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1 Introduction

Relative to a competitive economy, an economy with search frictions generates less output

because (i) there are idle resources like unemployed workers, (ii) resources are spent on

recruitment activities, and (iii) the assignment of workers to jobs is sub-optimal. Het-

erogeneity is crucial when assessing the importance of search frictions. If all unemployed

workers and jobs were alike, it would be hard to imagine why it would take workers

months to find a good match. The more important the quality of the match, the costlier

are search frictions.

This paper analyses a class of search models with on-the-job search (OJS) and hetero-

geneity among workers and jobs. As a starting point, we take the framework of Gautier,

Teulings, and Van Vuuren (2010) where the productivity of a match is decreasing in the

distance between worker and job type and where employed workers continue moving to-

wards the most productive jobs. We use a production technology that can be interpreted

as a second order Taylor approximation of a more general production function. Within

this framework, various wage mechanisms can be analyzed like wage posting with full

commitment as in Burdett and Mortensen (1998) and wage mechanisms without com-

mitment as in Coles (2001) and Shimer (2006). The key difference between wage setting

with and without commitment is that in the first case, firms pay both hiring and no quit

premia to hire/ keep workers whereas in the latter case, the only reason for firms to pay

workers above their reservation wage is to prevent them from quitting. The equilibrium

is characterized by a relationship between just three statistics: (i) the unemployment

rate, (ii) the value of non-market time, and (iii) a summary statistic for wage dispersion

between identical workers, the max-mean wage differential. We show that this statistic is

more informative and more robust than alternatives like the ratio of the mean wage to the

reservation wage (i.e. the mean-min ratio of Hornstein et.al., 2010). This relation hardly

depends on any of the model’s parameters, except for the relative efficiency of on- versus

off-the-job search, ψ. For the calculation of the total output loss due to search frictions

for a given unemployment rate, even the effect of ψ is a higher order phenomenon.

The combination of two-sided heterogeneity and search frictions relates our model

to the literature on hedonic pricing in the spirit of Rosen (1974), Sattinger (1975) and

Teulings (1995,2005). These models are hierarchical, in the sense that better skilled

workers have a comparative advantage in more complex jobs. Hence, there is a least and

a best skilled worker, and there is a least and most complex job type. In a Walrasian
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equilibrium, there is perfect sorting. With search frictions, this perfect correlation between

worker and job types breaks down, since workers cannot afford to wait for ever till the

optimal match comes along. Shimer and Smith (2000) and Teulings and Gautier (2004)

are early examples of assignment models with search frictions. Hierarchical models are

difficult to solve because matching sets in the corners of the type space do not have interior

boundaries. We therefore first transform the hierarchical model into a circular model in

the spirit of Marimon and Zilibotti (1999) and Gautier, Teulings, and Van Vuuren (2008).

The idea is that profits are decreasing in the distance between worker and job types. This

makes it possible to derive a closed form solution of the equilibrium. When turning to

the empirical analysis of data on individual wages, and on worker and job characteristics,

we reintroduce the hierarchical aspect of the model.

Ultimately, the usefulness of our model depends on how well it can simultaneously

describe the observed wage dispersion due to mismatch, the unemployment rate, and the

ratio of job-to-job versus unemployment-to-job worker flows. We show that the equilib-

rium unemployment rate in our model that is consistent with the observed amount of wage

dispersion is between 4% and 6% which seems reasonable. Given that our model performs

well, we can calculate the total output loss due to search frictions which is between 8%

and 12% if firms can commit to wage payments, and between 14.5% and 18.5% if they

cannot. The majority of the output loss is due to recruitment activities and mismatch.

Hornstein et.al. (2010) also derive a simple relationship between the unemployment

rate and wage dispersion that holds for a large class of search models. They argue that

(most) search models without OJS cannot explain the coexistence of low unemployment

rates and substantial wage dispersion because the first suggests low frictions and the latter

suggests high frictions. Gautier and Teulings (2006) made the related point that without

OJS, estimates of output losses due to search frictions based on the unemployment rate

are substantially lower than estimates based on wage dispersion. We show that allowing

for OJS and unobserved heterogeneity can resolve this issue. OJS lowers the reservation

wage which increases wage dispersion for a given unemployment rate.

Hornstein et.al. (2010) propose a wage dispersion measure based on the ratio of the

reservation wage to the mean wage (the mean-min ratio). Similarly, Eeckhout and Kircher

(2010) construct a measure based on the distance between the lowest and highest wage.

One disadvantage of relating wage dispersion to the lowest observed wage is that the

wage distribution for a given skill type has a long left tail. This long tail is consistent
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with OJS for the reasons spelled out in Burdett and Mortensen (1998): (i) OJS reduces

the lowest acceptable job type because less option value of continued search has to be

given up when accepting a job, and (ii) less workers quit from good matches and more

workers accept good matches. Empirically, it matters a lot whether one takes the 1th or

the 2nd percentile of the wage distribution as a proxy for the reservation wage. Therefore,

the difference between the highest wage at the optimal assignment and the mean wage

(the max-mean differential) is a more robust measure for wage dispersion. Moreover, the

max-mean differential is less sensitive to the relative efficiency of on- versus off-the-job

search, ψ. The reason for this is that there are two offsetting effects of an increase in the

efficiency of OJS on the mean wage while the maximum wage is hardly affected. First,

more job offers for employed workers decrease the lowest acceptable wage which has a

small negative effect on the mean wage, and secondly, more job offers imply that workers

move faster towards the optimal assignment and this increases competition between firms

for workers, resulting in a small positive effect on both the maximum and the mean wage.

When on- and off-the-job search are equally efficient and when the well known conges-

tion effects of opening vacancies are switched off (i.e. by a quadratic contact technology),

the equilibrium where firms are able to commit to their posted wages is constrained ef-

ficient. In the equilibrium where firms are unable to commit, quasi-rents per worker are

higher than in the social optimum due to a business-stealing externality. Under free entry,

these quasi-rents are spent on (excess) vacancy creation, see Gautier, Teulings and van

Vuuren (2010). When on and off- the-job search are equally efficient, we estimate the

output loss due to this business externality to be up to 6% (if no firm commits).

The empirical estimate of the max-mean wage differential for identical workers in het-

erogeneous jobs is an extension of the framework of Gautier and Teulings (2006) with

OJS. Our estimate is based on the intercept of a simple quadratic wage regression with

appropriately normalized measures for worker and job characteristics. This type of infer-

ence is highly sensitive to measurement error in both characteristics because an observed

sub-optimal matched worker can either reflect true mismatch, or simply imply measure-

ment error. Our estimation procedure accounts for this problem. Gautier and Teulings

(2006) use second order terms in worker and job characteristics to capture the concavity

of wages around the optimal assignment that is implied by search models with sorting.

However, there is a crucial difference between a model with and without OJS. In a model

without OJS, wages are a linear transformation of the match surplus. Since the match
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surplus is a differentiable function of the match quality indicator, so is the wage function.

This simple relation no longer applies with OJS, see Shimer (2006). The wage function

turns out to be non-differentiable at the optimal assignment. At that point, firms are

prepared to pay the highest premiums to raise hiring and to reduce quitting. In our em-

pirical application, we take this into account. Allowing for OJS is important since Fallick

and Fleischman (2004) and Nagypal (2005) show that job-to-job flows are twice as large

as the job-to-unemployment flow.

Lise, Meghir and Robin (2008) and Lopes de Melo (2008) also look at sorting in models

with OJS. Their focus is on interpreting the correlations between worker and firm fixed

effects and how this relates to complementarities between worker and job types in the

production technology. Finally, Eeckhout and Kircher (2009) consider a simple model

based on Atakan (2006) where workers and jobs are randomly matched and have the

option to dissolve and at some cost move to a competitive sector with perfect sorting.

They derive a similar hump shaped relation where productivity is highest at the optimal

assignment and decreases in the distance from this optimal assignment. This framework

is however less suitable to bring to the data.

The structure of the rest of this paper is as follows. Section 2 presents the basic

framework. Section 3 discusses the basic steps in our argument. In this section, we also

reinstall the hierarchical features of the model and derive the wage function that comes

with it. We also show how we can normalize worker and job skills such that we can relate

the constant in a simple wage regression to the max-mean wage differential. Finally,

section 4 concludes.

2 The model

2.1 Why a circular model?

Shimer and Smith (2000) and Teulings and Gautier (2004) analyze an assignment model

with search frictions and without OJS. Though the idea is straightforward, the analysis

is complicated. Figure 1 provides an intuition for why this is the case. The figure shows

the space of potential matches between skill types, s, and worker types, c. The Walrasian

equilibrium assignment is depicted by the main diagonal. Comparative advantage of

skilled workers in complex jobs implies that it is upward sloping. Perfect sorting implies

that it is a one-to-one correspondence. Search frictions and sufficient complementarities
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between worker and job types imply that the equilibrium assignment is a set rather than

a point where x measures the distance of worker type s to her optimal assignment. Away

from the corners, the optimal match is in the middle of the matching set while close to

the corners, the optimal assignment is close to the boundary. Teulings and Gautier (2004)

who do not allow for OJS use Taylor expansions for the middle part and show that for

small search frictions and if worker and job types are normally distributed, the corner

problem can be ignored. With OJS this approach does not work well. Gautier, Teulings,

and Van Vuuren (2005) show that by taking out the hierarchical aspect of the model,

the south-west and the north-east corner of the matching space can be "glued" together.

Then, a circular model in the spirit of Marimon and Zilibotti (1999) can be used, see

the lower part of Figure 1. The distance x to the optimal assignment is now measured

along the circumference of the circle. All conclusions from the analysis of the hierarchical

model without OJS in Teulings and Gautier (2004) based on Taylor expansions carry

over to the circular model. The intuition for this is that if there is relatively little mass

around the corners, all that matters for productivity is the distance to the optimal job.

We follow this idea in this paper, but now for a model with OJS. First, we take out the

hierarchical feature and provide a closed form analysis of a search equilibrium with sorting

in the context of the circular model. Then, we reintroduce the hierarchical aspect for the

empirical analysis of wage differentials, using data with information on worker and job

characteristics, which are hierarchical by nature.

The interpretation of the circular search model as an approximation of the hierarchical

model has an important implication for the production structure. Figure 2 depicts Rosen’s

hedonic equilibrium in the wage-skill space. The upper panel is the Walrasian case. The

upward sloping line is the market wage for a worker with skill type s, the offer curves

represent the value of output in jobs with a particular level of complexity c when occupied

by worker types with different skill types. The point of tangency is the optimal assignment,

the only assignment that is relevant in the Walrasian case. The lower panel is the case

with search frictions. The upward sloping line is now the reservation wage of the worker.

All values of s enveloped by this reservation wage and the offer curve are now part of the

matching set of that job type. Taking out the hierarchical aspect of the model implies

that the (reservation) wage function becomes horizontal. What is crucial is that these

functions keep their shape by this operation. Hence, these functions are differentiable in

their maximum. We impose this feature in the theoretical model.
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2.2 Assumptions

Production

There is a continuum of worker types s and job types c; s and c are locations on a circle.

Workers can only produce output when matched to a job. The productivity of a match

of worker type s to job type c depends on the "distance" |x| between s and c along the

circumference of the circle, where x is defined as x ≡ s−c. Y (x) has an interior maximum

at x = 0; it is symmetric around this maximum, which is normalized to unity: Y (0) = 1;

Y (x) is twice differentiable and strictly concave. We consider the simplest functional

form that meets these criteria:

Y (x) = 1− 1
2
γx2. (1)

x is the mismatch indicator. The parameter γ determines the cost of sub-optimal as-

signment. Y (x) can be interpreted as a second order Taylor approximation around the

optimal assignment of a more general production technology. Since, the first derivative of

a continuous production function equals zero in the optimal assignment, Y ′ (0) = 0, the

first order term drops out. We are interested in equilibria where unemployed job seekers

do not accept all job offers, which imposes a minimum constraint on γ.1

Labor supply and the value of non market time

Labor supply per s-type is uniformly distributed over the circumference of the circle.

