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ABSTRACT 
 

Calculating Confidence Intervals for Continuous and 
Discontinuous Functions of Estimated Parameters* 

 
The delta method is commonly used to calculate confidence intervals of functions of 
estimated parameters that are differentiable with non-zero, bounded derivatives. When the 
delta method is inappropriate, researchers usually first use a bootstrap procedure where they 
i) repeatedly take a draw from the asymptotic distribution of the parameter values and ii) 
calculate the function value for this draw. They then trim the bottom and top of the distribution 
of function values to obtain their confidence interval. This note first provides several 
examples where this procedure and/or delta method fail to provide an appropriate confidence 
interval. It next presents a method that is appropriate for constructing confidence intervals for 
functions that are discontinuous or are continuous but have zero or unbounded derivatives. In 
particular the coverage probabilities for our method converge uniformly to their nominal 
values, which is not necessarily true for the other methods discussed above. 
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1. Introduction

Applied researchers often would like to estimate confidence intervals for functions of esti-

mated parameters. If the function is differentiable and has non-zero and bounded deriv-

atives they can use the delta method.1 However, if the function is nondifferentiable, or

has zero or unbounded derivatives, as in the case of simulating functions with zero-one

outcomes, researchers usually follow the following procedure to obtain (1 − ) ∗ 100%

confidence intervals for the function evaluated at the parameter estimates: sample from

the asymptotic (normal) distribution of the parameter estimates, calculate the function

value for each draw, and then trim 2 from each tail of the distribution of the func-

tion values.2 Further, authors sometimes will use this approach for relatively complex

differentiable functions (with bounded nonzero derivatives) such as expected durations

of unemployment (Fitzenberger, Osikominu and Paul 2010) or impulse functions.3 Al-

though this procedure of sampling from the asymptotic distribution is sometimes called

the parametric bootstrap, this term has more than one meaning, and thus instead we

describe it as the AD-bootstrap. This note provides several important examples in which

the AD-bootstrap fails. Further, one cannot avoid problems with the AD-bootstrap using

the approach advocated by Cameron and Trivedi (2009) in their influential book on im-

plementing sophisticated econometric estimators in the widely used Stata program; they

suggest to take a bootstrap sample, reestimate the model and the function of interest,

repeat this many times, trim the bootstrap distribution of the function values, and use

this trimmed distribution to calculate the relevant confidence interval.4 The issue here

is that the AD-bootstrap is first order equivalent to the Cameron-Trivedi procedure for

cases that the latter estimates the asymptotic distribution of the function consistently

(which will not always be the case).

The purpose of this note is to provide a method of obtaining confidence intervals for

1See, e.g., Weisberg (2005) for a description of the delta method.
2This approach is used by: Fitzenberger, Osikominu and Paul (2010), Gaure, Røed and Westlie (2010),

Hitsch, Hortacsu and Ariely (2010), Merlo and Wolpin (2009) and Røed and Westlie (2010). Its use is

advocated, but not implemented, by Eberwein, Ham and LaLonde (2001). A review of the literature

indicates that many studies either i) do not give a confidence interval for the simulated results or ii) give

a confidence interval for the simulated results but do not state how they construct it.
3 See Inoue and Kilian (2011) for a recent overview of the impulse response function literature.
4This assumes that the Cameron and Trivedi procedure produces a consistent estimate of the asymp-

totic distribution of the estimator.



Calculating Confidence Intervals for Continuous and Discontinuous Functions of Estimated Parameters 4

these functions under relatively mild conditions that are likely to be satisfied in empirical

work. Further, our approach has the interesting feature that it can be used to calculate

a confidence interval for a parameter for which asymptotic distribution cannot be esti-

mated using any known version of the bootstrap method. More precisely, Romano and

Shaikh (2010) give conditions under which subsampling and the ordinary bootstrap yield

uniform asymptotically valid results for obtaining a confidence interval of a parameter.

Suppose these conditions hold, so that it is possible to construct a confidence interval

for the estimated parameters for which the coverage probabilities converge uniformly to

their nominal level. Below we show that one can construct functions of the subsample

estimates where the resulting confidence interval for the function will have a coverage

probability that is incorrect for any sample size. We provide a method of constructing

such confidence intervals that works with all of these examples, and then show that our

method provides confidence intervals that are substantially different from the (incorrect)

confidence intervals produced by the AD-bootstrap in a serious empirical project.

