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the variance of the outcomes within and across groups. The empirical tests allow us to 
distinguish which mechanism(s) generates the observed patterns in the data. In our 
application we study the performance of undergraduate students and we find that social 
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1 Introduction

There is a firm belief that social interactions are important determinants of behavior in a variety

of contexts (Matthew O. Jackson 2008, Matthew O. Jackson 2009), yet very little is known

about the mechanics of such interactions. We propose and test models of social interactions

where risk-averse agents engage in production and can either (i) act in isolation, (ii) exploit pos-

sible complementarities (joint production), or (iii) mutually insure against idiosyncratic shocks

to time or productivity.

These models lend testable predictions in the first and second moments of the distribution

of outcomes that allow us to distinguish them in empirical applications. In particular, while

all three mechanisms generate outcomes that are correlated within groups, they have different

implications for the average performance of group members.

We consider the model in which agents act in isolation, but may care about each others’ per-

formance (absent explicit social interactions), as a benchmark and we compare the implications

of joint production and insurance against it. We show that under joint production agents exploit

complementarities to achieve a higher level of output compared to the benchmark. In the mu-

tual full insurance scenario, any idiosyncratic difference in productivity or endowments across

agents is eliminated and the within-group comparisons that induced higher effort in the bench-

mark case disappears. As a consequence average output is lower in mutual (full) insurance than

in the benchmark case.

Despite the fact that our three mechanisms generate different predictions for average per-

formance, they all lead to clustering of outcomes within groups, which is what is commonly

referred to as peer effects or social interactions. Under decentralization (i.e. our benchmark

model) such a result rests on the assumption that agents evaluate their performance relative

to their peers, as in a tournament or status seeking model (Sherwin Rosen 1986, George A.

Akerlof 1997). Namely, the utility one enjoys out of a good performance declines if everyone

in the group does well. When agents produce jointly, the effort levels of all members of the

group enter each other’s production functions, thus inducing correlation in outcomes. Finally,
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in the mutual insurance setting the heterogeneity due to the idiosyncratic shocks is eliminated,

thus mechanically reducing the dispersion of outcomes within groups. Additionally, agents

also exert similar effort levels.

In our model agents choose their optimal level of effort conditional on the idiosyncratic

shock, while the choice of the interaction mechanism is made beforehand under uncertainty ac-

cording to a standard von Neumann-Morgenstern expected utility function. We further assume

that there are costs associated to active social interactions, such as those required to produce

jointly or to engage in mutual insurance, and that such costs decrease as agents get to know

each other. Consistently with this framework, in our empirical application we examine how the

mean and the dispersion of outcomes evolve with the frequency of students’ meetings in the

classroom.

We test the implications of our model using data on undergraduate students at Bocconi

University, who are randomly assigned to teaching classes. Moreover, the random allocation

is repeated at the beginning of each academic year, so that the data exhibit a large degree of

exogenous variation (both cross-sectionally and over time) in the number of hours any two

students spend together in the same classroom. We exploit such exogenous variation to test

the implications of the interaction mechanisms considered in our theoretical discussion on the

mean and the variance of academic performance, both cross-sectionally and over time.

Our results indicate that mutual insurance is the economic mechanism that prevails in the

setting of our application. Specifically, we find that pairs of students who are allocated to the

same classes more often are characterized by less dispersed outcomes (both cross-sectionally

and over time) and lower average performance. Of the three mechanisms considered, insurance

is the only one capable of producing both of these results. As an additional test of insurance,

we also find that the likelihood that the grade vectors of any two students cross decreases with

the number of hours they have been randomly allocated to the same classes. Such a result

is consistent with the mutual insurance mechanism, which preserves the ranking of agents’

outcomes across states and time.

To our knowledge, we are amongst the first to explicitly investigate the economic nature of
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social interactions. The literature has been dominated by the search for suitable identification

strategies to solve the many econometric hurdles of peer effects models (Charles F. Manski

1993, William A. Brock & Steven N. Durlauf 2001, Robert Moffitt 2001) and has, so far,

devoted very little attention to understanding the different mechanisms that may generate such

effects.1 One notable exception is Jane Cooley (2009), who looks at a series of theoretical

models to derive the empirical functional forms of spill-overs across classmates. A different

approach is taken by Alberto Bisin, Andrea Moro & Giorgio Topa (2009), who discuss the

identification of models of social interactions in the presence of multiple equilibria in a setting

where the economic mechanism is not directly investigated.

Although we test the implications of our models in the higher education environment, the

set-up and topics discussed in this paper are quite general and can be applied to many other ar-

eas. For example, in a production team the pressure exerted by the social group, either through

sanctions or simple relative utility (Eugene Kandel & Edward P. Lazear 1992), may alleviate the

free-riding problem (Armen Alchian & Harold Desmetz 1972, Bengt Holmstrom 1982). Peer

pressure also explains the results of Alexandre Mas & Enrico Moretti (2009), where super-

market checkers’ performance improve when they are paired with high performance checkers.

Similarly, peer pressure seems to provide a consistent explanation also for the findings in Armin

Falk & Andrea Ichino (2006).2

A key difference between our theoretical approach and the typical model of team produc-

tion is the verifiability of (individual) output by the principal. Consistently with the empirical

application, in our model individual performance is verifiable, there are no (explicit) principals

nor informational asymmetries, however agents face an uncertain environment characterized

by random shocks to their time endowment or to their productivity. We believe that many pro-

duction problems resemble the one studied in this paper, from manufacturing to construction,

to most white collar jobs or coauthoring in academic research, where tenure decisions are made

1A recent wave of studies has approached the identification problem with the use of network structures (Yann
Bramoullé, Habiba Djebbari & Bernard Fortin 2009, Coralio Ballester, Antoni Calvó-Armengol & Yves Zenou
2006, Giacomo De Giorgi, Michele Pellizzari & Silvia Redaelli 2010).

2Oriana Bandiera, Iwan Barankay & Imran Rasul (2009a) show how social connections affect productivity in
teams; while Patrick Bayer, Randi Pintoff & David Pozen (2009) provide evidence on the underlying nature of the
interaction in criminal behavior, suggesting a mechanism based on information or learning from others.
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at the individual level but the research activity is often carried out within groups of co-authors.

Without knowledge of the mechanics of social interactions it is often impossible to foresee

the effects of any policy intervention. A notable example is Scott Carrell, Bruce I. Sacerdote &

James E. West (2010), whose experiment on optimal sorting based on reduced form parameters

leads to unexpected and unintended results. In this view, the policy implications of our paper

are far-reaching. In our application, for example, if the aim of the policy maker is to maximize

average performance, one would design a mechanism of class allocation that prevents students

from meeting too frequently and/or introduces incentives to favor joint production and limits

the possibility of mutual insurance. In the case of teamwork, the incentives provided by the

principal need to account for the possible risk-sharing behavior among team members (Kandel

& Lazear 1992, Bandiera, Barankay & Rasul 2009a, Oriana Bandiera, Iwan Barankay & Imran

Rasul 2009b).

The structure of the paper is as follows: Section 2 presents our three simple models of

social interactions (decentralization, joint production and mutual insurance); in Section 3 we

provide a description of the data used in Section 4 to carry out the empirical exercise and take

the predictions of the model to the test. Section 5 briefly discusses alternative mechanisms and,

finally, Section 6 concludes.

2 Model

In this section we present a simple model of social interactions. For expositional purposes and

coherence with the empirical application, we will frame the model in the education environment

and characterize the two agents as students and the production process as learning. Otherwise,

the model can be applied to any setting with social interactions and it is meant to parsimoniously

include the key features of several interaction mechanisms and to produce testable implications

that can be taken to the data.

Two risk averse, ex-ante identical students (i, j) exert costly effort to study, learn and ob-

tain a grade in academic tests or exams. Students value high academic performance. For
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simplicity, we assume that all tests are identical and we exclude the possibility that good per-

formance in one exam affects later performance.3 Students are hit by idiosyncratic shocks to

their endowment of time or to their productivity. Effort is chosen conditional on such shocks,

an assumption that, combined with the lack of interlinks across exams, implies that the choice

of effort is completely static.

Additionally, agents are allowed to interact according to three different mechanisms: (i)

decentralization or no explicit interactions (Section 2.1); (ii) joint production (Section 2.2);

(iii) mutual (full) insurance (Section 2.3). The choice of the mode of interaction is made before

observing the realizations of the shocks on the basis of a standard von Neumann-Morgenstern

expected utility function. We further assume that active interactions, either in the form of joint

production or mutual insurance, are costly and that such costs decrease with how well students

know each other. The choice of the mode of interaction can be revised for each exam, for

example when the lectures begin.

In the remaining of this section, after describing briefly the building blocks of the model,

we first consider the solution of the static choice of optimal effort under the three mechanisms

that we consider (Sections 2.1, 2.2 and 2.3). Then, in Section 2.4, we discuss the choice of the

mode of interaction. For simplicity, we analyze the non-strategic equilibrium of the model and

later, in Section 2.5, we present some extensions, including strategic behavior, multiple agents

and the social planner solution.

Before moving to the presentation of the model, it is worth emphasizing that the theoret-

ical analysis in this section is crucial for the purpose of uncovering the mechanics of social

interactions empirically. It is only by comparing the empirical implications derived from the

different models that we can identify the nature of the interactions in the data. A mere empirical

analysis without the derivation of a formal model would be incapable of producing any interest-

ing insight into the proposed mechanisms, as the standard regression of individual over group

performance would capture a feature that is common to all the economic mechanisms that we

consider, a similar argument would apply to a covariance analysis (Bryan S. Graham 2008).

3The model could easily accommodate interlinks across academic tests and the qualitative implications would
remain unchanged.
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Utility function. The utility of the generic student i depends positively on her academic

performance xi and negatively on effort ei. Moreover, we assume two additional properties of

the utility function. First, students are risk averse, a property that generates the desire to insure

against fluctuations in academic performance. Second, the individual returns to xi (might)

decrease with one’s peer performance xj , i.e. the utility derived from an A is lower when

everyone gets an A. Alternative interpretations of this assumption are that students are averse

to equality or feel the peers’ pressure. We parameterize this relative utility effect with a loading

factor γ ∈ (0, γ) that multiplies xj in i’s utility and vice versa. Thanks to this assumption

the model delivers within group correlation of the outcomes, even in the absence of explicit

interactions. Eventually, we will work with the following static utility function:4

Ui = ln (xi − γxj)− ei (1)

Production/Learning function. Academic performance is the output of a learning/production

process, whose inputs are effort (possibly of both agents) and time ti, combined according to

the following technology:

xi = tig(ei, ej) (2)

While the level of effort is endogenously chosen by the student, time is an exogenous factor

subject to idiosyncratic shocks.5 In this interpretation, it is natural to assume that the two

4There is a corresponding and symmetric function for agent j. Obviously, γ is bounded above by γ to guarantee
that xi > γxj and xj > γxi. The choice of the particular (concave) utility function and the static framework are
not crucial for the testable implications produced.