Total labor supply in period t equals L(t). Unemployed workers receive the value of non

market time B. Employed workers supply a fixed amount of labor (normalized to unity)

and their payoff is equal to the wage they receive. Workers live for ever. They maximize

the discounted value of their expected lifetime payoffs.

Labor demand

There is free entry of vacancies for all c-types. The cost of maintaining a vacancy is equal

to K per period. After a vacancy is filled, the firm’s only cost is the worker’s wage. The

supply of vacancies is determined by a zero profit condition: firms open new vacancies

up till the point where the discounted value of expected profits is equal to the cost of

keeping that vacancy open. Vacancies are uniformly distributed over the circumference

of the circle; v (c) = v is the measure of vacancies per unit of c.

1A sufficient condition for this is that Y (x) < 0 for at least some x. Let C be the circumference of

the circle, then 0 ≤ x ≤ 1
2C. Hence γ > 8C.
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Job search technology

We use a reduced form specification of the job search technology:

λ = λ (u, v) , λv > 0,

and assume that the rate at which unemployed workers meet jobs is λ and the rate at

which employed workers meet jobs is ψλ. The exact functional form of this relation is

irrelevant for the analysis in this paper. E.g. our analysis applies irrespective of the

returns to scale. The parameter ψ, 0 ≤ ψ ≤ 1, measures the relative efficiency of on-

relative to off-the-job search; ψ = 0 is the case without OJS, as analyzed in the stochastic

matching model of Pissarides (2000), Marimon and Zilibotti (1999) and Teulings and

Gautier (2004); for ψ = 1, on- and off-the-job search are equally efficient. When a worker

quits her old job to accept a new job, the old job disappears. Hence, she cannot return

to her previous job.

Job destruction

Matches between workers and jobs are destroyed at an exogenous rate δ > 0.

Golden-growth path

We study the economy while it is on a golden-growth path, where the discount rate ρ > 0

is equal to the growth rate of the labor force. We normalize the labor force at t = 0 to one.

Hence, the size of the labor force is L(t) = exp(ρt). The assumption of a golden-growth

path buys us a lot in terms of transparency and tractability. The implications of the

golden growth assumptions are equivalent to those that follow from the assumption that

the discount rate ρ converges to zero, an assumption that is often applied in the wage

posting literature, see for example Burdett and Mortensen (1998) because discounting

reduces future output while population growth increases it. New workers enter the labor

force as unemployed.

Labor supply per worker type, the productivity in the optimal assignment Y (0) are all

normalized to one. Hence, in the absence of search frictions, the output of this economy

equals one.

Wage setting

Wages, denoted by W (x), are set unilaterally by the firm, conditional on the mismatch

indicator x in the current job. We analyze wage setting under two different assumptions
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on the ability of firms to commit to future wage payments. Under the first assumption,

firms can commit to a future wage payment contingent on x. Then, firms pay both no-quit

and hiring premiums, that is, they account for the positive effect of a higher wage offer on

reduced quitting and increased hiring. Under the second assumption, firms are unable to

commit to future wage payments. In this case, hiring premiums are non-credible because

immediately after the worker has accepted the job, the firm has no incentive to continue

paying a hiring premium, since the worker cannot return to her previous job. Workers

anticipate this, and will therefore not respond to this premium in the first place, and

hence, firms will not offer it. No-quit premiums are credible even without commitment

because it is in the firm’s interest to pay them as soon as the worker has accepted the

job. Starting to pay a no-quit premium only when the worker gets an offer is non-credible

again, because the firm has no incentive to continue paying the no-quit premium after

the worker has declined the offer. Hence, the only way for the firm to gain credibility in

paying no-quit premiums is to pay these premiums right from the start.2

2.3 The asset values of (un)employment and vacancies

The golden-growth assumption is particularly useful for the derivation of the asset values

of employment, unemployment, and vacancies.

Asset value of unemployment

In the appendix, we show that the asset value of unemployment, denoted by V U is a

weighted average of the worker’s payoff while unemployed, B, and the expected wage

when employed, ExW , the weights being the unemployment and the employment rate,

respectively:

ρV U = uB + (1− u)ExW. (2)

Why does this relation take such a simple form? The reason is that the growth rate of the

workforce is equal to the worker’s discount rate. Therefore, the expected payoff of a worker

with one year of experience is equal to the average payoff of the cohort of workers that

entered the labor force one year ago. Likewise, the expected payoff of a worker with two

years of experience is equal to the average payoff of the cohort of workers that entered the

labor market two years ago, etc. The asset value of unemployment is equal to the weighted

2See also Bontemps van den Berg and Robin (2000) for wage setting with and Coles (2001) and Shimer

(2006) for wage setting without commitment.
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sum of expected payoffs for each level of experience, future payoffs being discounted at a

rate ρ per year. This weighted sum is exactly equal to the sum of payoffs for the current

workforce. The fact that older cohorts are smaller than younger cohorts due to the growth

of the labor force at a rate ρ exactly offsets the effect of discounting future payoffs for the

calculation of the asset value of unemployment. The term (1− u)ExW can be interpreted

as the option value of finding a job. Alternatively, when ρ→ 0, workers spend a fraction

u of their life as unemployed and the rest of the time they are employed.

Asset value of employment in the marginal job

Let V E (x)be the asset value of holding a job with mismatch indicator x. At x̄, an

unemployed job seeker is indifferent between accepting the job or waiting for a better

offer: V E (x̄) = V U . Again, the asset value for this job is a weighted average of W (x̄)

and ExW :

ρV E (x̄) =
uW (x̄) + ψ (1− u)ExW

u+ ψ (1− u)
, (3)

see Appendix A.1 for the derivation. The factor u + ψ (1− u) is the effective supply of

job seekers, namely u unemployed job seekers and (1− u) employed job seekers, which

are discounted by a factor ψ due to their lower search effectiveness. Hence, the weights

in equation (3) are the shares of unemployed and employed respectively in the effective

supply. The intuition for this equation is that the option value of finding a better job is the

same as for an unemployed job seeker, since both an unemployed and a worker employed

in the marginal job type x = x̄ accept any job: 0 ≤ |x| < x̄. However, the option value

of an employed worker is only a fraction ψ of the option value of an unemployed due to

their lower contact rate. At first sight, one would expect that the value of non market

time B would show up in the equation, because at a rate δ the worker is fired and receives

the asset value of unemployment ρV U , see equation (2). However, since V E (x̄) = V U , we

can substitute V E (x̄) for V U , thereby eliminating B from the equation. For 0 < ψ < 1,

unemployed job seekers give up part of the option value of search by accepting a job. An

unemployed job seeker accepts a job offer if and only if she is compensated for this loss in

option value, implying that W (x̄) > B. For ψ = 1, on- and off-the-job search are equally

efficient, so an unemployed job seeker does not give up any option value by accepting a

job. Hence: W (x̄) = B, and equation (3) simplifies to the same expression as equation

(2):

ρV E (x̄) = uB + (1− u)ExW.
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Asset value of vacancies

Adding up the zero profit condition for all vacancies implies that the total cost of main-

taining vacancies must be equal to the aggregate rents that firms make in currently filled

jobs. In Appendix A.1 we show that

vK = (1− u) (ExY − ExW ) . (4)

The left hand side of this equation is the total cost of vacancies at t = 0. The right hand

side is employment 1 − u times the quasi-rents per worker, which is equal to expected

output ExY minus expected wages ExW . One would expect that quasi-rents should be

discounted, since firms must first post a vacancy before they can make a profit. However,

as for the asset value of employment, the right-hand side is again a weighted average of

cohorts of vacancies and discounting is offset by the growth of the economy.

The reservation value of the mismatch indicators

The definition of x̄ as the mismatch indicator of a job which is just acceptable to an

unemployed job seeker implies:

W (x̄) = Y (x̄) = 1− 1
2
γx̄2, (5)

To understand this condition, note that if W (x̄) < Y (x̄), there would be a job type

|x| > x̄ for which an employer could offer a wage W , W (x̄) < W < Y (x), which would be

attractive to both the worker and the firm, which is inconsistent with profit maximization,

while if W (x̄) > Y (x̄), the firm would be better off by not hiring the worker at all, which

is again inconsistent with profit maximization. Substitution of equation (2) and (4) in

the condition V E (x̄) = V U yields,

W (x̄) = [u+ ψ (1− u)]B + (1− ψ) (1− u)ExW. (6)

When on and off the job search are equally efficient, ψ = 1, equation (6) simplifies to:

W (x̄) = B = 1− 1
2
γx̄2. (7)

where the last step follows from (5). Hence, the relation between γ and x̄ does not

depend on expected wages in this case, and consequently neither on whether or not firms

can commit on paying hiring premiums.
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The output loss due to search frictions

The definition of the output loss due to search frictions is given by:

X = (1− u) (1− ExY ) + u (1−B) + vK = 1− (1− u)ExY − uB + vK. (8)

The output loss is equal to employment, 1− u, times the difference between productivity

in the optimal assignment, Y (0) = 1, and the expected productivity in the actual assign-

ment, ExY , plus unemployment, u, times the difference between the productivity in the

optimal assignment and the value of non market time, 1 − B, plus the cost of keeping

vacancies open, vK. Substitution of equation (2) and (4) in (8) yields:

X = 1− ρV U = u (1−B) + (1− u) (1− ExW ) . (9)

The last step follows from the fact that by the zero profit condition, the cost of main-

taining vacancies is equal to the surplus of expected productivity over expected wages,

see equation (4). The first equality tells us that the output loss is equal to the output in

the optimal assignment (Y (0) = 1) minus the asset value of unemployment. As frictions

become smaller workers find jobs close to the optimal assignment quickly and X becomes

smaller. The second equality in (9) tells us that the output loss is equal to the sum of

the output loss for unemployed and for employed workers. The former is equal to the lost

output in the optimal assignment minus the value of non market time, while the latter is

equal to the foregone wage income. Under free entry, the difference between wages and

productivity is spent on vacancies.

2.4 Equilibrium flow conditions

Under both assumptions for wage setting, commitment and no-commitment, wages are a

decreasing function of x for x ≥ 0, Wx (x) > 0, implying that workers accept any job-offer

with a lower mismatch indicator |x| than their current job. Hence, we can analyze job-

to-job flows independent of the exact form of the wage policy W (x). Let G(x), x ≥ 0, be

the fraction of workers employed in jobs at smaller distance from their optimal job than

|x|. This implies that G (0) = 0 and G (x̄) = 1, since x̄ is the largest acceptable value of

|x|. The golden growth assumption requires that the number of workers employed in jobs

with a mismatch indicator lower than x grows at a rate ρ:

2λx {u+ ψ(1− u) [1−G (x)]} − δ(1− u)G (x) = ρ(1− u)G (x) . (10)

13



The first term on the left-hand side is the number of people that find a job with mismatch

indicator lower than x, either from unemployment (the first term in braces), or by mobility

from jobs with a larger mismatch indicator (the second term in brackets). The number

of better jobs is given by 2x, since the worker can accept jobs both to the left and to the

right of her favorite job type x = 0. The second term in brackets is weighted by the factor

ψ, reflecting the efficiency of on- relative to off-the-job search. The final term on the left-

hand side is the outflow of workers due to job-destruction. The right-hand side reflects

that at the balanced growth path, employment grows at a rate ρ at all levels including

the class of workers with a mismatch indicator smaller than x, G (x). Mobility within this

class is irrelevant because the disappearance of the old match and the emergence of the

new one cancel. Evaluating (10) at x̄ yields:

δ(1− u) + ρ− 2λx̄u = ρu.

Solving for u yields:

u =
1

1 + κx̄
, (11)

where: κ ≡ 2λ

ρ+ δ
.

Substitution of (11) into condition (10) yields:

G (x) = 1− x̄− x

(1 + ψκx) x̄
, (12)

g (x) =
1 + ψκx̄

x̄ (1 + ψκx)2
,

where g (x) is the density function of x among employed workers.

2.5 Wage formation

The wage formation processes are the same as in Gautier, Teulings, and Van Vuuren

(2010). We present their main results here. Since the model is symmetric around x = 0,

we can focus on the analysis of W (x) for x ≥ 0.

