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1. Introduction 

Many economic and political decisions are the outcome of all-pay strategic contests 

for a given prize. In such contests the single winner depends on the efforts invested by 

the contestants. Applications of these contests include promotional competitions, 

litigation, internal labor market tournaments, rent-seeking, R&D races, political and 

public policy competitions and sports, Epstein and Nitzan (2007), Konrad (2009), 

Congleton et al. (2008). Endogenous determination of such contests may involve all 

of their relevant institutional characteristics. These are typically determined by contest 

designers; economic and political entrepreneurs who wish to maximize the efforts 

made by the contestants. Most of the literature on optimal contest design has focused 

on the choice of the contest prize, the set of contestants, the structure of multi-stage 

contests, caps on political lobbying, and the contest success function, CSF, the 

function that relates the contestants' efforts to their winning probabilities. In the 

current study we focus on the design of logit CSF's that include the two most widely 

studied types of mechanisms: Tullock’s type lotteries and all-pay-auctions. We show 

that in asymmetric contests with different prize valuations, the endogenously 

determined lottery always yields certain efforts that are larger than or equal to the 

expected efforts in an APA. 

  We first study fair non-discriminating logit CSF's, as in Alcalde and Dahm 

(2010) and Nti (2004), allowing control of the exponent determining the particular 

form of the logit CSF. In this context, Fang (2002) has shown that a fair simple lottery 

can be superior to an all-pay-auction and induce larger efforts, if the gap between the 

contestants’ prize valuations is sufficiently large.
1
 Our main result considerably 

extends his finding. It establishes that the optimal fair (non-discriminating) lottery is 

always superior to the all-pay-auction (APA). That is, it yields larger efforts 

regardless of the gap between the contestants’ stakes. We then extend the setting by 

allowing discrimination, that is, control of another parameter that determines the 

preferential treatment received by one of the contestants, as in Lien (1986), (1990), 

Clark and Riis (2000) and, more recently, Franke (2012), Epstein et al. (2011). Such 

discrimination is commonly observed in real political-economic contest 

environments, and, particularly, in the public sector (For a detailed discussion of the 

empirical relevance of discrimination and its control by contest designers see Epstein 

                                                 
 
1
 See also Epstein and Gang (2009). 
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et al. (2011) and Franke et al. (2011)). By our second result, when discrimination is 

allowed, the designer's payoff under the optimal discriminating lottery is equal to his 

expected payoff under the optimal discriminating APA. 

 Given our assumption of common knowledge of the contestants’ prize 

valuations, the contest designer could resort to a mechanism that completely extracts 

the higher prize valuation. Focusing on contests with logit CSF’s actually implies that 

we rule out such mechanisms. In other words, the contestants in our setting are in fact 

assumed to be protected from complete extraction of their surplus because they are 

ensured that in the contest equilibrium their participation is minimally effective; in 

equilibrium every contestant makes a positive effort with positive probability and has 

a positive probability of winning the contested prize.
2
 The focus on logit lotteries 

conforms therefore to a legal constraint that contests induce participation and that the 

designer cannot induce efforts that exceed, as we shall see, the average value of the 

contested prize. 

  It should be noted that the logit CSFs can be justified either axiomatically or 

on the grounds of common use in practice. In any event, they are the most widely 

studied functions in the contest literature. Despite their popularity, it must be admitted 

that it remains an open question whether some other CSFs, while still ensuring 

minimally effective participation of the contestants, can yield better results for the 

contest designer. Nevertheless, and more importantly, since we prove the superiority 

of Tullock-type lotteries over the APA in fair contests, and since we prove the 

equivalence of the optimal lottery and the optimal APA in unfair-discriminating 

contests, which implies that a risk averse designer would prefer the optimal lottery, 

our assumption regarding the restriction imposed on the designer (the selection of a 

CSF that belongs to the  particular family of a logit lotteries), is justified because it is 

sufficient to raise doubt regarding the apparent belief regarding the superiority of 

APA as a means of generating revenue for the contest designer. 

The remainder of the paper is laid out as follows. In Section 2, we present the 

model, the optimal contest design approach that allows discrimination and the two 

types of contest success functions, APAs and Tullock's logit lotteries. Section 3 

contains the main result which establishes the inferiority of the APA relative to the 

                                                 
2
 The existence of effective incentives of participation precludes the direct abolition of competition by 

exclusion of contestants or the indirect abolition of competition by application of a Tullock CSF that 

for some contestants is always unresponsive to their effort, as in Nti (2004). 
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endogenous lottery, when the contestants have different prize valuations. The 

equivalence between the optimal lottery and APA under discrimination is established 

in Section 4. The novelty of our contribution relative to the literature is clarified in 

Section 6. Concluding remarks are included in Section 6. All the proofs are relegated 

to an Appendix.  