5The production function of human capital might clearly include other inputs, such as teachers, resources,
class size and class composition, to name just a few. However, to keep the model simple and coherent with the
empirical application, we focus solely on effort and time. Adding additional inputs that are controlled by the
education institution would only complicate the notation, while in the empirical analysis we can fully control for
all these additional factors.
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production factors are complementary to some degree (not perfect substitutes).6 We assume:

∂g(ei, ej)

∂ei
> 0,

∂g(ei, ej)

∂ej
≥ 0 (production is non-decreasing in efforts); (3)

∂2g(ei, ej)

∂2ei
< 0,

∂2g(ei, ej)

∂2ej
≤ 0 (production is non-convex in efforts); (4)

∂2g(ei, ej)

∂ei∂ej
> 0, (positive cross-partial derivatives or complementarity of efforts); (5)

∂g(ei, ej)

∂ei
>
∂g(ei, ej)

∂ej
, (marginal product of own effort larger than that of peer). (6)

When students do not cooperate, ej does not enter the production function for xi and for

notational convenience we label g(ei, 0) as f(ei):

xi = tig(ei, 0) = tif(ei) (7)

Shocks. Time is equal to a fixed (maximum) endowment normalized to 1 and we allow for

a negative shock of size ε to arrive with probability 1
2

and ti = 1 + ui. The shock hits only

one person in the {i, j} couple, so that with probability 1
2
, we have ui = 0 and uj = −ε and

with probability 1
2

we have ui = −ε and uj = 0. This is equivalent to assuming that the shocks

to t are perfectly negatively correlated between the two agents. This stochastic endowment

process could be easily generalized and the results would remain qualitatively unchanged as

long as some degree of idiosyncratic variation is maintained. The most intuitive interpretation

of the shock is absence due to illness or random distraction in the classroom. Although one

could alternatively interpret t as some simple (stochastic) productivity parameter, we find our

previous interpretation more convenient for expositional purposes.

2.1 Decentralized solution

When students act in isolation they maximize their utility taking each other’s behavior as given.

Even in this simple version, our model still has the potential to generate peer effects through

6We could also work with a more complicated function g(ei, ti, ej , tj), but the derivation becomes more te-
dious without any real additional insight. This is due to the fact that ti and tj are exogenous factors.
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relative utility (or equality aversion).

Without loss of generality, we will assume throughout the paper that agent i has a positive

shock (ti = 1) and j has a negative one (tj = 1− ε):

Ui = ln [f(ei)− γ(1− ε)f(ej)]− ei (8)

Uj = ln [(1− ε)f(ej)− γf(ei)]− ej (9)

Both agents choose their optimal effort level (under decentralization) eDa , ∀a = i, j condi-

tional on the realizations of the shocks according to the following first order conditions:

∂f(eDi )

∂ei
= f(eDi )− γ(1− ε)f(eDj ) (10)

(1− ε)
∂f(eDj )

∂ej
= (1− ε)f(eDj )− γf(eDi ) (11)

Notice that equations 10 and 11 characterize a non-strategic equilibrium where agents do not

internalize the effect of their choices on their peers. In Section 2.5 we will return to this point.

Concavity in the utility function leads to the following result:

Proposition 1 The optimal effort level is not smaller for the student affected by the negative

shock: eDi ≤ eDj , with equality holding when γ = 0.

The proof is in Appendix A.

From proposition 1, it is immediate to derive the following, which is a direct consequence

of optimality:

Proposition 2 The performance/grade of the student hit by a positive shock is larger than

that obtained by the student with a negative shock, i.e. xDi > xDj , where xDi and xDj are the

equilibrium outcomes for agent i and j, respectively.

The proof can be found in Appendix A.

Further, we can show that:

Proposition 3 deDi
dγ

> 0 and
deDj
dγ

> 0
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Proposition 3 implies that, as the strength of the externalities in academic performance

(measured by γ) increases, so does the mean outcome of the group E(x) = 1
2
(xi + xj) since

everyone exerts higher effort.

Understanding the implications of relative utility on the dispersion of the outcomes is

slightly more complicated. We start using equations 10 and 11 to derive the following con-

venient expression for the coefficient of variation of the outcomes, our measure of dispersion:

CV (x) =
SD(x)

E(x)
=
xi − xj
xi + xj

(12)

As a first approximation, note that when γ → 0, eDi → eDj and CV (xD) → ε
1−ε > 0. As

γ → 1, CV (xD)→ 0. Thus, the more students care about their relative performance the lower

the dispersion in the outcomes. Intuitively, this result is generated by the concavity of the utility

function by which student j, who is hit by the negative shock, is placed on a steeper segment

of the utility function and, thus, cares more about performance. In fact, under some additional

assumptions about the production function f(·), this result generalizes to the entire range of

feasible values of γ. In Appendix A we describe such additional assumptions in detail.7

The following proposition describes the effect of relative utility evaluations on the mean

and the dispersion of outcomes:

Proposition 4

(4.a) ∂E(xD)
∂γ

≥ 0 for any admissible γ ∈ [0, 1);

(4.b) under the regularity conditions set out in Appendix A, ∂CV (xD)
∂γ

≤ 0 for any admissible

γ ∈ [0, γ̄).

Proposition 4 shows that our simple model produces what is commonly termed peer effects also

in the absence of any active interaction, simply by virtue of relative utility. We will maintain

this case as the baseline scenario.

7A sufficient condition for ∂CV (x)
∂γ < 0 for all admissible values of γ is that the third derivative ∂3f(ea)

∂3ea
,∀a =

i, j be positive and sufficiently large in absolute value.
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2.2 Joint production

In this section we modify the model under the assumption that students cooperate with each

other in the production process.8 This could also be interpreted as a model of co-authorship,

where each agent individually goes up for tenure or, alternatively, as a model of teamwork

where individual performance is verifiable, effort is observed and the agents contribute to each

other’s output (Alchian & Desmetz 1972, Holmstrom 1982, Kandel & Lazear 1992).

Combining the definition of the production function in equation 2 and the structure of the

shocks, we can define the following utility functions for agent i and agent j:

Ui = ln [g(ei, ej)− γ(1− ε)g(ej, ei)]− ei (13)

Uj = ln [(1− ε)g(ej, ei)− γg(ei, ej)]− ej (14)

Like in the decentralization case, optimal effort is determined in a non-strategic setting after

observing the shocks according to the following first order conditions for the maximization of

equations 13 and 14:

∂g(eCi , e
C
j )

∂ei
= g(eCi , e

C
j )− γ(1− ε)g(eCj , e

C
i ) (15)

(1− ε)
∂g(eCj , e

C
i )

∂ej
= (1− ε)g(eCj , e

C
i )− γg(eCi , e

C
j ) (16)

where eCi is the optimal effort of agent i under joint production and similarly for eCj .

Using equations 15 and 16, it is relatively easy to derive the following proposition, where

eDi,j is the optimal effort level under decentralization:

Proposition 5

(5.a) eCa > eDa for any a = {i, j};

(5.b) Average performance in the joint production scenario is larger than in decentralization:

8The term cooperation might also suggest a situation where agents maximize the sum of each other’s utilities.
This is not how we solve the model in this section, although in Section 2.5 we consider precisely that type of
equilibrium as the planner’s solution.
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E(xC) > E(xD), where xC =
[
g(eCi , e

C
j ), (1− ε)g(eCj , e

C
i )
]

and xD =
[
f(eDi ), (1− ε)f(eDj )

]
are the equilibrium outcomes under joint production and decentralization, respectively.

The proof, in Appendix A, is trivial given that the level of effort is larger under joint pro-

duction than decentralization for both students, a result that rests exclusively on the existence

of complementarities in the production function (i.e. ∂2g(ei,ej)

∂ei∂ej
> 0).

Another interesting result of this model is described in the next proposition:

Proposition 6 (xCi − xCj ) < (xDi − xDj ), hence, given Proposition 5.a and 5.b, SD(xC) <

SD(xD) as well as CV (xC) < CV (xD).

The formal proof is in Appendix A but the intuition of the result in proposition 6 is straight-

forward: the concavity in the utility function implies that the agent hit by the negative shock

(j) enjoys higher marginal returns (utility) from improved outcomes, hence she increases effort

(relative to the decentralized equilibrium) more than her peer given the complementarity in the

production function.

In sum, this section shows that, under joint production, students’ outcomes are higher on

average and less dispersed than under decentralization.

2.3 Insurance

The third and last mechanism of interaction that we consider is mutual insurance against id-

iosyncratic shocks to time or productivity, e.g. health shocks or random distractions (John H.

Cochrane 1991, Barbara J. Mace 1991, Robert M. Townsend 1994). Under such circumstances

the student would find herself in need of help to fill the gap of important teaching material.

Given risk aversion, students have a desire to insure against such fluctuations in their time en-

dowment (productivity) by exchanging notes or explanations of class material with classmates.

We model such an exchange as a transfer of time or productivity t between agents.

As already mentioned, we choose an extremely simple structure of the shocks but the im-

plications of the model are robust to alternative assumptions. As long as there is some idiosyn-

cratic variation in t, the main results are unchanged.
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For simplicity, we consider only the case of full insurance, where the students are perfectly

able to smooth away the shocks to their time endowments. Moreover, given that our agents

are ex-ante identical, we set identical Pareto weights. We also abstract from any issue of com-

mitment (Stephen Coate & Martin Ravallion 1993, Narayana R. Kocherlakota 1996, Fernando

Alvarez & Urban J. Jermann 2000, Ethan Ligon, Jonathan P. Thomas & Tim Worrall 2000)

but we will come back to this later in section 2.4. Notice, however, that even under limited

commitment, students can achieve full insurance for some parametrization of the primitives of

the model, for example when the punishment for deviating from a full insurance arrangement

is large enough. Ultimately, the testable implications of our model would remain qualitatively

unchanged also with partial insurance (Richard Blundell, Luigi Pistaferri & Ian Preston 2008).

Under these assumptions, agents in our model choose their effort levels exclusively on the

basis of the aggregate time endowment in the group. Hence, students solve the optimization

problem by simply splitting equally the difference in their endowments. Moreover, since in our

model the agents are ex-ante identical, the optimal level of effort is the same for both of them:

eIi = eIj = eI . Contrary to the previous cases (decentralization and joint production), in this

particular setting it does not matter whether effort is determined before or after observing the

shocks, apart from commitment issues. Formally,

Ui = Uj = U = ln [tf(e)− γtf(e)]− e (17)

t = (1− ε

2
) (18)

The corresponding first order condition is:

∂f(eI)

∂eI
= f(eI) (19)

and equilibrium performance is:

xI = (1− ε

2
)f(eI). (20)

Notice that γ, the parameter that measures reference utility considerations, does not appear
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in these first order conditions. This is due to the fact that under (full) insurance agents are

identical both ex-ante and ex-post so that comparisons become meaningless. This has impor-

tant implications on optimal effort, which is necessarily lower under mutual insurance than

under decentralization (and, consequently, also compared to joint production) due to the fact

that the within-group comparisons that induced higher effort in the benchmark case have now

disappeared.

It is also trivial to see that, in this model, the ratio of marginal utilities ∂Ui
∂ei

=
∂Uj
∂ej

is equal

to 1. This is a consequence of full insurance, as the ratio of the marginal utilities depends only

on the Pareto weights, which, in our simple model, are identical for both agents. As such,

given standard assumptions on the utility function, the ratio of the levels of performance xIi
xIj

is

constant across states (and time).