Wage setting with commitment

When firms can commit on future wage payments, the optimal wage policy of the firm

maximizes the expected value of a vacancy,

W (x) = argmax
W

([
u+ ψ (1− u) Ĝ (W )

] Y (x)−W

ρ+ δ + ψλF (W )

)
, (13)
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where Ĝ [W (x)] ≡ 1 − G (x) is the distribution of wages among employed workers and

where F [W (x)] ≡ 1− x
x̄

is the wage offer distribution, using the fact that the distribution

of x is uniform by assumption. The effect of Ĝ (W ) on the optimal wage offer is the hiring

premium, the effect of F (W ) is the no-quit premium. The first order condition of this

problem reads:

Wx (x) = −2
ψκ

1 + ψκx
[Y (x)−W (x)] . (14)

This differential equation can be solved analytically for W (x), using equation (5) as an

initial condition, see Appendix A.4.

Wages setting without commitment

When firms cannot commit on future wage payments, hiring premiums are non-credible

and. Hence, the term Ĝ (W ) in equation (13) is replaced by 1−G (x) reflecting that the

first term in brackets does not depend on the wage and that the wage maximizes the value

of a filled job rather than the value of a vacancy. Then, the first order condition reads,

Wx (x) = −
ψκ

1 + ψκx
[Y (x)−W (x)] . (15)

The only difference with equation (14) is a factor two, reflecting the fact that firms pay

hiring and no quit premia in the case of commitment, while they pay only a no quit

premium in the case without commitment. Again, this differential equation can be solved

analytically for W (x), using equation (5) as an initial condition.

3 Measuring wage dispersion, mismatch and the out-

put loss

This section shows that our model yields robust predictions on the relation between wage

dispersion, unemployment, the ratio of job-to-job and unemployment-employment flows,

and the output loss due to search frictions and that this depends on only a few easily

observable statistics. We also offer a methodology to test those predictions empirically.

The argument requires a number of steps. As a map for the reader, we first provide an

overview of these steps.

1. We show that we can normalize κ = 1 without loss of generality, and that this

normalization implies that the equilibrium is fully characterized by just three para-
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meters: the equilibrium rate of unemployment u, the value of non market time B,

and the relative efficiency of on versus off the job search ψ.

2. We derive a simple and robust measure of wage dispersion and provide an analytical

characterization of the equilibrium. The measure we propose is the max-mean wage

differential, W (0)−ExW . This measure is less sensitive for the extreme long right

tail of the mismatch indicator |x| for identical workers and to the precise value of

ψ than dispersion measures based on the lowest wage. Since the analysis becomes

much simpler for the special case: ψ = 1, we proceed by focussing on this case. In

step 6 we look how sensitive our results are to introducing lower values of ψ.

3. In an empirical application, data on x will be only partially observed. This causes

special problems due to the non-differentiability of lnW (x) at x = 0. Define

x = r + q,

where r is the observed and q is the unobserved component of x, with Cov[r, q] = 0.

We show that values of r close to zero provide only limited information on the effect

of x on W (x). We simulate data on x, q, and W (x) and use these data to estimate

the quadratic equation

lnW − E lnW = ω0 + ω2r
2 + ε,

where ω0 and ω2 are parameters and where ε is an error term. We show that ω0 is

informative on the max-mean wage differential and that it depends on the signal-

noise ratio.

4. We derive empirical proxies of s and c (s and c) and consequently of r ≡ s − c,

using a methodology outlined in Gautier and Teulings (2006). We provide some

additional robustness checks to this method and use these proxies to estimate ω0.

5. We show how our model relates to the hedonic/assignment models of Rosen (1974),

Sattinger (1975), Teulings (1995). These models have direct implications for the

elasticity of substitution between high and low skilled workers, as estimated by Katz

and Murphy (1992). In particular, there is a one-to-one correspondence between this

elasticity of substitution and the second derivative, γ, of the production function

Y (x). This relation enables us to establish the units of measurement of x and allows

us to estimate the output loss due to mismatch.
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6. We investigate the impact of ψ on the expected level of unemployment and the

decomposition of the output loss into unemployment, recruitment cost, and the

productivity loss due to suboptimal assignment, conditional on the estimated value

of ω0.

These steps will be discussed in the next 6 subsections. Essentially, for given {γ, ψ,B,

ω0, cov(s, c)}, the model implies {σ
2
r

σ2q
, u,MaxMean (or MeanMin), 1

2
γσ2x,

{e→e}
{u→e}

}. Only

B and ψ are "free parameters" (although in the search literature typically B is set to

0.4 or higher and ψ ≤ 1) while u (and to some extent) {e→e}
{u→e}

and wage dispersion are

all observable. We consider the model to be successful if the implied values for those

variables are consistent with the data. It turns out that the model performs surprisingly

well.

3.1 Normalizing κ = 1

The first step is to show that κ can be normalized to one without loss of generality. Define

a linear transformation of x, x̃ ≡ κx, and the parameters x̂ ≡ κx̄ and γ̃ ≡ κ−2γ. Then

u =
1

1 + κx̄
=

1

1 + x̂
(16)

Y (x) = 1− 1
2
γx2 = 1− 1

2
γ̃x̃2. (17)

It can be easily checked that this transformation leaves all other primitives of the model

unaffected. Hence, by redefining x as x̃ and γ as γ̃, we can normalize κ to one. The

implication of this normalization is that the equilibrium of this sorting model with search

frictions is a function of only three statistics, the rate of unemployment u, the value of

non market time B, and the relative efficiency of on- versus off-the-job search, ψ. It does

not depend on the curvature of the production function γ. The unemployment rate is

obviously not a primitive of the model, but an outcome. However, since we have an idea

about the value of the natural rate of unemployment, it is useful to have a characterization

of the equilibrium in terms of the value of u. The reason why the parameter γ does not

enter the characterization of the equilibrium can most easily be understood for the case

ψ = 1. (16) and (17) reveal that the normalization of κ to unity implies that the value

of the mismatch indicator in the worst acceptable job offer x̂ is a simple function of the

unemployment rate. Then, equation (7) (and replacing x by x̂) shows that γ̃ can be
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Figure 3: The distribution (thick black) and density function (thin red) of x conditional

on employment

written as a simple function of the unemployment rate and the value of non market time

only.

Figure 3 depicts the density and distribution function of the mismatch indicator |x̃|
conditional on employment, for the case u = 5% and ψ = 1 (we use these values in

all subsequent plots, unless stated otherwise). For a given unemployment rate, G(x̃) is

identical with or without commitment since workers climb the job ladder equally fast in

both cases (because wages are in both cases strictly decreasing in x). The main message

from Figure 3 is that the distribution of |x̃| has a large probability mass close to zero (the

optimal assignment) and a long right tail of bad matches. The median value of x̃ is equal

to (1− u)/(1 + u) < 1, far smaller than x̂ = (1 − u)/u = 19 (the mismatch indicator in

the worst match). The reason for this pattern is that workers who are matched badly

quit their jobs fast. The reverse holds for good matches, so their density is high. The

skewness of the distribution of |x̃| has a number of counter intuitive implications for the

wage distribution that are spelled out in greater detail below.

The analytical expressions for W (x̃) ,Wx (x̃) , and ExW are complicated and highly

non-linear, so we placed them in Appendix A.4. Figure 4 depicts Y (x̃) and W (x̃) both for

the case with and without commitment, setting the value of non market time at B = 0.4
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Figure 4: Productivity Y (x) (thick) and wages W (x) with (thin) and without (dotted)

commitment

(which we do in all subsequent plots). Some authors, i.e. Hagedorn and Manovskii (2008)

and Hall (2009) who want to explain the cyclical behavior of unemployment use larger

values for B. For these studies, the value of non-market time of the marginal worker is

relevant whereas here we are interested in the value of non-market time for the average

worker so a lower value is justified. Contrary to Y (x̃), W (x̃) is non-differentiable at

x̃ = 0. This is due to the hiring and no-quit premiums that firms pay. Since the density

of employment is highest for low values of |x̃|, the elasticity of labor supply is high for

these types of job. A slight variation in wages has large effects both on the probability

that workers accept an outside job offer and on the number of workers who are prepared

to accept the wage offer (the latter being relevant in the case with commitment only).

Hence, firms will bid up wages aggressively for these types of jobs. Since ψ = 1, workers

accept any job offer that pays more than the value of non market time.

Figure 4 shows that the wage in the optimal assignment is higher when firms can

commit than when they cannot, since the ability to commit increases competition between

firms for workers. Given the wage setting policy of other firms, the ability to commit allows

a firm to make more profits, because the hiring premium enables it to fill its vacancies

faster. However, since all other firms do the same, profits are lower compared to the
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case without commitment. Figure 4 also reveals that for x̃ = 0 the slope of the wage

function is smaller (in absolute value) for the case with than without commitment. This

is remarkable, since the only difference between the expressions for the slope is a factor

2 in the differential equations for wages for the case with commitment, compare equation

(14) and (15). From this point of view, one would expect a steeper wage function for the

case with commitment. However, the slope is proportional to the flow profits per worker,

i.e. the difference between the productivity and wages, Y (x̃)−W (x̃). This difference is

more than twice as large in the case without commitment, yielding a steeper wage function

in that case. A comparison with figure 3 reveals that despite the zero derivative of W (x̃)

at x̃ = x̂, the wage distribution has a fat right tail. Hence, in empirical applications,

the reservation wage (the lowest observed wage) is highly sensitive to the exact definition

of the lowest wage. The 1st percentile is very different from the 2nd percentile while the

98thand 99th percentile are very similar. The mean-min wage differential as proposed by

Hornstein et.al. (2010) is therefore a less robust statistic for measuring wage dispersion

of identical worker types than the max-mean differential.

3.2 Key statistics are largely independent of ψ

The expressions for the wage function W (x̃) and the expected wage ExW can be used

to calculate the max-mean and the mean-min wage differentials. These expressions are

depicted in Figure 5 for the case with commitment together with the output loss due

to search frictions. First, note that the max-mean differential is largely independent of

ψ, while the mean-min differential is very sensitive to the precise value of ψ. For the

case without commitment (not in the Figure) the max-mean differential varies even less

with ψ. It is important to realize that this is not a comparative statics exercise in ψ,

for then it would not make sense to keep u constant. The question addressed here is

what wage differential and output loss are consistent with a particular value of ψ and an

unemployment rate of 5%. Implicitly, the value of γ adjusts to keep the unemployment

rate at this level. The reason why ψ does not matter for the max-mean wage differential

is that lowering the value of ψ while keeping u constant has two offsetting effects on wage

differentials near the optimal assignment. The density of x̃ at the optimal assignment

is equal to g (0) = ψ + u/(1 − u), see equation (12). Hence, a lower value of ψ implies

that there are fewer workers close to the optimal assignment since search by employed

workers is less efficient and since employed job seekers are a particularly relevant source of
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Figure 5: Wage differentials and output loss (with commitment), max-mean differential

(thick), mean-min (thin), welfare loss (dashed)

labour supply for an x̃ = 0 job since all employed job seekers are employed at less optimal

jobs. This reduces the mean wage. Hence, holding W (x̃) constant, a lower value of ψ

yields a larger max-mean wage differential. However, holding x̃ constant, unemployed

job seekers become more choosy since they give up a share 1 − ψ of the option value of

search by accepting a job. Therefore, the lowest wage W (x̂) goes up. This reduces wage

differentials. For the mean-min wage differential only the latter factor is relevant. Hence,

contrary to the max-mean differential, the mean-min differential is particularly sensitive

to the value of ψ.

Second, the max-mean differential on the one hand and the mean-min and min-max

wage differentials on the other hand tell opposite stories about the effect of commitment

on wage differentials. Commitment makes firms compete more fiercely for workers, driving

up the maximum wage. Since the minimum wage is the same for the case with and without

commitment, this would imply that the max-min differential is larger under commitment.

However, since the slope of the wage function close to the optimal assignment is smaller

under commitment, see Figure 4, the max-mean differential is actually smaller; 6.7% of

the wage in the optimal assignment with commitment versus 9.9% without commitment.

