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ABSTRACT 
 

A Sequential Malmquist-Luenberger Productivity Index 
 
This study proposes an alternative methodology for measuring environmentally sensitive 
productivity growth. The rationale of this methodology is to consider the features of 
technology appropriately by excluding a spurious technical regress based on the 
macroeconomic perspective. In order to consider this condition and to develop an alternative 
index, a directional distance function and the concept of the successive sequential production 
possibility set are combined. With this combination, the conventional Malmquist-Luenberger 
productivity index is modified to give the alternative sequential environmentally sensitive 
productivity index. This proposed index is employed in measuring productivity growth and its 
decomposed components of OECD countries for the period 1970-2003. We distinguish two 
main empirical findings. First, even though the components of the conventional Malmquist-
Luenberger productivity index and the proposed index are different, the developments of 
productivity are similar. Second, unlike in previous studies, the efficiency change is the main 
contributor to the earlier study period, whereas the effect of technical change has prevailed 
over time. 
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1. Introduction 

In recent decades extensive studies have been made to measure environmentally sensitive 
productivity growth and its decomposed sources. The expansive development of the research 
in the productivity area is in the line with increasing international concerns about climate 
change and sustainable economic growth. These concerns, in turn, have induced global 
cooperation in environmental regulations, such as the Kyoto Protocol and the Bali Roadmap. 
These international mutual assistance systems for environmental change basically require the 
assessment of the emission of environmentally harmful by-products through the simultaneous 
consideration of the environmental, economical as well as technical points of view. This 
means that the environmental policies, especially those related to climate change, should be 
made with a multi-facet assessment regarding the features of by-products and not merely by 
relying on a unilateral approach.  

In order to meet the above prerequisite for the assessment of environmental policies, research 
with a different focus has been demanded to measure empirically the impact of emissions of 
by-products. This research includes not only theoretical approaches but also empirical studies. 
Among the range of methodologies for measuring the environmentally sensitive productivity 
index, the Malmquist-Luenberger productivity index (hereafter, ML index) has long been 
regarded as one of the pioneering methodologies. Since it only requires the quantities on the 
input/output bundles without demanding information on costs of inputs/outputs, it has been 
widely used in applied studies for measuring productivity in the field of resource and 
environmental economics. Another favorable aspect is that the ML index does not require any 
functional form assumptions on the production function. Moreover, the ML index enables 
productivity growth to be decomposed into several components, such as efficiency change 
and technical change. Thanks to the above methodological merits, the ML index has been 
frequently utilized not only in micro level studies but also in macro level studies.  

As regards the empirical studies using the ML index at the micro level, Chung et al. (1997) is 
the first study. They analyze the productivity growth and its decomposed sources of Swedish 
paper and pulp mills for the period 1986-1990. Their empirical result suggests that technical 
change is the main contributor to productivity growth rather than efficiency change. Using 
micro-level panel data, Färe et al. (2001) employ the ML index to account for both marketed 
output and the output of the pollution abatement activities of US state manufacturing sectors 
from 1974 to 1986. Weber and Domazlicky (2001) apply the same methodology to 
investigate the manufacturing data from 1988 to 1994. Pasurka (2006) employs the ML index 
and decomposes productivity growth into several factors. By doing this, he calculates the 
relative importance of factors associated with changes in xNO  and  emissions by US 

coal-fired electric power plants. Nakano and Managi (2008) measure productivity in the 
Japanese steam power-generation sector to examine the effects of industrial reforms on 
productivity over the period 1978-2003.  

2SO

Compared to the numerous empirical studies at the micro level, to our knowledge, only two 
studies incorporate undesirable outputs into the productivity analysis at the macro level. 
Yörük and Zaim (2005) employ both the Malmquist productivity index and the ML index to 
analyze productivity growth and its decomposed source of OECD countries for the period 
1985-1998. They find that Ireland and Norway are the best performers and technical change 
is the main contributor to productivity growth. Kumar (2006) employs the ML index to 
analyze the environmentally sensitive productivity growth of 41 countries for the period 
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1973-1992. In his study Kumar finds that the productivity growth of Annex-I countries is 
higher than that of Non-Annex-I countries, and technical change is the main contributor to 
productivity growth. It should be noted that the conventional ML index, employed in these 
studies, has the possibility of producing biased productivity measures due to drawbacks 
discussed below in this study.  

In spite of its wide use, the conventional ML index has a weak point in that it does not 
appropriately consider the features of technology. That is, although in general the technology 
always progresses or at least remains unchanged from the macroeconomic perspective, the 
ML index may yield long-run technical deterioration. Needless to say, as noted by Shestalova 
(2003), when we consider the features of technology at the industry level, it is not uncommon 
to observe technical regress in some industrial branches such as the mining sector. Except for 
those particular branches, it is quite undeniable that in general the technology at least remains 
unchanged in most industrial sectors. Hence, the technology of an economy, being the 
aggregate of all industrial sectors, should be considered as being in the state of progress or at 
least as remained unchanged. Especially for the developed countries such as OECD member 
states, which will be empirically examined in this study, it is fairly rational to assume that 
technology progresses or remains unchanged. If we employ the conventional ML index in 
analyzing data from those states, it is very frequent to observe technical regress (see Kumar 
(2006)). Therefore, it is important to alleviate the underlying assumptions in the conventional 
ML index in order to consider appropriately the progressive feature of technology when we 
analyze the environmentally sensitive productivity growth index.  

Reconsidering the necessity of the multi-facet assessment of the emissions of by-products, it 
is obvious that the technical aspect of three dimensions in the assessment is misleadingly 
dropped if we employ the conventional ML index. This also means that the feature of 
technical change is not properly considered in the conventional ML index. Hence, it is 
necessary to be cautious when accessing the empirical results of the ML index, especially in 
policy-making. This means that the empirical results obtained by the conventional ML index 
may inherit a likelihood of being biased. Hence, in order to eliminate this dormant bias in the 
technical change, the conventional ML index needs to be revised.  