Our note proceeds as follows. In Section 2 we show that in several important exam-

ples, the AD-bootstrap fails to provide a confidence interval with the correct coverage.

Section 3 proposes a simple procedure to estimate consistent confidence intervals for both

differentiable and nondifferentiable functions which we refer to as the CI-bootstrap. This

procedure samples from the 1− confidence interval of the estimated parameter, calcu-

lates the function value for each of the draws, and then uses all of the function values to

obtain 1− confidence interval for the value of the function at the estimated parameter.

In Section 4 we draw on empirical work by Ham, Li and Shore-Sheppard (2011), who

simulate a discontinuous function to estimate the effect of changes in demographic on

the expected time spent in employment at three, six and ten years after the change, to

compare our approach with the AD-bootstrap. We find that the two methods produce

substantially different confidence intervals and our results suggest that previous empirical

work is likely to have been overly optimistic in terms of finding confidence intervals that

were too small. Thus differences between the AD-bootstrap and the CI-bootstrap are

likely to be important in practice, as well as in principle.
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2. Failures of the delta method and AD-bootstrap when calculating
confidence intervals for functions of estimated parameters

In example one the AD-bootstrap (and any other bootstrap that estimates the dis-

tribution of the estimator of the parameter consistently) fails. In the second example the

delta method is infeasible while no version of the bootstrap consistently estimates the

asymptotic distribution of the function of the estimator. In the third example, the delta

method fails again.

Example 1: Simulating a Probit Model

Suppose that one is interested in the function ( ) = 1
2
Φ() + 1

2
Φ
³
−2 −

p
2 ln(2)

´
where  =  = 0 Let the estimator

¡
̂
̂

¢
have a normal distribution with mean zero and

a known variance-covariance matrix

∙
1 

 1

¸
 The delta method cannot be used since

the function has a zero derivative at the true value of the parameters. The AD-bootstrap

samples from the normal distribution with mean
¡
̂
̂

¢
and covariance matrix

∙
1 

 1

¸
in

order to construct the distribution of (̂ ̂) Let () denote this distribution function

of (̂ ̂) Applying the AD-bootstrap (or any other bootstrap that consistently esti-

mates the distribution of ̂ ̂) and using the interval between the 2.5 and 97.5 percentile,

[(0025) (0975)] does not yield a confidence interval with 95% coverage for many

values of . For example, the coverage is 0% for the AD-bootstrap if  = 1 90% for

 = 05 and 93% for  = 05 Thus the AD-bootstrap (and any other bootstrap that

consistently estimates the distribution of (̂ ̂)) does not produce a confidence interval

with the correct coverage6. We would also note that the AD-bootstrap confidence interval

coincides with the Bayesian credible interval (with flat priors) in this case, so the Bayesian

procedure also fails here.

Example 2: (Andrews, 2000)

Suppose we observe a random sample, 1   from a normal distribution with mean

 and variance 1 (denoted ( 1)) and suppose that  is restricted to be nonnegative.

Andrews (2000) considers the maximum likelihood estimator ̂ = max(̄  0) where

5See the Appendix for more detail on this and the following examples.
6Correct coverage of a confidence interval means that the coverage probability converges to a proba-

bility no smaller than its nominal probability.
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̄ = 1


X
 He shows that the regular bootstrap fails to consistently estimate the

distribution of ̂ if  = 0 and that it is impossible to consistently estimate the distribution

of ̂ if  = √

for some   0 This note does not attempt to estimate the distribution

of ̂ but it shows below that the CI-bootstrap can consistently estimates the confidence

interval for 

Example 3: A Continuous Function

Suppose we observe a random sample, 1   from a normal distribution with mean

 and variance 1 and let ̂ = ̄ =
1


X
 Let 0 = () = 0 and consider

() =

½ p
|| if  ≥ 0

−
p
|| if   0

The delta method yields the following symmetric 95% confidence interval:"
sign(̄ )

q
|̄ |− 196

2
p
|̄ |

 sign(̄ )

q
|̄ |+ 196

2
p
|̄ |

#


The probability that the true value is inside this confidence interval is about 0.67 while

our method gives a confidence interval with the correct size, 0.95.

