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1 Introduction

The increasing availability of large micro-level data sets has spurred interest on meth-
ods for estimation of models with high-dimensional fixed-effects. Researchers in sev-
eral fields such as economics, sociology, and political science among others, find the
introduction of fixed effects a particularly appealing way of controlling for unob-
served heterogeneity that is shared among groups of observations. In this case it
becomes possible to account for all inter-group variability by adding to the set of
regressors dummy variables that absorb group specific heterogeneity. This approach
has the advantage of allowing for the existence of general patterns of correlation be-
tween the unobserved effects and the other regressors. In practice, when estimating
a model with a single fixed-effect (i.e. a factor in the analysis of covariance) one
is not required to actually add the group dummy variables to the set of regressors.
This is particularly convenient when dealing with high-dimensional fixed effects, that
is, in a situation when the number of groups (dummy variables) is very large. For
several common procedures such as linear regression, Poisson and logit regression the
fixed effect can be eliminated from the model making it possible to obtain estimates
for the coefficients of the relevant regressors without having to introduce the group
dummy variables in the model. For other nonlinear models it is still possible to
avoid the explicit introduction of dummy variables to account for the fixed effect by
modifying the iterative algorithm used to solve the maximum-likelihood problem [see
Greene (2004)]. However, there is no simple solution when there is more than one
high-dimensional fixed effect. A notable example are the large employer-employee
panel data sets commonly used in the labor economics literature. When studying
relations in the labor market researchers often want to simultaneously account for
two sources of unobserved heterogeneity, the firm and the worker. Explicit intro-
duction of dummy variables is not an option because the number of units (groups)
for either firms or workers is too large. Other well known examples of large data
sets with obvious sources of unobserved heterogeneity are panel data sets of patient
claims data - here the potential sources of heterogeneity are the patient, the doctor
and the hospital; and panel data sets on student performance - the potential sources
of heterogeneity being the students, the teachers, and the school.

Abowd et al. (1999) tackled the problem of accounting for two high-dimensional
fixed effects in the linear regression problem. In a widely cited paper, the authors pro-
posed several methods that provide approximate solutions to this problem.1 Later,
in an unpublished paper Abowd et al. (2002) presented an iterative algorithm that
leads to the exact solution for the least square estimation of the model with two

1For a discussion on the implementation of these methods in Stata see Andrews et al. (2006).
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fixed effects. The user-written command a2reg is a Stata implementation of this
algorithm by Amine Ouazad.2 In a recent article published in this journal Cor-
nelissen (2008) presented a new user written command, felsdvreg, which consists
of a memory saving procedure for estimation of a linear regression model with two
high-dimensional fixed effects.

In our own work, Carneiro et al. (2008), we were faced with the problem of
estimating a linear regression model with 26 variables and two high-dimensional
fixed effects (firm and worker) using a linked employer-employee data set with over
26 million observations. Implementation of the user-written commands discussed
above in a computer with 8 Gigabytes of RAM and running Stata MP for Windows
failed because of memory limitations. However, using a simple to implement iterative
procedure we were able to estimate the regression coefficients and the fixed effects
themselves. The approach is computationally intensive but it has the advantage
of imposing minimal memory requirements. In this paper we present a detailed
discussion of the method proposed in Carneiro et al. (2008) and show how it can
be extended to non-linear models and possibly to applications with more than two
high-dimensional fixed effects.

2 The Linear Regression Model

2.1 One fixed effect

To start with consider the conventional linear regression model setup:

yi = β1x1i + β2x2i + ... + βkxki + εi (1)

or, more compactly,

Y = Xβ + ε. (2)

Application of the least squares method results in a set of equations (the normal
equations) given below:




∂SS
∂β1

=
∑

i x1i(yi − β1x1i − β2x2i − ...− βkxki) = 0
∂SS
∂β2

=
∑

i x2i(yi − β1x1i − β2x2i − ...− βkxki) = 0

...
∂SS
∂βk

=
∑

i xki(yi − β1x1i − β2x2i − ...− βkxki) = 0


 (3)

2Apparently a2reg should only be used when there are no nested fixed effects.
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These equations have a closed form solution, the least squares estimator, given by
the well-known formula:

β̂ = (X′X)
−1

X′Y . (4)

However, the above formula is one of several alternatives to find the solution to (3).

For instance, we can solve for β̂ using a partitioned iterative algorithm. An example
of such algorithm is shown below:

• Initialize β
(0)
1 , β

(0)
2 , ..., β

(0)
k

• Solve for β
(1)
1 as the solution to ∂SS

∂β1
=

∑
i x1i(yi−β1x1i−β

(0)
2 x2i−...−β

(0)
k xki) =

0

• Solve for β
(1)
2 as the solution to ∂SS

∂β2
=

∑
i x2i(yi−β

(1)
1 x1i−β2x2i−...−β

(0)
k xki) =

0

• ...