In this study, we suggest an alternative measure of the environmentally sensitive productivity 
growth, which is free from the aforementioned spurious technical regress. This is done by 
augmenting the basic assumptions in the conventional ML index. This alternative measure 
not only properly reflects the features of technology but also accordingly yields an unbiased 
productivity growth index. In developing our methodology, we combine the concept of the 
successive sequential reference production sets (Tulkens and Vanden Eeckaut, 1995) and the 
concept of the directional distance function (Luenberger, 1992). The combination of these 
two concepts enables us to introduce a sequential directional distance function. Our 
environmentally sensitive productivity growth measure utilizes this sequential directional 
distance function. This alternative environmentally sensitive productivity measure is named 
the sequential Malmquist-Luenberger productivity index (hereafter, SML index). In similarity 
with the conventional ML index, the SML index also can be decomposed into underlying 
components of productivity growth.  

The proposed index is employed to measure the environmentally sensitive productivity 
growth, efficiency change and technical change of 26 OECD member states over the period 
1970-2003. We retrieved the data from the Penn World Table and the World Bank 
Development Indicators databases for this empirical investigation. Empirical results show 
that the efficiency change is the main contributor during the earlier part of our study period, 
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whereas technical change is the main contributor during the later part of the study period. 
Interestingly, this finding is somewhat different from those of the previous studies, in which 
technical change is found to be the main contributor to productivity growth. Another finding 
is that the Nordic countries have a higher level of productivity growth among OECD member 
states for the study period. The result of our methodology is compared with that of Chung et 
al. (1997) serving as a benchmark. The result of this comparison indicates that the 
developments of productivity between the two methodologies are similar but the decomposed 
components are quite different.  

In summary, the main contribution of this paper to the literature is the provision of an 
alternative environmentally sensitive productivity growth index which properly considers the 
progressiveness of technology. To do this, as suggested by Shestalova (2003), we extended 
the conventional ML index by incorporating the directional distance function. Empirically, 
this paper extends the study of Yörük and Zaim (2005) by employing the existing 
methodology as well as the proposed methodology. It also investigates the environmentally 
sensitive productivity growth of OECD member states with a more recent data set.  

The remainder of this paper is organized as follows. A methodological discussion is given in 
Section 2. A description on the data set and the empirical results are presented in Section 3. 
This study is briefly concluded in Section 4.  

 

2. Methodology 

As stated earlier, the methodology we propose in this study employs an augmentation of the 
basic assumptions of the ML index. Hence, the underlying assumptions are introduced in 
Section 2.1, followed by the definitions of the sequential directional distance function in 
Section 2.2. Then, we present the conventional ML index as well as our alternative SML 
index in Section 2.3. In Section 2.4, the calculating issue on the SML index is illustrated.  

 

2.1. The underlying assumptions 

This section deals with underlying assumptions required for defining the conventional ML 
productivity index and its extension, the SML index. The basic assumptions discussed in this 
section are from Färe et al. (2005). It includes assumptions about the feasibility of output, 
null-jointness, and weak and strong disposability.  

The production possibility set (PPS) for decision making units (DMUs; countries, in this 
study) producing M  desirable outputs, MRy , and  undesirable by-products, J JRb , 

is represented by the output set . This set consists of desirable and undesirable outputs 
vector 

( )P x
(  )y b  that is jointly produced from  inputs which is represented by the input 

vector, 

N
NRx . Then, the PPS can be expressed as follows:  

(1)  ( ) {( ) can produce ( )}|  P x y b x y b  

In order to describe and model the production technology in which both desirable and 
undesirable outputs are jointly produced, a number of assumptions are required in the form of 
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axioms.  

First, the PPS is assumed to be compact for the input vector NRx . Inputs are also assumed 

 strongly disposable, so tha   

S will not shrink when the inputs used in production 

ption of null-jointness is expressed as follows:  

e assumption of the null-jointness is imposed on 

ption needs to be imposed onto the PPS, which is stated as 
s:  

to be t:

(2)  if then ( ) ( )   x x P x P x  

Equation (2) suggests that the PP
activities are increased.  

Second, the incorporation of undesirable outputs into the classical production technology 
requires the assumption of null-jointness. This assumption implies that the DMUs should 
necessarily produce the undesirable outputs when they produce the desirable outputs. The 
assum

(3)  if ( ) ( ) and 0 then 0     y b P x b y  

Equation (3) suggests that the desirable outputs cannot be produced if the undesirable outputs 
are not produced. This is always true when th
the production technology.  

Third, a weak disposability assum
follow

(4)  if ( ) ( ) and 0 1 then ( ) ( )         y b P x y b P x  

This assumption implies that any proportional contraction of the desirable and the undesirable 
outputs is also feasible if the original combination of the desirable and the undesirable 
outputs is in the PPS, for a given inputs x . This assumption also implies that the undesirable 
outputs are costly to dispose of. In other word, the cost for the abatement of the undesirable 

h, the strong disposability of the desirable outputs is also required, as follows:  

goods inevitably results in less production of the desirable outputs.  

Fourt

(5)  if ( ) ( ) and then ( ) ( )       y b P x y y y b P x  

This assumption means that some of the desirable outputs can always be disposed of without 
any additional cost.  

e benchmark when calculating the directional 
istance functions.  

 

 [Figure 1 about here] 

The PPS, which satisfies all the above assumptions, can be depicted in an outputs space, as 
illustrated in Figure 1. In order to represent it in a simple way, a case with one desirable good 
and one undesirable good is illustrated in this figure. In depicting the PPS, without loss of 
generality, it is assumed that the producers use the same amount of input. The horizontal axis 
represents the undesirable good, and the vertical axis represents the desirable good. All 
producers are producing combinations of the desirable and undesirable outputs in the inner 
area of the solid curve. Producers on the solid curve are assumed to be producing on the 
production frontier. These are utilized as th
d
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2.2. The ML and SML indices 

The PPS can be elaborated by employing the directional distance function. Let ( ) y bg g g  

be a direction vector, where M JR R g 

( )}

. Then, the directional distance function is defined 

as follows:  

(6)  ( ) max{ ( )D             y b y bx y b g g y g b g P x


 

This function seeks the maximum increase of the desirable outputs while simultaneously 
reducing the undesirable outputs. The direction vector, g , determines the direction of 
outputs, by which the desirable outputs increase and the undesirable outputs decrease. The 
process of determining the direction vector is dependent on the purpose of study and policy 
implications. For example, Arcelus and Arcena (2005) apply three types of direction vectors 
in analyzing the environmentally sensitive efficiency of OECD countries. They examine the 
effects of environmental regulations which are assumed to be represented by the direction 
vectors. Since the purpose of this study is not to show the effect of selecting direction vectors 
when measuring the environmentally sensitive productivity growth, the direction vector is 
chosen following the pioneering work of Chung et al. (1997). Hence, in the present study, the 
direction vector was taken as (  )g y b .  