Of course, there are examples where the delta method and/or the AD-bootstrap will

have correct coverage.

3. Main result and applications

In this section we provide a method of obtaining confidence intervals that is valid under

reasonable assumptions which are likely to be satisfied in empirical work. Let the dimen-

sion of  be equal to  and let () have dimension  Let 1− denote the (1 − )

confidence interval of  Suppose we sample  times from 1− and include every point

in 1− that is no farther than the Euclidian distance   0 from a sampled point.7 For

each sampled point, we calculate () Let
\


()
1− denote the resulting confidence interval.

More precisely, let


()
1− = { ∈ R | = () for some  ∈ 1−}

7 If  is sampled, then any  ∈ Θ for which || − ||2 ≤  is included in the CI for some parameter

space Θ
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In fact
\


()
1− is what we described heuristically above as the CI-bootstrap; we here

note intuitively why the AD-bootstrap can fail. The AD-bootstrap samples from the

entire asymptotic distribution of ̂ and forms the confidence interval of () by trimming

the extreme (1−)2 from the upper and lower tails of the resulting distribution for ().

Note that the extreme values of () that the AD-bootstrap trims can arise either i) they

are based on an extreme draw from the asymptotic distribution of  or ii) a “reasonable”

draw for  results in an extreme value of ()The CI-bootstrap instead samples from the

1−  confidence interval of  and includes all of the resulting values of () in its 1− 

confidence interval, and thus appropriately only trims case i) above.8 Moreover, note

that constructing a confidence interval using the CI-bootstrap is no more difficult than

constructing one using the AD-bootstrap. We now state the assumptions necessary for

the CI-bootstrap to hold.

Assumption 1

Let (i)  ∈ Θ which is compact; and (ii)

lim
→∞

inf
∈P

Pr( ∈ 1−) ≥ 1− 

Note that Assumption 1 simply says that the confidence interval for the parameter

contains the true parameter value with probability 1−  in the limit. This will certainly

hold for any estimator that is uniformly asymptotically normally distributed, as well as for

the subsampling and bootstrap of  under appropriate regularity conditions (see Romano

and Shaikh (2010)).

Assumption 2

Let () be bounded for all  ∈ Θ Let there exist a partitioning of the parameter space

such that Θ1 ∪Θ2 ∪Θ = Θ where  ∞ and let () be uniformly continuous9 for

all  ∈ Θ  = 1  
8 It is perhaps worth noting that in results available from the authors, one can show that a sufficient

condition for the AD-bootstrap to work in the univariate case is that () be a monotonic function.

However, as example 1 shows, when we move beyond a univariate function, this no longer holds, since

the function here is monotonic in both parameters.
9The vector-function () is uniformly continuous on Θ if for each   0 there is an   0 such that

||(1)− (2)||   for all 1 2 ∈ Θ with ||1 − 2||   where ||.|| is the Euclidean norm
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The second assumption allows () to be discontinuous. In general, the parameter

space is partitioned into  subspaces so that the regions of discontinuity can have dimen-

sion − 1 with the only restriction that  is finite. This again is likely to be satisfied in

any empirical application.

Before proving the theorem, intuition for our result can be obtained if we continue our

consideration of Example 2. As noted above,

Andrews (2000) considers the maximum likelihood estimator ̂ = max(̄  0) where

̄ = 1


X
 is normally distributed with mean   ≥ 0 and variance 1


. He shows

that the regular bootstrap fails to consistently estimate the distribution of ̂ if  = 0

and that it is impossible to consistently estimate (using any version of the bootstrap) the

distribution of ̂ if  = √

for some   0 However, the CI-bootstrap can be used to

calculate a 95% confidence interval (or a % confidence interval for any ) for ̂ in spite

of the absence of a consistent estimator of the asymptotic distribution. In particular, the

symmetric 95% confidence is
h
max

³
0 ̄ − 196√



´
max

³
0 ̄ +

196√


´i
, which contains

 with probability 095 including the case where  = √

for some   010

At this point it is appropriate to state our theorem:

Theorem

Let Assumptions 1-2 hold. Then

lim
→∞

lim
→∞

inf
∈P

Pr

µ
() ∈ \


()
1−

¶
≥ 1− .