This observation has a direct testable prediction: the vectors of performance outcomes of

any two agents who engage in mutual full insurance should never cross, given that individual

performance depends exclusively on the aggregate time endowment and the relative importance

of the student in the group (the Pareto weights).9 In Section 4, we take also this prediction to

the empirical test.

We can, then, prove the following, where eI is the optimal effort level, common to both

agents, under full insurance:

Proposition 7

(7.a) eIa < eDa < eCa for any a = {i, j}, which immediately implies E(xC) > E(xD) > E(xI);

(7.b) CV (xI) < CV (xC) < CV (xD).

The proof is fairly straightforward and can, once again, be found in Appendix A. The intuition is

that, under full insurance, effort is lower due to the lack of within-group heterogeneity that, with

a reference based utility, generates the desire to excel. The result on dispersion is the combined

outcome of the reduced impact of the idiosyncratic shocks, mechanically generated by the

9Such prediction would be however incorrect if the agents had heterogenous risk preferences (Sam Schulloffer-
Wohl 2008, Maurizio Mazzocco & Shiv Saini 2009).
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insurance process, and the equalization of efforts among the agents. As we show in Appendix

A, the variance is reduced at a faster rate than the mean performance, indeed in our simplified

model with ex-ante homogeneous agents the (cross-sectional) variance of performance is equal

to zero.

2.4 Transition or the choice of the mechanism

In this section we discuss the choice of the mode of interaction, which is based on a standard

expected utility function defined over the two possible realizations of the shocks, i.e. {ui, uj} =

{0,−ε} and {ui, uj} = {−ε, 0}. Notice that, since agents are ex-ante identical, they both share

the same expected utility and the resulting choice of the mechanism will be unanimous.

We also assume that active social interactions, such as those required to produce jointly or

to engage in mutual insurance, impose some utility cost and that such costs decrease with how

well agents know each other. First, consider joint production and assume that the ability to

cooperate depends on how well the students know each other, which is a positive function of

the time they spend together. We model this as a (utility) cost that assumes the following form

c(m) ≥ 0, where m is the number of times agents meet randomly and with ∂c(m)
∂m

< 0. This

cost function incorporates the idea that agents must pay some initial cost for getting to know

each other. At some point the number of previous meetings is large enough to make the cost of

cooperating lower than its benefits and students would, then, transit from the baseline scenario

of complete decentralization to the joint production state.

A similar argument applies to insurance, as it takes time to get to know someone to the

point that reciprocal monitoring and trust are sufficient to engage in mutual insurance. More

formally, we describe the cost of insurance with a function h(m), with ∂h(m)
∂m

< 0. The function

h(m) could also be interpreted as a punishment or sanction function that describes the utility

loss derived from deviating from the insurance scheme (Coate & Ravallion 1993). Under such

interpretation, the size of the punishment increases with the number of meetings, somehow

capturing the idea that defaulting on someone we know better is more painful or more difficult.

Given that our agents are risk averse, they will have an incentive to renege on the insurance
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contract in the good state (t = 1) and, as such, the contract will have to be self enforcing or

incentive compatible (Coate & Ravallion 1993, Ligon, Thomas & Worrall 2000). However,

given the static nature of this simplified model, the only equilibrium would be to renege if the

sanction is low. As students meet more often, they either find it harder to default on good

friends or they develop the ability to punish deviating behaviors more effectively, so that, even

under limited commitment, the full insurance allocation can be implemented for a sufficiently

high level of m.

Consistently with our empirical application, where students initially do not know each other

and are randomly allocated to teaching classes, we assume that decentralization requires no

costs and is the baseline scenario.

Students select the mechanism that is associated with the highest level of expected utility

as follows:

Expected utility under decentralization: E(UD) =
1

2
U(eDu=0) +

1

2
U(eDu=−ε) (21)

Expected utility under joint production: E(UC) =
1

2
U(eCu=0) +

1

2
U(eCu=−ε)− c(m) (22)

Expected utility under mutual insurance: E(U I) = U(eI)− h(m) (23)

where U(eDu=0) is the utility computed at the optimal effort level in decentralization under the

good realization of the shock and similarly for the other expressions (eDu=−ε, e
C
u=0, eCu=−ε and

U(eI)), with superscripts indicating the interaction mode and subscripts the values of the shock.

Recall than in the mutual insurance model optimal effort is independent of the shock.

The comparison of equations 21, 22 and 23 defines which mechanism governs the interac-

tions among the students. When m is sufficiently low, possibly zero, the costs associated with

joint production or mutual insurance are larger than the benefits and students simply act in iso-

lation according to our benchmark model of decentralized behavior. Asm increases, both c(m)

and h(m) decrease until, for a sufficiently high m, either joint production or mutual insurance

become the utility-maximizing mode of interaction.

The relative shape of the functions c(m) and h(m) defines which of the models, joint pro-
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duction or insurance, arises first. In fact, although we do not model this situation explicitly, it

might very well be possible that, for some values of m, both joint production and mutual insur-

ance coexist. Moreover, while it is obvious that in the absence of costs both joint production

and mutual insurance would be preferred to decentralization, preferences over these last two

mechanisms depend on the functional forms as well as on the size of the shock.10

Ultimately, the type of mechanism at work is an empirical matter and our analysis in Section

4 exploits the following testable implications to shed light on this precise issue:

If
∂V ar(x)

∂m
< 0 and

∂E(x)

∂m
> 0 ⇒ Joint production is the prevailing mechanism;

If
∂V ar(x)

∂m
< 0 and

∂E(x)

∂m
< 0 ⇒ Insurance is the prevailing mechanism.

The reduction in the (within-group) dispersion of performances as a function of the time spent

together indicates the existence of peer effects, while the relation between the number of meet-

ings and average performance in the group allows to distinguish between joint production and

insurance.

2.5 Extensions

In this section we briefly discuss three possible extensions to the theoretical setting described

in the previous sections.

First, consider what happens if agents behave strategically, i.e. they internalize the effect

of their choice of effort on their peer’s optimal behavior (Yann Bramoullé & Rachel Kranton

2007b, Yann Bramoullé & Rachel Kranton 2007a). Here we only provide the intuition that

our main results will be maintained in such a modified model but in Section Appendix C.1 we

discuss this issue more formally.

Strategic behavior is motivated by two types of externality, one that arises from the refer-

ence point in the utility function and one from the complementarity in the production function.

10Joint production offers the advantage of exploiting the complementarities in the production function, hence
in the absence of costs it would be preferred to decentralization. Similarly, mutual insurance reduces the variance
of the outcomes and, given the concavity of the utility function, it dominates decentralization when h(m) = 0.
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As far as the reference point is concerned, higher effort from one of the agents induces higher

effort from the other, thus reducing one’s utility because the reference point moves up. Such

a mechanism leads to both agents exerting a lower level of effort in the strategic equilibrium

compared to the non-strategic solution. However, the form of the utility function remains the

same in all three interaction mechanisms that we consider (decentralization, joint production

and insurance), therefore it does not modify the implications on the distribution of the outcomes

across interactions models and within types of equilibrium, i.e. strategic versus non-strategic.

The second type of externality is generated by the complementarity in the production func-

tion and it only arises in the joint production model, as in all other cases agents produce in

isolation and no complementarity can arise. Under joint production higher effort from one of

the agents increases the productivity of the other, who will also increase effort, which in turn

improves one’s productivity.

Hence, in this framework there are two offsetting externalities: on the one hand, higher

effort from one’s peer raises the reference point, thus lowering utility; on the other hand, it

improves productivity. The overall effect, compared to the non-strategic equilibrium, depends

on the functional forms. Nevertheless, the externality in the utility function is common to all

mechanisms so that, when comparing the distributions of the outcomes across mechanisms

within the strategic framework, only the production externality matters. Hence, given that the

production externality induces higher effort in joint production, there is no complementarity

in the other two regimes, in a strategic equilibrium the implications on the mean outcome is

reinforced. The same holds for dispersion, as the agent hit by the negative shock benefits more

from the complementarity than the other.

The formal strategic solution of our model is further complicated by issues of existence and

uniqueness of the equilibrium, which both depend on functional form assumptions. Neverthe-

less, given that the equilibrium exists and is unique, the intuition provided in this section is

valid and our main results would be unchanged.

The next extension that we consider is a multiple-agents model, i.e. a model where groups
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are formed among more than just two students.11 In the decentralization mechanism, adding

extra agents to one’s group would simply lead to a different formula for the reference point

in the utility function with no further modifications. Under joint production, the production

function would have to be modified to incorporate all group members, however, as long as

all cross derivatives in such a modified production function are non-negative, our qualitative

implications would remain unchanged and the resulting model would simply be more complex

without further insights. Finally, the results that we derive in the baseline insurance model with

just two agents are still valid in a multi-agent framework, as long as the network’s shape and

informational structure remain unchanged. In fact, under such conditions, the marginal utilities

of all group members would still be equalized in the same way as in the dyad. Furthermore, in

a multiple-agents framework one might want to modify the cost functions for joint production

and insurance (c(m) and h(m)) to take into account the fact that active interaction with many

agents might be costly and that the benefits might be decreasing so that the network has a

bounded size or spans the entire set.

Finally, we briefly discuss a third modification of our model in which the joint production

scenario is solved by maximizing the sum of the individual utilities (as in a planner problem).

The results derived in Section 2.3 (as well as the proofs of Appendix A) assume that, in the

joint production scenario, the two agents produce jointly but choose effort independently. An

alternative and equally plausible assumption consists in maximizing the (possibly weighted)

sum of the utilities of the agents, which is the case that we briefly discuss here and more in

details in Appendix C.2.

We present this analysis with the help of simulations, since the set of necessary and suf-

ficient conditions under this scenario are more cumbersome than those in the main text. For

ease of comparison we show the simulations for the three proposed mechanisms, where the

joint production model is solved by maximization of the sum of the agents’ utilities. In such a

framework some of our results depend on the specific functional form assumptions, however,

as we show in details in Section Appendix C.2 and as shown in the simulation of Figure C1,

11We still maintain the assumption of homogeneous agents. Allowing for heterogeneous agents introduces the
issue of endogenous group formation, thus making the model substantially more complicated.
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our main results are confirmed for a relatively standard parametrization of the problem. Figure

C1 plots the average outcome and the dispersion of outcomes in the groups against the size of

the shock and it shows that the mean performance under full insurance is lower than that in

joint production and decentralization (no planner). Again confirming the previous results, the

dispersion is lowest in full insurance.

The bottom panel of Figure C1 produces the ordering of expected utilities, for a given

parametrization of the problem. Depending on the nature of the shock (and costs) students

would want to move from decentralization to full insurance.

3 The data

In this section we describe the data we use in Section 4 to test the theoretical predictions of

our models. The data come from the administrative archives of Bocconi University, an insti-

tution of higher education located in Milan, Italy ((Giacomo De Giorgi, Michele Pellizzari &

William Gui Woolston 2010, De Giorgi, Pellizzari & Redaelli 2010)). The important feature of

these data for the purpose of our application is that students are (repeatedly) randomly assigned

to teaching classes for each of their compulsory courses.