Looking at Figure 1 again, the direction vector and the directional distance function are 
depicted for a DMU F. Again, the PPS is represented by the inner area of the solid curve. The 
direction of the directional distance function of the DMU F is depicted as an arrow from the 
origin towards northwest direction.1 Hence, the directional distance function of the DMU is 
represented as   in Figure 1.  

Since the ML index and SML index require a heavy dose of additional notations, we shall 
omit the direction vector (  )g y b  when defining and calculating the indices in the 

remainder of this paper. For example, in all places we replace ( )D    x y b y b


 with 

( )D  x y b


.  

To define and decompose the SML index, two definitions of the PPS are essential for the 
calculation of the distance functions: a contemporaneous PPS and a sequential PPS. The 
contemporaneous PPS at time period t  is defined as 

( ) {( ) can produce ( )}t t t t t t t|  P x y b x y b with 1t T   . It constructs a reference 
production set at each point in time , made from the observations at that time only. The 
sequential PPS at time period  is defined as 

t
t 1 1 2 2( ) ( ) ( ) ( )t tt  x P x P x P xP  t

                                                

  , where 
. It establishes a reference production set using the observations from the point in 

time 1 up to time t. The definition of the sequential PPS defined above may look similar to 
that of Tulkens and Vanden Eeckaut (1995). However, the two definitions are quite different 
in the sense that our definition includes the desirable and undesirable outputs, whereas their 
definition only includes the desirable outputs. Also note that the definition of the sequential 
PPS is the superset of a single contemporaneous PPS. This favorable feature of the sequential 
PPS enables us to redefine the environmentally sensitive productivity growth index 
considering the features of technology.  

1 t T 

 
1 The direction is determined by the production point of the DMU under our consideration. 
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By using the definition of the contemporaneous PPS, a contemporaneous ML index 
(equivalently, the conventional ML index) between time period  and  is defined as 
follows (Chung et al. 1997):  

t 1t 

(7)  
1 1 1

(1 ( ))

(1 ( ))

s t t t
s c

s t t t
c

DML
D

  

   
     

x y b

x y b


  

where the contemporaneous directional distance functions, 
, are defined on each of the 

contemporaneous PPS at the time period . The subscription “ ” in the directional distance 
function represents the “contemporaneous”. In order to avoid choosing an arbitrary 
benchmark technology, a geometric mean form of two adjacent contemporaneous ML 
productivity indices is typically used, expressed as 

( ) max{ ( ) ( )}s s
c s t tD              x y b y y b b P x

s

ML

1


1 1 2]

c

1 ML[t t t tML     . The ML index 
can be decomposed into the efficiency change and technical change. The decomposition is 
discussed in details in Chung et al. (1997). We omit the further discussion of this issue in 
order to save space.  

In a similar way, the SML index between time period t  and 1t   is defined on the 
sequential PPS, ( )ss xP , as follows:  

(8)  
1 1 1

(1 ( ))

(1 ( ))

s t t t
qs

s t t t
q

DSML
D

  

   
  

    

x y b

x y b


  

where the sequential directional distance functions, 
( ) max{ ( ) ( )}s s

q s t tD              x y b y y b b xP 1


t

, are defined on each of the 

sequential PPS. The subscription “ ” of the sequential distance function represents the 

“sequential” nature of the index. Since in general 

q
1tSML SML   without any restrictions on 

two production technologies, we also use a geometric mean form of these two SML 
productivity indices to avoid choosing an arbitrary benchmark technology. The SML index as 
a result is redefined as:  

(9) 

1 21
1

11 1 1 1 1 1

(1 ( )) (1 ( ))

(1 ( )) (1 ( ))

t tt t t t t t
q qt t

t tt t t t t t
q q

D DSML
D D


 

     

      
  

       

x y b x y b

x y b x y b

 
   

Obviously, if the contemporaneous PPS at  is contained in the contemporaneous PPS at 
+1 for all , then the SML productivity index is equivalent to the 

contemporaneous ML index.  

s
s )

)

( 1s T 

If   for all , then 1 1( ) ( )s s s s P x P x ( 1s T  1 1s s sSML ML s   

)

.  

Proof.  for all 1 1( ) ( )s s s s P x P x ( 1s T   implies that 
1 1 2( ) ( )2( ) ( )s s sP x P P xs   x P x , which results in ( ) ( )s s ss x P xP . Then 

( ) ( )s ss s s x y b s s s
q cD D  x y b
 

 since 

max ( ) ( )s s s s ss{ }       max ( s s s{       ) ( )s s s  }y y b b x y y b b P xP
1 11 1 1 1 1( ) ( )s ss s s s s s

q cD D
         x y b x y b

 
. Also, 

.  1
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This also implies that 1 1( ) (s s )s s s s s s
q cD D
     x y b x y b

 
 since 

1 1( ) (s s s s s{        y y b b P
1 1( )s 

11max ( ) ( ) max )s s s s s ss{ } }        y y b b x xP
 

. It is 

trivial to show .  1 1 1 1( )s ss s s s s
q cD D

      x y b x y b

Hence, 1 1s s sSML ML    s .� � 

Note that the converse of Proposition 9 is not true.  

