimating the ATT under unconfoundedness, but the researcher is worried that this

assumption may not hold. In this study, we extend this argument to the case where the researcher may be

interested in other average treatment effect parameters such as the ATU or ATE. This extension reveals

two interesting findings. First, under non-negative selection on individual-specific, unobserved gains to

treatment, the bias that results when unconfoundedness fails to hold is smallest when estimating the ATT.

7Confidence intervals are obtained using the percentile method. A school-level clustered bootstrap was also utilized; the
confidence intervals always included zero (results available upon request).
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Second, the value of the propensity score that minimizes the bias of estimators of the ATE is not fixed,

but rather depends on the correlation structure of the unobservables in the underlying data-generating

process.

To operationalize this knowledge, we have proposed a new, two-stage estimation technique of the

ATE. In the first-stage, one estimates the usual Heckman bivariate normal selection model in order to

recover estimates of the error correlation structure. These estimates are then used to obtain the value

of the propensity score that minimizes the bias of selection on observables estimators of the ATE when

unconfoundedness fails. In the second-stage, one estimates the ATE using only observations within a

neighborhood around this bias-minimizing value of the propensity score.

Simulated data reveals that our approach is extremely useful in certain situations, and thus provides

a nice addition to existing methods. Importantly, we show that our approach improves upon traditional

selection on observables estimators not only when unconfoundedness does not hold and the usual Heckman

bivariate normal selection model is mis-specified, but also when unconfoundedness holds. Future work

should consider how θ may be chosen optimally in some sense, how observations may be differentially

weighted depending on their proximity to the bias-minimizing propensity score, and how our method

performs when the effect of treatment varies with observables.
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Figure 1. Bias-Minimizing Value of the Propensity Score Under Different Parameter Values

Assuming Positive Selection on Unobserved, Individual-Specific Gains into Treatment.
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Figure 2. Bias-Minimizing Value of the Propensity Score Under Different Parameter Values

Assuming Negative Selection on Unobserved, Individual-Specific Gains into Treatment.
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Figure 3. Bias-Minimizing Value of the Propensity Score Under Different Parameter Values.

Note: P ∗ denotes the bias-minimizing value of the propensity score.
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Table 1.  Monte Carlo Results: All Parametric Assumptions Valid.

True ρ0σ0 = 0 0.25 0.50
True ρδσδ = 0 0.25 0.50 0 0.25 0.50 0 0.25 0.50
MEAN ESTIMATE
  ρ0σ0 -0.006 0.248 0.496 0.005 -0.015 -0.003 0.145 0.140 0.137 0.308 0.301 0.301
  ρδσδ -0.004 0.262 0.503 0.004 0.258 0.510 -0.016 0.243 0.491
  α0.25 0.326 0.324 0.326 0.559 0.587 0.660 0.580 0.603 0.695 0.500 0.558 0.652
  α0.10 0.157 0.156 0.156 0.297 0.370 0.459 0.307 0.400 0.492 0.245 0.358 0.450
  α0.05 0.088 0.089 0.089 0.184 0.237 0.306 0.188 0.257 0.333 0.142 0.220 0.293
BIAS
  τBVN 0.005 0.011 0.010 -0.001 0.005 0.003 0.004 -0.001 0.010 0.005 0.002 0.009
  τHI 0.005 0.462 0.927 0.020 0.251 0.529 0.281 0.542 0.799 0.562 0.812 1.074
  τMB,0.25 -0.004 0.420 0.827 0.011 0.176 0.375 0.241 0.443 0.631 0.499 0.713 0.898
  τMB,0.10 -0.001 0.403 0.806 0.028 0.128 0.275 0.220 0.386 0.521 0.468 0.662 0.805
  τMB,0.05 -0.011 0.401 0.818 0.022 0.123 0.222 0.215 0.376 0.473 0.452 0.628 0.765
MAE
  τBVN 0.096 0.093 0.096 0.095 0.091 0.092 0.093 0.087 0.089 0.088 0.092 0.090
  τHI 0.170 0.463 0.927 0.158 0.273 0.529 0.295 0.542 0.799 0.562 0.812 1.074
  τMB,0.25 0.115 0.420 0.827 0.146 0.220 0.379 0.256 0.445 0.631 0.500 0.713 0.898
  τMB,0.10 0.151 0.405 0.806 0.169 0.219 0.309 0.257 0.402 0.525 0.470 0.663 0.806
  τMB,0.05 0.206 0.415 0.818 0.209 0.253 0.299 0.278 0.409 0.491 0.458 0.629 0.767
MSE
  τBVN 0.015 0.014 0.014 0.014 0.013 0.013 0.014 0.012 0.012 0.012 0.013 0.013
  τHI 0.045 0.244 0.884 0.038 0.101 0.312 0.114 0.327 0.669 0.343 0.686 1.178
  τMB,0.25 0.021 0.196 0.701 0.033 0.069 0.179 0.088 0.231 0.434 0.277 0.540 0.836
  τMB,0.10 0.036 0.200 0.682 0.045 0.073 0.136 0.093 0.206 0.334 0.256 0.486 0.700
  τMB,0.05 0.069 0.228 0.726 0.069 0.097 0.135 0.111 0.225 0.314 0.265 0.459 0.660

Notes: Results based on 500 simulated data sets, each containing 1000 observations.  MAE = mean absolute bias; MSE = mean squared error.  BVN = Heckman bivariate normal selection model; HI = Hirano and 

Imbens (2001) estimator; MB = minimum biased estimator using a cut-off level (α) chosen to retain 25%, 10%, or 5% of the treatment and control groups.  Shaded results indicate the best performance.  See text 

for further details.