• Repeat until convergence.

Algorithms such as this are discussed in Smyth (1996). This algorithm is known
as the ”zigzag” or full Gauss-Seidel algorithm. According to Smyth this algorithm
produces a stable but slow iteration depending on the correlation of the parameters.
In this particular case use of an iterative algorithm to solve the normal equations
is highly inefficient. However, we should note that this implementation has the
advantage of not requiring the explicit calculation of the inverse of the X′X matrix.

Consider now what happens if we include a set of dummy variables to account
for a fixed effect in the regression. In that case,

Y = Zβ + Dα + ε (5)

where Z is the matrix of explanatory variables with N × k dimension and D is the
N ×G1 matrix of ”dummy” variables. Now, we can write the normal equations as:

[
Z′Z Z′D
D′Z D′D

] [
β
α

]
=

[
Z′Y
D′Y

]
(6)

which can be arranged to show

[
Z′Zβ + Z′Dα = Z′Y
D′Zβ + D′Dα = D′Y

]
. (7)

4



Solving each set of equations independently yields,

[
β = (Z′Z)

−1
Z′ (Y−Dα)

α = (D′D)
−1

D′ (Y− Zβ)

]
. (8)

The above partition of the normal equations suggests a convenient iteration strat-
egy. To obtain the exact least squares solution one can simply alternate between
estimation of β and estimation of α. But the key thing to note is that we no longer
have to worry about the dimensionality of D. The expression (D′D)

−1
D′ used on

the estimation of α translates into a simple group average of the residuals of the
regression of Y on Z. On the other hand, the expression Dα that shows up on the
equation for β is a column vector containing all the elements of α. Estimation of β
consists of a simple linear regression of a transformed Y on Z. In our implementation
instead of transforming Y we will keep Y as the dependent variable and add Dα
as an additional covariate. When the estimation procedure converges the coefficient
on Dα must equal one and the vector Dα will contain all the estimated coefficients
for the group dummy variables. With this approach we avoided inversion of a po-
tentially large matrix that would be required if we had simply added D to the set
of regressors. As an illustration of this approach we use the Stata data set nlswork
and replicate the coefficient estimates obtained with the fixed effect estimator for the
linear regression model as shown in page 400 of the [XT] Stata Manual version 10.

. webuse nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. generate age2 = age^2
(24 missing values generated)

. generate ttl_exp2 = ttl_exp^2

. generate tenure2 = tenure^2
(433 missing values generated)

. generate double fe1=0

. local rss1=0

. local dif=1

. local i=0

. while abs(‘dif’)>epsdouble() {
2. quietly {
3. regress ln_w age* ttl_exp* tenure* not_smsa south fe1
4. local rss2=‘rss1’
5. local rss1=e(rss)
6. local dif=‘rss2’-‘rss1’
7. capture drop yhat
8. predict double yhat
9. generate double temp1=ln_w-yhat+_b[fe1]*fe1
10. capture drop fe1
11. egen double fe1=mean(temp1), by(idcode)
12. capture drop temp1
13. local i=‘i’+1
14. }
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15. }

. di "Total Number of Iterations --> " ‘i’
Total Number of Iterations --> 131

. regress ln_w age* ttl_exp* tenure* not_smsa south fe1

Source SS df MS Number of obs = 28093
F( 9, 28083) = 7007.50

Model 4437.88225 9 493.098028 Prob > F = 0.0000
Residual 1976.12232 28083 .070367209 R-squared = 0.6919

Adj R-squared = 0.6918
Total 6414.00457 28092 .228321393 Root MSE = .26527

ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

age .0359987 .0024266 14.83 0.000 .0312424 .0407549
age2 -.000723 .0000394 -18.34 0.000 -.0008002 -.0006457

ttl_exp .0334668 .0016297 20.53 0.000 .0302724 .0366611
ttl_exp2 .0002163 .0000873 2.48 0.013 .0000452 .0003873

tenure .0357539 .0013781 25.94 0.000 .0330528 .038455
tenure2 -.0019701 .0000939 -20.98 0.000 -.0021541 -.0017861

not_smsa -.0890108 .0036161 -24.62 0.000 -.0960985 -.0819231
south -.0606309 .0033127 -18.30 0.000 -.067124 -.0541379

fe1 1 .0051626 193.70 0.000 .989881 1.010119
_cons 1.037301 .0340432 30.47 0.000 .9705747 1.104027

As implied earlier, the estimated coefficients are identical to those obtained using
[XT] xtreg with the fe option. Note also that the regression includes an additional
variable, fe1, with a coefficient of one. This variable was created during estimation
and contains the estimates of the fixed effect.