Third, the estimated output loss, conditional on u, is largely independent of ψ. It is
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much smaller with than without commitment, 10% versus 17% respectively. The reason

that the output loss is lower in the commitment case is that in that case the business-

stealing externality is internalized, see Gautier et al. (2010). In equation (9), the term

1−ExW, can be written as [1−W (0)] + [W (0)− ExW ]; since W (0) is close to one, this

expression is dominated by the max-mean differential in the second term. To conclude, the

precise value of ψ is not very important for the max-mean wage differential and the output

loss, but it makes a large difference for the mean-min differential. Setting ψ = 1 simplifies

the formulas substantially, see the Appendix. All wage differentials and the output loss

are proportional to 1− B, the difference between output in the optimal assignment and

the value of non market time The relation between the max-mean differential, the output

loss and the unemployment rate is plotted in Figures 6 and 7 for the commitment and

the no-commitment case respectively. The non-linearity is hardly visible in the case of

commitment.

Figure 6: The max-mean wage differential (solid) and the output loss (dashed) (with

commitment)

Finally, the model generates a sharp prediction on the relation between employment-

employment, {e→ e} flows and unemployment-employment flows, {u→ e}.
{e→ e}
{u→ e} = −

1

1− u
ln u− 1,
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Figure 7: The max-mean wage differential (solid) and the output loss (dashed) (without

commitment)

which is 2.15, for our benchmark parameters, see the Appendix for the derivation for

the general case where ψ ≤ 1. In section 3.6 we discuss the empirical evidence on this

value and show how this ratio varies with ψ. For now, we just mention that this value is

consistent with the empirical evidence presented by Nagypal (2008).

3.3 Empirical inference on wages, allowing for unobserved het-

erogeneity in x

Our goal is to confront this model with data on wages, worker-skills s, and job-complexity

levels c, (which we use to calculate the mismatch indicator x ≡ s − c). Since we have

no idea about the units of measurement of the normalized mismatch indicator x̃, we

first create a non-normalized measure for x. Then, in the next section we discuss the

appropriate normalization procedure.

We must first deal with the problem that data on s and c provide only partial infor-

mation on the mismatch indicator. Some variation is unobserved by the researcher. Due

to the non-differentiability of lnW (x) at x = 0, this unobserved heterogeneity has large

implications for the estimation of the wage equation. Let r and q be the observed and
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the unobserved component in x respectively:

x = r + q,

where Cov[r, q] = 0. Let w ≡ lnW−E[lnW ] .

Since the function W (x) is symmetric and non-differentiable around x = 0, a simple

approach is to estimate,

w = ω0 − ω1 |x|+ ε, (18)

ω0 > 0 and ω1 > 0 are parameters to be estimated and where ε ≡ lnW (x)− ω1 |x| , is an

error term with zero mean. We propose to estimate this model in logs rather than levels

for two reasons. The main reason is that we normalized output in the optimal assignment

to unity, Y (0) = 1. Since W (0) � Y (0) = 1, Wx (0) has the interpretation of the relative

decline in wages around the optimal assignment. This interpretation carries over to ω1

when we estimate the model in logs. Secondly, we apply the model in the context of an

hierarchical model, where the wage in the optimal assignment depends on the worker’s

skill level s. In that context, we cannot simultaneously normalize the wage in the optimal

assignment for all skill levels. Estimating the model in logs resolves this problem.

Suppose we estimate equation (18) by simply replacing x by its observed component

r. Equation (18) can be viewed of as a first order Taylor expansion of the exact relation

between log wages and the mismatch indicator x around x = 0. The parameter ω1

could then be interpreted as an estimate of d lnW (x) /dx|x=0 = Wx (0) /W (0). However,

even if this Taylor expansion were a perfect approximation of lnW (x), ω1 will be a biased

estimator of Wx (0) /W (0) due to the convexity of the wage function at x = 0. We proceed

by approximating the distributions of the observed and unobserved components by normal

distributions and then check with numerical simulations how good the approximations are.

The subsequent lemma is helpful.

Lemma 1 Assume: r ∼ N (0, σ2r) and q ∼ N
(
0, σ2q
)
and define:

σ2x ≡ σ2r + σ2q .

Then the following equalities hold:

E [|r + q| |r] =
√
2π

−1
(
2σq +

r2

σq

)
+O
(
r4
)
,

E [|r + q|] =
√
2π

−1
2σx,

|r + q| =
√
2π

−1
σ−1x
(
σ2x + σ2q + r2

)
+ υ,
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where υ in the final line is interpreted as a residual term and where the coefficients in the

second line are set to minimize the residual sum of squares:

∫ ∫
υ2ψ (r, q) dqdr =

∫ ∫ [
|r + q| −

√
2π

−1
σ−1x
(
σ2x + σ2q + r2

)]2
ψ (r, q) dqdr,

and ψ (r, q) is the joint density function of r and q. By construction: E[υ] = 0.

The derivation of these relations is in the Appendix. The first equation in lemma 1

gives a fourth order Taylor expansion for the conditional expectation of the absolute value

of the mismatch indicator x = r + q, conditional on its observed component r. The first

and the third derivatives of E[|x| |r] with respect to r are zero, so that the first and the

third order term in the Taylor expansion drop out. The final line gives a least squares

approximation of |x| regressed on an intercept and the observed component squared r2.

Figure 8 shows the true function E[|x| |r] , its Taylor expansion for σ2q = 1, and its least

squares approximation for σ2r = σ2q = 1. The observed component r is not very informative

about the value |x| for r ∼= 0: for |r| varying between 0 and 1, E[|x| |r] varies between

0.80 and 1. Variation of r in the tails of the distribution is much more informative on the

actual value of the mismatch indicator; limr→∞ dE[|x| |r] /dr = 1 and mutatis mutandis

the same for limr→−∞. The Taylor expansion is fairly precise for |r| < 1. The precision

of the least square approximation is excellent for a much wider range of |r| < 2.5.
The results in Lemma 1 and Figure 8 justify the idea of approximating the underlying

model (18) by a regression model of w with a quadratic term in r:

w = ω0 − ω2r
2 + ε. (19)

Under the assumption of joint normality of r and q, the relation between the structural

parameter ω1 and the estimated parameters ω0 and ω2 can be derived using Lemma 1:

ω0 = ω2σ
2
r = ω1

√
2π

−1
σ−1x σ2r , (20)

ω1E [|r + q|] = ω1
√
2π

−1
2σx = 2ω0

σ2x
σ2r

.

The first line establishes a relation between the parameters ω0 and ω2 of the regression

model (19) and the parameter ω1 of the underlying model (18). The first equality follows

from taking expectations in equation (19), using E[w] = 0 and E[r2] = σ2r . The second

equality is an application of the least square result of Lemma 1 that a least square re-

gression of |x| on an intercept and r2 yields a coefficient for r2 equal to
√
2π

−1
σ−1x ; a
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Figure 8: Smoothing of an absolute value function by random mixing for σ2q = σ2r = 1:

|x| (thin), E[|x| |r] (thin), Taylor expansion (dashed thick), least squares estimate (thick)

regression on −ω1 |x| yields therefore a coefficient of −ω2 = −ω1
√
2π

−1
σ−1x . Conditional

on the true variance of the mismatch indicator, the coefficient ω0 is proportional to the

variance of x that is observed, σ2r/σ
2
x. The second line assesses the expected loss in log

wages due to the term ω1 |x| in the ’true’ model in equation (18). The first equality uses

the second line in Lemma 1. The second equality uses the first line of (20). The para-

meter ω0 underestimates the expected loss by a factor 2σ2x/σ
2
r . If the mismatch indicator

would be perfectly observed, (σ2r = σ2x), ω0 would still underestimate the expected loss

by a factor 2. The reason for this underestimation is that the quadratic approximation of

E[|r + q| |r] is not perfect, in particularly not when the variance of q is small, since then

r converges to x and since the parabola x2 is a bad approximation of the absolute value

function |x|.
The following relations hold:

W (0)− ExW � lnW (0)− lnExW � w (0)− E [w] = max [w] � 2ω0. (21)

The first inequality follows from the fact that 1 > W (0) >ExW . The second inequality

is due to Jensen’s inequality, lnExW >Ex lnW . The intuition why both inequalities hold

approximately with equality is simple. The smaller the wage differentials are (either
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because u is small or B is close to Y (0)), the closer W (x) is to one for all x, so that

the approximation lnW �W − 1 applies. Substituting this approximation in yields both

approximate equalities. The third equality follows from the fact that w (0) = max [w] and

E[w] = 0. The final approximation follows from equation (20); the equality holds when

the mismatch indicator is fully observed, σ2x = σ2r . We propose to use 2ω0 as an estimate of

the max-mean wage differential, W (0)−ExW . Note that the estimate of ω0 is insensitive

to a proportional transformation of r. Suppose that we would use r̃2 = ζr, ζ > 0 instead

of r2 as a regressor. That would affect the coefficient ω2, but not the intercept ω0. Hence,

the proposed measure of wage loss due to search frictions ω0 is insensitive to the unit of

measurement of the observed component r of the mismatch indicator. It is only sensitive

to the share of the variance of the mismatch indicator that is actually observed by the

researcher.

The above conclusions apply when lnW (0)−lnExW is well approximated by ω0−ω1 |x|
and when the normal distribution is a good approximation of the true distribution of r

and q. However, both conditions do typically not hold. Figure 8 shows that ω0−ω1 |x| is
an imperfect approximation of lnW (x) and Figure 3 shows that the distribution of x is

far from normal, and hence, the distributions of its components r and q cannot be jointly

normal. We therefore use numerical simulations to evaluate the impact of those violations.

We use the benchmark values for the efficiency of on- versus off-the-job search that we

used before: ψ = 1. We present two results for three values of the unemployment rate u

and for four values of the value of non market time B. Table 1 contains some statistics

based on the analytical relations derived for the theoretical model, both for the case

with and without commitment in wage setting. The first column, 1
2
γσ2x, is the expected

productivity loss due to mismatch, since E[Y (0)− Y (x)] =E
[
1
2
γx2
]
= 1

2
γσ2x. As shown by

equation (16), this statistic is insensitive to the units of measurement of x. Moreover, it is

the same for the case with and without commitment (keeping constant the unemployment

rate), because the pattern of job mobility and the value of γ depend only on the rate of

unemployment. Since all wage differentials are proportional to 1−B, so is the max-mean

differential. The variance of log wages becomes very large for B = 0, much larger than is

observed empirically even for countries with extreme income inequality and even without

controlling for the share of wage dispersion that is accounted for by observable differences

in human capital. Hence, just a first look at the data rejects the version of the model

where B → 0 and ψ → 1. The reason for this is that for ψ = 1 and B = 0, the lowest

27



wage W (x) is equal to zero, and hence the mean-min ratio is −∞. Therefore„ a small

probability mass at the bottom of the wage distribution has a disproportional effect on

the variance. Stated differently: though wage differentials are proportional to 1−B, and

hence, the variance of the wage is proportional to (1−B)2, this proportionality does not

carry over to log wage differentials and their variance. Finally, max [w] is a reasonable

estimate for the max-mean wage differential, in particular for the commitment case, but

not for B ≤ 0.2 and u = 7.5%. The final column presents the wage dispersion statistic

proposed by Hornstein et.al. (2010), the mean-min wage ratio. Besides that this statistic

depends a lot on ψ, it also depends strongly on the value of non market time, B.