Constant Treatment Effect Heterogeneous Treatment Effect
0 0.15 0.30



Table 2.  Monte Carlo Results: Functional Form Mis-Specified for Outcome Equation.

True ρ0σ0 = 0 0.25 0.50
True ρδσδ = 0 0.25 0.50 0 0.25 0.50 0 0.25 0.50
MEAN ESTIMATE
  ρ0σ0 -5.757 -5.513 -5.265 -6.223 -6.258 -6.313 -6.129 -6.109 -6.127 -5.957 -5.992 -5.948
  ρδσδ 0.844 1.118 1.456 0.924 1.127 1.413 0.874 1.172 1.408
  α0.25 0.326 0.324 0.326 0.381 0.394 0.425 0.388 0.398 0.425 0.380 0.404 0.433
  α0.10 0.157 0.156 0.156 0.142 0.137 0.139 0.142 0.138 0.138 0.139 0.138 0.140
  α0.05 0.088 0.089 0.089 0.076 0.071 0.069 0.076 0.072 0.069 0.074 0.071 0.069
BIAS
  τBVN 10.042 10.064 10.065 10.030 10.046 10.065 10.043 10.042 10.044 10.054 10.062 10.007
  τHI 0.005 0.462 0.927 0.020 0.251 0.529 0.281 0.542 0.799 0.562 0.812 1.074
  τMB,0.25 -0.004 0.419 0.827 -0.006 0.275 0.598 0.244 0.544 0.858 0.509 0.801 1.125
  τMB,0.10 -0.001 0.403 0.807 0.001 0.261 0.542 0.256 0.501 0.796 0.489 0.748 1.048
  τMB,0.05 -0.012 0.403 0.815 0.002 0.261 0.541 0.261 0.488 0.781 0.488 0.740 1.032
MAE
  τBVN 10.042 10.064 10.065 10.030 10.046 10.065 10.043 10.042 10.044 10.054 10.062 10.007
  τHI 0.170 0.463 0.927 0.158 0.273 0.529 0.295 0.542 0.799 0.562 0.812 1.074
  τMB,0.25 0.115 0.420 0.827 0.130 0.280 0.598 0.256 0.544 0.858 0.509 0.801 1.125
  τMB,0.10 0.151 0.405 0.807 0.159 0.277 0.542 0.270 0.502 0.796 0.489 0.748 1.048
  τMB,0.05 0.205 0.416 0.815 0.221 0.296 0.544 0.299 0.492 0.781 0.491 0.740 1.032
MSE
  τBVN 101.017 101.452 101.475 100.782 101.119 101.474 101.029 101.012 101.051 101.255 101.418 100.302
  τHI 0.045 0.244 0.884 0.038 0.101 0.312 0.114 0.327 0.669 0.343 0.686 1.178
  τMB,0.25 0.021 0.196 0.702 0.027 0.104 0.384 0.086 0.323 0.761 0.281 0.664 1.285
  τMB,0.10 0.037 0.200 0.684 0.039 0.105 0.327 0.098 0.285 0.667 0.270 0.594 1.122
  τMB,0.05 0.068 0.229 0.721 0.074 0.131 0.352 0.131 0.292 0.668 0.295 0.605 1.109

Notes: See Table 1.

0 0.15 0.30
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Table 3.  Monte Carlo Results: Functional Form Mis-Specified for Propensity Score Equation and Outcome Equation.

True ρ0σ0 = 0 0.25 0.50
True ρδσδ = 0 0.25 0.50 0 0.25 0.50 0 0.25 0.50
MEAN ESTIMATE
  ρ0σ0 85.170 84.426 82.129 123.228 119.039 118.633 121.819 120.524 119.603 120.478 119.015 116.419
  ρδσδ -16.884 -16.443 -16.328 -16.907 -16.619 -16.482 -16.524 -16.700 -16.203
  α0.25 0.073 0.074 0.073 0.121 0.122 0.121 0.122 0.121 0.121 0.121 0.122 0.123
  α0.10 0.033 0.034 0.034 0.072 0.072 0.072 0.073 0.072 0.072 0.071 0.073 0.072
  α0.05 0.020 0.020 0.020 0.045 0.045 0.044 0.045 0.045 0.045 0.044 0.045 0.045
BIAS
  τBVN -132.212 -130.875 -127.001 -178.939 -172.468 -171.819 -176.506 -174.594 -173.124 -174.625 -171.991 -168.184
  τHI 7.619 7.757 7.902 7.641 7.702 7.784 7.739 7.763 7.826 7.775 7.852 7.934
  τMB,0.25 3.649 3.892 4.103 3.235 3.429 3.605 3.405 3.561 3.773 3.519 3.759 3.929
  τMB,0.10 3.117 3.362 3.637 2.582 2.868 3.115 2.778 3.030 3.326 2.964 3.278 3.524
  τMB,0.05 2.983 3.265 3.520 2.404 2.717 3.019 2.617 2.905 3.250 2.818 3.183 3.440
MAE
  τBVN 132.212 130.875 127.001 178.939 172.468 171.819 176.506 174.594 173.124 174.625 171.991 168.184
  τHI 7.619 7.757 7.902 7.641 7.702 7.784 7.739 7.763 7.826 7.775 7.852 7.934
  τMB,0.25 3.649 3.892 4.103 3.235 3.429 3.605 3.405 3.561 3.773 3.519 3.759 3.929
  τMB,0.10 3.117 3.362 3.637 2.582 2.868 3.115 2.778 3.030 3.326 2.964 3.278 3.524
  τMB,0.05 2.983 3.265 3.520 2.404 2.717 3.019 2.617 2.905 3.250 2.818 3.183 3.440
MSE
  τBVN 1.9E+04 1.9E+04 1.7E+04 3.4E+04 3.2E+04 3.2E+04 3.4E+04 3.3E+04 3.2E+04 3.2E+04 3.2E+04 3.0E+04
  τHI 58.219 60.320 62.606 58.561 59.474 60.760 60.060 60.404 61.390 60.623 61.800 63.099
  τMB,0.25 13.521 15.380 17.054 10.586 11.890 13.127 11.705 12.811 14.358 12.495 14.231 15.545
  τMB,0.10 10.085 11.679 13.616 6.840 8.417 9.895 7.881 9.362 11.244 8.951 10.886 12.566
  τMB,0.05 9.421 11.232 12.959 6.000 7.628 9.355 7.062 8.677 10.824 8.156 10.324 12.020

Notes: See Table 1.