2.2 Two fixed effects

Suppose now that instead of a single high-dimensional fixed-effect we have two high-
dimensional fixed-effects. That is, we now intend to estimate the following model

Y = Zβ + D1α + D2γ + ε , (9)

where D1 is N×G1 and D2 is N×G2 and both G1 and G2 have high dimensionality.
As discussed earlier, in this particular case estimation of the linear regression model is
complicated. However, implementation of the partitioned algorithm discussed above
is straightforward. Proceeding as we did before, we can solve the normal equations
as 


β = (Z′Z)

−1
Z′ (Y−D1α−D2γ)

α = (D′
1D1)

−1
D′

1 (Y− Zβ −D2γ)

γ = (D′
2D2)

−1
D′

2 (Y− Zβ −D1γ)


 (10)

Iterating between these sets of equations provides us with the exact least squares
solution. All we have to do is compute several linear regressions with k explana-
tory variables and compute group means of residuals. To illustrate the approach we
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modify the above algorithm and apply it to the ancillary data set that accompanies
the felsdvreg command developed by Thomas Cornelissen. As before, we intro-
duce D1α and D2γ as additional regressors instead of subtracting them from the
dependent variable.

. use felsdvsimul, clear

. generate double temp=0

. generate double fe1=0

. generate double fe2=0

. local rss1=0

. local dif=1

. local i=0

. while abs(‘dif’)>epsdouble() {
2. quietly {
3. regress y x1 x2 fe1 fe2
4. local rss2=‘rss1’
5. local rss1=e(rss)
6. local dif=‘rss2’-‘rss1’
7. capture drop res
8. predict double res, res
9. replace temp=res+_b[fe1]*fe1, nopromote
10. capture drop fe1
11. egen double fe1=mean(temp), by(i)
12. replace temp=res+_b[fe2]*fe2, nopromote
13. capture drop fe2
14. egen double fe2=mean(temp), by(j)
15. local i=‘i’+1
16. }
17. }

. di "Total Number of Iterations --> " ‘i’
Total Number of Iterations --> 694

. regress y x1 x2 fe1 fe2

Source SS df MS Number of obs = 100
F( 4, 95) = 107.34

Model 9385.65759 4 2346.4144 Prob > F = 0.0000
Residual 2076.72508 95 21.860264 R-squared = 0.8188

Adj R-squared = 0.8112
Total 11462.3827 99 115.781643 Root MSE = 4.6755

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1 1.029258 .162224 6.34 0.000 .707203 1.351314
x2 -.709482 .1604068 -4.42 0.000 -1.02793 -.3910342
fe1 1 .0876916 11.40 0.000 .8259101 1.17409
fe2 1 .0738805 13.54 0.000 .8533287 1.146671

_cons -1.995179 .4739307 -4.21 0.000 -2.936051 -1.054308

As hinted above, the estimates for the model coefficients are identical to the least
squares results with all dummy variables included that is reported in Cornelissen
(2008). We should note that the algorithm took 694 iterations to converge. This
is one of the drawbacks of this approach. Fortunately, as discussed below, there is
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substantial room for improvement. One obvious simplification is to sweep out one of
the fixed effects by subtracting the group mean from all variables. By doing this we
only need to deal with one fixed effect. This means that with minor modifications
the code shown above can be used to estimate a model with 3 high dimensional fixed
effects!

In Carneiro et al. (2008) we estimated a conventional Mincerian wage equation
with two high dimensional fixed effects. Our data source is the Quadros do Pessoal,
a mandatory employment survey collected yearly by the Portuguese Ministry of La-
bor and Social Security. The dataset comprised a total of 26,085,101 observations
spanning from 1986 to 2005. In our estimation we wanted to account for firm, worker
and year fixed effects. With 541,229 firms and 7,155,898 workers employing dummy
variables for one of the fixed effects was not an option. But in the following example
we show the output result of one specification with 26 covariates and the two high
dimensional fixed effects estimated using the approach outlined above.

. regress ln_real_hw school* age* ten* yr* fe1 fe2

Source SS df MS Number of obs =26085101
F(28,26085072)= .