1
2
γσ2x Var[w] W (0)−ExW max [w] ExW

W (x)
X

commitment both yes no yes no yes no yes no yes no

u(%) B

2.5 0.0 0.022 0.173 0.238 0.062 0.113 0.103 0.182 ∞ ∞ 0.089 0.182

0.2 0.018 0.034 0.057 0.050 0.090 0.063 0.122 4.740 4.357 0.071 0.144

0.4 0.013 0.016 0.021 0.037 0.068 0.046 0.081 2.399 2.261 0.054 0.108

0.8 0.004 0.001 0.002 0.013 0.023 0.013 0.024 1.234 1.210 0.018 0.036

5.0 0.0 0.041 0.387 0.514 0.111 0.165 0.200 0.326 ∞ ∞ 0.166 0.291

0.2 0.033 0.066 0.082 0.089 0.132 0.119 0.184 4.510 3.991 0.133 0.232

0.4 0.024 0.025 0.030 0.067 0.099 0.079 0.123 2.318 2.121 0.100 0.174

0.8 0.008 0.002 0.002 0.022 0.033 0.024 0.035 1.219 1.186 0.033 0.058

7.5 0.0 0.057 0.608 0.626 0.150 0.197 0.295 0.403 ∞ ∞ 0.234 0.376

0.2 0.046 0.089 0.104 0.120 0.158 0.168 0.233 4.299 3.381 0.188 0.301

0.4 0.034 0.034 0.036 0.090 0.118 0.110 0.151 2.242 2.016 0.141 0.226

0.8 0.012 0.002 0.002 0.030 0.039 0.032 0.042 1.207 1.169 0.047 0.075

Table 1: Numerical values for wage differentials and the variance of log wages

Tables 2 and 3 provide information on the final approximation in equation (21). For

this analysis, we draw 10,000 values of r and q.3 We do this for different values of B

and the signal-noise ratio σ2r/σ
2
q and estimate (20) for both the case with and without

commitment. The coefficient ω0 attains a maximum when the signal to noise ratio is

3Technically we do this by drawing 10,000 values of x from g(x) and by adding to it some measure-

ment error e ∼N
(
0, σ2xσ

2
qσ

−2
r

)
to it. We treat x + e as (a monotonic transformation of) the observed

component r. Since the estimate of ω0 does not depend on the unit of measurement of r, we do not have

to scale x+ e back.
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greater than 0.5 (for u = 2.5% the maximum is at a ratio of 0.5 and when u = 7.5%, the

maximum is at a ratio of 2 for commitment and 1 for no commitment). For high values of

the signal to noise ratio, the data follow the kink in the wage function tightly, so that the

second order Taylor expansion provides a bad approximation of the true function. For

low values of the signal to noise ratio, most of the search frictions are not picked up by

its observed component. Both effects have a negative impact on the value of ω0. Table

2 shows that indeed for σ2r/σ
2
q = 1/8, the parameter ω0 underestimates the max-mean

wage differential except for B = 0. We took σ2r/σ
2
q = 1/8 because this value is consistent

with our estimated ω0. From Table 3 we see that the log approximations are pretty bad

except if the signal-noise ratio is low. In the latter case, downward bias due to the low

signal to noise ratio offsets the upward bias due to taking logs. For σ2r/σ
2
q and the more

realistic values, B ≥ 0.4, the estimated value of ω0 is underestimated by a factor 2 with

and a factor 3 without commitment. In general, our approximation works better for the

case with than without commitment. Our methodology does not allow us to distinguish

between the case with and without commitment, since the estimated value of ω0 is hardly

sensitive to this difference (except if B = 0 and frictions are large, u = 7.5%).

commitment yes no

u(%) B W (0)−ExW ω0 W (0)−ExW ω0
2.5 0.0 0.0624 0.0797 0.1128 0.0976

0.4 0.0374 0.0229 0.0677 0.0239

0.8 0.0125 0.0059 0.0226 0.0064

5.0 0.0 0.1108 0.0853 0.1645 0.1129

0.4 0.0665 0.0245 0.0987 0.0252

0.8 0.0222 0.0066 0.0329 0.0053

7.5 0 0.1503 0.0862 0.1972 0.1242

0.4 0.0902 0.0271 0.1183 0.0237

0.8 0.0301 0.0059 0.0394 0.0057

Table 2: Simulated estimates of ω0 for signal-noise-ratio of 1/8

3.4 The derivation of the proxies for s and c

The next step in the argument is to construct a proxy for the mismatch indicator r. Our

approach is to come up with empirical estimates of workers’ skill level s and the level of job
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u(%) 2.5 5.0 7.5

Commitment? yes no yes no yes no

W (0)−ExW 0.0374 0.0677 0.0665 0.0987 0.0902 0.1183

σ2r/σ
2
q = 1/16 0.0127 0.0120 0.0140 0.0132 0.0101 0.0126

σ2r/σ
2
q = 1/8 0.0229 0.0239 0.0245 0.0252 0.0271 0.0237

σ2r/σ
2
q = 1/4 0.0328 0.0387 0.0406 0.0381 0.0431 0.0393

σ2r/σ
2
q = 1/2 0.0460 0.0470 0.0551 0.0585 0.0582 0.0555

σ2r/σ
2
q = 1 0.0454 0.0420 0.0610 0.0610 0.0716 0.1284

σ2r/σ
2
q = 2 0.0382 0.0405 0.0592 0.0631 0.0784 0.0758

Table 3: Simulated estimates of ω0 for B=0.4

complexity c, denoted by s and c respectively, and to calculate the proxy as the difference

between the two, r ≡ s−c. For that purpose, we use a methodology spelled out in Gautier

and Teulings (2006) and apply that to data for the United States taken from the March

supplements of the CPS 1989-1992, see Gautier and Teulings (2006), for details. First,

we must leave the hypothetical circular framework and enter the hierarchical one. Let

Y (s, c) denote the productivity of an s-type worker in a c-type job. Let this productivity

satisfy the following relation:

lnY (s, c) = s− 1
2
γ (s− c)2 . (22)

Now, a worker of skill type s has both a comparative advantage in a job-type of the same

complexity c as her skill level s and an absolute advantage over other workers with a lower

skill, so that he receives a higher wage than these workers when employed in his optimal

assignment. The first term captures the absolute advantage of better skilled workers

(the hierarchical aspect of the model). The second term captures the match quality.

Its specification is equivalent to the circular model in equation ( 1 ), in the sense that:

Y ′′ (0) /Y (0) = Ycc (c, c) /Y (c, c) = γ; this parameter is comparable to γ in equation

(1). The log supermodularity of Y (s, c) is sufficient for positive assortative matching in a

Walrasian equilibrium, see Teulings (1995). The optimal assignment c (s) of worker type

s maximizes her output. The first order condition for this problem, Yc (s, c) = 0, implies

c (s) = s or x = 0. At first sight the linearity of equation (22) in s seems to be a serious

limitation to its generality. However, Gautier and Teulings (2006) show that it is not.

Since we have not yet defined the units of measurement of s yet, the linearity of the first

term is just a matter of proper scaling of the skill index. Hence, the restrictive nature
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of equation (22) is not in the first but in the second term, namely that the coefficient of

the second term, γ, does not vary with s.4 By a similar argument, the fact that equation

(22) is constructed such that the equilibrium assignment is characterized by the simple

identity c (s) = s instead of a more general function, is not a restriction to the model, but

just a matter of proper scaling of the complexity index c.

The equivalent of the log wage equation (18) that goes with this production function

reads:

lnW (s, c) = lnW (0, 0) + s− ω · |s− c| . (23)

Since c (s) = s in the Walrasian equilibrium, c follows the same distribution as s. The

mismatch term in equation (23) vanishes for the optimal assignment c (s) = s, so that the

worker’s log wage is equal to his skill level: lnW (s, c) = lnW (0, 0)+s. Therefore, we can

construct an index of the worker’s skill level by running a regression of log wages on indi-

vidual characteristics. The coefficients of these characteristics measure their contribution

to the skill index s. Does the same conclusion apply to the complexity index? At first

sight, this is not the case, because the partial derivative of log wages with respect to c is

zero in the Walrasian equilibrium, since c (s) = s. Hence, s and c are perfectly correlated

in that case. However, a similar regression with job instead of worker characteristics does

yield an estimate of the contribution of these characteristics to the complexity index c.

We construct indices of s and c along these lines by the following procedure:

Normalization: The expectations of w conditional on s and conditional on c among

employed workers satisfy:

E [w|s] = s, (24)

E [w|c] = c.

This normalization is just a convenient way of scaling s and c. It has no empirical content,

but it is consistent with equation (22) for the Walrasian equilibrium: (i) c (s) = s and (ii)

because there are no search frictions in the Walrasian equilibrium, the zero profit condition

implies Y (s, s) = W (s, s); hence: w = s. Since s and c are perfectly correlated in the

Walrasian equilibrium, it is futile to use the expectation operator in these expressions

for this equilibrium, since the distribution of s conditional on c is degenerate, and vice

versa. However, in the presence of search frictions, this correlation is no longer perfect

and we therefore have to take expectations over the mismatch indicator x = s − c. The

4Teulings (2005) refers to this case as the constant complexity dispersion equilibrium.
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normalization above implies that we can construct a measure of s and c by running the

following regression:

w = )x′)β + εs + εw, (25)

w = )z′)α+ εc + εw,

where )x and )z are vectors of observed worker and job characteristics respectively,5 where

εw captures measurement error in log wages, and where εs and εc capture (i) unobserved

characteristics of workers and jobs respectively and (ii) the effect non-optimal assignment

on wages. It is convenient to normalize our data on )x and )z such that they have zero

mean. Since we defined w to have a zero mean too, it does not make sense to include a

constant in this regression. The estimated parameter vector can then be used to construct

indices for the observed worker and job characteristics,

s = )x′)β,

c = )z′)α.

Again, both indices have zero mean by construction.6 So the skill measure is the predicted

wage conditional on worker characteristics and the job complexity level is the predicted

wage conditional on job characteristics. Next, we use these indices and estimate

w = ω0 + ωss+ ωcc− ωsss
2 + 2ωscsc− ωccc

2 + ε, (26)

w = ω0 + ωss+ ωcc− ω2 (s− c)2 + ε.

The second regression imposes two restrictions ωss = ωcc = ωsc. At first sight, this

equation seems inadequate to capture model (23). The model includes first order terms

for both worker and job characteristics, s and c, where model (23) has only a first order

term for the worker’s skill s. However, since worker and job characteristics are correlated

and since worker characteristics are only partially observed, observed job characteristics

will serve as a proxy for unobserved worker characteristics, so that we can expect both

ωs and ωc to be positive. The problem of establishing the "structural" value of ωs and

5We apply the following personal characteristics: gender, total years of schooling, a third-order poly-

nomial in experience, highest completed education, being married, having a full- or part-time contract

as well as various cross terms of experience, education, and being married. As job characteristics, 520

occupation and 242 industry dummies are applied.
6We also normalize s and c such that in a regression: w = β1s+ β2s

2 + εw, β2 = 0 and the same for

c, see Gautier and Teulings (2006) for details.
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ωc has occupied labor economists ever since the publication of Krueger and Summers’

(1998) seminal paper on efficiency wages, see e.g. Bound and Katz (1988) or Abowd,

Kramarz, and Margolis (1998). The issue is whether ωc truly measures the effect of job

characteristics, or whether it is merely a proxy for unobserved worker characteristics,

see Gautier and Teulings (2006) and Eeckhout and Kircher (2011) for a more elaborate

discussion. For now, we adhere to equation (23), which does not allow for a ’true’ first

order effect of job characteristics. The reason that (26) does not have a term |x| = |s− c|
but second order terms for worker and job characteristics, s2, sc, and c2 stems from the

fact that the unobserved component of x smooths the non-differentiability of |x| at x = 0,
as discussed in relation to Lemma 1. Estimating (26) gives,

w = 0.0125
(8.86)

+ 0.61s
(182.4)

+ 0.66c
(207.7)

− 0.17s2
(21.2)

− 0.17c2
(21.6)

+ 0.43sc
(36.6)

w = 0.0241
(14.66)

+ 0.61s
(182.2)

+ 0.66c
(207.5)

− 0.2007
(35.11)

r2

where as defined before, r = s − c and σ2r = 0.0306. The sign restrictions hold for all

three second order terms. The F-test7 rejects the restrictions ωss = ωcc = ωsc due to the

large number of observations that we use but the difference in R2 between the restricted

and the non-restricted model is only 0.0003.8 From this estimate of ω0 it also becomes

immediately clear from Table 2 that we need B > 0 in order to rationalize the observed

wage dispersion.