 

2. Optimal contest design 

a. The setting 

In the basic one-stage contest setting, there are two risk-neutral contestants, the high 

and low benefit contestants, 1 and 2. The prize valuations of the contestants are 

denoted by in , 21 nn   or 1
2

1 
n

n
k . We assume that the designer has full 

knowledge of the contestants’ prize valuations. Given these valuations and the CSF, 

the function that specifies the contestants’ winning probability given their efforts, 

),(Pr 21 xxi , the expected net payoff of contestant i is: 

                         iiii xnxxuE  ),(Pr 21 ,  (i=1,2)                                 (1) 

where 1x  and 2x  denote the contestants' efforts. In the extended optimal contest 

design setting, the objective function of a third player, the designer of the contest, is: 

)( 21 xxEG                                                              (2) 

The contest designer is assumed to maximize his objective function (2) by setting the 

CSF, anticipating the Nash equilibrium efforts of the contestants that are obtained in 

the standard contest where the payoff functions of the contestants are given by (1) and 

the CSF is set by the designer. As already mentioned in the introduction, we focus on 

the widely studied CSFs that include APAs and Tullock's lotteries.
3
 

 

b. All-Pay Auctions 

Under an APA, the certain winner is the contestant who makes the largest effective 

effort, where a unit of effort by one contestant is not necessarily equally effective as a 

unit of effort of his rival, as first suggested in the context of a bribery game by Lien 

                                                 
3
 In Epstein et al. (2011), when the weight assigned to the expected welfare of the contestants is 

sufficiently high, in equilibrium there is no contest (and so no efforts are made) and the winner is the 

contestant with the higher valuation. In contrast, in our model, such equilibrium cannot emerge since 

the weight assigned to the expected welfare of the contestants is zero. Therefore, any equilibrium is an 

interior one: there is real competition and "meaningful" winning (each contestant makes an effort with 

a positive winning probability). 
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(1986), (1990) and later on by Clark and Riis (2000). That is, the CSF for 0  is an 

APA given by:                                                                                                           

                                       
















21

21

21

211

     if        0

     if     .50

     if        1

,

x x

x x

x x

xxp







                                         (3) 

   

 

and for 0 ,   1, 211 xxp , where the discrimination variable 0  is selected by 

the contest designer. By (3), a reduction in   increases the bias in favor of the more 

motivated contestant 1. Furthermore, 10    implies a bias in favor of contestant 1. 

When 1  the contest is fair, there is no bias. When 1  the bias is in favor of 

contestant 2. 

 

c. The logit lotteries  

Under a lottery, every contestant has some positive winning probability. Sufficiently 

large investment of effort can secure a high probability of winning, but not certain 

winning. Our optimality and neutrality results are confined to the well studied logit 

Tullock-type lotteries. For 0 , these lotteries are given by:
4
  

                                                                  
 



 21

1
211 ),(

xx

x
xxp


                                               (4) 

    

0  and for 0 ,   1, 211 xxp , where   and   are selected by the contest 

designer. The interpretation of   is as in sub-section (b). 

 

3. Fair contests 

As in Alcalde and Dahm (2010) and Nti (2004), in the standard environments the 

designer cannot discriminate between the contestants, 1 .  

 

a. The unbiased APA 

                                                 
4
 As is well known, see Konrad (2009) and references therein, when 20    the contest has a pure-

strategy equilibrium. Since 

   



 1221

1
211

1

1
),(

xxxx

x
xxp







 , one can easily see that for 

  the logit lottery takes the form (3). The form in (4) is slightly different from the form of the 

logit lottery in Epstein et al. (2011) because in the present study, as will become clear in the sequel, it is 

important to make a meaningful comparison between the degree of discrimination under the two types 

of CSFs. Such comparison requires that discrimination is defined in a similar way in the two cases. 
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 In equilibrium of the unbiased APA, Hillman and Riley (1989), Konrad (2009), the 

 

expected efforts are 2

*

1 5.0 nx   and 
1

2

2*

2
2n

n
x  . In turn, the expected net payoff of the 

player with the lower prize valuations is zero, namely, when 1k , only the player 

with the higher prize valuations enjoys some surplus. The expected net payoff of the 

player with the higher prize valuations is equal to    21

*

1 nnuE  . In equilibrium, 

the value of the designer's objective function (the expected aggregate efforts of the 

contestants in the mixed-strategy equilibrium) is equal to 
 

1

212

2n

nnn
GA


 . 