Constant Treatment Effect Heterogeneous Treatment Effect
0 0.15 0.30



Table 4.  Monte Carlo Results: Error Distribution is Mis-specified.

True ρ0σ0 = 0 0.25 0.50
True ρδσδ = 0 0.25 0.50 0 0.25 0.50 0 0.25 0.50
MEAN ESTIMATE
  ρ0σ0 -0.004 0.142 0.283 0.009 -0.007 0.006 0.084 0.078 0.079 0.172 0.172 0.176
  ρδσδ -0.008 0.149 0.277 0.006 0.147 0.288 -0.009 0.136 0.272
  α0.25 0.482 0.471 0.479 0.728 0.734 0.796 0.731 0.745 0.825 0.684 0.701 0.785
  α0.10 0.249 0.249 0.248 0.401 0.474 0.564 0.412 0.502 0.597 0.367 0.462 0.555
  α0.05 0.145 0.144 0.145 0.225 0.294 0.370 0.230 0.314 0.397 0.197 0.287 0.358
BIAS
  τBVN 0.002 0.008 0.010 -0.001 0.003 0.003 0.002 0.003 0.010 0.007 0.005 0.011
  τHI 0.071 0.331 0.576 0.086 0.216 0.378 0.226 0.366 0.507 0.374 0.513 0.663
  τMB,0.25 -0.040 0.226 0.482 0.015 0.130 0.271 0.159 0.273 0.404 0.305 0.423 0.570
  τMB,0.10 -0.038 0.207 0.456 0.037 0.125 0.242 0.157 0.253 0.359 0.292 0.408 0.530
  τMB,0.05 -0.023 0.223 0.477 0.050 0.128 0.236 0.150 0.254 0.353 0.283 0.402 0.522
MAE
  τBVN 0.049 0.048 0.051 0.049 0.046 0.047 0.047 0.045 0.045 0.045 0.046 0.047
  τHI 0.103 0.332 0.576 0.107 0.219 0.378 0.227 0.366 0.507 0.374 0.513 0.663
  τMB,0.25 0.102 0.228 0.482 0.082 0.138 0.271 0.165 0.273 0.404 0.305 0.423 0.570
  τMB,0.10 0.102 0.212 0.456 0.105 0.152 0.245 0.172 0.255 0.359 0.292 0.408 0.530
  τMB,0.05 0.127 0.232 0.477 0.132 0.165 0.247 0.177 0.261 0.355 0.285 0.403 0.522
MSE
  τBVN 0.004 0.004 0.004 0.004 0.003 0.004 0.004 0.003 0.003 0.003 0.003 0.003
  τHI 0.016 0.118 0.339 0.017 0.057 0.151 0.061 0.142 0.265 0.148 0.271 0.446
  τMB,0.25 0.016 0.062 0.242 0.010 0.026 0.082 0.036 0.083 0.172 0.102 0.189 0.332
  τMB,0.10 0.016 0.057 0.219 0.017 0.033 0.075 0.041 0.081 0.146 0.098 0.182 0.295
  τMB,0.05 0.025 0.074 0.247 0.026 0.041 0.082 0.046 0.089 0.149 0.101 0.183 0.291

Notes: See Table 1.

Constant Treatment Effect Heterogeneous Treatment Effect
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Table 5.  Monte Carlo Results: Functional Form Mis-Specified for Outcome Equation and Error Distribution.