What legitimizes us to interpret the first order term ωc as capturing unobserved het-

erogeneity in workers’ skills and why can we not interpret the second order terms in the

same manner? Why would second order terms really capture the concavity of the wage

function in the mismatch indicator x and not unobserved components in either s or c?

Gautier and Teulings (2006) argue that while the argument of unobserved heterogeneity

applies for ωc, it is much less likely to apply to the second order terms. They provide

three arguments. First, when observed and unobserved worker and job characteristics are

distributed jointly normal, it is impossible for second order terms to be a proxy for the

unobserved component of a first order term, because the correlation of a second order

term in s and/or c with the unobserved skill index is a third moment, and third moments

of a normal distribution are equal to zero. A simple empirical test for this assertion is that

7 (R2u−R
2

restr)/2
(1−R2

u
)/(222179−6) =

(0.4479−0.4476)/2
(1−0.4479)/(222179−6) = 60.4.

8Actually, the size restrictions are not exactly correct. The exact restrictions account for differences

in the degree of observability in s and c, see Gautier and Teulings (2006) for details.
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including the second order terms should not affect the first order terms, which turns out

to be the case. Second, the interpretation of these coefficients as capturing the concavity

of the wage function implies sign restrictions, ωsc > 0, ωss < 0, and ωcc < 0, which are met

for all three coefficients for all six countries for which the model is estimated in Gautier

and Teulings (2006). There is no reason why these restriction should hold when the sec-

ond order terms are to be rationalized from unobserved worker heterogeneity. Moreover

ωsc = −2ωss = −2ωcc, which holds approximately. Here, we add a third argument.9 If

the significance of the second order terms is indeed driven by the concavity of the wage

function in the mismatch indicator, then their sign would depend on the vectors )x and

)z which capture worker and job characteristics respectively. If we would compose both

vectors out of mixtures of job and worker characteristics, e.g. experience and occupation

dummies in )x and education and industry dummies in )z, then the concavity result should

not come out. Table 4 reports the results for this test. For both alternative combinations,

putting education and occupation in s or putting education and industry in s (and the

remaining variables in c), the concavity result becomes either much weaker or even breaks

down. Hence, the concavity result only survives when worker and job characteristics are

separated in two variables and it is not a statistical artifact.

s includes: s c s2 c sc

educ, occ 0.517 0.650 −0.009 −0.037 0.094

(t) (132.6) (175.24) (−0.86) (−4.10) 6.17)

educ, ind 0.324 0.805 −0.050 0.010 0.053

(t) (79.9) (233.2) (−4.44) (1.10) (3.46)

Table 4: Test of concave relation between wages and s and c

3.5 Deriving the share of the variance of x that is observed

The regression (26) implies ω0 = 0.0241. The results presented in table 3 imply that

conditional on the assumption that the value of non market time is 0.4, the signal-to-noise

ratio is about 1/8. Since we use our estimate of ω0 to identify the signal-to-noise ratio, we

want to derive an empirical measure for mismatch which we can compare with the model’s

prediction. Let ρ2s be the ratio of the variance of s to the variance of s+ εs, and mutatis

mutandis the same for ρ2c, and let σ2 be the variance of s + εs, which is by construction

9We thank Jean Marc Robin for the idea of this test.
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equal to the variance of c + εc. For the CPS data, we find ρ2s = 0.395, ρ2c = 0.427, and

σ2 = 0.402.10 As discussed before, the perfect correlation between s and c breaks down in

the presence of search frictions. Let ρ be the correlation between s and c. Before we can

calculate Var[s− c], we must first make the following assumption on their covariance.11

Assumption: Cov[s, c] = ρρ2sρ
2
c .

This assumption implies that the covariance between the observed part of worker char-

acteristics s and c (which is ρρ2s) is distributed proportionally between the observed job

characteristics c and the unobserved component, εs. Since the former accounts for a

fraction ρ2c in the variance of c, this yields the expression in the assumption. Therefore,

σ2x ≡ σ2(s−c) = σ2 + σ2 − 2ρσ2 = 2 (1− ρ) σ2 (27)

σ2(s−c) ≡ σ2r = ρ2sσ
2 + ρ2cσ

2 − 2ρρsρcσ2 =
(
ρ2s + ρ2c − 2ρρ2sρ2c

)
σ2

In the limit close to the Walrasian equilibrium, ρ→ 1, σ2x → 0, while σ2r → (ρ2s + ρ2c − 2ρ2sρ2c) σ2 >
0. The reason is that even if s and c are perfectly correlated, as is the case in the Wal-

rasian equilibrium, their observed parts, s and c, are not perfectly correlated because both

are contaminated by measurement error. This problem seriously complicates inference on

mismatch. Do we observe a worker not assigned to her optimal job type because (i) we

mismeasure her skills, (ii) we mismeasure the complexity of the job, or because (iii) true

mismatch? The signal-noise ratio can be approximated by:12

σ2x
σ2r − σ2x

=
2 (1− ρ)

ρ2s + ρ2c − 2ρρ2sρ2c − 2 (1− ρ)
. (28)

10We use Bound and Krueger’s (1991) finding that the signal noise ratio for wages is about 0.85. The

R2 for the regressions (25) are 0.336 and 0.363 respectively and Var[w] is 0.342. Dividing those numbers

by 0.85 yields the results for ρ2s and ρ2c anf σ2.

11This assumption is equivalent to the following assumption on the covariance matrix:

Var
[
s c s c

]
= σ2




1 ρ ρ2s ρρ2c
1 ρρ2s ρ2c

ρ2s ρρ2sρ
2
c

ρ2c




12The denominator derives the variation of the noise as the difference between the true signal x and its

observed value r. Strictly speaking, application of the model signal-measurement error requires that s−c
is independent of εs − εc, which is not the case due to regression to the mean: the mismatch indicator

x ≡ s− c cannot be simultaneously independent of s and c, as it is in the ciruclar model. This problem

is closely related to the corner problem discussed in Teulings and Gautier (2004). As long as σ2x ≪ σ2,

this problem can be ignored.
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Substituting in a signal-to-noise ratio of 1/8 and the values of ρ2s and ρ2c yields ρ = 0.973,

so13

σ2x = 2× 0.027× 0.342 = 0.018.

An expression for 1
2
γσ2x follows directly from the model, see Table 1. The information

that is missing is a value for γ that goes with the dimension of x used above. This is the

final step in our procedure.

3.6 Deriving γ

For the derivation of a value for γ, we use the fact that the interpretation of the circular

model as a simplified representation of an hierarchical assignment model allows us to

draw an analogy to the theory of imperfect substitution between low and high skilled

workers, see Teulings (2005) and Teulings and Van Rens (2008). In fact, γ measures the

curvature of Rosen’s "kissing" offer and utility curves, see Figure 2. We can establish

a relation between our estimation results and the elasticity of substitution between low

and high skilled workers as estimated by Katz and Murphy (1992). In the specification

of the model considered so far, the distribution of worker-skills and job-complexities was

kept constant, and we normalized the definition of the skill index s and complexity index

c such that the optimal assignment was given by c (s) = s. In this section, the optimal

assignment depends on the supply and demand for skill types. We follow the derivation

in Teulings and Van Rens (2008). First, we characterize the Walrasian equilibrium of this

assignment problem. In that equilibrium, every s-type worker is employed in her optimal

assignment c (s). Next, we do comparative statics to analyze the effect on relative wages

of a shift in the mean of the skill distribution.

Due to the assumption of comparative advantage of skilled workers in complex jobs,

the optimal assignment is an increasing function, c′ (s) > 0. Let Y ∗ be aggregate output

per worker. We assume that this output is produced by a Leontieff technology, requiring

the input of all c-type jobs in fixed proportions. Let h (c) be the density of the input

of a c-type job required to produce one unit of aggregate output. Equilibrium on the

commodity market for job type c (s) requires the equality of supply and demand for each

s-type:

Y ∗h [c (s)] = g (s)Y [s, c (s)] /c′ (s) , (29)

13 1
8 =

2(1−ρ)
0.395+0.427−2(ρ×0.395×0.427+1−ρ) . Since ρ is close to unity, indeed: σ2x ≪ σ2, see the previous

footnote.
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where g (s) is the skill density function. The left hand side is the demand for the output

of job type c (s); it is equal to aggregate output Y ∗ times the density of job type c (s)

required per unit of aggregate output, h [c (s)]. The right hand side is the supply of

output of job type c (s); it is equal to the density of worker type s, times its productivity

in job type c (s), Y [s, c (s)] times the Jacobian ds/dc = 1/c′ (s). We assume s and c to be

distributed normally with mean µs and µc respectively and identical standard deviations

σs = σc = σ. Without loss of generality, we normalize µc = σ2; the only thing that

matters in this model turns out to be the difference between µs and µc. Taking logs in

equation (29) and using the density function for h (·) and g (·) yields,

lnY ∗ − 1
2

(
c (s)− σ2

σ

)2
= −1

2

(
s− µs

σ

)2
+ s− 1

2
γ [s− c (s)]2 − ln c′ (s) . (30)

This equation should hold identically for all s.

Let lnW (s) be the log wage for worker type s in equilibrium. The zero profit condition

implies W (s) = Y [s, c (s)]. Firms offering jobs of type c choose their preferred worker type

s as to maximize profits, or equivalently, to minimize the log of the cost of production per

unit of output, lnW (s)− lnY (s, c). Hence, the equilibrium wage function W (s) satisfies

the first order condition

d lnW (s)

ds
=

d lnY (s, c)

ds
|c=c(s) = 1− γ [s− c (s)] , (31)

where we use equation (22) in the second equality. The system of equations (30) and (31)

is solved by the following expressions for c (s) and W (s):

c (s) = s− µs,

d lnW (s)

ds
= 1− γµs.

The wage function lnW (s) is linear in s. d lnW (s) /ds = 1 − γµs is the return to the

human capital index s. This return depends on the supply of human capital, that is, on

the mean of the skill distribution. The equilibrium assignment of section 3.4, c (s) = s,

implies that µs = 0. In that case d lnW (s) /ds = 1, as is implied by equation (22). A

percentage point upward shift in the mean of the skill distribution, µs, reduces the return

to human capital by γ % point. Hence, γ is related to the inverse of the elasticity of

substitution between high and low skilled workers as estimated by Katz and Murphy’s

(1992). That relationship can be analyzed more formally. Katz and Murphy split labour
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into two skill groups, low and high, and consider the effect on relative wages of a shift

in labour supply from the one to the other. Let s∗ be the cut off level. All worker

types with s > s∗ are classified as high skilled; all other workers as low skilled. Hence,

Φ [σ−1 (s∗ − µs)] is the share of low skilled workers and Φ [−σ−1 (s∗ − µs)] is the share of

high skilled workers, where Φ (·) denotes the standard normal distribution function. Katz

and Murphy estimate the elasticity η, which is the ratio of the change in relative supply

of high and low skilled workers to the change in relative wages.

η ≡ −d (lnΦ [σ−1 (s∗ − µs)]− lnΦ [−σ−1 (s∗ − µs)]) /dµs
d (E [lnW (s) |s > s∗]− E [lnW (s) |s < s∗]) /dµs

=
1

σ2γ
. (32)

The derivation of the final step is in the Appendix. Katz and Murphy estimate η to be

1.4. Hence:

γ =
1

Var [w] ηlow-high

∼= 1

0.36× 1.4
∼= 2,

where we use σ2 =Var[w] ∼= 0.36. Teulings and Van Rens (2008) estimate directly the

relation between mean years of education and the return to human capital using panel

data for some 100 countries during the postwar period. They find a similar value for the

compression elasticity. Using γ = 2 we find:

1

2
γσ2x = 0.019.

For B = 0.4, this value squares with a value of the unemployment rate of 3.8%, see Table

1. This is in line with the observed value of the unemployment rate and corresponds

to an output loss X of 7.8% if firms can commit to wage payments and 14.5% if firms

cannot. If firms cannot commit, there is too little competition for workers, which leads

to too high quasi rents and consequently to excessive vacancy creation. In other words,

an unemployment rate of 3.8% with many vacancies implies a larger output loss than the

same unemployment rate with few vacancies. Without commitment, this unemployment

rate corresponds to a max-mean wage differential of 8.6% and a mean-min ratio of 2.18,

and with commitment, it corresponds to to a max-mean differential of 5.3% and a mean-

min ratio of 2.36. These mean-min ratio’s are in line with the estimates of Hornstein et.al.