 

b. The optimal unbiased lottery 

With asymmetric prize valuations and 1 , it is known that in equilibrium 

21

21

nn

nn
GL


  is larger than AG , provided that the gap between the contestants’ stakes 

is sufficiently large, that is, 21k , see Fang (2002). Our first result considerably 

strengthens this finding by establishing that in a fair contest, if 1k  , then a designer 

who can select the exponent  , always prefers a lottery because it yields larger 

efforts relative to the APA, even when Fang's sufficient condition is not satisfied.  

 

Proposition 1: 

If discrimination is not feasible, 1k  and the designer can select the exponent  , 

then there exists a value in the range 20   that yields certain contestants' efforts 

that are larger than the expected efforts obtained under the APA. 

(For a proof, see Appendix A). 

 

This result implies that, in a fair contest, if 1k , then a Tullock-type lottery is 

always preferred to the APA by a risk neutral or a risk averse designer. Alcalde and 

Dahm (2010) have shown that for any 2  there exists an equilibrium in mixed 

strategies that is equivalent to the equilibrium of the APA. However, so far a 

characterization of the complete set of mixed-strategy equilibria is not available. 

Since we show that there exists  , 20  , that yields efforts that are larger than 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V97-4C4X1WP-1&_user=626711&_coverDate=11%2F30%2F2004&_rdoc=1&_fmt=full&_orig=search&_cdi=5891&_sort=d&_docanchor=&view=c&_acct=C000032999&_version=1&_urlVersion=0&_userid=626711&md5=af2acad8cda57c7a3d0a35b9da51926e#bib8
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those obtained under the APA, it is clear that this conclusion remains valid when the 

parameter   has to satisfy the requirement 0 .  

Let us explain the economic intuition behind the result, namely, why 1k  

gives rise to a pure-strategy equilibrium corresponding to 2)(0  k   which is 

preferred to the mixed-strategy equilibrium obtained under the APA (the logit CSF 

where  ).  

For 1k , a designer setting an optimal   for a pure-strategy equilibrium 

must choose an exponent   which is smaller than 2. Furthermore, in a pure-strategy 

equilibrium the designer may choose an exponent that is smaller than that   which 

causes contestant 2's utility to be equal to zero. In other words, in equilibrium 

contestant 2's utility can be positive. This has been shown by Nti (2004) for a 

sufficiently large value of k (see Section 4 in his paper). However, for lower values of 

k, but still 1k ,   reduces contestant 2's utility to zero.
 5
 In any case, as explained 

above, for 1k  the optimal   for a pure-strategy equilibrium is smaller than 2, 

2)(0  k .  

Under the APA where  , the contest equilibrium is in mixed strategies, 

the total expected efforts are equal to 
 

1

212

2n

nnn
GL


  and the surplus of contestant 2 

is completely eliminated. It remains to explain why the designer prefers the optimal 

pure-strategy equilibrium to the mixed-strategy equilibrium. Notice that in the move 

from equilibrium in pure strategies to equilibrium in mixed strategies   is increased, 

however, kxx *

2

*

1 .
6
 The increase in   increases the winning probability of 

contestant 1 and reduces the winning probability of contestant 2. However, contestant 

1 is induced to reduce his efforts in the mixed-strategy equilibrium corresponding to 

the larger   because this further increases his expected utility. Such reduction is 

                                                 
5
 The critical k is 509.3k . 

6
 By substituting 1  in equation (3.B) in Appendix B, we get that the contestants' efforts in a pure- 

strategy equilibrium are equal to 

 2
1*

1

1






k

kn
x p  and 

 2
2*

2

1






k

kn
x p . Under the APA their expected 

efforts are 2
*
1 5.0 nx m   and 

1

2
2*

2
2n

n
x m  .Hence, k

x

x

x

x

m

m

p

p


*
2

*
1

*
2

*
1

. 
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possible because contestant 2 whose utility is reduced or remains equal to zero in the 

mixed-strategy equilibrium is also induced to reduce his effort.
7
 

Che and Gale (1997) point out that intuition suggests that a society with 

contest designers who are receptive to rent seeking (a large exponent  ) would 

induce greater rent-seeking expenditures than other societies, all else equal. Our result 

establishes that this intuition is not valid when we move from the range 20   to 

 . In particular, when 1  and 1k , the parameter   in the logit CSF on 

which we focus, that yields the largest efforts is not  , since there is some 

 which is smaller than 2 that yields larger efforts. 