Model 7623399.13 28 272264.255 Prob > F = 0.0000
Residual 606248.16 26085072 .023241192 R-squared = 0.9263

Adj R-squared = 0.9263
Total 8229647.29 26085100 .315492265 Root MSE = .15245

ln_real_hw Coef. Std. Err. t P>|t| [95% Conf. Interval]

school2 .0086473 .0001819 47.54 0.000 .0082908 .0090038
school3 .0326273 .0001993 163.69 0.000 .0322366 .0330179
school4 .0482319 .000202 238.71 0.000 .0478359 .0486279
school5 .1539935 .0002913 528.64 0.000 .1534226 .1545645
school6 .2373886 .000246 964.89 0.000 .2369064 .2378708

age .0257784 .0000212 1216.00 0.000 .0257369 .02582
agesq -.0002749 2.77e-07 -993.19 0.000 -.0002754 -.0002744
tenure .0007567 9.38e-07 806.43 0.000 .0007549 .0007586
tensq -1.49e-06 2.59e-09 -573.79 0.000 -1.49e-06 -1.48e-06
yr1987 .0504275 .0002091 241.22 0.000 .0500178 .0508373
yr1988 .0659034 .0002072 318.08 0.000 .0654973 .0663095
yr1989 .0800703 .0002049 390.75 0.000 .0796686 .0804719
yr1991 .1895915 .0002019 938.86 0.000 .1891957 .1899872
yr1992 .2346536 .0002009 1167.74 0.000 .2342597 .2350474
yr1993 .2418796 .0002008 1204.65 0.000 .241486 .2422731
yr1994 .2669475 .0001995 1338.10 0.000 .2665565 .2673386
yr1995 .2793258 .0001964 1422.32 0.000 .2789409 .2797107
yr1996 .2905584 .0001971 1474.26 0.000 .2901721 .2909447
yr1997 .3383318 .0001937 1746.45 0.000 .3379521 .3387115
yr1998 .3827365 .000194 1973.12 0.000 .3823563 .3831166
yr1999 .4240073 .0001925 2203.00 0.000 .4236301 .4243845
yr2000 .433117 .0001911 2266.20 0.000 .4327424 .4334916
yr2002 .450015 .0001921 2342.35 0.000 .4496385 .4503916
yr2003 .4531523 .0001913 2368.54 0.000 .4527773 .4535273
yr2004 .4784224 .0001903 2514.21 0.000 .4780495 .4787954
yr2005 .4877544 .0001886 2586.27 0.000 .4873848 .4881241

fe1 1 .0001086 9212.19 0.000 .9997872 1.000213
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fe2 1 .0001162 8602.81 0.000 .9997722 1.000228
_cons -.6465547 .0004291 -1506.62 0.000 -.6473958 -.6457136

2.3 Estimation of the Standard Errors

So far the discussion has focused on estimation of the β coefficients. To provide the
standard errors associated with the estimator of β we would need to estimate

V (β̂) = σ2 (X′X)
−1

, (11)

which again raises the problem of inverting the X′X matrix. An alternative solution
to estimate the elements of V (β̂) is to use the known relation:

V (β̂j) =
σ2

Ns2
j(1−R2

j.123...)
. (12)

where s2
j is the sample variance associated with the xj variable and R2

j.123... is the
coefficient of determination obtained from a regression of xj on all other remaining
explanatory variables. Estimation of σ2 is easy because the final regression that
provides the estimates of β has the correct sum of squared residuals (SSR). The
remaining difficulty is the computation of the number of degrees of freedom associ-
ated with SSR. Knowing the dimension of X is not sufficient because some of the
coefficients for the fixed effects may not be identifiable. Abowd et al. (2002) de-
veloped an algorithm that can be used for determining the number of identifiable
effects. The algorithm is used to identify ”mobility groups” but it turns out that
the total number of ”mobility groups”, which we denote by M , is also the number of
non-identified coefficients. Hence, the degrees of freedom associated with SSR equal
N − k − G1 − G2 + M . Computation of R2

j.123... is no longer a problem because we
know how to estimate a model with high-dimensional effects. However, this may be
time consuming because it would require estimation of a regression with two high di-
mensional fixed effects for each of the regressors. Fortunately, there is an alternative
strategy that will produce faster results. Simply put, the idea consists of estimating
the model in two steps. In the first step we expurgate the two fixed effects from all
variables in the model. This involves running a linear regression of each individual
variable on the high-dimensional effects only and storing the residuals. In the sec-
ond step we run the regression of interest and the regressions required by (12) using
the stored residuals of the variables obtained in the first step instead of the original
variables. Because we are not dealing with the high-dimensional fixed effects, the
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regressions in the second step are very easy to implement. One reason why this
approach works well is because the calculations in the first step are relatively simple.
We can see from (10) that in this case the algorithm involves only the computation
of means. In the next example we use again the ancillary data set that accompa-
nies the felsdvreg user-written command and show how to compute the (corrected)
standard errors in a regression with two high-dimensional fixed effects. In the Stata
code shown below we speed up the algorithm by following the common practice of
sweeping one of the fixed effects by demeaning the variables.