Proof: See appendix.

If one relaxes the uniformity requirement11 in Assumption 1, i.e. one assumes that

lim
→∞

lim
→∞

Pr( ∈ 1−) ≥ 1− 

then the theorem holds without the uniformity result, i.e.

lim
→∞

lim
→∞

Pr(() ∈ 
()
1−) ≥ 1− 

10This example also illustrates that one should perhaps not focus too much on the distribution of the

bootstrap when the goal simply is to derive a confidence interval. Also, Hirano and Porter (2010) derive

more impossibility results in the spirit of Andrews (2000).
11Andrews’ (1987) emphasizes of the importance of uniform convergence.
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Remark 1: Shrinking the Size of the Confidence Interval produced by the CI-

bootstrap.

As is well known, the delta method uses a linear approximation of (). One can use a

similar linear approximation here which in many cases will the confidence regions smaller

for the CI-bootstrap. To begin, suppose that () is a scalar and the parameter vector

 has length  Moreover, suppose one samples from the asymptotic distribution and

calculates the quantity [] =
P

=1(
[]

 −̂)̂ where denotes the draw, = 1 

and ̂  = 1  is some nonzero weight. If () is continuously differentiable, as in

example 1, then one can choose ̂ to be the partial derivative, ̂ =
n³

()



´¯̄̄
=̂

o
for all  If () is not continuously differentiable, then one can choose the weights to be

numerical derivatives. That is, ̂ = {( + )− ( − )}(2) for all  where 
is a row vector whose k element is one and all other elements are zero. In what follows

we refer to this approach as the weighted CI-bootstrap. Note that the delta method fails

in general when the linear approximation fails to hold asymptotically (i.e. the function

is nondifferentiable asymptotically), but the method presented here remains valid if the

linear approximation fails. In using this approximation, we found that in simulations

we had the best results by choosing nonstochastic, nonzero weights or asymptotically

nonstochastic, nonzero weights i.e. ̂ =  + (1), where  6= 0 for all  After

choosing the weights, one can the derive a valid confidence interval for . Let [ ] denote

this confidence interval12. One can then select the parameter draws for which  ≤  ≤ 

calculate the value of () for each draw (within the confidence interval)  = 1 

and calculate
\


()
1− as above.

For linear functions of the form () = 0 +
P

=1  one obviously has
()


= 

If the function () is a single index function such that () = 
³
1 +

P
=2 ̂

´
for

some () and 1 6= 0 then ()


=

()

1
̂ ̂1 = 1 and

()



()

1
= ̂ for  ≥ 2 Thus,

the class of functions that can be approximated is much larger than just linear functions.

More importantly, the difference from the delta method is that a failure to approximate

12For example,  is the 2.5 percentile,  is the 97.5 percentile and [ ] is a 95% confidence interval.
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() well does not cause this modification of the CI-bootstrap to be inconsistent. Also

note that if () is a linear function of the parameters, then the delta method and the

method proposed in this note, using [] =
P

=1

³

[]

 − ̂

´n³
()



´¯̄̄
=̂

o
 coincide;

see the appendix for details. If () is a vector valued function, then the weighting

is done in the same way as for the delta method, with ̂  = 1  replacing the

partial derivatives. Analogous to the case above where () is a single index function,

this approximation gives 1− which is then used to calculate 
()
1− This weighting

is similar to using a weighting matrix when applying the method of moment estimator.

In particular, using a weighting matrix that does not converge to the efficient weighting

matrix does not, in general, cause the method of moment estimator to be inconsistent,

see Newey and McFadden (1994). The same is true here for the choice of weights, ̂

 = 1  Choosing an efficient weighting matrix is, in general, a good idea and here we

suggest to use, if possible, the partial derivatives or approximations of them (if the partial

derivatives do not exist). Moreover, we suggest to use nonzero weights, just like Newey

and West (1987) and Andrews (1991) suggest to use estimates of the (efficient) weighting

matrix that are positive semi-definite. We provide an algorithm for implementing the

weighted CI-bootstrap in the appendix.