More specifically, we will focus on two cohorts of students who first enrolled at Bocconi

in the academic year 1999/00 and 2000/01.12 These students were offered 7 degree programs

(majors), however, only 3 of them were large enough to require the splitting of lectures into

more than one class: Economics, Management, Economics and Finance.13 The official duration

of all programs was 4 years and, during the first two years, and for most of the third, all

students were required to take a fixed sequence of compulsory courses. Afterwards students

could choose elective subjects, following some program-specific guidelines. In order to avoid

12Although we have access to records for all students enrolled since 1989 and until 2009, we cannot choose
a cohort that is too recent because some of the students might still be working towards the completion of their
degrees. For the earlier cohorts we do not have information on the class identifiers, which are essential for our
analysis. Moreover, Bocconi reformed the structure of its programs twice during the period covered by these data,
first in 1999/00 and then 2001/02. Hence, to avoid comparing cohorts across different systems, we consider only
students enrolled in their first year in 1999/00 and 2000/01.

13The other programs were Economics and Management of the Public Administration, Economics and Law,
Law, Economics and Management in Arts, Culture and Communication.
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issues of endogenous selection, we exclude all elective courses from our analysis ad we focus

exclusively on compulsory courses.

The compulsory curricula is summarized in Table 1, while more details are given in Table

B1 in Appendix B. The table reports the number of compulsory courses (columns 1, 3 and

5) and the total number of lecturing hours (columns 2, 4 and 6) for each degree program and

academic year. For example, Table 1 shows that students in Management take 8 compulsory

courses during their first year for a total of 464 hours of lectures.

[TABLE 1]

The crucial institutional feature for our testing strategy is that students were allocated to

the teaching classes according to a completely random procedure.14 The randomization was

repeated at the beginning of each academic year, when each student was informed of her class

identifier and was instructed to take all the lectures of the year in the class corresponding to

her assigned identifier. Namely, students would take all the courses of the first year with the

same random group of peers, then all the courses of the second year with a different random

group and so on. Elective courses, which we do not consider in our analysis, were usually much

smaller in size and could easily be taught in a single class.

The figures reported in Table 1 clearly show that students who were assigned to the same

class ended up physically sitting in the same classroom for a considerable amount of time, thus

suggesting that the random allocation process is an important determinant of the strength of

students’ interactions.

Students were allocated into several classes for the explicit purpose of maintaining ade-

quate class sizes and to allow teachers to interact with the students in a more direct way. The

yearly repetition of the random allocation was, instead, justified with the desire to encourage

interactions among students. Bocconi has followed attentively the rule of randomly allocating

14The terms class and lecture often have different meanings in different countries and sometimes also in dif-
ferent schools within the same country. In most British universities, for example, lecture indicates a teaching
session where an instructor - typically a full faculty member - presents the main material of the course. Classes
are instead practical sessions where a teacher assistant solves problem sets and applied exercises with the students.
At Bocconi there was no such distinction, meaning that the same randomly allocated groups were kept for both
regular lectures and applied classes. Hence, in the remainder of the paper we use the two terms interchangeably.
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students to teaching classes so as to avoid clustering of students in some classes. Moreover,

for organizational reasons, students allocated to a specific class were also taking most or all of

their courses in exactly the same classroom. Overall, there are 12 classes per academic year

(and cohort): 8 classes in Management, 2 in Economics and 2 in Economics&Finance. The

classes are approximately equal sized, although not exactly.15

[TABLE 2]

Table 2 reports some descriptive statistics on the 2,406 students that we eventually con-

sider in our empirical exercise, broken down by degree program. The large majority of stu-

dents are enrolled in the Management program, which attracts over 70% of them. The Eco-

nomics program is chosen by about 10% of the students and the remaining 20% are in Eco-

nomics&Finance. There is a higher incidence of males (58.5%) than females (41.5%) in the

student body, with gender differences being more pronounced in the Economics and Eco-

nomics&Finance programs. The majority (68%) of students come from outside the province

of Milan, the site of Bocconi. We also have information on the students’ household income,

which is recorded in 4 brackets at the time of enrollment for the purpose of determining tuition

fees and eligibility for scholarships. About 22% of the students are in the highest of those

brackets (approximately above 140 thousands USD). Average admission test scores and high

school grades, normalized on a scale 0-100, suggest that the best students cluster in Economics

and Economics&Finance.

[FIGURE 1]

In Figure 1 we present evidence consistent with random allocation, as in De Giorgi, Pel-

lizzari & Woolston (2010) and De Giorgi, Pellizzari & Redaelli (2010). The figure compares

the distribution of some selected characteristics in the entire cohort and within the groups of

peers of a randomly selected student in each of the three initial academic years. Specifically,

the variables that we consider for the tests in Figure 1 are the entry test score (upper left graph),
15As discussed in De Giorgi, Pellizzari & Woolston (2010), variation in class size is generated by mere logistic

constraints, i.e. variation in the physical size of available classrooms.
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high school grade (upper right graph), the gender indicator (lower left graph), the indicator for

high income (lower middle graph) and the dummy for residence outside Milan (lower right

graph). As it is evident from the figure, the distributions all look very similar. Statistical tests

also confirm such a visual impression. Table B2 in Appendix B reports Kolmogorov-Smirnov

tests for the comparison of the distributions of the admission test scores in any possible pair of

classes and any possible academic year. In the vast majority of cases we cannot reject the null

of equality and only in 11 out of 180 statistics we can reject the null at the 10% level, so well

below 10% of the cases. We have produced similar tests also for the distribution of high school

grades as well as all the other characteristics considered in Figure 1, using tests of proportions

for those characteristics that take the form of simple dummy indicators (gender, high income

students and residence outside Milan). Results are not reported for brevity but are available

from the authors upon request.

In the empirical analysis of Section 4, we consider all possible pairs of students and compare

mean grades and mean absolute grade differences (as a measure of dispersion of outcomes

within the pair), both across pairs who are randomly allocated to the same classes more or

less often and for the same pair over academic years. The focus on student pairs allows us

to concentrate on the lowest possible level of group interaction and to directly compare our

results with the implications of the model, that is also presented in a two-agents setting. For

this purpose we construct all pairs of students who could possibly meet, i.e. all pairs of students

who are in the same degree program and enrollment cohort. Eventually, we construct a dataset

of over 800,000 pairs, whose descriptive statistics are reported in Table 3, it is here important to

clarify that the data used for the empirical analysis contain one observation per pair per period

so that if the pair i, j appears in the data the symmetric pair j, i does not. Specifically, since the

random allocation is performed within degree program and cohort, only students within degree

program and cohort cells can be allocated to the same class. Call Ncp the number of students

in cohort c and degree program p, then the number of non-symmetric pairs generated by those

students is Ncd(Ncd−1)
2

. Table B3 in Appendix B shows the number of students in each cd cell

and the corresponding number of pairs.
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[TABLE 3]

All the descriptive statistics in Table 3 are consistent with the random allocation (within

degree programs and cohorts) and the descriptives of the student body from Table 2.16 The last

row of Table 3 reports the mean value of a dummy indicator for whether the students in the

pair are ever allocated to the same class and it shows that slightly less that 40% of the pairs

ever met. Given the size of the degree programs and the number of random classes in each of

them, this number varies considerably with a low 33% in Management and a much larger 87%

in Economics and Economics&Finance.

The repeated randomization adopted by Bocconi generates as a byproduct the fact that some

students met more often than others, a crucial feature for our empirical exercise in Section 4. In

Table 4 we describe the main variables that arise from such a repeated randomization process

together with our key outcomes at the level of the student pairs.

[TABLE 4]

The first row of Table 4 reports the average number of courses any two students sit together

by degree program and academic year. It is important to emphasize that, since this is meant to

be an indicator of how many opportunities for interactions students have had, it is a cumulative

variable, i.e. it measures the number of courses together in the current and in the past years.

This is the reason why the number of courses together always increases from one year to the

next.17 On average two random students would have sat 1.2 courses together by the end of their

first year, 2.3 by their second year and 3.5 by the third. Notice that these averages combine

pairs of students who never meet and others that meet repeatedly. Given the number of classes

and courses in the different majors the above statistics become larger in Economics and in

Economics&Finance, i.e. 10-11 courses by the third year.

16The comparison of Table 2 and Table 3, in fact, can also be interpreted as a randomization test. One could
derive most of the statistics in Table 3 from those in Table 2, using the number of classes in each program and the
size of each enrollment cohort (in each degree program).

17In the regression analysis of Section 4 this mechanical time effect is controlled for by a set of year and degree
program dummies, which we always include in the control set.
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Since each course is taught for a different number of hours, the number of times students in

the pair are randomly assigned to the same class defines the number of hours they end up sitting

together in the same classroom (in the current and in the previous years). The average students

pair spends approximately 70 hours together by the end of the first year, 135 by the second

and over 200 by the third. Given the variation in the number of courses and their duration in

hours (see Table 1), these statistics vary considerably across degree programs, with students in

Economics and Economics&Finance enjoying a lot more opportunities for interactions.

We also describe the evolution of both our main outcomes: the average and the dispersion

of academic performance within groups and across academic years. Notice that our main ex-

planatory variable (i.e. hours together) varies only across academic years for the same pair of

student, hence we consider only one observation for each pair in each year. Consequently, we

compute the average grade of the pair over all the compulsory courses of each academic year.

As a measure of dispersion we consider the mean absolute grade difference, i.e. for each exam

in each academic year we compute the absolute value of the difference in the grades of the

students in the pair and we take the average of those absolute differences over all the courses

of each academic year.18 Table 4 shows the basic characteristics of these variables, broken

down by academic year and degree program. The average grade is similar across all programs

and years and fluctuates around a mean of approximately 26/30 (B+), with a mean absolute

difference of about 3.5.19

The last row of Table 4 reports the means, by degree program and academic year, of the

crossing indicator that we use in Section 4 to test the crossing property (see Section 2.3). Such

an indicator is constructed by comparing the grade vectors of the two students in each pair in

each academic year and verifying whether such vectors cross (at any point). In other words,

18In computing both the mean grade and the absolute mean grade difference of the pair we weight courses by
their length, assigning a higher weight to longer courses, i.e. courses with more hours of lectures. For robust-
ness, we have replicated all our results using unweighted outcomes obtaining virtually identical estimates. Such
robustness checks are not reported for brevity but are available from the authors upon request.

19In Italy, university exams are graded on a scale 0 to 30, with pass equal to 18. Such a peculiar grading scale
comes from historical legacy: while in primary, middle and high school students were graded by one teacher per
subject on a scale 0 to 10 (pass equal to 6), at university each exam was supposed to be evaluated by a commission
of three professors, each grading on the same 0-10 scale, the final mark being the sum of these three. Hence, 18 is
pass and 30 is full marks. Apart from the scaling, the actual grading at Bocconi is performed as in the average US
or UK university.
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the crossing indicator is equal to zero if one student consistently outperforms (or ties) the other

in all the courses of the specific academic year. Otherwise, the grade vectors cross and the

indicator takes value 1. The probability of crossing, for any two students, ranges between 80%

and 88%, with the exception of the third year in the Economics program where it is equal to

68%.