 

2.3. Decomposition of the SML index 

The geometric mean form of the SML productivity index can be decomposed into two main 
components as follows:  

(10)  

1
1 1 1 1

1 21 1 1 1 1

1 1 1

1 1

1 ( )

1 ( )

1 ( ) 1 ( )

1 ( ) 1 ( )

t t t t
qt t

t t t t
q

t tt t t t t t
q q

t tt t t t t t
q q

t t t t

DSML
D

D D

D D

EC TC

 
   

    

  

   

  


  

      
  

       
 

x y b

x y b

x y b x y b

x y b x y b




 
   

where efficiency change component, 1t tEC  

t
, represents a movement of a DMU towards the 

best practice frontier from time period  to 1t  ; the technical change, , measures 
amount of a shift of frontier between t  and 

1t tTC  

1t  . The 1t tEC  

1t tSML  

 component measures a 
catching-up effect and  an innovative effect of the DMU. If there have been no 
changes in inputs and outputs over two time periods, then 

1t tTC  

1 . If there has been an 
increase (decrease) in productivity then .  It should be noted that the above 
discussion assumes an unchanged relationship between the two types of outputs.   

1t t  ( )  1SML

Changes in efficiency are captured by 1t tEC   , which gives a ratio of the distances the DMU 
are to their respective frontiers in between the time periods  and t 1t  . If , then 
there has been a catching up movement or convergence towards the frontier in period 

1 1t tEC   
t 1 . It 

is interpreted as an improvement in efficiency. If 1 1t tEC    , then it indicates that the 
country is further away or diverging from the frontier in 1t   compared to , and hence it 
has become less efficient.  

t

The technical change component is captured by 1t tTC   . The 1t tTC    measures the amount of 
a shift of the frontier between two time periods  and t 1t  . Note that the technical change 
index in the SML index is always larger than unity since 

. If technical change enables more production of 

desirable outputs and less production of undesirable outputs, then , otherwise 
. It should be noted that the technical change component in the ML index can be 

less than unity, indicating technical regress.  

1( ) ( )t ts s s s s s
q q s t tD D
         x y b x y b

1 1t tTC   

1
 

1 1t tTC   
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2.4. Calculation of directional distance function 

The directional distance function can be calculated in several ways. Färe et al. (2006) and 
Färe et al. (2005) specify the directional distance function as a quadratic form and employ a 
linear programming (LP) approach. Other studies by Färe et al. (2007), Kumar (2006), Lee et 
al. (2002) and Chung et al. (1997) employ a data envelopment analysis (DEA)-type linear 
programming approach. The above two estimation methods are very similar in that they 
employ a linear programming in the calculation process. However, two main differences 
between the two methods can be distinguished: (i) the former approach has an advantage that 
it can easily calculate the shadow prices, whereas it requires an assumption of the functional 
form of the directional distance function and imposes lots of restrictions on parameters, and  
(ii) even though the latter approach does not directly yield the shadow prices, it has 
advantages in that it requires neither any functional form of the directional distance function 
nor any restrictions to be imposed on the parameters.2 Since the calculation of the shadow 
price is not within our research scope in the present study, we employed the latter approach. 
By choosing this approach, we can secure necessary flexibilities in the estimation process. 
The methodological aspect of the chosen DEA-type approach will be discussed in calculating 
the directional distance functions of the SML index.  

Let us assume that there are  DMUs of inputs and outputs 1k    K ( )k k k
   x y b  for time 

period 1 T    . Using this data, the sequential production technology frontier can be 
established in the DEA framework as follows:  
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where Y  is a ( )M K  matrix of desirable outputs, B  is a  matrix of 

undesirable outputs, and 

(J K )
X  is a (N K )  matrix of inputs for time period  , respectively; 

y ,  and  are a  vector of desirable outputs, a b x 1) )(M  (J 1  vector of undesirable 

outputs, and a  vector of inputs, respectively; (N 1) z  is ( 1)K   column vector which 
represents intensities assigned to each observation in constructing the sequential production 
possibility frontier.  

In order to calculate and decompose the SML productivity index of country  between time 
period  and , we need to solve four different LP problems. Two of them utilize the 
same time period for observations and a sequential PPS, while the remaining two utilize the 
mixed time period for observations and a sequential PPS: 

k
t 1t 

( )t t t t
qD  x y b


, , 1t
q
 1 1 1( )t t t

D
   x y b



1 1t t t
qD

 x 1( )t y b


) and 1(t t t t
qD  x y b


                                                

. By using the empirical PPS shown in equation (11), 

 
2 The shadow price can be obtained if a dual linear programming is employed. 
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the first sequential directional distance function of the country , k )(t t t t
qD  x y b


, can be 

calculated by solving the following LP problem:  

(12)  
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The computation of 1 1 1 1(t t t t
qD
    x y b )


 is almost the same as equation (12), except that the 

superscript  is substituted for superscript  of variables on the right hand side of the 
constraint.  

1t  t

The remaining two distance functions used in construction of the SML productivity index 
require mixed-period information. The first of these, 1 1(t t t

qD
1)t   x y b


, is computed for the 

country  as:  k

(13)  
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1 1t t
k k
  x 1( )t

k
yIn equation (13), the reference technology which is evaluated at by b  is 

constructed from all observations over the period from 1 to . The last LP problem we need 
to solve, 

t
1(t t t t

qD  x ) y b

t


, is also a mixed-period problem. It is specified as in equation (13), 

but the superscript  and  are transposed.  1t 

Optimal solutions in equation (12), equation (13) and their modified versions are employed in 
calculating and decomposing the SML index.  

 

3. Empirical Study 

As part of the empirical study, the data is described and the two productivity indices, ML and 
SML, are computed for each of the sample countries and periods. In analyzing the results, the 
focus is on comparison of the productivity indices, country heterogeneity and their 
innovativeness.  
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3.1. Description of the data 

ely, GDP, , labor force, capital stock, and 

 obtained by merging the Penn World Table 

 of le 2. The 

As regards emissions, the an our sample is around 1.68%. The 

rowth 

We obtained the data on five variables nam 2CO

commercial energy consumption for 26 OECD countries over the periods 1970–2003 from 
Penn World Tables and World Development Indicators. The Czech Republic and Slovakia 
are excluded from the empirical analysis since these two countries lack data for the period 
1970-1995; Hungary and Poland were also excluded from the analysis due to the 
unavailability of capital stock information over the study period. Among the first two 
variables, GDP is chosen as a proxy of the desirable output, and 2CO  is a proxy of the 

undesirable output. Labor force, capital stock, and commercial energy consumption are 
chosen as the inputs of production technology.  