True ρ0σ0 = 0 0.25 0.50
True ρδσδ = 0 0.25 0.50 0 0.25 0.50 0 0.25 0.50
MEAN ESTIMATE
  ρ0σ0 -5.053 -4.915 -4.778 -5.576 -5.612 -5.658 -5.536 -5.520 -5.514 -5.448 -5.461 -5.439
  ρδσδ 0.907 1.097 1.303 0.981 1.095 1.223 0.975 1.130 1.255
  α0.25 0.482 0.471 0.479 0.571 0.585 0.610 0.587 0.593 0.602 0.581 0.592 0.612
  α0.10 0.249 0.249 0.248 0.230 0.228 0.232 0.234 0.230 0.229 0.230 0.231 0.231
  α0.05 0.145 0.144 0.145 0.126 0.123 0.121 0.128 0.124 0.120 0.127 0.124 0.119
BIAS
  τBVN 8.886 8.905 8.915 8.896 8.899 8.920 8.900 8.885 8.898 8.893 8.908 8.888
  τHI 0.071 0.331 0.576 0.086 0.216 0.378 0.226 0.366 0.507 0.374 0.513 0.663
  τMB,0.25 -0.040 0.227 0.483 0.030 0.173 0.342 0.182 0.321 0.479 0.325 0.476 0.632
  τMB,0.10 -0.039 0.207 0.456 -0.028 0.138 0.317 0.124 0.281 0.466 0.267 0.438 0.617
  τMB,0.05 -0.023 0.224 0.477 -0.010 0.135 0.293 0.142 0.269 0.440 0.270 0.424 0.597
MAE
  τBVN 8.886 8.905 8.915 8.896 8.899 8.920 8.900 8.885 8.898 8.893 8.908 8.888
  τHI 0.103 0.332 0.576 0.107 0.219 0.378 0.227 0.366 0.507 0.374 0.513 0.663
  τMB,0.25 0.102 0.229 0.483 0.083 0.177 0.342 0.186 0.321 0.479 0.326 0.476 0.632
  τMB,0.10 0.102 0.211 0.456 0.103 0.156 0.317 0.143 0.282 0.466 0.267 0.438 0.617
  τMB,0.05 0.126 0.233 0.477 0.131 0.168 0.297 0.171 0.274 0.440 0.273 0.424 0.597
MSE
  τBVN 79.095 79.429 79.615 79.271 79.331 79.700 79.346 79.072 79.288 79.216 79.482 79.134
  τHI 0.016 0.118 0.339 0.017 0.057 0.151 0.061 0.142 0.265 0.148 0.271 0.446
  τMB,0.25 0.016 0.063 0.242 0.011 0.040 0.125 0.043 0.112 0.238 0.115 0.235 0.405
  τMB,0.10 0.016 0.057 0.219 0.016 0.035 0.114 0.028 0.093 0.229 0.084 0.204 0.389
  τMB,0.05 0.025 0.074 0.247 0.026 0.043 0.109 0.043 0.096 0.212 0.092 0.199 0.369

Notes: See Table 1.

Constant Treatment Effect Heterogeneous Treatment Effect
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Table 6.  Monte Carlo Results: Comparison of Using True P* vs. Estimated P* When All Parametric Assumptions 
                    are Valid.   

True ρ0σ0 = 0 0.25 0.50
True ρδσδ = 0 0.25 0.50 0 0.25 0.50 0 0.25 0.50
MEAN
  Estimated P* 0.499 0.499 0.499 0.508 0.730 0.876 0.491 0.803 0.912 0.482 0.763 0.866
  True P* 0.498 0.498 0.980 0.980 0.498 0.886 0.947 0.498 0.793 0.886
BIAS (Estimated P*)
  τMB,0.25 -0.004 0.420 0.827 0.011 0.176 0.375 0.241 0.443 0.631 0.499 0.713 0.898
  τMB,0.10 -0.001 0.403 0.806 0.028 0.128 0.275 0.220 0.386 0.521 0.468 0.662 0.805
  τMB,0.05 -0.011 0.401 0.818 0.022 0.123 0.222 0.215 0.376 0.473 0.452 0.628 0.765
BIAS (True P*)
  τMB,0.25 0.419 0.827 0.171 0.374 0.250 0.447 0.630 0.489 0.720 0.901
  τMB,0.10 0.403 0.807 0.115 0.269 0.248 0.400 0.522 0.488 0.686 0.809
  τMB,0.05 0.402 0.817 0.094 0.210 0.235 0.394 0.477 0.478 0.678 0.779
MAE (Estimated P*)
  τMB,0.25 0.115 0.420 0.827 0.146 0.220 0.379 0.256 0.445 0.631 0.500 0.713 0.898
  τMB,0.10 0.151 0.405 0.806 0.169 0.219 0.309 0.257 0.402 0.525 0.470 0.663 0.806
  τMB,0.05 0.206 0.415 0.818 0.209 0.253 0.299 0.278 0.409 0.491 0.458 0.629 0.767
MAE (True P*)
  τMB,0.25 0.420 0.827 0.227 0.379 0.255 0.450 0.630 0.489 0.720 0.901
  τMB,0.10 0.405 0.807 0.241 0.311 0.266 0.418 0.526 0.488 0.687 0.809
  τMB,0.05 0.415 0.817 0.274 0.302 0.282 0.433 0.495 0.483 0.679 0.781
MSE (Estimated P*)
  τMB,0.25 0.021 0.196 0.701 0.033 0.069 0.179 0.088 0.231 0.434 0.277 0.540 0.836
  τMB,0.10 0.036 0.200 0.682 0.045 0.073 0.136 0.093 0.206 0.334 0.256 0.486 0.700
  τMB,0.05 0.069 0.228 0.726 0.069 0.097 0.135 0.111 0.225 0.314 0.265 0.459 0.660
MSE (True P*)
  τMB,0.25 0.196 0.702 0.073 0.178 0.083 0.238 0.434 0.258 0.551 0.841
  τMB,0.10 0.199 0.685 0.086 0.137 0.097 0.225 0.336 0.273 0.526 0.708
  τMB,0.05 0.229 0.727 0.111 0.137 0.123 0.248 0.321 0.286 0.535 0.691

Notes: Results using estimated correlation structure are replicated from Table 1.  Results using true P* utilize the P* corresponding to the true values of ρ0σ0 and 

ρδσδ.  Shaded area indicates best overall performance.  True P* results are omitted under unconfoundedness since there is no unique value of P*.  For further

details, see Table 1.

Constant Treatment
Effect
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Table 7.  Monte Carlo Results: Comparison of Using True P* vs. Estimated P* When the Functional Form
                    Is Mis-Specified for the Outcome Equation.