(2010). Our model can therefore simultaneously explain the data on unemployment and

on wage dispersion among workers with the same human capital.
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3.7 The impact of variation in ψ

What is the impact of variations in ψ on our results? First, if we change ψ, we must re-

calibrate the model. Specifically, the (approximate) value of the signal-noise ratio σ2r/σ
2
q

that is consistent with our estimate of ω0 = 0.024 depends on ψ. For the sake of com-

parability, we restrict this value of the signal-noise ratio to be the same for wage setting

with and without commitment. This only implies that the third decimal of ω0 cannot

always be matched. Next, we calculate the value of ρ that corresponds to this signal-noise

ratio, using equation (28), and given this ρ, we calculate the expected productivity loss

due to suboptimal assignment, 1
2
γσ2x, using equation (27). The reason why ψ affects the

estimates of the signal-noise ratio is that different (ψ, u) pairs imply different amounts

of friction and consequently of "true" wage dispersion. Given the signal-noise ratio, the

model yields clear predictions on other observables like mismatch and the ratio of job-to-

job and unemployment-to-employment flows. Table 5 shows the results. We can also use

the values of u and of {e→e}
{u→e}

as a test for the performance of our model. A low ψ makes

workers more choosy by increasing their reservation wage and therefore unemployment

will be higher. It also implies that workers move slower to their optimal job type making

the cross-sectional mass of workers around the optimal job type smaller.

ψ ω0 σ2r/σ
2
q ρ 1

2
γσ2x u(%)

commitment yes no both both both both

1/2 0.027 0.024 3/4 0.888 0.077 5.8

3/4 0.025 0.022 1/4 0.950 0.034 4.7

1 0.025 0.025 1/8 0.973 0.019 3.8

Table 5: Frictional unemployment for different values of ψ for B=0.4

ψ {e→e}
{u→e}

W (0)−ExW
ExW
W (x)

X

commitment both yes no yes no yes no

1/2 1.483 0.076 0.089 1.49 2.10 0.122 0.185

3/4 1.969 0.064 0.089 1.82 2.15 0.097 0.163

1 2.399 0.053 0.086 2.36 2.18 0.078 0.145

Table 6: Key statistics for different values of ψ for B=0.4

Table 6 shows the ratio of job-to-job versus unemployment-to-job worker flows, wage

dispersion (max-mean differential and mean-min ratio) and the output loss for various
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values of ψ. Nagypal (2008) estimates the ratio of job-to-job versus unemployment-to-job

worker flows to be 2.2/0.91 = 2.4 in the US.14 However, Hornstein et.al. (2010) report a

larger value of the unemployment-to-job flow based on Shimer (2005) and get a value of

the ratio of both flows close to one.15 Using tenure data to calculate the job-to-job flow

also leads to lower estimates (29% lower according to Nagypal, 2008, implying a ratio

of 1.7). Koning, van den Berg and Ridder (1995) structurally estimate ψ with Dutch

data and find a value close to one. One way to reconcile those facts is to acknowledge

that the distinction between layoffs and quits is blurry. Hence, the available evidence

does not allow us to pin down the value of ψ exactly. Moreover, all values of ψ between

0.5 and 1 imply reasonable values of the unemployment rate and the amount of wage

dispersion. Our estimates of X based on the benchmark case with ψ = 1 is therefore a

lower bound. If we accept ψ to be between 0.5 and 1, then if firms can commit to wages,

the output loss is between 7.8% and 12.2%, while if firms cannot, it is between 14.5%

and 18.5%. The difference in output loss between both wage-determination processes is

due to a business stealing externality. For ψ = 1, wage setting with commitment yields

constrained efficiency, see Gautier et.al. (2010). The idea is that without commitment,

when opening a vacancy, individual firms do not internalize the future output loss of the

firm they will poach a worker from. Although the transitions of workers to better matches

are always efficient, the expected productivity gains are too small to justify the entry cost

of the marginal firm from a social point of view. For ψ = 1, the magnitude of this business-

stealing externality is equal to the difference in X with and without commitment.16 Table

6 shows this difference to be about 6%.

Table 7 shows that the lower is ψ, the larger is the fraction of X that is due to

mismatch. Again, there are two effects of decreasing ψ, (i) the reservation wage goes

down and (ii) workers move slower to their optimal job type. The first effect reduces

the expected mismatch, while the second increases it. It turns out that the second effect

dominates. The cost of unemployment makes up for only a small part of the total output

loss, in particular if firms cannot ex ante commit to their posted wages.

14Actually, she uses the job-to-job versus the job-to-unemployment ratio, but in steady state both are

approximately equal.
15They report, ({u→ e} /u)/({e→ e} /e) = 0.43/0.027. If unemployment is 6% then

{u→ e} / {e→ e} = 1.02 and ψ ≃ 0.2.
16Elliot (2006) discusses other wage mechanisms in a network framework that also internalize the

business-stealing externality.
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ψ 1/2 3/4 1

Commitment yes no yes no yes no

u(1−B) 3.5 3.5 2.8 2.8 2.3 2.3

vK 1.4 7.7 3.7 10.3 2.6 9.3

(1− u)1
2
γσ2x 7.3 7.3 3.2 3.2 2.9 2.9

X 12.2 18.5 9.7 16.3 7.8 14.5

Table 7: Decomposition of output loss due to frictions for B=0.4

3.8 Negative or positive assortative matching?

A recent paper by Eeckhout and Kircher (2010) argues that wage data allow us to identify

the strength of sorting but not whether there is positive or negative assortative matching

(PAM or NAM). Does the methodology outlined in this paper allow us to discriminate

empirically between NAM and PAM? As a first observation, equation (22) imposes positive

assortative matching by the second derivative of s being negative and the cross partial of

s and c being positive. An optimizing worker chooses the job type that satisfies Yc (s, c) =

0. The sign restrictions on the second derivatives impose positive assortative matching.

However, by just replacing c by −c, one obtains negative assortative matching. Since the

metric of c is undefined, this statement does not have any empirical content. The reason is

that by allowing the worker to choose the job type that maximizes her output, the partial

derivative with respect to c is zero in the equilibrium assignment. Then, the distinction

between high and low productive jobs is meaningless, since for a marginal change in c,

net output will be the same, while for larger variations, output will be lower, irrespective

of whether it is a more or a less complex job than the observed optimal assignment. The

crucial issue is that free entry of firms of any c type implies that if sufficiently many

workers prefer to be employed in a particular c type job, those vacancies will be opened.

This conclusion can also be inverted: if a model allows for free entry for types on either

the worker or the firm side of the market, the issue of positive versus negative assortative

matching looses its economic relevance. In absolute-advantage models like Shimer and

Smith (2000) and Eeckhout and Kircher (2011), the reason that there exists an interior

optimal job type is that there are two opposite forces at work. More complex job types

generate more output but they also have a better outside option and therefore require a

larger share of the output. The only way to support free entry in that framework is to

have higher entry cost for more complex jobs. In that case, we still cannot rank jobs in
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terms of their net profitability (output minus entry cost).

4 Conclusion

This paper showed that within a general search model with on-the-job search and sorting

there exists a simple relation between three statistics: the unemployment rate, the value

of non market time, and the max-mean wage differential. This relationship does not

depend on any parameter, except for the efficiency of on- relative to off-the-job search.

However, we show that this dependency is a higher order phenomenon and that the exact

value hardly matters for the relation between unemployment and wage dispersion. In

addition, we derive the ratio of job-to-job and unemployment-to-employment flows that

is implied by the model. The model is successful in jointly explaining an unemployment

rate of around 5%, the amount of wage-dispersion we observe in the data and the observed

labor-market flows. We therefore feel confident to use it to estimate the output loss due

to search frictions.

Search frictions directly generate output losses due to the fact that resources are al-

located sub optimally and indirectly because decentralized wage mechanisms potentially

come with distortions. Allowing for two-sided heterogeneity is extremely important be-

cause it is the interaction between the search frictions, the type distributions and the

production technology that determines how important these frictions are. If workers are

identical and firms are identical then all contacts result in a match. Under two-sided

heterogeneity, the production technology matters because it specifies how much output

is lost when a given job type is occupied by a sub-optimal worker type. Search frictions

generate a lot of output loss if a precize match is very important while if worker types are

almost perfect substitutes, the output loss will be will be modest. By combining informa-

tion on wage dispersion and the substitutability of worker types we can learn about the

actual amount of frictions and the importance of a precize match. We then use our model

to quantify and decompose this total output loss. As a test for the performance of the

model, we calculate the level of unemployment that is consistent with the frictions that

are implied by the observed wage dispersion. Depending on the relative efficiency of on-

the-job search, we find that the rate of unemployment that our model implies is between

3.5% and 5.5% which is a reasonable range. For an unemployment rate of 5.5%, the total

output loss is 12.2% if firms can commit to their posted wages and 18.5% if they cannot.

In the latter case, there is excess vacancy creation due to a busines-stealing externality. If
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firms can commit to wages, 60% of the output loss is due to sub-optimal assignment, 11%

is due to vacancy creation and 29% is due to unemployment. Traditionally, most of the

macro labor literature focussed on unemployment but those results imply that mismatch

is at least as important from an efficiency point of view.

Other contributions of our paper are that we show that the max-mean wage differential

is a more robust measure for wage dispersion than measures based on the reservation wage

because workers move towards the best jobs so the density around the highest wage is a

lot higher than around the lowest wage. We also discuss a simple and tractable method

for estimating the size of wage differentials allowing for measurement error. Finally, we

apply the theory of imperfect substitution between high and low-skilled workers. This

yields a relation between Katz and Murphy’s (1992) elasticity of substitution between

high and low-skilled workers and the second derivative of the production function of our

model. This relation allows us to calculate the total output loss due to mismatch and

the corresponding unemployment rate that our model implies, for a given value of non

market time.
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Appendix

A Derivations and proofs

A.1 Derivation of the asset values

The Bellman equation for the asset value of employment reads

ρV E(x) =W (x) + 2ψλ

∫ x

0

[
V E (z)− V E (x)

]
dz − δ

[
V E (x)− V U

]
. (33)

Totally differentiating (33) yields

V E
x (x) =

Wx(x)

ρ+ δ + 2ψλx
. (34)

The solution to this differential equation is

V E(x) =

x∫

0

Wx(z)

ρ+ δ + 2ψλz
dz + C0.

Integrating by parts yields

V E(x) =
W (x)

ρ+ δ + 2ψλx
− W (0)

ρ+ δ
+ 2λψ

x∫

0

W (z)

(ρ+ δ + 2ψλz)2
dz + C0. (35)

Evaluating (35) at x = 0 gives an initial condition that can be used to solve for C0

C0 = V E(0) =
W (0)

ρ+ δ
+

δ

ρ+ δ
V U .

Substitution of this equation into (35) yields the desired expression. Let ExW ≡
∫ x̄
0
g (x)W (x) dx

be the expected wage of a filled job. Evaluate (3) at x̄ and use the definition of g in (12)

to get

ρV E(x̄) = ρV U =
W (z) + ψκx̄ExW

1 + ψκx̄
=

uW (x̄) + ψ (1− u)ExW

u+ ψ (1− u)
. (36)

Next, note that the right-hand side of (33) and (36) are equal which can be used to get

an expression for
∫ z
0

[
V E (x)− V U

]
dx. Substitution of this expression into (2) gives ρV U

as a function of W (x̄), which can be eliminated by solving (36) for W (x̄). This gives

ρV U =
B + κx̄ExW

1 + κx̄
= uB + (1− u)ExW, (37)
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where the final step uses (11).