Data on GDP, labor force, and capital stock are
(Mark 5.6) and the Penn World Table (Mark 6.2). Since the capital stock for the period 
1990–2003 is not available for all countries, we estimated capital stock using the investment 
series contained in the Penn World Table (Mark 6.2). The capital stock series is created using 
the capital stock definition stated in the Penn World Table (Mark 5.6) and gross investment 
information in the Penn World Table (Mark 6.2). We employed the perpetual inventory 
method for this purpose. In doing so, we assumed that the depreciation rate is 10% per year. 
GDP and capital stock are transformed and are measured in 2000 US dollars. Data on 2CO  

emissions per capita and energy consumption per capita are taken from the website of World 
Development Indicators. These are multiplied by each national population in order to get the 
total emissions of 2CO  and the total consumption of energy at the country level.  

Summary statistics variables used in this study are shown in Table 1 and Tab
average growth rate of GDP of our sample is 3.02% per year. The highest growth rate with 
respect to GDP was observed in the Republic of Korea (6.97%), followed by Ireland (4.84%), 
Luxembourg (4.13%) and Turkey (3.93%). Switzerland (1.42%), Sweden (1.88%) and 
Denmark (1.88%) show the slowest GDP growth rate during the study period.  

[Table 1 about here] 

2CO  nual growth rate of 

Republic of Korea, recorded as the fastest growing economy, is found to be the highest 2CO  

emitter (6.57%). This figure is around four times as much as the mean rate of our sam  
Turkey (5.01%), Portugal (4.34%), Mexico (4.24%) and Greece (4.18%) are also found to be 
major emitters. Interestingly around one quarter of our sample had a negative growth rate of 

2CO  emissions. Those countries are Sweden (-1.71%), Luxembourg (-0.97%), Germany 

9%), Belgium (-0.62%), France (-0.41%), Denmark (-0.39%) and UK (-0.30%).  

The average growth rate of energy usage of our sample is around 2.36%. The average g

ple.

(-0.6

rate of energy usage of the Republic of Korea is also registered as the highest (8.15%). 
Turkey (4.44%), Portugal (4.44%), Mexico (4.42%) and Greece (3.96%) are registered as 
countries having relatively high growth rates of energy usage. Denmark (0.08%), 
Luxembourg (0.08%), UK (0.35%), Germany (0.40%) and Sweden (0.90%) recorded very 
low growth rates in energy usage. An examination of the growth rates of 2CO  emissions and 
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energy usage leads us to conjecture that countries having a high (low) growth rate of 2CO  

emissions are also registered as those having high (low) growth rate of energy usage.  
correlation between 2CO  emissions and energy usage is quite high (0.998), which signifies 

that a high growth rate of energy usage has induced a high growth rate of 2CO  emissions as 

argued by Ramanathan (2005). The average growth rates of labor and capital stock of our 
sample are around 1.24% and 5.46%.  

[Ta

 The

easures 

e SML 

ble 2 about here] 

 

.2. A Comparis  the ML and SML indices 

The approach described in the methodology section constructs the best-practice sequential 

As can be seen in panel (a) of Figure 

development of technical change m  by th

educed from panel (b) of Figure 2 is that the technical change 

3 on of

fact d

technology frontier from the data. First, we report the average productivity growth and its 
decomposed components including efficiency change and technical change calculated by the 
two methodologies. These are shown in Figure 2. The rates of productivity growth, efficiency 
change and technical change are shown in the upper panel, middle panel and lower panel of 
Figure 2, respectively. In this figure, solid lines and dotted lines are productivity (component) 
indices calculated from the SML index and ML index, respectively.  

 [Figure 2 about here] 

2, the rates of productivity growth of the two m

easured

show very similar trends, signifying that the productivity measures calculated by the two 
methodologies are similar. The correlation coefficient between the SML and the ML indices 
is quite high, 0.881. We also tested the null hypothesis that the two productivity growth 
measures have the same rank by using the Wilcoxon rank sum test. We failed to reject the 
null at the 1% level of significance, indicating that the ranks of the two productivity growth 
measures can be regarded as being identical. Based on those two test statistics, it is inferred 
that the productivity growth indices computed based on the two methodologies in aggregate 
form are not statistically different.  

A priori, one would expect that the 
framework is different from that of the ML framework, which is confirmed by the trends of 
technical changes shown in panel (b) of Figure 2. In the technical change measure of the ML 
index, a total of fifteen years of technical deterioration is observed. Especially during 
1970-1981 the technology is recorded as being regressed. However, as discussed in the 
introduction section, this technical change measure is considered as being biased since such a 
long-run technical regress is not possible from the macroeconomics perspective. In the 
technical change of the SML index, on the other hand, the rate of technical change is larger 
than or equal to unity for all periods. Trends of technical change components of the two 
methodologies are different when the rate of technical change of the ML index is less than 
unity, but they show a similar pattern when the ML index is larger than unity. We can 
observe this similarity in particular at the end of the sample period. This appears to indicate 
that innovatory technology related to energy and carbon dioxide emissions has emerged 
during this period.  

Another interesting 
measure of the ML index shows much more volatility than the sequential one. This is because 
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it classifies each change in productivity of countries that belong to the frontier as technical 
change. On the contrary, the technical change measure in the SML index registers only those 
changes that lead to the expansion of the PPS. Those differences can be found around the two 
oil crises of 1973 and of 1979. These oil crises caused lagged overall fall in productivity. It 
appears that these oil crises affect the declines in the technical change measure of the ML 
index, whereas they have no impact on that of the SML index.  