For completeness, in Table 5 we present the full extent of variation in our key independent

variable, i.e. number of meetings or hours together. Given the academic structure of the cur-

ricula, the variation arises both between and within (over-time) programs. There are a number

of sources of variation for our independent variable, all arising from the repeated random allo-

cation in different teaching classes: variation across majors in a given year, as well as variation

between pairs (cross-sectional and over time) and within pairs overtime. In particular, in the

Management major about 65% of the possible pairs never meet, while those pairs who meet

in the first and second year (1.4%) sit together for about 850 hours, the few who meet every

year (0.2%) end up spending over 1,300 hours together. Any two students in Economics are

quite likely to meet as there are only two classes. In fact only about 13% of the (potential)

pairs never meet, while those who meet in year 1 and 2 (12%) spend 880 hours in the same

classroom, those who always meet (12%) spend about 1,100 hours together. Consistently with

the random allocation mechanism and similar class sizes, the meeting probabilities in the Eco-

nomics&Finance program are very similar to those in Economics. One can also show that as

a result of the random allocation in two classes of similar sizes (Econ and Econ&Finance) the

distribution of meetings, i.e. the leftmost column in Table 5 should look pretty even and close

to 12-13%, which indeed is what we have in the data, an additional piece of evidence that is

consistent with a successful random allocation.

[TABLE 5]
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4 Empirical Analysis

In this section we analyze how the mean and the dispersion of academic outcomes within

groups evolve as students spend more and more time together over the first three years of their

academic tracks. Following our theoretical discussion in Section 2, the different mechanisms of

social interactions have different implications for the relationships between number of meetings

(hours) and the mean and dispersion of performance. Our main testable predictions are the

following:

If
∂V ar(x)

∂m
< 0 and

∂E(x)

∂m
> 0 ⇒ Joint production is the mechanism;

If
∂V ar(x)

∂m
< 0 and

∂E(x)

∂m
< 0 ⇒ Insurance is the mechanism.

where m is a measure of the number of hours the pair of students spend together. Namely, as

the number of interactions increases, we expect the average grade to increase if joint production

is the prevailing mechanism, to decrease if it is insurance and to stay unchanged if the leading

model is decentralization. The implications for dispersion are less clear cut, as we simply

expect the dispersion of grades within pairs to decrease as the number of meeting or hours

spent together increases when the prevailing mechanism is either joint production or insurance

(or any combination of the two) and to remain unaffected if no transition takes place from

decentralization to any of the other models.20

We test these predictions in Table 6, where we report the results of the following regres-

sions:

yijcpt = α1 + β1mijt + γ1t + δ1p + ζ1c + uijcpt (24)

yijcpt = α2 + β2mijt + γ2t + ηij + eijcpt (25)

where yijcpt is, alternatively, the mean grade or the mean (absolute) grade difference or the

20If we allow γ to be increasing in m, i.e. the relative importance of one’s peer performance increases in the
number of meetings, we have that ∂E(xD)

∂m > 0 and ∂V ar(xD)
∂m < 0, as shown in Proposition 4.
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crossing indicator for pair (i, j), in cohort c, degree program p in year t; mijt measures the

number of meetings or hours student i and j spent together on or before year t. Additionally,

we control for year, degree program and cohort effects: γt, δp, ζc respectively. Equation 25 is

a slightly different specification of equation 24, where we include a pair fixed effect ηij , which

obviously also captures the degree program and cohort effects. uijcpt and vijcpt are random

error terms.

The computation of the correct standard errors for equations 24 and 25 is particularly com-

plicated and it requires to take proper account of three issues: (i) the panel dimension of the

data (recall that we use one observation for each pair in each academic year); (ii) the pairwise

structure of the observations and (iii) the semi-aggregate level of variation of our main regressor

(hours together, mijt).

We take care of the first problem (the panel dimension) in equation 24 by applying the stan-

dard random effect transformation and in equation 25 by transforming the model in orthogonal

deviations.21 In the standard textbook panel model, such transformations eliminate any serial

correlation as well as any heteroskedasticity from the error term, so that the classic random or

fixed effects estimators can be computed by simple ordinary least squares on the transformed

data.

We can then take into account the other issues by clustering the standard errors of the

transformed model. Specifically, we assume that the error term eijcpt includes three additional

components: a ωi that induces serial correlation among all pairs where student i is a member,

a ωj that induces serial correlation among all pairs with student j as a member and a τ that is

21The standard random effect transformation subtracts from each variable in the model (both the dependent
and each of the regressors) its within mean scaled by the factor θ = 1 −

√
σu

Tση+σu
. For example, the random-

effects transformed dependent variable is yijcpt − θyijcp, where yijcp = T−1
∑T
t=1 yijcp and T = 3 in our

application. Similarly for all the regressors. The estimates of ση and σu that we use for this transformation are
the usual Swamy-Arora, also used by the command xtreg in Stata (P. A. V. B. Swamy & S. S. Arora 1972). The
transformation in orthogonal deviations consists in taking all variables in the model (both the dependent and each
of the regressors) in differences from the within mean of all future values, scaling by a factor ct that guarantees
homoskedasticity (in the absence of other error components). For example, the dependent variable of equation
25 transformed in orthogonal deviations is

[
yijcpt − (T − t)−1

∑T
k=t+1 yijcpk

]
ct, where c2t = T−t

T−t+1 . Notice
that in the model in orthogonal deviations the time dimension is reduced by one unit, which explains the different
number of observations in columns 2 and 4 of Table 6 compared to columns 1 and 3 (and similarly in Table 7 and
Table 9).
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common to all pairs that share the same value of mijt.22 As long as these components are all

additive, the above transformations (random effects and orthogonal deviations) do not affect

the structure of the transformed error terms, which remain additive in the three components

with the same (qualitative) variance-covariance matrices.

Hence, we take proper account of the pairwise nature of our data by clustering the standard

errors of the ordinary least square estimates produced on the transformed models at the level

of each individual student (i.e student i and student j in the pair). Additionally, since our main

regressor of interest (mijt) varies at a more aggregated level that the student pair (i.e. all pairs

whose members are assigned to the same classes in current and previous years are associated to

the same value of mijt) we face a standard Moulton problem (Brent R. Moulton 1990) and we

further cluster the standard errors along a third dimension that corresponds to the exact cells of

variation in mijt (such cells of variation are those shown in Table 5). Technically, we perform

such a three-level clustering using the procedure described in Colin A. Cameron, Douglas M.

Miller & Jonah B. Gelbach (2010).

The identification of the parameters in equations 24 and 25 is straightforward, given that the

right hand side variable of interest (mijt) is generated exclusively by the random allocation pro-

cess, hence it is fully exogenous. Consistently with this interpretation, we obtain very similar

estimates across the two specifications, although including the pair fixed effect ηij substantially

improves efficiency.

Obviously, our measure of the strength of social interactions (mijt) does not necessarily

represent the true number of hours any two students spend together, either studying or engag-

ing in other social activities. If we were able to observe such true measure of time together,

we could use it in equations 24 and 25 instead of mijt. However, such a measure would be en-

dogenous, as people may choose to spend more time with some classmates for reasons that are

connected to academic performance. Hence, we could use mijt as an instrument for real time

together. Then, our results can be interpreted as the reduced form estimates of this hypothetical

22In order to simplify the notation, we omit to specify a subscript for τ as it is defined across the cells of
variation of mijt (those in Table 5) which are a complex combination of the students-degree-year dimensions of
the data.
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IV framework.

Once again, we expect the effect of hours together on the pair’s average performance (i.e

βs for s = 1, 2) to be positive or negative depending on whether the prevailing mechanism

is joint production or insurance, respectively. Our model does not exclude the possibility that

both mechanisms operate simultaneously, so that we are really only able to test which one

dominates.

[TABLE 6]

The results are reported in Table 6 and Table 7. In columns 1 and 2 of Table 6 we show

the estimates of equations 24 and 25 with the mean grade of the pair as a dependent variable.

For ease of interpretation both the dependent and the explanatory variables in these regressions

are normalized within degree program and academic year, so that the estimated effects can be

readily interpreted in terms of standard deviations. Namely, a one standard deviation increase in

the number of hours together (approximately 240 hours) decreases mean performance by 2.2%

to 2.7% of a standard deviation, corresponding to almost 0.05 grade points. It is also interesting

to compare the average performance of pairs of students who are always assigned to the same

class for all the three years of their track and pairs of students who are never assigned to the

same class. These two types of student pairs are approximately 6.3 standard deviations apart in

terms of hours together, hence their mean grades are 17% of a standard deviation apart in favor

of the pair who never met, corresponding to almost 0.3 of a grade point. Consistently with the

random nature of mijt, including pair fixed effects in the specification of the model only affects

the coefficients marginally, while it substantially improves the precision of the estimates.

In columns 3 and 4 of Table 6 we report the estimates of equations 24 and 25 with our

measure of grade dispersion as a dependent variable, i.e. the mean absolute grade difference

of all the exams in each academic year. Results indicate that a one standard deviation increase

in the number of hours together (approximately 240 hours) reduces the mean absolute grade

difference by 1.2% of a standard deviation, corresponding to almost 0.02 grade points. The

comparison of pairs at the extreme ends of the hours distribution indicates that those who
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are consistently assigned to the same class have a mean absolute grade difference lower by

approximately 7.6% of a standard deviation or 0.11 grade points compared to those who never

sit courses together.

While the negative relationship between dispersion in performance and the number of hours

students spend together would be consistent with both insurance and joint production (or a

combination of the two), the only mechanism that can rationalize the decline in average perfor-

mance is insurance.

As discussed in the theoretical section, an additional test to assess the relevance of insurance

motives relies on the time-series properties of students’ performances, i.e. on whether students’

grades in a pair cross each other. The logic of this crossing property is the following: consider

a pair of students who perfectly share risk by insuring each other (full insurance), then they

always exert the same level of effort, hence their outcomes should be either always identical,

in case of homogenous agents (with the same Pareto weights), or never cross if agents are

heterogeneous. Crossing outcomes are a signal of less than full insurance. This result has been

shown in Cochrane (1991) and Mace (1991) and essentially restates that under full insurance

the ratio of marginal utilities between any two agents is always constant and equal to the inverse

of the ratio of the Pareto weights. Similar tests are produced in Tullio Jappelli & Luigi Pistaferri

(2006) and Mazzocco & Saini (2009) in the consumption literature.

In our application, we expect students to insure more and more as they spend more and more

time together, eventually approaching full insurance (see Section 2.4). We test this prediction

by estimating equations 24 and 25 with the crossing indicator on the left hand side (linear

probability model). The crossing indicator is a simple dummy variable equal to 1 if the vectors

of exam grades of student i and j ever cross over the entire series of compulsory courses taken

during year t. The results are reported in Table 7.

[TABLE 7]

Results show that the likelihood of crossing decreases with the number of hours spent to-

gether and we take this as further evidence consistent with the insurance mechanism. Once
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again, the estimates are significant at conventional statistical levels only when conditioning on

pair fixed effects (column 2). The magnitude of the effect is such that a one standard deviation

increase in the number of hours together reduces the likelihood of crossing by 0.4 percentage

points or 1.1% of a standard deviation. Alternatively, one can look at the difference between

pairs of students who are always in the same class and pairs who are never in the same class,

the latter being 2.5 percentage points more likely to cross their grades.