Remark 2 : Consider the parameter estimate ̂ from example 2. As noted above,

Andrews (2000) shows that the regular bootstrap fails to consistently estimate the distri-

bution of ̂ if  = 0 and that it is impossible to consistently estimate the distribution of

̂ if  = √

for some   0Then the CI-bootstrap can be used directly to calculate a

confidence interval for a function of ̂ (̂)

We now turn to investigating the differences between the AD-bootstrap and the CI-

bootstrap within the context of a serious empirical study and defer studying the weighted

CI-bootstrap for a later draft of the note.
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4. A Comparison of the confidence intervals produced by the AD- and

CI-bootstraps for the fraction of time a disadvantaged woman spends in

employment.

Ham, Li and Shore-Sheppard (2011) estimate a model of the employment dynamics of

disadvantaged mothers (i.e. single mothers with a high school degree or less) for the U.S.

Specifically, they estimate four hazard functions for these women: i) a nonemployment

spell in progress at the start of the sample, i.e. a left censored nonemployment spell; ii)

for those in an employment spell in progress at the start of the sample, i.e. a left censored

employment spell; iii) a nonemployment spell that begins after the start of the sample,

i.e. a fresh nonemployment spell and iv) for an employment spell that begins after the

start of the sample, i.e. a fresh employment spell.13 Next they use simulation to interpret

the values of their parameter estimates. Specifically, they first simulate the model for

each member of the sample at the actual individual values of the explanatory variables

to obtain baseline values for the fraction of the sample in employment at 3 years, 6 years

and 10 years after the start of the simulation;14 The results of this simulation are in Part

A of Table 1. Considering column 1 of row 1 in Part A, we see that the expected time

spent in employment 3 years from the beginning of the sample is 0.431. Column 1 of

the next two rows indicates that the confidence intervals for the AD-bootstrap and the

CI-bootstrap at the 95% confidence level are [0414 0449] and [0396 0469] respectively.

Thus both methods provide relatively tight confidence intervals for this proportion, but

the interval produced by the CI-bootstrap are larger than those for the AD-bootstrap.

They obtain similar results for the expected proportion of time spent in employment at 6

and 10 years.

Part B of the table shows the effects of changing some of the explanatory variables.

For example, Part B first shows the difference in expected portion of time employed by

those with a high school degree and those with less than a high school degree at 3, 6 and

10 years. To obtain this difference they first simulate the model when the dummy variable

for 12 years of schooling is set equal to 1. They next simulate the model when the dummy

variable for 12 years of schooling is set equal to 0. In both cases they leave unchanged the

13They allow the unobserved heterogeneity components in the hazard function to be correlated and

this correlation is taken into account in the simulations.
14All results in Table 1 are based on 20,000 draws.
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values of the other explanatory variables. The entries in the first row of Part B show the

differences in the fraction employed between the two groups at 3, 6 and 10 years. The

first entry in this row indicates that, as one would expect, high school graduates spend

9 percentage points more time in employment at 3 years than do high school dropouts.

From the next two lines we see that the 95% confidence intervals for the AD-bootstrap

and CI-bootstrap are [0072 0107] and [0053 0126] respectively. Thus both confidence

intervals allow one to reject the null hypothesis that this effect is zero, but again the

confidence interval for the CI-bootstrap is larger than the confidence interval for the AD-

bootstrap. The results for the effects of changing the level of education on the fraction

employed at 6 and 10 years out are quite similar.

The next line of column 1 shows that the difference in the expected fraction of time

spent in employment between Whites and African Americans at 3 years is −0031; again

this result is intuitively plausible. Now 95% the confidence intervals for the AD-bootstrap

and CI-bootstrap are [−0050−0009] and [−0073 0019] respectively. Thus not only is

the 95% confidence interval for the CI-bootstrap larger than the confidence interval for

the AD-bootstrap, but now only the latter allows one to reject the null hypothesis that

the effect is significantly different from zero. The corresponding results in columns 2 and

3 for the effect at 6 and 10 years out respectively tell the same story. Finally column 1

of the next line indicates that they estimate the effect of having at least one child less

than 6 years of age versus not having a child in that age range is to reduce the fraction

of time spend in employment by 3 percentage points at three years out; the next two

lines indicate that only the AD-bootstrap allows one to reject the null hypothesis that

this effect is zero. The results in columns 2 and 3 for the effect 6 and 10 years out are

qualitatively similar.