True ρ0σ0 = 0 0.25 0.50
True ρδσδ = 0 0.25 0.50 0 0.25 0.50 0 0.25 0.50
MEAN
  Estimated P* 0.499 0.499 0.499 0.418 0.390 0.356 0.408 0.387 0.356 0.411 0.379 0.352
  True P* 0.498 0.498 0.980 0.980 0.498 0.886 0.947 0.498 0.793 0.886
BIAS (Estimated P*)
  τMB,0.25 -0.004 0.419 0.827 -0.006 0.275 0.598 0.244 0.544 0.858 0.509 0.801 1.125
  τMB,0.10 -0.001 0.403 0.807 0.001 0.261 0.542 0.256 0.501 0.796 0.489 0.748 1.048
  τMB,0.05 -0.012 0.403 0.815 0.002 0.261 0.541 0.261 0.488 0.781 0.488 0.740 1.032
BIAS (True P*)
  τMB,0.25 0.419 0.827 0.171 0.374 0.250 0.447 0.630 0.489 0.720 0.901
  τMB,0.10 0.403 0.807 0.115 0.269 0.248 0.400 0.522 0.488 0.686 0.809
  τMB,0.05 0.402 0.817 0.094 0.210 0.235 0.394 0.477 0.478 0.678 0.779
MAE (Estimated P*)
  τMB,0.25 0.115 0.420 0.827 0.130 0.280 0.598 0.256 0.544 0.858 0.509 0.801 1.125
  τMB,0.10 0.151 0.405 0.807 0.159 0.277 0.542 0.270 0.502 0.796 0.489 0.748 1.048
  τMB,0.05 0.205 0.416 0.815 0.221 0.296 0.544 0.299 0.492 0.781 0.491 0.740 1.032
MAE (True P*)
  τMB,0.25 0.420 0.827 0.227 0.379 0.255 0.450 0.630 0.489 0.720 0.901
  τMB,0.10 0.405 0.807 0.241 0.311 0.266 0.418 0.526 0.488 0.687 0.809
  τMB,0.05 0.415 0.817 0.274 0.302 0.282 0.433 0.495 0.483 0.679 0.781
MSE (Estimated P*)
  τMB,0.25 0.021 0.196 0.702 0.027 0.104 0.384 0.086 0.323 0.761 0.281 0.664 1.285
  τMB,0.10 0.037 0.200 0.684 0.039 0.105 0.327 0.098 0.285 0.667 0.270 0.594 1.122
  τMB,0.05 0.068 0.229 0.721 0.074 0.131 0.352 0.131 0.292 0.668 0.295 0.605 1.109
MSE (True P*)
  τMB,0.25 0.196 0.702 0.073 0.178 0.083 0.238 0.434 0.258 0.551 0.841
  τMB,0.10 0.199 0.685 0.086 0.137 0.097 0.225 0.336 0.273 0.526 0.708
  τMB,0.05 0.229 0.727 0.111 0.137 0.123 0.248 0.321 0.286 0.535 0.691

Notes: Results using estimated correlation structure are replicated from Table 2.  For further details, see Table 6.
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Table 8.  Monte Carlo Results: Comparison of Using True P* vs. Estimated P* When the Functional Form
                    is Mis-Specified for the Propensity Score Equation and Outcome Equation.

True ρ0σ0 = 0 0.25 0.50
True ρδσδ = 0 0.25 0.50 0 0.25 0.50 0 0.25 0.50
MEAN
  Estimated P* 0.499 0.499 0.499 0.413 0.412 0.413 0.411 0.413 0.413 0.413 0.411 0.412
  True P* 0.498 0.498 0.980 0.980 0.498 0.886 0.947 0.498 0.793 0.886
BIAS (Estimated P*)
  τMB,0.25 3.649 3.892 4.103 3.235 3.429 3.605 3.405 3.561 3.773 3.519 3.759 3.929
  τMB,0.10 3.117 3.362 3.637 2.582 2.868 3.115 2.778 3.030 3.326 2.964 3.278 3.524
  τMB,0.05 2.983 3.265 3.520 2.404 2.717 3.019 2.617 2.905 3.250 2.818 3.183 3.440
BIAS (True P*)
  τMB,0.25 3.881 4.095 8.512 8.591 3.801 8.584 8.635 3.896 8.654 8.696
  τMB,0.10 3.348 3.621 11.111 11.182 3.286 11.176 11.183 3.422 11.165 11.162
  τMB,0.05 3.250 3.510 13.573 13.667 3.182 13.627 13.595 3.300 13.582 13.546
MAE (Estimated P*)
  τMB,0.25 3.649 3.892 4.103 3.235 3.429 3.605 3.405 3.561 3.773 3.519 3.759 3.929
  τMB,0.10 3.117 3.362 3.637 2.582 2.868 3.115 2.778 3.030 3.326 2.964 3.278 3.524
  τMB,0.05 2.983 3.265 3.520 2.404 2.717 3.019 2.617 2.905 3.250 2.818 3.183 3.440
MAE (True P*)
  τMB,0.25 3.881 4.095 8.512 8.591 3.801 8.584 8.635 3.896 8.654 8.696
  τMB,0.10 3.348 3.621 11.111 11.182 3.286 11.176 11.183 3.422 11.165 11.162
  τMB,0.05 3.250 3.510 13.573 13.667 3.182 13.627 13.595 3.300 13.582 13.546
MSE (Estimated P*)
  τMB,0.25 13.521 15.380 17.054 10.586 11.890 13.127 11.705 12.811 14.358 12.495 14.231 15.545
  τMB,0.10 10.085 11.679 13.616 6.840 8.417 9.895 7.881 9.362 11.244 8.951 10.886 12.566
  τMB,0.05 9.421 11.232 12.959 6.000 7.628 9.355 7.062 8.677 10.824 8.156 10.324 12.020
MSE (True P*)
  τMB,0.25 15.289 16.988 72.714 74.101 14.669 73.935 74.819 15.388 75.142 75.857
  τMB,0.10 11.580 13.501 124.571 126.405 11.201 126.023 126.321 12.098 125.815 125.639
  τMB,0.05 11.122 12.892 186.986 189.832 10.703 188.494 187.667 11.398 187.006 185.870

Notes: Results using estimated correlation structure are replicated from Table 3.  For further details, see Table 6.