4.1 Further Evidence

A first simple robustness check of our results consists in investigating whether, for any spurious

reasons, future classmates appear to be related in terms of academic outcomes. If that were to

happen, our approach would be falsified from the start, as in none of our model we predict a

relation between outcomes of students who have not met yet. In this light, we run a series of

placebo regressions where we limit our sample to the first academic year (i.e. one observation

for each pair) and we regress such outcome on an indicator for whether the pair will ever meet

in the future two years. Results are reported in Table 8 and, consistently with the idea that

future meetings should not be related to current outcomes, we find that all estimates are very

close to zero and insignificant.

[TABLE 8]

A second piece of additional evidence addresses the following concern: although the num-

ber of hours together arises from the random allocation process, it might still be that our results

on dispersion and grade crossing are simply the byproduct of the structure of our data. In fact,

pairs with more hours together are more likely than others to have attended courses with the

same teachers and, if teachers are heterogenous, this alone might reduce the variance of out-

comes within pairs. Similarly, there could be cases in which such a reduction in the variance

might also lead to a lower probability of crossing (although one would have to think about some

very special cases of teacher heterogeneity). Note that these concerns bear no implications for

the mean outcome of the pair as a function of the number of meetings.
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To address these issues, in Table 9 we augment equations 24 and 25 with a set of dummies

for the classes assigned to each student in the pair (i, j) in every academic year. Overall, there

are 12 such dummies (one for each of the 8 classes in Management plus 2 classes in Economics

and Economics&Finance) for each student in the pair, for each academic year and each cohort,

for a total of 144 dummies. Such class effects are meant to control for the potential bias due to

unobservable factors at the class level, such as teacher quality, class size or class composition,

that might be partially collinear with mijt. Results are qualitatively identical to those in Table

6 and Table 7. Also the magnitude of the estimates is very comparable, especially for grade

crossing.

[TABLE 9]

The results in the previous section are consistent, within our framework, only with the in-

surance mechanism. As it is well known in the literature (Alvarez & Jermann 2000), the level

of informal insurance between two parties under limited commitment rests on three fundamen-

tal parameters, i.e. risk aversion, discount rate and correlation of shocks, plus the ability of the

parties to monitor and enforce punishment for deviating behaviors. Although we do not directly

observe any of these three parameters, one might think that gender is an important determinant

of the degree of insurance under the assumption that reciprocal trust and monitoring are easier

among same sex pairs.

We explore this idea in Table 10, where we report estimates of equation 25 for samples of

pairs restricted to either same gender (row 1) or mixed gender (row 2) or both females (row 3)

or both males (row 4). Results are remarkably similar across these groups and it only appears

that females have a smaller negative effect on average performance when they interact among

themselves.

[TABLE 10]

In Table 11 we further investigate heterogeneity in ability. Although the level of ability

of a student in a pair should not matter for the degree of sustainable insurance in a pair, it
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is however true that it could determine the sharing rule, i.e. the more able of the pair gets

allocated more time (or resources, our t parameter in the model) in every state of the world

(a higher Pareto weight). Therefore, in order to be consistent with the proposed mechanism,

individual ability (which we measure with the standardized entry test) should be irrelevant for

the relation between our first and second moments of the outcomes and the exogenous number

of hours spent together.

Consistently with this interpretation, in Table 11 we find that, when estimating equation 25

on subsamples defined by ability quartiles of the two students in each pair, results are extremely

homogeneous, especially as far as mean outcomes are concerned.

[TABLE 11]

5 Alternative Mechanisms

So far we have considered three plausible mechanisms that are able to explain what is com-

monly termed peer effects or social interactions in the literature. However, it might still be

possible that other mechanisms are consistent with our empirical evidence. For example, one

could construct a behavioral model where students get to know each other over time and di-

vert their attention from studying to other more socializing activities (going out, partying, etc.).

Such a mechanism could easily account for the drop in performance but would be hard pressed

to explain the drop in the cross-sectional variance, as each student would be subject to her

own shock. One possible way to adapt such a model to generate lower dispersion in out-

comes consists in introducing some kind of preference for equality or conformity (Douglas B.

Bernheim 1994, Akerlof 1997), whereby students dislike to perform differently from their

friends. In this case students hit by different types of shocks would help each other. This,

however, resembles quite closely our insurance model.

One might think as well that such alternative mechanism is particularly valid for males and

lower ability students, as those students might have a higher inclination to partying. For this

purpose, the evidence presented in the previous Section 4.1 (Tables 10 and 11) is particularly
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informative, as we find that the estimated effects are pretty homogeneous both across gender

types and ability combinations. Such a lack of heterogeneity is consistent with insurance, as

the insuring parties would not care about their relative ability but focus on the correlation of

shocks and the ability to implement the informal contract.

Another possibility is that as students know each other better they care more about their

relative performance, in our model this would mean that γ is increasing in m. However, as

shown in Proposition 4, if that were the case the mean outcome should increase with the number

of meeting which is the opposite of what we find in the data.

Further, the disruption model of Edward P. Lazear (2001), adequately modified, might be

able to produce what we observe in the data. However, the Lazear’s model of disruption nat-

urally produces a negative correlation between group size and performance, while our results

in Table 9 are not consistent with such a story. In fact when we control for class identifiers,

which capture, among other things, the size of the class, we find almost the same results as

those in the main Table 6. Moreover, the simplest disruption model would explain why the

mean performance falls but would have very little to say regarding the cross-sectional variance,

unless some further assumptions are made.

Finally, another alternative model could be one where students exhibit preferences for

equality. Such a model could certainly explain the reduced dispersion in outcomes but it would

generally display multiple equilibria, with students clustering around either high or low per-

formance. There would be no reason for a generalized fall in performance. Furthermore,

preferences for equality would not be enough to explain the observed relationship between the

number of meetings and the average and the dispersion of performance. One would have to

make further assumptions about how a student’s interest for the performance of her friends

varies with time spent together. The evidence in Table 11, seems to further reject such a model,

as even in ex-ante homogenous pairs we have a reduction in performance, while that model

would predict a clustering at a high level or low level, possibly depending on ability.

In general, it is always possible to propose a behavioral model that can explain our em-

pirical findings (in fact, any empirical finding) and one possible reading of our contribution
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is precisely the possibility to explain the patter of social interactions on the basis of simple

economic mechanisms, that are relatively standard and well established in the literature.

6 Conclusions

In this paper we propose a set of models of social interactions that generate testable implications

capable of separating them empirically. In particular, we consider three possible mechanisms

of interactions: i. a baseline scenario, where peer effects arise because of reference-based

utility; ii. a model of joint production and; iii. one of mutual insurance against shocks to time

or productivity. While all mechanisms predict a reduction in the dispersion of outcomes within

groups (pairs) - what is commonly termed peer effects -, they differ in their implications for

average performance, which, compared to the benchmark case, increases under cooperation

and decreases with mutual insurance.

We take these simple predictions to the data using information on two cohorts of under-

graduate Bocconi students, where we can exploit random variation in the number of meetings

between students dictated by repeated random allocation into teaching classes. In this setting,

the amount of time any two students spend together in the same lecturing classrooms is ex-

ogenous by definition and drives the transition from a decentralized model towards a model of

insurance or cooperation. We find that the insurance motive dominates.

Such a result has clear policy implications: in order to increase average performance it

would be beneficial to prevent students from sitting in the same class too often. Alternatively,

the university could introduce incentives that limit the possibility to engage in mutual insurance

and encourage cooperation or joint production.

Although we frame our theoretical discussion as well as the empirical application in the

education setting, our analysis is more general and it applies to many different contexts, from

teamwork to academic co-authorship to any environment where social interactions could be im-

portant. For example, if mutual insurance were proven to be the main mechanism of interaction

in team production too, the design of incentive pay schemes, which is one of the fundamental
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issues in that literature, should take into account the possibility that workers may endogenously

react to the introduction of such schemes by engaging in some kind of mutual insurance, thus

undoing the expected effect on effort. Similarly, in the production of academic research people

explicitly interact through co-authorship, although performance evaluation is typically carried

out at the individual level, primarily via tenure decisions but also with the allocation of research

funds and awards. This is also a setting that resembles our model very closely.

In the theoretical discussion we have assumed away agents’ heterogeneity and endoge-

nous group formation. Although such an assumption is consistent with our testing strategy,

where students are randomly allocated to peers (and fixed effects are accounted for), we should

emphasize that one important implication of our results is that an individual may choose dif-

ferent types of peers depending on whether the purpose of the group is cooperation or in-

surance. We also recognize that the process of group formation (Garance Genicot & Debraj

Ray 2003, Ballester, Calvó-Armengol & Zenou 2006) is very important and that the interlink

between such process and the choice of the interaction mode should be investigated thoroughly

in future research.
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Figures and Tables

Figure 1: Distribution of selected variables within groups and in the population

Table 1: Compulsory curricula

Management Economics Econ&Finance
courses hours courses hours courses hours

[1] [2] [3] [4] [5] [6]
Academic year
Year 1 8 464 8 448 8 464
Year 2 7 384 7 432 7 448
Year 3 8 464 4 256 7 384

Total 23 1,312 19 1,136 22 1,296
Number of courses and hours by program. The detailed list of courses is in the
appendix, Table B1.
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Table 2: Students’ characteristics

All students Management Economics Econ&Finance
N=2,406 N=1,713 N=224 N=496

Variable mean mean mean mean
(std.dev.) (std.dev.) (std.dev.) (std.dev.)

1=female 0.415 0.451 0.388 0.299
- - -

1=original residence outside Milana 0.676 0.664 0.638 0.736
- - -

1=highest income bracketb 0.223 0.235 0.246 0.171
- - -

Admission test scorec 65.213 63.702 69.369 68.742
(15.80) (15.54) (16.80) (15.36)

High school leaving graded 89.542 88.721 89.991 92.324
(10.19) (10.30) (10.89) (8.89)

a Coded to 1 if the student’s residence is outside the province of Milan (which is where the university is located).
b Coded to 1 if the student’s household income falls in the highest bracket for the determination of fees.
c Normalized between 0 and 100.
d Normalized between 0 and 100 (pass = 60)

Table 3: Characteristics of the student pairs

Variable All Management Economics Econ&Finance
(Num. of pairs) (800,935) (732,808) (13,161) (54,966)

1=same sex 0.512 0.507 0.521 0.581
1=both males 0.317 0.303 0.372 0.493
1=both females 0.195 0.204 0.149 0.088
1=both from outside Milana 0.449 0.443 0.391 0.538
1=both from Milana 0.113 0.115 0.142 0.072
1=both high incomeb 0.053 0.055 0.056 0.029
1=none high incomeb 0.592 0.586 0.582 0.686
Abs(testi − testj)/testc 0.234 0.236 0.229 0.214
Abs(HSi −HSj)/HSc 0.125 0.127 0.133 0.101
1=ever met 0.375 0.328 0.874 0.873

The table reports the means of the indicated variables.
a Coded to 1 if both student’s residence is inside (outside) the province of Milan (which is where the

university is located).
b Coded to 1 if the household incomes of both (none) students falls in the highest bracket for the

determination of fees.
c The absolute difference in test scores and high school grades between the two students in the pair are

normalized by the average test score and high school grade among all students in the same enrollment
cohort and degree program.
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Table 5: Distribution of hours together