The results in Table 1 suggest that the CI-bootstrap will produce wider confidence

intervals than that for the AD-bootstrap. This result is intuitively plausible. Extreme

values of the function can come from extreme draws of the parameter distribution and

nonextreme draws from the parameter distribution, and the AD-bootstrap inappropriately

trims extreme function values from both sources, while the CD-bootstrap only trims those
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arising from extreme values of the parameters. Since many previous empirical studies use

the AD-bootstrap, our results indicate that it is likely that they have inadvertently

provided confidence levels that are too small, and correspondingly have overstated the

statistical significance of their simulation results.

5. Conclusion

The AD-bootstrap is commonly used to calculate confidence intervals for functions of

estimated parameters that are nondifferentiable or have non-zero but unbounded deriv-

atives. However, this approach produces inappropriate confidence intervals in the sense

that they have less than complete coverage; moreover our empirical results suggest that

these confidence intervals will often be too small in a meaningful way. This note presents

an alternative that provides appropriate confidence intervals for these type of functions,

as well as differentiable functions with bounded derivatives under conditions that are

likely to be satisfied in empirical work.

Further, the coverage probabilities for our method converge uniformly to their correct

values, which is not necessarily true of other methods. Further, Andrews (2000) gives an

example in which all versions of the bootstrap fail to consistently estimate the distribution

of the maximum likelihood estimator. The CI-bootstrap works in this example and also

in other examples where the delta method or the bootstrap fails. An interesting property

of the weighted CI-bootstrap is that it produces the same confidence interval as the delta

method if the linear approximation holds, so there is no efficiency loss in that sense.
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6. Appendix

Example 1

Consider  = 1 and let

() =
1

2
Φ() +

1

2
Φ
³
−2 −

p
2 ln(2)

´
0() =

1

2
()− 

³
−2 −

p
2 ln(2)

´


Note that

0( = 0) =
1

2
(0)− 

³
−
p
2 ln(2)

´
=
1

2

1√
2
− 1√

2
exp

∙
−1
2

n
−
p
2 ln(2)

o2¸
=
1

2

1√
2
− 1√

2
exp{− ln(2)} = 0

Checking the second order conditions and the limits yields that (0) is the minimum.

Thus, (0)  () for any  6= 0 Therefore, the true value (0) = 1
4
+ 1

2
Φ
³
−
p
2 ln(2)

´
is outside any two-sided AD-confidence interval of () Thus, the coverage probability is

zero in this case so that the coverage probability is also zero for the function in example

one, ( ) = 1
2
Φ()+ 1

2
Φ
³
−2 −

p
2 ln(2)

´
if  = 1 Note that the coverage probability

is continuous in  so that the coverage probability is also too low for some   1, as shown

by the examples in the text

Example 2:

Using  ≥ 0 yields 
³
 ∈

h
̄ − 196√


 0
´´
= 0 if ̄ − 196√


 0 so



µ
 ∈

∙
max

µ
0 ̄ − 196√



¶
 ̄ +

196√


¸¶
= 

µ
 ∈

∙
̄ − 196√


 ̄ +

196√


¸¶
= 

µ
0 ∈

∙
̄ − − 196√


 ̄ − +

196√


¸¶
= 

³
0 ∈

h√
(̄ − )− 196

√
(̄ − ) + 196

i´
=  (|

√
(̄ − )| ≤ 196)

= 095

since
√
(̄−) has a standard normal distribution. This holds for any  ≥ 0 including

 = √


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Example 3:

Note that the true value of  is zero.



Ã
0 ∈

"
sign(̄ )

q
|̄ |− 196

2
p
|̄ |

1√

 sign(̄ )

q
|̄ |+ 196

2
p
|̄ |

1√


#!

= 

Ã
sign(̄ )

q
|̄ |− 196

2
p
|̄ |

1√

≤ 0 ≤ sign(̄ )

q
|̄ |+ 196

2
p
|̄ |

1√


!

= 

Ã
− 196

2
p
|̄ |

1√

≤ − sign(̄ )

q
|̄ | ≤ 196

2
p
|̄ |

1√


!