Compared to the similarity in the patterns of productivity growth between the two 

 up the world frontier when the above two conditions are 

iciency change measure of the ML index, that of the SML index is free 

methodologies, the development of efficiency of the SML index is very different from that of 
the ML index. Not only the correlation coefficient is negative (-0.493), but also the Wilcoxon 
rank sum test statistics is not statistically significant (p-value is 0.929), indicating 
inconsistency between the two indices. This dissimilarity in the efficiency change needs to be 
investigated through the simultaneous examination of the behavior of the PPS and our 
assumptions imposed when constructing the PPS. Before discussing this dissimilarity, it 
should be noted again that the efficiency change captures the speed at which a country moves 
towards the world technology frontier. As already discussed earlier, this measures a 
catching-up effect. It is obvious that the efficiency gain occurs if the PPS does not change 
and an input/output bundle of a country moves closer towards the world technology frontier. 
Even when the PPS expands, the efficiency gain can occur if the convergence speed is faster 
than the speed of PPS expansion.  

It is obvious that a country catches
satisfied. If the PPS contracts, however, a very different story unfolds. That is, the efficiency 
of a country increases even when it does not attempt to squeeze its endowed inputs to catch 
up the world frontier technology only if the PPS contradicts. In this case the country’s 
distance from the world technology frontier is automatically shortened by the contraction of 
the PPS. This counterfeit catching-up effect can be seen as merely the resultant effect of a 
free lunch which is prepared by the temporary technological deterioration of the world 
frontier countries. In other words, the country, although it does not do anything, is recorded 
as having caught up the world frontier technology if we allow the temporal contraction of the 
PPS. This is one of drawbacks of the ML index. As a result of the efficiency change 
component of the ML index, especially during the period 1970-1980, this counterfeit 
catching-up effect is observed many times. Considering that during the same period the 
technology is spuriously measured as being deteriorated for a long time period, this 
counterfeit catching-up originates from the assumption imposed when constructing the PPS 
of the ML index.  

Contrary to the eff
from this counterfeit catching-up effect problem. Because the temporal contraction of the PPS 
is absorbed by the previous PPS under the framework of the SML index, the abnormal 
catching-up cannot occur. In this sense, the catching up effect measured by the SML index 
can be seen as being the genuine catching-up effect compared to that of the ML index.  

The two components of the productivity growth measure, i e  , efficiency change and 
technical change, contribute to the development of productivity. In many previous studies 
such as Chung et al. (1997), Yörük and Zaim (2005) and Kumar (2006), it is reported that 
productivity growth is mainly attributed to technical change rather than efficiency change. 
This is true if we only look at the result of the ML index as investigated in the previous 
studies. That is, the trend of productivity growth is quite similar to that of technical change 
under the framework of the ML index, as can be seen in the panel (a) and (b) of Figure 2. The 
correlation coefficient between the ML productivity growth index and the technical change 
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index of the ML index is 0.958, while the one between the ML productivity growth and the 
efficiency change of the ML index is -0.526. This supports the argument under the 
framework of the ML index approach.  

Looking at the result of the SML index, however, it is easily induced that this argument is not 

The cumulative productivity growth measure is also economically meaningful since it gives 

 

Average productivity growth, efficiency change and technical change are calculated for the 

 [Table 3 about here] 

always true. In earlier years of the study period, where the technology rarely changes, the 
productivity growth is mainly attributed to efficiency change. Nonetheless, the influence of 
technical change becomes more attributable to the productivity growth over time. This 
increasing influential pattern of technical change appears to reflect recent technological 
development related to energy and environment. The recent increasing frequency of policies 
and protocols launched related to energy and the environment, such as the sustainable growth 
policies, may be attributed to this trend.  

 [Figure 3 about here] 

us information about how much productivity is accumulated over time. The cumulative 
productivities of our sample using the two productivity indices are depicted in Figure 3. In 
this figure, the productivity growth of the first year is adjusted to unity so that the 
developments of the two measures are easily compared. Even though temporal developments 
of productivity growth measured by the two methodologies are similar to each other, as 
discussed earlier, their cumulative versions are apparently different in two ways. First, the 
productivity measures diverge over time. The cumulative productivity growth for the study 
period measured by the SML index is 18.1%, and the one measured by the ML index is -8.4%. 
Second, the cumulative productivity of the SML index becomes larger than unity from 1986, 
whereas that of the ML index is less than unity for whole study period. Reconsidering the 
recently increasing concerns and policies about energy and the environment, the positively 
cumulated productivity growth of the SML index appears to reflect recent changes better than 
that of the ML index.  

 

3.3. Country Heterogeneity

sample countries. These measures are listed in Table 3. Recall that index values greater (less) 
than unity indicate improvement (deterioration) in the relevant performance. As expected 
from the result of the temporal development of productivity growth and its decomposed 
sources discussed in the previous subsection, the two methodologies yield different measures 
and decompositions. The number of countries having productivity deterioration is seven in 
the SML index, while the corresponding number in the ML index is twenty. This large 
discrepancy between the two methodologies is caused by the different assumption imposed in 
constructing the PPS. Looking at the decomposed sources of productivity in the two 
methodologies, the differences are more profound compared with the aggregate level. 
Regardless of selection of the methodology, Australia, Finland, Italy, Luxembourg, Norway, 
Switzerland and the USA have positive rate of productivity growth; while Greece, Iceland, 
Mexico, New Zealand, Portugal, Spain and Turkey show a negative productivity growth for 
both measures.  
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In order to examine the relationship among the three performance (efficiency change, 
technical change and productivity growth) measures, a scatter plot is depicted with x-axis of 
an efficiency change index and y-axis of a technical change index, as shown in Figure 4. The 
size of the circle in this figure gives us information about the average annual growth rate of 
productivity.  

 [Figure 4 about here] 

Our sample countries can be classified into several groups in accordance with the following 
categorization rule. The countries are categorized into a specific group based on their 
performance in the rates of technical change and efficiency change. If the technical change 
index of a country is larger (smaller) than the average technical change of our sample, its 
innovative ability can be considered as being better (worse) than the virtual average country. 
Likewise, if the efficiency change index of a country is larger (lesser) than unity, it is 
considered as being in the state of catching up (lagging behind) the world frontier technology, 
as discussed in the methodology section. Hence, in the present study the criterion of our 
categorization is set as the average technical change of our sample and a unit efficiency 
change. Through this categorization rule, we can divide the OECD member states into four 
groups: more innovative and catching-up countries (Group I), more innovative but lagged 
countries (Group II), less innovative but catching-up countries (Group III) and less innovative 
and lagged countries (Group IV).  