Management Economics Econ&Finance
Meetings % Hours % Hours % Hours
Never 67.16 0 12.61 0 12.71 0
Year 1 9.55 464 12.83 448 12.64 464
Year 2 9.51 384 12.34 432 12.48 448
Year 3 9.52 464 12.46 256 12.38 384
Year 1&Year 2 1.37 848 12.6 880 12.37 912
Year 1&Year 3 1.35 928 12.46 704 12.42 848
Year 2&Year 3 1.35 848 12.37 688 12.58 832
Always 0.19 1312 12.33 1136 12.42 1296

Table 6: Time together and academic outcomes

Mean grade Mean abs. grade difference
[1] [2] [3] [4]

Hours in the same class -0.022 -0.027*** -0.013 -0.012**
(0.015) (0.011) (0.008) (0.005)

Student pairs’ fixed effects no yes no yes

Observations 2,402,805 1,601,870 2,402,805 1,601,870
Number of pairs 800,935 800,935 800,935 800,935
Both the dependent variables and the explanatory variables are normalized within degree program
and academic year cells. All regressions include academic year dummies. The specifications in
columns 1 and 3 also include dummies for enrollment cohort and degree program.
The standard errors are three-way clustered at the level of each student in the pair and the
frequency of their meetings.
* significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 7: The crossing property

1=grade vectors cross
[1] [2]

Hours in the same class -0.002 -0.004***
(0.003) (0.001)

Student pairs’ fixed effects no yes

Observations 2,402,805 1,601,870
Number of pairs 800,935 800,935
The explanatory variables are normalized within degree
program and academic year cells. All regressions include
academic year dummies. The specifications in column 1 also
includes dummies for enrollment cohort and degree program.
The standard errors are three-way clustered at the level of
each student in the pair and the frequency of their meetings.
* significant at 10%; ** significant at 5%; *** significant at
1%.

Table 8: Placebo regressions

Mean grade Mean abs. grade difference 1=crossing
[1] [2] [3]

1=meet anytime in the future 0.001 -0.003 0.001
(0.002) (0.003) (0.001)

Number of pairs 800,935 800,935 800,935
All outcome variables refer to the first academic year. Both the dependent variables and the explanatory
variables are normalized within degree program. All regressions include dummies for enrollment
cohort and degree program.
The standard errors are two-way clustered at the level of each student in the pair.
* significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 9: Robustness check with class effects

Mean abs. grade difference 1=grade vectors cross
[1] [2] [3] [4]

Hours in the same class -0.014* -0.015*** -0.002 -0.004***
(0.008) (0.002) (0.003) (0.001)

Student pairs’ fixed effects no yes no yes
Class fixed effects yes yes yes yes

Observations 2,402,805 1,601,870 2,402,805 1,601,870
Number of pairs 800,935 800,935 800,935 800,935
In columns 1 and 2 both the dependent variables and the explanatory variables are normalized
within degree program and academic year cells. In columns 3 and 4 only the explanatory
variables are normalized. All regressions include academic year dummies. The specifications in
columns 1 and 3 also include dummies for enrollment cohort and degree program.
The standard errors are three-way clustered at the level of each student in the pair and the
frequency of their meetings.
* significant at 10%; ** significant at 5%; *** significant at 1%.

Table 10: Heterogeneity of the effects across gender compositions

Mean Grade Mean abs. grade difference Observations
[1] [2] [3]

Gender composition of the pair:
Same sex -0.028** -0.014** 820,334

(0.011) (0.006)
Mixed sex -0.027** -0.011** 781,536

(0.011) (0.005)
Both females -0.014* -0.021** 312,150

(0.008) (0.008)
Both males -0.034*** -0.008 508,184

(0.013) (0.006)
The table reports the fixed-effects estimates of the effect of hours together on the
outcome restricting the sample to type of pairs indicated in the first column.
The standard errors are three-way clustered at the level of each student in the pair and
the frequency of their meetings. across the two samples.
* significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 11: Heterogeneity of the effects across gender composi-
tions

PANEL A: Mean grade
Student i

quartiles: first second third fourth

St
ud

en
tj

first -0.029** -0.026** -0.028** -0.031**
(0.013) (0.012) (0.011) (0.013)

- -0.025* -0.024** -0.032***
second - (0.013) (0.010) (0.012)

- - -0.022** -0.024**
third - - (0.010) (0.011)

- - - -0.033**
fourth - - - -(0.015)

PANEL B: Mean abs. grade difference
Student i

quartiles: first second third fourth

St
ud

en
tj

first -0.005 -0.008 -0.014** -0.016**
(0.010) (0.008) (0.007) (0.007)

second - -0.007 -0.013* -0.008
(0.007) (0.007) (0.007)

third - - -0.016 -0.018***
(0.011) (0.006)

fourth - - - -0.013
(0.008)

The table reports the fixed-effects estimates of the effect of hours
together on the outcome, restricting the sample to pairs of students in the
indicated quartiles of the ability distribution. Ability is measured by the
entry test score. Quartiles ordered in ascending order.
The standard errors are three-way clustered at the level of each student in
the pair and the frequency of their meetings.
* significant at 10%; ** significant at 5%; *** significant at 1%.
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Appendix A Proofs
Proof of Proposition 1.

Proof. By contradiction, suppose ei > ej , then ∂f(ei)
∂ei

<
∂f(ej)

∂ej
and from the first

order conditions in equations 10 and 11:

f(ej)−
γ

1− ε
f(ei) > f(ei)− γ(1− ε)f(ej) (A1)

f(ej) [1 + γ(1− ε)] > f(ei)

[
1 +

γ

1− ε

]
(A2)

For equations A1 and A2 to be jointly satisfied with ∂f(ei)
∂ei

<
∂f(ej)

∂ej
, it must be that

1 + γ(1− ε) > 1 +
γ

1− ε

1− ε >
1

1− ε
(A3)

which is impossible with ε < 1.

Proof of proposition 2.

Proof. Subtracting the first order conditions in equations 10 and 11 from each
others yields:

xi − xj =
1

1 + γ

[
∂f(ei)

∂ei
− (1− ε)∂f(ej)

∂ej

]
> 0 (A4)

which is positive, given that ∂f(ei)
∂ei

>
∂f(ej)

∂ej
.

Proof for proposition 3.

Proof. The proof is in two steps. First, we show that dei
dγ

and dej
dγ

must have the
same sign. Take the total differential of the first order conditions in equations 10
and 11 and rearrange terms to obtain:[

∂f(ei)

∂ei
− ∂2f(ei)

∂2ei

]
dei
dγ

= (1− ε)f(ej) + γ(1− ε)∂f(ej)

∂ej

dej
dγ

(A5)

(1− ε)
[
∂f(ej)

∂ej
− ∂2f(ej)

∂2ej

]
dej
dγ

= f(ei) + γ
∂f(ei)

∂ei

dei
dγ

(A6)

which cannot be jointly satisfied if dei
dγ

and dej
dγ

have different signs. Second, we

show that dei
dγ

> 0 (or alternatively that dej
dγ

> 0). Combining the two first order
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conditions in equations 10 and 11 yields:[
∂f(ei)

∂ei
− ∂2f(ei)

∂2ei

]
dei
dγ

= (1− ε) +
γ(1− ε)∂f(ej)

∂ej
f(ei)

∂f(ej)

∂ej
− ∂2f(ej)

∂2ej

+

+
γ2(1− ε)∂f(ej)

∂ej

∂f(ei)
∂ei

∂f(ej)

∂ej
− ∂2f(ej)

∂2ej

dei
dγ

(A7)

which shows that dei
dγ
> 0 if

∂f(ei)

∂ei
− ∂2f(ej)

∂2ei
− γ2(1− ε)

∂f(ej)

∂ej

∂f(ei)
∂ei

∂f(ej)

∂ej
− ∂2f(ej)

∂2ej

> 0

∂f(ei)

∂ei

1− γ2(1− ε)
∂f(ej)

∂ej

∂f(ej)

∂ej
− ∂2f(ej)

∂2ej

− ∂2f(ej)

∂2ei
> 0 (A8)

which is in fact positive.

Proof of proposition 4.

Proof. The first result (E(x)
∂γ
≥ 0) comes immediately from the fact that both ei

and ej increase with γ. To find the sufficient conditions under which CV (x)
∂γ
≤ 0,

compute the variation in CV (x) as γ changes:

dCV (x)

dγ
=

2

(xi + xj)2

[
xj
dxi
dγ
− xi

dxj
dγ

]
=

2(1− ε)
(xi + xj)2

[
f(ej)

∂f(ei)

∂ei

dei
dγ
− f(ei)

∂f(ej)

∂ej

dej
dγ

]
(A9)

It is easy to show that in equilibrium f(ej)
∂f(ei)
∂ei

> f(ei)
∂f(ej)

∂ej
, which implies

that the necessary condition to have dCV (x)
dγ

< 0 is dej
dγ

> dei
dγ

and the higher the

difference between dej
dγ

and dei
dγ

the more likely that dCV (x)
dγ

< 0. In particular, it can

be shown that if ∂3f(·)
∂3ea

> 0 then dej
dγ

> dei
dγ

. In fact, the sufficient condition to have
dCV (x)
dγ

< 0 essentially states that ∂
3f(·)
∂3ea

must be positive and large enough:

∂3f(·)
∂3ea

>> 0 ⇒ dej
dγ
>> dei

dγ
⇒ dCV (x)

dγ
> 0 (A10)

Proof of proposition 5.

Proof. i) By contradiction, suppose eCi < eDi and look at how the first order
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condition in equation 15 changes when effort changes from eCi to eDi :

∂2g(ei, ej)

∂2ei
=
∂g(ei, ej)

∂ei

−γ(1− ε)
∂g(eCj , e

C
i )

∂eCi
(eDi − eCi ) (A11)

If eCi < eDi , the LHS of this equation would be negative and the RHS would be
positive, which is impossible. Hence, it must be that eCi > eDi . Similarly for
eCj < eDj .

ii) given i) and the complementarity assumption.
Proof of proposition 6.

Proof. Subtracting the first order conditions in equations 15 and 16 to one another,
yields:

xCi − xCj =
1

1 + γ

[
∂g(eCi , e

C
j )

∂eCi
− (1− ε)

∂g(eCj , e
C
i )

∂eCj

]
(A12)

Take the total differential of xCi −xCj from this expression when eDi increases to eCi
and eDj increases to eCj :

d(xCi − xCj ) =
∂2g(eCi , e

C
j )

∂2eCi
dei +

∂2g(ei, ej)

∂ei∂ej
dej −

−(1− ε)
∂2g(eCj , e

C
i )

∂2eCj
dej − (1− ε)∂

2g(ej, ei)

∂ej∂ei
dei

= dei

[
∂2g(eCi , e

C
j )

∂2eCi
− (1− ε)∂

2g(ej, ei)

∂ej∂ei

]
−

−dej

[
∂2g(ei, ej)

∂ei∂ej
− (1− ε)

∂2g(eCj , e
C
i )

∂2eCj

]
< 0

which, given that dei > 0, dej > 0, ∂
2g(ei,ej)

∂2ei
< 0 and ∂2g(ei,ej)

∂ei∂ej
> 0, is negative.