Constant Treatment Heterogeneous Treatment Effect
Effect
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Table 9.  Monte Carlo Results: Comparison of Using True P* vs. Estimated P* When the Error Distribution 
                         Is Mis-Specified.

True ρ0σ0 = 0 0.25 0.50
True ρδσδ = 0 0.25 0.50 0 0.25 0.50 0 0.25 0.50
MEAN
  Estimated P* 0.499 0.499 0.499 0.475 0.718 0.867 0.498 0.779 0.899 0.480 0.749 0.856
  True P* 0.498 0.498 0.980 0.980 0.498 0.886 0.947 0.498 0.793 0.886
BIAS (Estimated P*)
  τMB,0.25 -0.040 0.226 0.482 0.015 0.130 0.271 0.159 0.273 0.404 0.305 0.423 0.570
  τMB,0.10 -0.038 0.207 0.456 0.037 0.125 0.242 0.157 0.253 0.359 0.292 0.408 0.530
  τMB,0.05 -0.023 0.223 0.477 0.050 0.128 0.236 0.150 0.254 0.353 0.283 0.402 0.522
BIAS (True P*)
  τMB,0.25 0.228 0.484 0.115 0.269 0.131 0.271 0.404 0.275 0.422 0.570
  τMB,0.10 0.207 0.456 0.127 0.243 0.109 0.272 0.360 0.258 0.428 0.534
  τMB,0.05 0.224 0.477 0.151 0.243 0.130 0.303 0.359 0.268 0.449 0.534
MAE (Estimated P*)
  τMB,0.25 0.102 0.228 0.482 0.082 0.138 0.271 0.165 0.273 0.404 0.305 0.423 0.570
  τMB,0.10 0.102 0.212 0.456 0.105 0.152 0.245 0.172 0.255 0.359 0.292 0.408 0.530
  τMB,0.05 0.127 0.232 0.477 0.132 0.165 0.247 0.177 0.261 0.355 0.285 0.403 0.522
MAE (True P*)
  τMB,0.25 0.230 0.484 0.133 0.270 0.145 0.271 0.404 0.275 0.422 0.570
  τMB,0.10 0.212 0.456 0.159 0.249 0.136 0.274 0.361 0.260 0.429 0.534
  τMB,0.05 0.233 0.477 0.188 0.255 0.160 0.307 0.361 0.272 0.450 0.534
MSE (Estimated P*)
  τMB,0.25 0.016 0.062 0.242 0.010 0.026 0.082 0.036 0.083 0.172 0.102 0.189 0.332
  τMB,0.10 0.016 0.057 0.219 0.017 0.033 0.075 0.041 0.081 0.146 0.098 0.182 0.295
  τMB,0.05 0.025 0.074 0.247 0.026 0.041 0.082 0.046 0.089 0.149 0.101 0.183 0.291
MSE (True P*)
  τMB,0.25 0.063 0.243 0.025 0.082 0.030 0.083 0.172 0.087 0.187 0.332
  τMB,0.10 0.057 0.219 0.037 0.076 0.027 0.093 0.147 0.080 0.201 0.300
  τMB,0.05 0.074 0.247 0.050 0.085 0.040 0.119 0.155 0.096 0.226 0.307

Notes: Results using estimated correlation structure are replicated from Table 4.  For further details, see Table 6.

Constant Treatment Heterogeneous Treatment Effect
Effect
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Table 10.  Monte Carlo Results: Comparison of Using True P* vs. Estimated P* When the Functional Form 
                    Is Mis-Specified for the Outcome Equation and Error Distribution.

True ρ0σ0 = 0 0.25 0.50
True ρδσδ = 0 0.25 0.50 0 0.25 0.50 0 0.25 0.50
MEAN
  Estimated P* 0.499 0.498 0.498 0.401 0.379 0.357 0.391 0.378 0.362 0.390 0.372 0.356
  True P* 0.498 0.498 0.980 0.980 0.498 0.886 0.947 0.498 0.793 0.886
BIAS (Estimated P*)
  τMB,0.25 -0.040 0.227 0.483 0.030 0.173 0.342 0.182 0.321 0.479 0.325 0.476 0.632
  τMB,0.10 -0.039 0.207 0.456 -0.028 0.138 0.317 0.124 0.281 0.466 0.267 0.438 0.617
  τMB,0.05 -0.023 0.224 0.477 -0.010 0.135 0.293 0.142 0.269 0.440 0.270 0.424 0.597
BIAS (True P*)
  τMB,0.25 0.228 0.484 0.115 0.269 0.131 0.271 0.404 0.275 0.422 0.570
  τMB,0.10 0.207 0.456 0.127 0.243 0.109 0.272 0.360 0.258 0.428 0.534
  τMB,0.05 0.224 0.477 0.151 0.243 0.130 0.303 0.359 0.268 0.449 0.534
MAE (Estimated P*)
  τMB,0.25 0.102 0.229 0.483 0.083 0.177 0.342 0.186 0.321 0.479 0.326 0.476 0.632
  τMB,0.10 0.102 0.211 0.456 0.103 0.156 0.317 0.143 0.282 0.466 0.267 0.438 0.617
  τMB,0.05 0.126 0.233 0.477 0.131 0.168 0.297 0.171 0.274 0.440 0.273 0.424 0.597
MAE (True P*)
  τMB,0.25 0.230 0.484 0.133 0.270 0.145 0.271 0.404 0.275 0.422 0.570
  τMB,0.10 0.212 0.456 0.159 0.249 0.136 0.274 0.361 0.260 0.429 0.534
  τMB,0.05 0.233 0.477 0.188 0.255 0.160 0.307 0.361 0.272 0.450 0.534
MSE (Estimated P*)
  τMB,0.25 0.016 0.063 0.242 0.011 0.040 0.125 0.043 0.112 0.238 0.115 0.235 0.405
  τMB,0.10 0.016 0.057 0.219 0.016 0.035 0.114 0.028 0.093 0.229 0.084 0.204 0.389
  τMB,0.05 0.025 0.074 0.247 0.026 0.043 0.109 0.043 0.096 0.212 0.092 0.199 0.369
MSE (True P*)
  τMB,0.25 0.063 0.243 0.025 0.082 0.030 0.083 0.172 0.087 0.187 0.332
  τMB,0.10 0.057 0.219 0.037 0.076 0.027 0.093 0.147 0.080 0.201 0.300
  τMB,0.05 0.074 0.247 0.050 0.085 0.040 0.119 0.155 0.096 0.226 0.307