. use felsdvsimul, clear

. gen double temp=0

. gen double fe2=0

. gen double lastfe2=0

. foreach var of varlist y x1 x2 {
2. quietly {
3. local i=0
4. local dif=1
5. capture drop mean
6. egen double mean=mean(‘var’), by(i)
7. replace ‘var’=‘var’-mean
8. while abs(‘dif’)>epsfloat() {
9. replace lastfe2=fe2, nopromote
10. capture drop mean
11. egen double mean=mean(fe2), by(i)
12. capture drop fe2
13. egen double fe2=mean(‘var’+mean), by(j)
14. replace temp=sum(reldif(fe2,lastfe2)), nopromote
15. local dif=temp[_N]/_N
16. local i=‘i’+1
17. }
18. noisily di "Total Number of Iterations for ‘var’ --> " ‘i’
19. gen double ‘var’_res=‘var’-fe2+mean
20. }
21. }

Total Number of Iterations for y --> 17
Total Number of Iterations for x1 --> 19
Total Number of Iterations for x2 --> 18

. regress y_res x1_res x2_res, nocons

Source SS df MS Number of obs = 100
F( 2, 98) = 24.39

Model 1033.49121 2 516.745607 Prob > F = 0.0000
Residual 2076.72505 98 21.1910719 R-squared = 0.3323

Adj R-squared = 0.3187
Total 3110.21626 100 31.1021626 Root MSE = 4.6034

y_res Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1_res 1.029258 .1805092 5.70 0.000 .6710437 1.387473
x2_res -.709482 .1757232 -4.04 0.000 -1.058199 -.3607649

Notice that the iterative procedure was much faster, taking less than 20 iterations
for each variable. In this example there are 100 observations, 6 ”mobility groups”,
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G1 = 15 and G2 = 20 and two regressors, x1 and x2. This means that there are 69
degrees of freedom. We can now proceed to calculate the standard errors associated
with the coefficients. We will do it only for the variable x1 because the calculations
are similar for x2.

. local s2=‘e(rss)’/69

. quietly sum x1

. local N=r(N)

. local varx1=r(Var)

. local TSSx1=‘varx1’*(‘N’-1)

. quietly regress x1_res x2_res

. local RSSx1=e(rss)

. local R2x1=1-‘RSSx1’/‘TSSx1’

. local sebx1=sqrt(‘s2’/((‘N’-1)*‘varx1’*(1-‘R2x1’)))

. di "The standard error associated with x1 is --> ‘sebx1’"
The standard error associated with x1 is --> .2151235245693864

The estimates for the coefficients of the fixed effects can be easily recovered by
implementing the same iterative procedure to the residuals that are obtained when
we subtract the effect of x1 and x2 from y.

. qui regress y_res x1_res x2_res, nocons

. gen double dum=y-_b[x1_res]*x1-_b[x2_res]*x2

. capture drop mean

. egen double mean=mean(dum), by(i)

. qui replace dum=dum-mean

. local i=0

. local dif=1

. while abs(‘dif’)>epsfloat() {
2. qui replace lastfe2=fe2, nopromote
3. capture drop mean
4. egen double mean=mean(fe2), by(i)
5. capture drop fe2
6. egen double fe2=mean(dum+mean), by(j)
7. qui replace temp=sum(reldif(fe2,lastfe2)), nopromote
8. local dif=temp[_N]/_N
9. local i=‘i’+1
10. }

. di "Total Number of Iterations for fe2 --> " ‘i’
Total Number of Iterations for fe2 --> 17

. quietly replace dum=dum-fe2

. egen double fe1=mean(dum), by(i)

. regress y x1 x2 fe1 fe2, nocons

Source SS df MS Number of obs = 100
F( 4, 96) = 44.93

Model 3887.8086 4 971.952151 Prob > F = 0.0000
Residual 2076.72505 96 21.6325526 R-squared = 0.6518

Adj R-squared = 0.6373
Total 5964.53365 100 59.6453365 Root MSE = 4.6511
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y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1 1.029258 .1715101 6.00 0.000 .6888133 1.369703
x2 -.7094819 .1701882 -4.17 0.000 -1.047303 -.3716611
fe1 1 .192855 5.19 0.000 .617186 1.382814
fe2 1 .0895005 11.17 0.000 .8223429 1.177657

We confirm that the estimated coefficients are correct by adding the variables fe1

and fe2 to the linear regression of y on x1 and x2. As expected the estimated β
coefficients are the correct ones and the coefficients associated with the variables fe1
and fe2 equal one.