In Figure 4, those country groups are placed in the northeast, northwest, southeast and 
southwest spaces. Belgium, Luxembourg and Norway are categorized as Group I countries; 
Australia, Canada, Switzerland and the USA are categorized as Group II; Finland, France, 
Ireland, Italy, Korea and Sweden are categorized as Group III countries; and finally Austria, 
Denmark, Germany, Greece, Iceland, Japan, Mexico, New Zealand, Portugal, Spain, Turkey 
and UK are categorized as Group IV countries. In the Group IV, it is worth noting that more 
than half the countries have negative productivity growth. Another interesting fact deduced 
from Figure 4 is that, except for Iceland, the Nordic countries are categorized as high 
productivity growth countries. For example, Norway is good at innovating as well as catching 
up the world frontier technology; Finland and Sweden are also good at catching up the world 
frontier technology. This favorable state of the Nordic countries can be considered as a 
benchmark for a successful sustainable economic growth policy.  

 

3.4. Innovative countries 

The technical change index for any one particular country between two adjacent years, if not 
on the frontier, is not necessarily an index of the shift in the world technology frontier. Hence, 
a value of this factor greater than unity does not necessarily imply that the country under 
consideration actually pushes the world technology frontier outwards. This means that 
additional information needs to be investigated in order to determine which countries are the 
world innovators. The following three conditions help us determine this issue:   

(13.a)   1 1t tTC   

(13.b)   1 1 1( )t t t t
qD

    x y b


0
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(13.c)  
1 1 1 1( )t t t t

qD
     x y b


0

t

t

As discussed earlier, the first condition indicates that the world technology frontier is shifted 
in more good outputs and fewer bad outputs direction. This means that in period  it is 
possible to increase GDP and to decrease the level of  emissions relative to period . 

This measures the shift in the relevant portions of the frontier between period  and t

1t 
2CO

1  
for a given country when the good and bad outputs are treated asymmetrically. The second 
condition indicates that production in period 1t   occurs outside the PPS of period . This 
means that technical change has occurred during the transition period. It implies that 
technology of period t  cannot produce the output vector of period  with the input 
vector of period . Hence, the value of the directional distance function evaluating 
input/output vector at period  relative to the reference technology of period  is less 
than zero. The third condition indicates that the country should be on the world technology 
frontier in period . In should be noted that, since our sample countries contain all 
advanced countries, we are confident that the estimated frontier represents the world frontier 
technology.  

t

t

1t 
1t 

t 

1t 

1

Table 4 lists the innovative countries for every five-year period from 1970 to 2003. Out of 26 
OECD countries, nine countries are recorded as the innovative countries. Those countries are 
Austria, France, Italy, Luxembourg, Norway, Portugal, Sweden, Switzerland, and the USA. 
Some countries are innovators only for a short period, e.g., Portugal and the USA, whereas 
others are innovators covering almost the entire study period, e.g., Luxembourg and 
Switzerland. As expected, low  emitters coupled with high GDP growth, such as 

Luxembourg and Switzerland, are recorded as innovative countries. High  emitting 

countries, such as Korea and Turkey, are not found to be innovators in spite of the fact that 
their rate of GDP growth is quite high. Interestingly, only two of the Nordic countries 
(Norway and Sweden), which are among high productive economies, are recorded as the 
innovators during the period 1990-2000. Although not all of them are the innovators, the 
Nordic countries appear to be good at following the world frontier technology closely and are 
only slightly lagged by the top innovators.  

2CO

2CO

 [Table 4 about here] 

4. Conclusion 

Although productivity is not the only determinant of economic growth and welfare, it does 
provide an indirect measure of the economic prosperity, as well as of the standard of living 
and of the degree of competitiveness of a country. As the environmental concern has 
remarkably grown during recent decades, the classical productivity growth indices such as 
the Malmquist productivity index have attempted to integrate the effect of environmentally 
harmful by-products. Those attempts have resulted in the creation of the environmentally 
sensitive productivity index by expanding the classical productivity index, such as the 
Malmquist-Luenberger index. Although this productivity measure considers the 
environmental and economic perspectives of the relationship between the desirable and 
undesirable outputs, it fails to appropriately integrate the features of technology.  

In order to overcome this weakness of the conventional ML index, we developed an 
alternative environmentally sensitive productivity growth index. It was done by combining 
the two concepts of the directional distance function and the successive sequential reference 
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production set. We named it the sequential Malmquist-Luenberger productivity index (SML 
index). With this augmented methodology, the components of the productivity growth, such 
as the efficiency change and technical change indices, are properly measured without bias by 
eliminating the possibility of the contraction of the production possibility set.  

The proposed methodology was employed in measuring the environmentally sensitive 
productivity growth of 26 OECD countries over the period 1970–2003. The empirical results 
show that: (i) although the developments of the productivity calculated by the ML and SML 
index are similar to each other, the components of the productivity indices are quite different, 
(ii) unlike the previous studies, the efficiency change is found to be the main contributor of 
the productivity growth in the earlier study period, whereas the effect of technical change 
prevails over time, (iii) by categorizing OECD countries, Belgium, Ireland, Luxembourg and 
Norway are found to be good at innovating as well as catching up the world frontier 
technology, (iv) Luxembourg and Switzerland are found to be innovative countries for most 
of the study period, and (v) the environmentally sensitive productivity growth of the Nordic 
countries are on average higher than that of the rest of the OECD member states.   