Notes: Results using estimated correlation structure are replicated from Table 5.  For further details, see Table 6.

Constant Treatment Heterogeneous Treatment Effect
Effect

0 0.15 0.30



Table 11.  Summary Statistics

Variable Mean SD Mean SD Mean SD
SBP Participation (1 = Yes) 0.234 0.423 1 0 0 0
Third Grade Child Weight
   BMI 18.404 3.861 18.956 4.296 18.236 3.702
   BMI Growth Rate 0.112 0.126 0.128 0.137 0.107 0.122
   BMI percentile 62.326 30.105 65.662 29.794 61.309 30.128
   Change in BMI Percentile 1.295 22.887 2.894 23.108 0.808 22.798
   Overweight (1 = Yes) 0.325 0.468 0.368 0.482 0.312 0.463
   Obese (1 = Yes) 0.171 0.377 0.208 0.406 0.160 0.367
Controls
Age (in months) 110.767 4.356 110.869 4.389 110.737 4.346
Gender (1 = boy) 0.507 0.500 0.523 0.500 0.503 0.500
White (1 = Yes) 0.579 0.494 0.322 0.467 0.657 0.475
Black (1 = Yes) 0.138 0.345 0.312 0.463 0.085 0.279
Hispanic (1 = Yes) 0.174 0.379 0.239 0.427 0.154 0.361
Asian (1 = Yes) 0.054 0.226 0.042 0.200 0.057 0.233
Child's Birthweight (ounces) 118.284 20.040 115.806 21.452 119.039 19.529
Child's Birthweight (1 = Missing) 0.121 0.326 0.164 0.371 0.107 0.309
Central City (1 = Yes) 0.395 0.489 0.416 0.493 0.389 0.488
Urban Fringe & Large Town (1 = Yes) 0.377 0.485 0.259 0.438 0.413 0.492
Northeast (1 = Yes) 0.182 0.386 0.115 0.319 0.202 0.402
Midwest (1 = Yes) 0.250 0.433 0.194 0.395 0.268 0.443
South (1 = Yes) 0.346 0.476 0.508 0.500 0.297 0.457
Mother's Age at First Birth ≤ 19 Years 0.227 0.419 0.404 0.491 0.173 0.378
  Old (1 = Yes)
Mother's Age at First Birth is 20-29 0.522 0.500 0.410 0.492 0.556 0.497
  Years Old (1 = Yes)
Mother's Age at First Birth (1 = Missing) 0.104 0.305 0.140 0.347 0.093 0.290
WIC Benefits During Pregnancy (1 = Yes) 0.339 0.473 0.620 0.485 0.253 0.435
WIC Benefits During Pregnancy (1 = Missing) 0.112 0.315 0.140 0.347 0.103 0.304
Mother's Education = High School (1 = Yes) 0.198 0.398 0.243 0.429 0.184 0.387
Mother's Education = Some College (1 = Yes) 0.281 0.450 0.227 0.419 0.298 0.457
Mother's Education = Bachelor's 0.144 0.351 0.040 0.196 0.176 0.381
  Degree (1 = Yes)
Mother's Education = Advanced College 0.084 0.277 0.024 0.152 0.102 0.303
  Degree (1 = Yes)
Mother's Education (1 = Missing) 0.209 0.407 0.285 0.452 0.186 0.389
Household Income (dollars) 52150 32034 34535 21588 57518 32765
Mother Employed During 3rd Grade (1 = Yes) 0.572 0.495 0.467 0.499 0.604 0.489
Mother Employed During 3rd Grade (1 = No) 0.204 0.403 0.230 0.421 0.197 0.397
Sufficient Food of Type Desired in 0.847 0.360 0.736 0.441 0.881 0.324
  Household (1 = Yes)
Sufficient Food, but not of Type Desired 0.138 0.345 0.229 0.420 0.111 0.314
  in Household (1 = Yes)
Sufficient Food (1 = Missing) 0.001 0.028 0.002 0.040 0.001 0.024
NSLP Participation (1 = Yes) 0.575 0.494 0.894 0.308 0.477 0.500
Number of Children's Books in Household 74.930 57.030 48.638 46.803 82.942 57.457
Number of Children's Books in Household 0.097 0.296 0.119 0.323 0.091 0.287
   (1 = Missing)
Notes: N = 13,534 (full sample); 3,161 (SBP participants); 10,373 (SBP non-participants).  Data are from spring third grade wave of ECLS-K.   Change in 
BMI percentile and BMI growth rate calculated using baseline data from fall kindergarten.  Omitted category for race is 'other', city type is 'small town & 
rural', mother's age at first birth is greater than 29 years old, mother's employment is 'missing', mother's education is 'less than high school', and sufficient
food is 'sometimes or often there is not enough to eat'.