Subtracting the influence of the fixed effects from each variable and working
only with the residuals has some advantages compared to the process shown earlier
entailing direct estimation of the full regression with all the fixed effects added. First,
the simple regressions in step 1 are likely to converge at a faster rate. Second, it
is possible to test different specifications of the model using only the residuals from
the variables without the need to deal with the high dimensional fixed effects. And
third, when dealing with very large data sets we can substantially reduce memory
requirements because during step 1 we only need to load in memory the variable
being handled and the group identifiers for the fixed effects. In fact we could do
even better because the solution to the algorithm is performed independently across
”mobility groups” meaning that it would be possible to load each ”mobility group”
in memory separately.

3 Extension to Non-linear Models

In this section we show that the iterative approach outlined earlier for the linear
regression model can be extended to non-linear models. Lets first consider a typical
Poisson regression model with expected value given by

E(yi) = λi = exp(x′iβ) . (13)

We know that the maximum-likelihood estimators are obtained as the solution
to:

∂ ln L

∂β
=

∑
i=1

yixi − xi exp(x′iβ)

=
∑
i=1

(yi − exp(x′iβ))xi = 0
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If one of the regressors is a dummy variable, say dj, then its estimated coefficient,
say αj, has a closed form solution given by:

exp(αj) = d′jy × [d′j exp([x′iβ](j))]
−1 (14)

where the subscript (j) in the argument of the exponential function is used to note
that dj is excluded from the argument. The above expression suggests a simple
iterative strategy, much like the one that was used for the linear regression. We can
alternate between estimation of a Poisson regression with k explanatory variables and
calculation of the estimates for all the coefficients of the fixed effects using (14). These
estimates can be kept in a single column vector. To show this algorithm at work we
replicate the estimates of the Poisson model with fixed effects which appears in page
348 of the [XT] Stata Manual Version 10 as an illustration of the [XT] xtpoisson
command with the option fe. Note that the example shown in the manual includes
an exposure variable, service, which we incorporated in the algorithm.

. webuse ships, clear

. qui poisson acc op_75_79 co_65_69 co_70_74 co_75_79, exposure(service) nolog

. keep if e(sample)
(6 observations deleted)

. bys ship: egen sumy=total(acc)

. gen double off=0

. gen double temp=0

. local dif=1

. local ll1=0

. local i=0

. while abs(‘dif’)>epsdouble() {
2. qui poisson acc op_75_79 co_65_69 co_70_74 co_75_79, off(off) nocon
3. local ll2=‘ll1’
4. local ll1=e(ll)
5. capture drop xb
6. predict double xb, xb
7. qui replace temp=xb-off+log(service), nopromote
8. capture drop sumx
9. bys ship: egen double sumx=total(exp(temp))
10. qui replace off=log(sumy/sumx)+log(service), nopromote
11. local dif=‘ll2’-‘ll1’
12. local i=‘i’+1
13. }

. di "Total Number of Iterations --> " ‘i’
Total Number of Iterations --> 103

. poisson acc op_75_79 co_65_69 co_70_74 co_75_79, nocon off(off) irr nolog

Poisson regression Number of obs = 34
Wald chi2(4) = 287.40

Log likelihood = -68.280771 Prob > chi2 = 0.0000

accident IRR Std. Err. z P>|z| [95% Conf. Interval]

op_75_79 1.468831 .1634895 3.45 0.001 1.180941 1.826903
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co_65_69 2.008003 .2086755 6.71 0.000 1.637969 2.46163
co_70_74 2.26693 .2814137 6.59 0.000 1.777342 2.89138
co_75_79 1.573695 .3184952 2.24 0.025 1.058397 2.339875

off (offset)

Extending the algorithm to two fixed effects is straightforward. We use the same data
set as before but instead of including the dummy variables for year of construction
(co 65 69, co 70 74 and co 75 79) we treat the year of construction as a fixed effect,
that is, we let the variable yr con identify a second fixed effect. Now the algorithm
is implemented without an exposure variable. For comparability purposes we first
run a Poisson regression including dummy variables for both fixed effects.