= 

µ
−196

2

1√

≤ − sign(̄ )|̄ | ≤ 196

2

1√


¶
= 

µ
−196

2

1√

≤ ̄ ≤ 196

2

1√


¶
= Φ

µ
196

2

¶
−Φ

µ
−196

2

¶
≈ 067

Proof of Theorem

The vector-function () is uniformly continuous onΘ   = 1   so that for each   0

there is an   0 such that ||(1)−(2)||   for all 1 2 ∈ Θ with ||1−2||   where

||.|| is the Euclidean norm Therefore, we partition the confidence interval 1− in  sets,

1−(1) 

1−(2)  1−() such that (i) if  ∈ 1−() and  ∈ 1−() for

some  then ||(1)− (2)||  ; and (ii) 1−(1) ∪ 1−(2) ∪ 1−() = 1−

where   ∞ Note that such a partition is possible since Θ is compact. Next, suppose

that  the number of samples from 1− is sufficiently large that so that we have

a realization from each set. Let these samples be denoted by ̃1 ̃2  ̃  Note that for

every point in 1− we have that min=1 ||()−(̃)||   Therefore, as →∞


()
1− ∈

\


()
1− so that the requirement in Assumption 1,

lim
→∞

inf
∈P

Pr( ∈ 1−) ≥ 1− 

yields

lim
→∞

lim
→∞

inf
∈P

Pr(() ∈ \


()
1−) ≥ 1− 

Q.E.D.

Delta method:

(̂) = (0) +(̄)(̂ − 0)
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(̂) = (0) +(̄)(̂ − 0)

= (0) +(0)(̂ − 0) + (||̂ − 0||)

7. Appendix algorithm for the Weighted CI-bootstrap

In the first step, we approximate the derivatives. This is only done to make the confidence

interval smaller and so that numerical derivatives or approximate derivatives (i.e. good

guesses) can be used. The resulting confidence interval will still be valid if nonzero,

random numbers are used, but it will be wider.

1. Calculate
()



¯̄̄
=̂

for  = 1 

2. Sample times from the distribution of ̂ (using the bootstrap or just by sampling

from the asymptotic distribution of ̂) Denote these samples by {̂[1] ̂[2]  ̂[ ]}

3. Calculate  [] =
P

=1(
[]

 − ̂)
n³

()



´¯̄̄
=̂

o
and (̂[]) for  = 1 

Make a matrix  and put the realizations of  in the first column and the realizations

of  in the second column, i.e. 1 = [] and 2 = (̂[])

4. Sort the matrix  using column one. This yields sorted 

Thus, sorted11 = {̂[1] ̂[2]  ̂[ ]} and sorted1 = {̂[1] ̂[2]  ̂[ ]}

The 95% confidence interval is then [sorted20025·  sorted20975· ]



3-year Period 6-year Period 10-year Period

Panel A: Average Expected 
Fraction of Time in Employment 0.431 0.439 0.449

CI-bootstrap, 95% level [0.396, 0.469] [0.401, 0.480] [0.409, 0.491]
AD-bootstrap, 95% level [0.414, 0.449] [0.421, 0.459] [0.431, 0.470]

Years of Schooling:                                  
(s = 12) vs (s < 12) 0.09 0.097 0.1

CI-bootstrap, 95% level [0.053, 0.125] [0.058, 0.134] [0.061, 0.137]
AD-bootstrap, 95% level [0.072, 0.107] [0.078, 0.115] [0.081, 0.119]

Race:                                                 
African American vs White -0.031 -0.034 -0.037

CI-bootstrap, 95% level [-0.073, 0.019] [-0.080, 0.019] [-0.083, 0.019]
AD-bootstrap, 95% level [-0.050, -0.009] [-0.055, -0.011] [-0.058, -0.012]

Number of Children less than 6 
Years: One Child vs No Children -0.030 -0.033 -0.035

CI-bootstrap, 95% level [-0.067, 0.004] [-0.072, 0.003] [-0.075, 0.003]
AD-bootstrap, 95% level [-0.047, -0.014] [-0.052, -0.016] [-0.054, -0.017]

Notes:
1. Based on data and parameter 
estimates from Ham et al (2011).
2. Based on 20,000 draws each. 

Table 1: 95% Confidence Intervals for the Fraction of Time Spent in Employment for Different 
Time Horizons and the Effect of Changes in Demographic Variables on these Fractions                                                                                                

Panel B: Changes with respect to:
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