Participants
SBP

Sample Non-Participants
Full SBP



Table 12.  Estimates of Effect of SBP Participation 
BMI ln(BMI) BMI Percentile Change in Pr(Overweight) Pr(Obese)

Growth BMI Percentile BMI
τOLS 0.645 0.031 0.015 3.649 1.618 0.051 0.056

(0.149) (0.007) (0.004) (0.984) (0.799) (0.016) (0.014)
 [  0.400,   0.900]  [  0.019,   0.042]  [  0.008,   0.023]  [  1.910,   5.245]  [  0.375,   2.972]  [  0.024,   0.077]  [  0.034,   0.079]

τBVN 1.425 0.041 -0.022 -2.472 -9.021 -0.053 -0.088
(2.080) (0.104) (0.061) (14.002) (10.603) (0.235) (0.202)

 [ -2.007,   4.351]  [ -0.142,   0.205]  [ -0.117,   0.085]  [-25.935,  19.667]  [-27.182,   7.817]  [ -0.434,   0.327]  [ -0.416,   0.237]
τHI 0.392 0.019 0.013 2.574 2.016 0.033 0.029

(0.131) (0.006) (0.004) (1.008) (0.842) (0.016) (0.013)
 [  0.161,   0.596]  [  0.008,   0.030]  [  0.006,   0.019]  [  0.849,   4.148]  [  0.436,   3.279]  [  0.006,   0.057]  [  0.008,   0.052]

τMB,0.25 0.288 0.019 0.010 2.694 0.603 0.063 0.008
(0.165) (0.008) (0.005) (1.175) (0.775) (0.023) (0.020)

 [  0.075,   0.594]  [  0.003,   0.031]  [  0.002,   0.019]  [  0.509,   4.276]  [ -0.446,   1.990]  [ -0.009,   0.068]  [ -0.013,   0.055]
τMB,0.10 -0.007 0.025 0.003 2.887 0.873 0.074 -0.005

(0.239) (0.012) (0.007) (1.746) (1.131) (0.031) (0.028)
 [ -0.098,   0.725]  [ -0.004,   0.036]  [ -0.001,   0.023]  [ -0.567,   5.053]  [ -0.907,   2.654]  [ -0.025,   0.076]  [ -0.023,   0.069]

τMB,0.05 -0.017 0.013 -0.007 3.657 1.474 0.061 -0.007
(0.331) (0.017) (0.010) (2.554) (1.589) (0.041) (0.033)

 [ -0.212,   0.929]  [ -0.012,   0.047]  [ -0.005,   0.028]  [ -1.918,   6.832]  [ -1.375,   3.616]  [ -0.037,   0.093]  [ -0.032,   0.078]
τMB,0.03 0.138 0.014 -0.013 2.654 0.532 0.078 -0.029

(0.446) (0.022) (0.013) (2.843) (1.962) (0.047) (0.045)
 [ -0.368,   1.099]  [ -0.021,   0.053]  [ -0.008,   0.033]  [ -2.123,   6.800]  [ -1.992,   4.027]  [ -0.056,   0.097]  [ -0.052,   0.098]

τMB,0.01 -0.413 -0.024 0.014 7.601 -1.996 0.113 -0.104
(0.724) (0.035) (0.021) (5.064) (3.619) (0.074) (0.064)

 [ -0.921,   1.516]  [ -0.038,   0.079]  [ -0.018,   0.050]  [ -5.504,  10.067]  [ -5.896,   5.839]  [ -0.095,   0.150]  [ -0.076,   0.128]

ρ0σ0 0.901 0.044 0.021 5.367 0.771 0.084 0.079
(0.380) (0.018) (0.013) (3.171) (2.108) (0.048) (0.036)

 [  0.303,   1.536]  [  0.014,   0.075]  [ -0.000,   0.043]  [  0.418,  10.691]  [ -2.699,   4.054]  [  0.012,   0.164]  [  0.017,   0.137]
ρδσδ -1.604 -0.061 -0.003 -2.759 5.765 -0.038 -0.006

(1.338) (0.069) (0.041) (9.784) (7.128) (0.156) (0.131)
 [ -3.646,   0.772]  [ -0.168,   0.058]  [ -0.075,   0.064]  [-18.844,  14.201]  [ -5.756,  17.586]  [ -0.281,   0.222]  [ -0.209,   0.203]

P* 0.438 0.276 0.419 0.172 0.980 0.207 0.450
(0.261) (0.265) (0.315) (0.315) (0.240) (0.311) (0.306)

 [  0.041,   0.886]  [  0.037,   0.904]  [  0.042,   0.978]  [  0.031,   0.978]  [  0.237,   0.980]  [  0.032,   0.973]  [  0.028,   0.960]
Bias(P*) -0.001 0.000 0.031 5.517 2.191 0.093 0.120

(0.649) (0.037) (0.024) (5.221) (3.062) (0.090) (0.084)
 [ -0.005,   1.741]  [ -0.000,   0.101]  [ -0.000,   0.067]  [ -0.031,  15.368]  [ -0.497,   8.139]  [ -0.000,   0.259]  [ -0.000,   0.239]

Notes: Treatment is defined as participation in SBP.  Standard errors in parenthesis and 90% empirical confidence intervals obtained using 500 bootstrap repetitions.  OLS = ordinary least
squares; BVN = Heckman bivariate normal selection model; HI = Hirano and Imbens (2001) normalized estimator; MB = minimum biased estimator using θ = 0.25, 0.10, 0.05, 0.03, or 0.01.