. webuse ships, clear

. local dif=1

. xi: poisson acc op_75_79 i.yr_con i.ship, nolog
i.yr_con _Iyr_con_1-4 (naturally coded; _Iyr_con_1 omitted)
i.ship _Iship_1-5 (naturally coded; _Iship_1 omitted)

Poisson regression Number of obs = 34
LR chi2(8) = 475.45
Prob > chi2 = 0.0000

Log likelihood = -118.47588 Pseudo R2 = 0.6674

accident Coef. Std. Err. z P>|z| [95% Conf. Interval]

op_75_79 .2928003 .1127466 2.60 0.009 .071821 .5137796
_Iyr_con_2 .5824489 .1480547 3.93 0.000 .2922671 .8726308
_Iyr_con_3 .4627844 .151248 3.06 0.002 .1663437 .7592251
_Iyr_con_4 -.1951267 .2135749 -0.91 0.361 -.6137258 .2234724
_Iship_2 1.79572 .1666196 10.78 0.000 1.469151 2.122288
_Iship_3 -1.252763 .3273268 -3.83 0.000 -1.894312 -.6112142
_Iship_4 -.9044563 .2874597 -3.15 0.002 -1.467867 -.3410457
_Iship_5 -.1462833 .2351762 -0.62 0.534 -.6072202 .3146537

_cons 1.308451 .1972718 6.63 0.000 .9218049 1.695096

. keep if e(sample)
(6 observations deleted)

. bys ship: egen sumy1=total(acc)

. bys yr_con: egen sumy2=total(acc)

. gen double off=0

. gen double temp=0

. gen double temp1=0

. gen double temp2=0

. gen double fe1=0

. gen double fe2=0

. local ll1=0

. local i=0

. while abs(‘dif’)>epsdouble() {
2. qui poisson acc op_75_79, nocons offset(off) nolog
3. local ll2=‘ll1’
4. local ll1=e(ll)
5. capture drop xb
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6. predict double xb, xb
7. qui replace temp1=xb-off+fe2, nopromote
8. capture drop sumx
9. bys ship: egen double sumx=total(exp(temp1))
10. qui replace fe1=log(sumy1/sumx), nopromote
11. qui replace temp2=xb-off+fe1, nopromote
12. capture drop sumx
13. bys yr_con: egen double sumx=total(exp(temp2))
14. qui replace fe2=log(sumy2/sumx), nopromote
15. qui replace off=fe1+fe2
16. local dif=‘ll2’-‘ll1’
17. local i=‘i’+1
18. }

. di "Total Number of Iterations --> " ‘i’
Total Number of Iterations --> 46

. poisson acc op_75_79, nocons offset(off) nolog

Poisson regression Number of obs = 34
Wald chi2(1) = 18.60

Log likelihood = -118.47588 Prob > chi2 = 0.0000

accident Coef. Std. Err. z P>|z| [95% Conf. Interval]

op_75_79 .2928003 .0678844 4.31 0.000 .1597493 .4258513
off (offset)

Application of the algorithm to Poisson regression was straightforward because we
could find a closed form solution for the coefficients associated with the fixed effects.
However, in most non-linear regression models the fixed effects do not have a closed-
form solution. As shown in Guimarães (2004) models from the multinomial logit
family such as logit, multinomial logit and conditional logit can all be estimated
using Poisson regression meaning that the above algorithm could be used for these
cases. The inexistence of a closed-form solution for the coefficients of the fixed-
effects does not invalidate use of the ”zigzag” algorithm but it requires the use of a
numerical optimization routine to solve for the coefficients of the fixed-effects. This
may slow down the algorithm considerably. As an example of this approach we show
an application of the ”zigzag” algorithm to estimate a negative binomial model with
fixed effects.3

. webuse ships, clear

. xi: nbreg acc op_75_79 co_65_69 co_70_74 co_75_79 i.ship, nolog
i.ship _Iship_1-5 (naturally coded; _Iship_1 omitted)

Negative binomial regression Number of obs = 34
LR chi2(8) = 41.45

Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = -88.445258 Pseudo R2 = 0.1898

accident Coef. Std. Err. z P>|z| [95% Conf. Interval]

3The ”fixed effects negative binomial model” ([XT] xtnbreg with the fe option) is not equivalent
to a negative binomial model with dummy variables added for fixed effects (see Guimarães (2008)).
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op_75_79 .3324104 .328116 1.01 0.311 -.3106852 .975506
co_65_69 .8380919 .4378077 1.91 0.056 -.0199955 1.696179
co_70_74 1.658684 .4850461 3.42 0.001 .708011 2.609357
co_75_79 .8604224 .5955773 1.44 0.149 -.3068876 2.027732
_Iship_2 2.35359 .4701847 5.01 0.000 1.432045 3.275135
_Iship_3 -1.104561 .5214874 -2.12 0.034 -2.126657 -.082464
_Iship_4 -.9606946 .4905212 -1.96 0.050 -1.922098 .0007092
_Iship_5 -.077889 .4780747 -0.16 0.871 -1.014898 .8591201

_cons .4230202 .5218569 0.81 0.418 -.5998006 1.445841

/lnalpha -.7372302 .3814595 -1.484877 .0104166

alpha .4784372 .1825044 .2265302 1.010471

Likelihood-ratio test of alpha=0: chibar2(01) = 60.06 Prob>=chibar2 = 0.000

. keep if e(sample)
(6 observations deleted)