The free entry condition implies that the option value of a vacancy of type c must be

equal to K. Hence, by defining ExY ≡
∫ x
0
g (x)Y (x) dx, we obtain:

K = 2λ

∫ x

0

{u+ ψ (1− u) [1−G (x)]} Y (x)−W (x)

ρ+ δ + 2ψλx
dx

= (1− u) (ExY − ExW ) .

The first term in the integrand is the effective labor supply, u + ψ (1− u) [1−G (x)] for

a vacancy of type x. It is equal to the number of unemployed, u plus the number of

workers employed in jobs with a mismatch indicator that exceeds x, (1− u) [1−G (x)].

The second factor is the discounted value of a filled vacancy. Just as in the wage equation,

we discount current revenue Y (x)−W (x) by the discount rate ρ plus the separation rate

δ plus the quit rate 2ψλx. The second line follows from substituting (11) and (12) in.

A.2 Variance of x̃

Var [x̂] =

∫ x̂

0

x̃2g (x̃) dx̃ =
1 + ψx̂

x̂

∫ x̂

0

x̃2

(1 + ψx̃)2
dx̃ =

1 + ψx̂

ψ3x̂

∫ x̂

0

y2

(1 + y)2
dy

=
1 + ψx̂

ψ3x̂

(
x̂
x̂+ 2

x̂+ 1
− 2 ln (x̂+ 1)

)
.

A.3 Job flows

For the sake of convenience, we apply the version where κ is normalized to unity.

{u→ e} = 2λ (1− u) ,

{e→ e} = 2
∫ x̂

0

ψλ (1− u) g (x̃) x̃dx̃ = 2ψλ (1− u)
(1 + ψx̂)

ψ2x̂

∫ ψx̂

0

q

(1 + q)2
dq

= 2λ (1− u)

(
1 + ψx̂

ψx̂
ln (ψx̂+ 1)− 1

)
,

{e→ e}
{u→ e} =

1 + ψx̂

ψx̂
ln (ψx̂+ 1)− 1.
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A.4 Wages and expected wages

commitment:

W (x̃) = 1− γ̃

[
−
(
1 + ψx̃

ψ

)2
log

(
1 + ψx̃

1 + ψx̂

)
− x̂

ψ

(1 + ψx̃)2

1 + ψx̂
+

x̃

ψ
+
3

2
x̃2

]
,

Wx (x̃) = −2γ̃
ψ

1 + ψx̃

[
−
(
1 + ψx̃

ψ

)2
ln

(
1 + ψx̃

1 + ψx̂

)
− x̂

ψ

(1 + ψx̃)2

1 + ψx̂
+

x̃

ψ
+ x̃2

]
,

ExW =

∫ x̂

0

g (x̃)W (x̃) dx̃

= 1−
∫ x̂

0

1 + ψx̂

x̂ (1 + ψx)2
γ̃

[
−
(
1 + ψx̃

ψ

)2
log

(
1 + ψx̃

1 + ψx̂

)
− x̂

ψ

(1 + ψx̃)2

1 + ψx̂
+

x̃

ψ
+
3

2
x̃2

]
dx̃

= 1− γ̃
1 + ψx̂

ψ3x̂

∫ ψx̂

0

1

(1 + q)2

[
− (1 + q)2 log

(
1 + q

1 + ψx̂

)
− ψx̂

(1 + q)2

1 + ψx̂
+ q +

3

2
q2

]
dq

= 1− γ̃
3

ψ3x̂

[
ψx̂+

1

2
ψ2x̂2 − (1 + ψx̂) ln (1 + ψx̂)

]
,

γ̃ = (1−B)
u+ ψ (1− u)

1
2
x̂2 − (1− ψ) (1− u) 3

ψ3x̂

[
ψx̂+ 1

2
ψ2x̂2 − (1 + ψx̂) ln (1 + ψx̂)

] .

where the last equation follows from (6).

no commitment

W (x̃) = 1− γ̃

[
1 + ψx̃

ψ2
ln

(
1 + ψx̃

1 + ψx̂

)
− x̃− x̂

ψ
− 1
2
x̃ (x̃− 2x̂)

]
,

ExW =

∫ x̂

0

g (x̃)W (x̃) dx̃

= 1−
∫ x̂

0

1 + ψx̂

x̂ (1 + ψx̃)2
γ̃

[
1 + ψx̃

ψ2
ln

(
1 + ψx̃

1 + ψx̂

)
− x̃− x̂

ψ
− 1
2
x̃ (x̃− 2x̂)

]
dx̃

= 1− γ̃
1 + ψx̂

ψ3x̂

∫ ψx̂

0

1

(1 + q)2

[
(1 + q) ln

(
1 + q

1 + ψx̂

)
− q + ψx̂− 1

2
q (q − 2ψx̂)

]
dq

= 1− γ̃
1 + ψx̂

ψ3x̂

[
−1
2
ln2 (1 + ψx̂) + ψx̂ ln (1 + ψx̂)− 1

2

ψ2x̂2

1 + ψx̂

]
,

γ̃ = (1−B)
u+ ψ (1− u)

1
2
x̂2 − (1− ψ) (1− u) 1+ψx̂

ψ3x̂

(
−1
2
ln2 (1 + ψx̂) + ψx̂ ln (1 + ψx̂)− 1

2
ψ2x̂2

1+ψx̂

) .

where the last equation follows again from (6). In all relations presented above, x̂ can be
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eliminated using

x̂ =
1− u

u
,

compare equation (11), while γ̃ can be eliminated using its expressions.

A.5 Wage differentials and the output loss due to search for

ψ = 1

commitment

W (0)− ExW = 2 (1−B)

(
u

1− u

)2(5
2
− u+

3

2
u−1 +

4− u

1− u
ln u

)
,

ExW −W (x̂) = 2 (1−B)

(
u

1− u

)2(
1

2

(
1− u

u

)2
− 3
2

1 + u

u
− 3 1

1− u
ln u

)
,

X = 6 (1−B)

(
u

1− u

)2(
1− u+

1

2
u−1 (1− u)2 + ln u

)
.

no commitment

W (0)− ExW = 2 (1−B)

(
u

1− u

)2(
−1
2

1

1− u
(ln u)2 − 1 + u

u
ln u− 3

2

1− u

u

)
,

ExW −W (x̂) = −2 (1−B)

(
u

1− u

)2(
1

2

(
1− u

u

)2
+
1

2

1

1− u
(ln u)2 +

1

u
ln u+

1

2

1− u

u

)
,

X = −2 (1−B)

(
u

1− u

)2(
1

2
(ln u)2 +

1− u

u
ln u+

1

2

1− u

u

)
.

In all these equations, we use equation (7) to eliminate γ̃.

A.6 The derivation of lemma 1

The conditional expectation of (r + q) is given by,

E [|r + q| |r] = −
∫ −r

−∞

r + q

σq
φ

(
q

σq

)
dq +

∫ ∞

−r

r + q

σq
φ

(
q

σq

)
dq

= −r
[
1− Φ

(
r

σq

)]
+ σqφ

(
r

σq

)
+ rΦ

(
r

σq

)
+ σqφ

(
r

σq

)

= r

[
2Φ

(
r

σq

)
− 1
]
+ 2σqφ

(
r

σq

)
.
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The Taylor approximation follows from evaluating the second derivative at µ = 0. The

sum of least squares reads:

Σ =

∫ ∞

−∞

∫ ∞

−∞

1

σrσq

(
|r + q| − ω0 − ω2r

2
)
φ

(
q

σq

)
dqφ

(
r

σr

)
dr.

Define:

σ ≡ σ−1x σrσq,

σx ≡
√

σ2r + σ2q .

The first order conditions for ω0 implies:

0 =

∫ ∞

−∞

1

σrσq


 −

∫ −r
−∞
(r + q)φ

(
q

σq

)
dq +

∫∞
−r
(r + q)φ

(
q

σq

)
dq

−
∫∞
−∞
(ω0 + ω2r

2)φ
(
q

σq

)
dq


φ
(

r

σr

)
dr

=

∫ ∞

−∞

1

σr

[
r

[
2Φ

(
r

σq

)
− 1
]
+ 2σqφ

(
r

σq

)
−
(
ω0 + ω2r

2
)]

φ

(
r

σr

)
dr

=

∫ ∞

−∞

2

σr
rΦ

(
r

σq

)
φ

(
r

σr

)
dr +

∫ ∞

−∞

√
2

π

σq
σr

φ
( r
σ

)
dr −

(
ω0 + ω2σ

2
r

)

=

∫ ∞

−∞

2
σr
σq

φ

(
r

σq

)
φ

(
r

σr

)
dr +

√
2

π

σq
σr

σ −
(
ω0 + ω2σ

2
r

)
=

√
2

π
σx −

(
ω0 + ω2σ

2
r

)
,

where in the third line we apply integration by parts. For ω2 we get,

0 =

∫ ∞

−∞

r2

σrσq


 −

∫ −r
−∞
(r + q)φ

(
q

σq

)
dq +

∫∞
−r
(r + q)φ

(
q

σq

)
dq

−
∫∞
−∞
(ω0 + ω2r

2)φ
(
q

σq

)
dq


φ
(

r

σr

)
dr

=

∫ ∞

−∞

2

σr
r3Φ

(
r

σq

)
φ

(
r

σr

)
dr +

∫ ∞

−∞

√
2

π

σq
σr

r2φ
( r
σ

)
dr −

(
ω0σ

2
r + 3ω2σ

4
r

)

=

∫ ∞

−∞

2

σr

(
r3 − 2σ2rr

)
Φ

(
r

σq

)
φ

(
r

σr

)
dr +

∫ ∞

−∞

4σrrΦ

(
r

σq

)
φ

(
r

σr

)
dr

+

√
2

π
σ3 −

(
ω0σ

2
r + 3ω2σ

4
r

)

=

∫ ∞

−∞

√
2

π

σr
σq

r2φ
( r
σ

)
dr +

∫ ∞

−∞

2

√
2

π

σ3r
σq

φ
( r
σ

)
dr +

√
2

π

σqσ
3

σr
−
(
ω0σ

2
r + 3ω2σ

4
r

)

=

√
2

π

σ2rσ
2
q

σx
+ 2

√
2

π

σ4r
σx
−
(
ω0σ

2
r + 3ω2σ

4
r

)
,
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where in the third line we repeatedly apply integration by parts. Solving these first order

conditions for ω0 and ω2 yields

ω0 =
√
2π

−1
(
σx +

σ2q
σx

)
,

ω2 =
√
2π

−1
σ−1x .

A.7 The derivation of equation (32)

Let z ≡ s−µs
σ

, z∗ ≡ s∗−µs
σ

. The effect of an increase in µs on the mean log wage of low and

high skilled workers respectively reads:

d

dµs
E [lnW (s) |s < s∗] =

d

dµs
E [lnW (0) + (1− γµs)s|s < s∗]

=
d

dµs
(1− γµs)sσE [z|z < z∗]− d

dµs
(1− γµs)sµs

= γσ
φ (z∗)

Φ (z∗)
− 1
2
γµs,

d

dµs
E [lnW (s) |s > s∗] = −γσ φ (z∗)

1− Φ (z∗) −
1

2
γµs,

Hence:

d

dµs
(E [lnW (s) |s > s∗]− E [lnW (s) |s < s∗]) = −γσ φ (z∗)

Φ (z∗) [1− Φ (z∗)]

The effect on the number of low and high skilled workers reads:

d ln Φ [σ−1 (s∗ − µs)]

dµs
=

φ (z∗)

σΦ (z∗)
,

d ln [1− Φ [σ−1 (s∗ − µs)]]

dµs
=

φ (z∗)

σ [1− Φ (z∗)] .

Hence:

d

dµs

(
lnΦ
[
σ−1 (s∗ − µs)

]
− ln
[
1− Φ

[
σ−1 (s∗ − µs)

]])
=
1

σ

φ (z∗)

Φ (z∗) [1− Φ (z∗)] ,

−d (lnΦ [σ−1 (s∗ − µs)]− ln [1− Φ [σ−1 (s∗ − µs)]]) /dµs
d (E [lnW (s) |s > s∗]− E [lnW (s) |s < s∗]) /dµs

=
1

σ2γ
.

52