Beyond presenting an alternative measure, the present paper is believed to pave th

 

e way for 
further methodological development related to the needy environmentally sensitive 
productivity growth measure. A combination of the concept of the metafrontier (Hayami 
1969) and the directional distance function would be a good nominee of those 
methodological developments in order to facilitate the investigation of group heterogeneity 
among the sub-samples. We believe that this study will be a roadmap for opening up the 
possibility of expanding the existing environmentally sensitive productivity growth index. 
We also believe that the results of the empirical study will have implications for 
policy-making related to sustainable growth.  
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 Table 1. Summary statistics of inputs and outputs of 26 OECD countries: 1970–2003 

Variable (unit of measurement) Mean Std.Dev. Median Maximum Minimum  

GDP (in millions USD) 6,799.9 13,440.2 2,005.4 102,051.2 22.7 

2CO  (in metric mega tons) 403.1 944.2 102.2 5,959.8 1.4 

KTOE (in millions) 1,609.5 3,698.6 470.8 23,066.4 9.3 

Labor (in thousands) 17.2 25.8 5.1 150.4 0.1 

Capital (in millions USD) 1,193.4 2,291.6 357.4 17,701.9 1.3 
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Table 2. Average growth rate of input and output variables used in this study: 1970-2003 (%) 

Country GDP 
2CO  Energy Labor Capital  

Australia 3.27 2.41 2.39 1.83 5.03   

Austria 2.62 1.03 1.81 0.56 6.02   

Belgium 2.36 -0.62 1.18 0.51 4.49   

Canada 3.19 2.01 1.94 1.96 5.28   

Denmark 1.88 -0.39 0.08 0.65 4.41   

Finland 2.50 1.60 2.22 0.53 3.73   

France 2.48 -0.41 1.70 0.69 5.01   

Germany 2.05 -0.69 0.40 0.42 4.79   

Greece 2.67 4.18 3.96 1.14 5.35   

Iceland 3.67 1.35 3.91 1.91 7.29   

Ireland 4.84 2.39 2.65 1.28 6.67  

Italy 2.29 1.38 1.52 0.61 4.87   

Japan 2.89 1.55 2.11 0.77 6.63   

Korea 6.97 6.57 8.15 2.26 10.35   

Luxembourg 4.13 -0.97 0.08 1.13 5.86   

Mexico 3.53 4.24 4.38 3.32 5.45   

Netherlands 2.33 0.35 1.51 1.36 5.13   

New Zealand 2.34 2.50 2.62 1.77 4.42   

Norway 3.36 3.60 2.10 1.21 3.73   

Portugal 3.30 4.34 4.42 1.34 7.62   

Spain 3.08 3.15 3.84 1.17 6.79   

Sweden 1.88 -1.71 0.90 0.82 3.73   

Switzerland 1.42 0.06 1.48 0.85 3.35   

Turkey 3.93 5.01 4.44 2.18 5.72   

U.K. 2.38 -0.30 0.35 0.51 5.02   

U.S.A. 3.11 1.02 1.16 1.56 5.32   

Average 3.02 1.68 2.36 1.24 5.46  
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Table 3. Productivity growth, efficiency change, and technical change of 26 OECD countries: 
1970–2003. 

SML  ML 
Country 

PC  EC  TC  PC  EC  TC  

Australia 1.0053 0.9989 1.0060  1.0096 1.0001 1.0104  

Austria 1.0018 0.9988 1.0030  0.9973 0.9989 0.9984  

Belgium 1.0099 1.0033 1.0070  0.9993 1.0042 0.9958  

Canada 1.0028 0.9972 1.0060  0.9951 0.9974 0.9980  

Denmark 1.0022 0.9985 1.0040  0.9985 0.9993 0.9995  

Finland 1.0050 1.0030 1.0020  1.0056 1.0030 1.0026  

France 1.0061 1.0036 1.0020  0.9984 1.0036 0.9951  

Germany 1.0009 0.9969 1.0040  0.9899 0.9965 0.9932  

Greece 0.9959 0.9939 1.0020  0.9982 0.9971 1.0016  

Iceland 0.9999 0.9978 1.0020  0.9834 0.9979 0.9855  

Ireland 1.0124 1.0085 1.0040  0.9922 1.0081 0.9848  

Italy 1.0046 1.0006 1.0040  1.0040 1.0010 1.0030  

Japan 1.0021 0.9997 1.0020  0.9940 1.0000 0.9941  

Korea 1.0030 1.0015 1.0020  0.9736 1.0039 0.9722  

Luxembourg 1.0280 1.0001 1.0280  1.0031 1.0000 1.0031  

Mexico 0.9971 0.9965 1.0010  0.9885 1.0040 0.9851  

Netherlands 1.0020 0.9979 1.0040  0.9997 0.9981 1.0017  

New Zealand 0.9975 0.9962 1.0010  0.9929 0.9968 0.9962  

Norway 1.0130 1.0021 1.0110  1.0102 1.0026 1.0080  

Portugal 0.9993 0.9964 1.0030  0.9781 0.9988 0.9794  

Spain 0.9978 0.9968 1.0010  0.9961 0.9975 0.9987  

Sweden 1.0080 1.0046 1.0030  0.9982 1.0047 0.9938  

Switzerland 1.0066 0.9999 1.0070  1.0008 1.0000 1.0008  

Turkey 0.9965 0.9963 1.0000  0.9886 1.0075 0.9818  

U.K. 1.0004 0.9984 1.0020  0.9991 0.9987 1.0005  

U.S.A. 1.0055 0.9965 1.0090  1.0003 1.0008 0.9995  

Total 1.0040 0.9994 1.0050  0.9959 1.0008 0.9955  

Note: SML and ML represent the sequential Mamlquist-Luenberger productivity index and the conventional 
Malmquist-Luenberger productivity index, respectively.   
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Table 4. Innovative countries, 1970-2003 classified by the SML index. 
Period List of innovative countries 

1970-1975 Luxembourg, Portugal, Switzerland 

1975-1980 Switzerland 

1980-1985 Luxembourg, Switzerland, USA 

1985-1990 Luxembourg, Switzerland 

1990-1995 Italy, Luxembourg, Norway, Switzerland 

1995-2000 Austria, France, Luxembourg, Norway, Sweden, Switzerland 

2000-2003 Austria, France, Italy, Italy, Luxembourg, Sweden, Switzerland 

 

 