. egen id=group(ship)

. qui sum id

. local maxg=r(max)

. local dif=1

. local ll1=0

. local i=0

. gen double off1=0

. gen double off2=0

. while abs(‘dif’)>epsdouble() {
2. qui nbreg acc op_75_79 co_65_69 co_70_74 co_75_79, nocons offset(off1) nol

> og
3. local lna=log(e(alpha))
4. constraint define 1 [lnalpha]_cons=‘lna’
5. local ll2=‘ll1’
6. local ll1=e(ll)
7. capture drop xb
8. predict double xb, xb
9. qui replace off2=xb-off1, nopromote
10. forval j=1/‘maxg’ {
11. qui nbreg acc if id==‘j’, offset(off2) constraint(1) nolog
12. qui replace off1=_b[_cons] if e(sample), nopromote
13. }
14. local dif=‘ll2’-‘ll1’
15. local i=‘i’+1
16. }

. di "Total Number of Iterations -->" ‘i’
Total Number of Iterations -->122

. nbreg acc op_75_79 co_65_69 co_70_74 co_75_79, offset(off1) nocons nolog

Negative binomial regression Number of obs = 34
Dispersion = mean Wald chi2(4) = 76.36
Log likelihood = -88.445258 Prob > chi2 = 0.0000

accident Coef. Std. Err. z P>|z| [95% Conf. Interval]

op_75_79 .3324104 .3022232 1.10 0.271 -.2599362 .924757
co_65_69 .838092 .3036241 2.76 0.006 .2429996 1.433184
co_70_74 1.658684 .3187183 5.20 0.000 1.034008 2.283361
co_75_79 .8604225 .4997525 1.72 0.085 -.1190744 1.839919
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off1 (offset)

/lnalpha -.7372302 .3659848 -1.454547 -.0199132

alpha .4784373 .1751007 .2335061 .9802837

Likelihood-ratio test of alpha=0: chibar2(01) = 88.87 Prob>=chibar2 = 0.000

Following an approach similar to the one used for the negative binomial model it
should be possible to extend the algorithm to other non-linear models. The algorithm
should work well with models that have globally concave log-likelihood functions such
as the ones discussed here. Finally, we should note that with the ”zigzag” algorithm
we obtain the correct value of the log-likelihood function. This means that we can
very easily implement statistical tests based upon likelihood ratios.

4 Conclusion

In this paper we successfully explored the implementation of the full Gauss-Seidel
algorithm to estimate regression models with high-dimensional fixed-effects. The
main advantage of this procedure is the ability to estimate a very large number of two-
way fixed effects under minimal memory requirements. Generalizing the procedure
to non-linear regression models is straightforward, in particular if there is a closed-
form solution for the fixed-effect. Extending the procedure to three-way fixed effects
(for example: worker, firm, and match-specific effects) is also feasible, and is likely
to prove very fruitful.

We do not claim, however, that our procedure is a superior estimation strategy.
Quite to the contrary, the ”zigzag” algorithm can be very slow and researchers should
use more efficient estimation techniques whenever available. We know that the linear
regression model with two high-dimensional fixed effects is estimated much more ef-
ficiently with the user-written command felsdvreg the same way that xtpoisson is
the better approach to estimate a Poisson model with a single high dimensional fixed-
effect. Nevertheless, there are circumstances when the ”zigzag” algorithm may prove
useful, namely when existing approaches do not work because of hardware (memory)
limitations or when there are no other known ways of estimating the model. As we
mentioned earlier the estimation strategy outlined in this paper is time consuming
but it does have the advantage of imposing minimum memory requirements and
being simple to implement. There are many ways to improve the speed of the algo-
rithms discussed above and research is needed to figure out how to improve them.
Some obvious things to try is to write more efficient Stata code (possibly Mata), to
work on obtaining good starting values and to use some acceleration technique for
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the algorithm. This should not be hard to accomplish because the estimates of fixed
effects tend to converge monotonically and it should be possible to use the informa-
tion from the last iterations to adjust the trajectory of the fixed effect estimates and
thus obtain faster convergence. Anyway, such enterprise is beyond the scope of this
paper.
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Guimarães, P. 2004. Understanding the Multinomial-Poisson Transformation. Stata
Journal 4: 265–273.

———. 2008. The Fixed Effects Negative Binomial Model Revisited. Economics
Letters 99: 63–66.

Smyth, G. 1996. Partitioned Algorithms for Maximum Likelihood and other non-
linear Estimation. Statistics and Computing 6: 201–216.

18