Proof of proposition 7.

Proof. Simply comparing the first order conditions for the insurance model in
equation 19 and the decentralization model in equations 10 or 11 shows that eI <
eDi . It, then, follows that E(xI) < E(xD) < E(xC). Under full insurance the
performance of both students is identical, hence CV (xI) = 0.
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Appendix B Additional empirical results
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Table B1: Academic Structure
Degree program Year Courses Hours Subject area

Management First year Management I 64 Management
Accounting I 48 Management
Management II 64 Management
Microeconomics 64 Economics
Mathematics 80 Quantitative
Private Law 64 Law
Public Law 32 Law
Economic History 48 Other

Second year Accounting II 64 Management
Public management 32 Management
Organization theory 64 Management
Macroeconomics 64 Economics
Statistics 64 Quantitative
Mathematics for Finance 32 Quantitative
Commercial Law 64 Law

Third year Marketing 64 Management
Innovation management 64 Management
Corporate finance 64 Management
Managerial accounting 64 Management
Management of informational systems 32 Management
Strategic management 64 Management
Economics of financial markets 64 Economics
Public Economics 48 Economics

Economics First year Management I 64 Management
Accounting 48 Management
Microeconomics 64 Economics
Mathematics 80 Quantitative
Private Law 64 Law
Private Law 32 Law
Economic history 48 Other
Sociology 48 Other

Second year Management II 64 Management
Economics of financial markets 48 Economics
Economic analysis 64 Economics
Macroeconomics 64 Economics
Mathematics for economics 64 Quantitative
Statistics 64 Quantitative
Commercial law 64 Law

Third year Public Economics 64 Economics
International economic policy 64 Economics
Data analysis 64 Quantitative
Econometrics 64 Quantitative

Econ&Finance First year Management I 64 Management
Accounting 48 Management
Economics of financial intermediation 64 Economics
Microeconomics 64 Economics
Mathematics 80 Quantitative
Private Law 64 Law
Public Law 32 Law
Economic History 48 Other

Second year Securities market 64 Economics
Macroeconomics 64 Economics
Monetary economics 64 Economics
Public economics 64 Economics
Statistics 64 Quantitative
Mathematics for finance 64 Quantitative
Commercial law 64 Law

Third year Management II 64 Management
Corporate finance 64 Management
International monetary economics 48 Economics
Applied economics 48 Economics
Global banking 48 Economics
Banking 64 Economics
Financial market law 48 Law

53



Cohort: 2000 2001
Year: first second third first second third

Economics
Class 1&2 0.327 0.479 0.774 0.93 0.704 0.477

Econ&Finance
Class 1&2 0.55 0.757 0.804 0.627 0.276 0.888

Management
2000 first year

Classes 2 3 4 5 6 7 8
1 0.401 0.982 0.537 0.293 0.591 0.885 0.721
2 . 0.683 0.978 0.307 0.413 0.738 0.256
3 . . 0.853 0.495 0.818 0.898 0.902
4 . . . 0.386 0.792 0.847 0.602
5 . . . . 0.483 0.325 0.456
6 . . . . . 0.968 0.643
7 . . . . . . 0.943

2000 second year
Classes 2 3 4 5 6 7 8

1 0.578 0.037 0.291 0.053 0.397 0.686 0.176
2 . 0.193 0.287 0.192 0.674 0.947 0.64
3 . . 0.057 0.986 0.567 0.197 0.249
4 . . . 0.068 0.303 0.522 0.425
5 . . . . 0.479 0.201 0.306
6 . . . . . 0.497 0.61
7 . . . . . . 0.535

2000 third year
Classes 2 3 4 5 6 7 8

1 0.53 0.342 0.41 0.905 0.862 0.32 0.353
2 . 0.971 0.991 0.823 0.912 0.868 0.096
3 . . 1 0.632 0.864 0.822 0.127
4 . . . 0.6 0.824 0.924 0.188
5 . . . . 0.93 0.223 0.361
6 . . . . . 0.381 0.253
7 . . . . . . 0.061

2001 first year
Classes 2 3 4 5 6 7 8

1 0.985 0.781 0.122 0.439 0.161 0.345 0.763
2 . 0.525 0.304 0.77 0.432 0.282 0.902
3 . . 0.133 0.389 0.156 0.329 0.13
4 . . . 0.808 0.631 0.009 0.253
5 . . . . 0.574 0.041 0.571
6 . . . . . 0.027 0.352
7 . . . . . . 0.09

2001 second year
Classes 2 3 4 5 6 7 8

1 0.707 0.099 0.419 0.107 0.538 0.286 0.106
2 . 0.426 0.347 0.498 0.863 0.835 0.669
3 . . 0.091 0.221 0.854 0.281 0.355
4 . . . 0.607 0.271 0.295 0.093
5 . . . . 0.228 0.549 0.367
6 . . . . . 0.905 0.545
7 . . . . . . 0.637

2001 third year
Classes 2 3 4 5 6 7 8

1 0.377 0.352 0.796 0.21 0.709 0.879 0.994
2 . 0.652 0.542 0.542 0.842 0.483 0.871
3 . . 0.157 0.644 0.4 0.304 0.419
4 . . . 0.348 0.772 0.951 0.938
5 . . . . 0.132 0.363 0.438
6 . . . . . 0.585 0.922
7 . . . . . . 0.75

Table B2: Kolmogorov-Smirnov tests of the equality of the distribution of test scores across classes.

The table reports the p-values of pairwise Klomogorov-Smirnov test for the equality of the distributions of entry test scores in all 
available pairs of classes within the same cohort-degree program-academic year cells.
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Table B3: Number of students and student pairs
Degree Cohort
program 1999-2000 2000-2001 Total

Panel A: Number of students

Management 865 848 1,713
Economics 139 85 224
Econ&Finance 249 220 469
Total 1,253 1,153 2,406

Panel B: Number of pairs

Management 373,680 359,128 732,808
Economics 9,591 3,570 13,161
Econ&Finance 30,876 24,090 54,966
Total 414,147 386,788 800,935
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Appendix C Extensions to the model

Appendix C.1 Strategic Interactions
We consider in this section the possibility of strategic interactions in our set-up. For this pur-
pose, we revisit the equilibria under decentralization, joint production and full insurance, as-
suming that each student in the pair internalizes the effect of one’s effort on peer’s effort.

Decentralization. With strategic behavior, the first order conditions of equations 10 and 11
in section 2.1 change into the following:

∂f(eDSi )

∂ei
= f(eDSi )− γ(1− ε)f(eDSj ) + γ(1− ε)

∂f(eDSj )

∂ej

∂ej
∂ei

(A13)

(1− ε)
∂f(eDSj )

∂ej
= (1− ε)f(eDSj )− γf(eDSi ) + γ

∂f(eDSi )

∂ei

∂ei
∂ej

(A14)

where eDSi indicated the optimal effort level of agent i (or j) under decentralization with strate-
gic behavior.

It is, then, easy to see that eDSa < eDa , ∀i, j. We can also prove a modified version of
Proposition 1, that takes strategic behavior into account. The proof proceeds analogously to the
one of Proposition 1 by contradiction.23

Joint Production Under joint production higher effort from one of the agents increases
the productivity of the other, who will then also increase effort, which in turn improves one’s
productivity. Hence, in this framework there are two offsetting externalities: on the one hand
higher effort from one’s peer raises the reference point, thus lowering utility, on the other hand
it improves productivity. The overall effect, compared to the non-strategic equilibrium, de-
pends on the functional forms. Nevertheless, the externality in the utility function is common
to all mechanisms so that, when comparing the distributions of the outcomes across mecha-
nisms within the strategic framework, only the production externality matters. Hence, since
the production externality unambiguously induces higher effort, compared to decentralization
or insurance where complementarity is ruled out, in a strategic equilibrium the implications on
the mean outcome is reinforced. The same holds for dispersion, as the agent hit by the negative
shock benefits more from the complementarity than the other.

Eventually, a modified version of Proposition 5 would still hold with eCSa ≥ eDSa , ∀a = i, j,
while the relationship between eCSa and eCa depends on functional form assumptions (where eCSa
is the optimal effort level of agent a under joint production with strategic behavior).

Full Insurance. In the full insurance scenario with strategic interactions the results are
also in line with those presented in the main text. If we take the first order conditions in section
2.3 and we modify them to take explicit account of the strategic interactions we obtain the
following:

∂f(eIS)

∂e
=

f(eI)

1 + ∂e−a
∂ea

(A15)

23Notice that in this framework existence and uniqueness of the equilibrium depend on the specific functional
forms. However, conditional on the equilibrium existence and uniqueness, the modified version of Proposition 1
can be proven.
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where eIS is the optimal effort level (common to both agents) under full insurance with strategic
behavior.

Given that ∂e−a
∂ea

> 0 ∀a = i, j., then eIS < eI . It is then immediate to show that, even with
strategic interactions, the level of effort is lowest under full insurance compared to any of the
other mechanisms.

Appendix C.2 Social Planner
The results derived in the main text and the proofs of Appendix A assume that, in the joint
production scenario, the two agents take each other’s actions as given, while still producing
jointly. This might be a questionable assumption, which, however, does not fundamentally
change our results but simplifies the mathematical conditions and proofs. In what follows we
show that, even when we consider a social planner equilibrium in the joint production scenario
(i.e. an equilibrium that fully internalizes the externalities), the main implications of our simple
model still stand.

We present this analysis with the help of simulations, since the set of necessary and suffi-
cient conditions under this particular allocation are more cumbersome than those in the main
text. For ease of comparison we show the simulation results for the three proposed mechanisms:
i. decentralization; ii. joint production (planner’s problem) and iii. full insurance, where in the
joint production scenario we solve the programming problem under a social planner.

The simulation results we report in this section are based upon the following parametric
assumptions on the production functions:

f(ea) = taαe
β
a ∀a = i, j (A16)

g(ei, ej) = ti
[
αeρi + (1− α)eρj

]β
ρ (A17)

with 0 < β < ρ < 1 to preserve standard properties of the production function. We solve
for the equilibria under the assumption that α = .6, γ = .5, ρ = .95, and β = .5 while we let
the magnitude of the shock vary between a minor shock of 1% of the time endowment and a
large shock of 15% of the individual endowment.

Figure C1 shows that the allocations that we obtain from this simulation mimic those pre-
sented in the main text. In fact, no matter the magnitude of the shock, the average performances
(upper panel) can still be ranked in ascending order, with full insurance yielding the lowest
level, followed by decentralization and, then, the joint production case. As one would expect,
average performance decreases with the magnitude of the shock. Also, the results on dispersion
(middle panel) do not differ from those in the main text. In choosing the mechanism one would
have to look at the utility comparison as in the bottom panel of Figure C1, where we also take
into account the cost of producing jointly c(m) or insurance h(m) fixed at two arbitrary levels
for the graphical representation. In this latter figure one can notice that the sum of utilities,
in this particular scenario, suggests that, depending on the magnitude of the shock, one would
move from decentralization to joint production to full insurance as the shock becomes bigger.
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Figure C1: Simulation results
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