 

4. Unconstrained contests 

In the unconstrained environment that allows discrimination, anticipating the 

investments of the contestants, the designer optimally determines the parameters of 

the contest’s success functions. When considering the APA the designer controls the 

degree of discrimination  . When considering the logit lottery he determines both   

and the exponent  . 

Most of the literature studying Tullock's lotteries and the APA disregarded 

deliberate discrimination between the contestants and control of the exponent  . 

However, in the context of an APA, Lien (1986), (1990) and Clark and Riis (2000) 

studied a bribery game in which a designer exercises discrimination in a 

multiplicative form. Michaels (1988) and Nti (2004) examined the effect of the 

exponent   on the contestants' efforts in Tullock' lotteries disregarding 

discrimination between the contestants and focusing on pure-strategy equilibria. 

Recently, Epstein et al. (2011) presented a complete analysis of the designer's effect 

on the contestants' efforts by control of the degree of discrimination both for the APA 

and the logit lotteries, assuming that in the lotteries' case the exponent   is given and 

restricted to the range 10  . They have thus re-shifted the emphasis in the study 

of optimal contest design to the control of discrimination. The current section 

combines the two approaches allowing the designer to control both the exponent   

and the degree of discrimination between the contestants. In addition, it generalizes 

the analysis by allowing any value of the exponent   associated with a pure-strategy 

                                                 
7
 Recall that in the pure-strategy equilibrium the utility of contestant 2 can be positive if k is 

sufficiently large (see footnote 7). 
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or a mixed-strategy equilibrium, 0 , or to an APA that is associated with a 

mixed-strategy equilibria where  .
8
 

 

a. The optimal APA 

Under the APA, the designer maximizes his objective function by determining the 

optimal value of  . The optimal   is equal to k (for a proof, see Epstein et al. (2011), 

Proposition 1, assuming that no weight is assigned to the expected welfare of the 

contestants). This optimal bias eliminates the advantage of contestant 1, creates actual 

equality between the competitors and completely eliminates their surplus. The 

corresponding value of the  expected efforts of the contestants in the mixed-strategy 

equilibrium of the contest is  215.0 nnGA  .  

 

b. The optimal lottery 

Under the logit contest success function, the designer determines the optimal level of 

 , 0 , and  , 0 . Let us partition the range of the parameter   into 

20   and 2 . For 20  , where a unique pure-strategy equilibrium 

exists, the optimal values of   and   are equal to k*  and 2*   (for a proof, 

see Appendix B. This proof has to take into account constraints that are not 

automatically satisfied as in Epstein et al. (2011) where 10  . For further more 

specific clarification of this point see footnote 15).
9
 The corresponding value of the 

certain efforts of the contestants in the pure-strategy equilibrium of the contest is 

  AL GnnG  215.0 .
10

 We therefore obtain: 

 

                                                 
8
 Note that under the logit CSF where 20   the exerted efforts are certain whereas under the APA 

the meaning of efforts is expected efforts. 
9
 We suggest the following intuition regarding the equilibrium outcome and its sensitivity to   

( 20  ). The designer tends to support the contestant with the lower prize valuation ( k* )  to 

attain complete “balance” between the wining probabilities for any given  , 20  . An increase 

in   induces the contestants to increase their effort at the same rate in order to increase their winning 

probability. Since at the same time the designer favorably discriminates the contestant with the lower 

prize valuation, the equilibrium winning probability is unchanged, 5.0ip . But by raising   the 

designer increases the aggregate efforts. The designer therefore prefers the highest possible  , 2 , 

that enables him to extract the maximal possible surplus from the contestants which reduces their net 

payoff to zero. 
10

 Note that this result has the flavor of the neutrality result of Alcalde and Dahm (2010). However, in 

our setting of optimal contest design, the contestants' maximal efforts are larger than those obtained in 

the symmetric setting of Alcalde and Dahm (2010). This is due to the allowed control of both   and 

 . Also note that the question whether the equilibrium aggregate effort in a contest with 2  

exceed that when 2  or   is open, although we conjecture that it does not. 
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Proposition 2: 

If the contest designer can select both the degree of discrimination  , 0 , and the 

exponent  , then the contestants efforts under the optimal lottery are equal to the 

expected efforts in the mixed-strategy equilibrium of the optimal APA.  

The combined effect of optimal discrimination k   and optimal selection of 

the exponent   in the logit CSF 

                               



 1221

1
211

1

1
),(

xxxx

x
xxp





                              (5) 

that gives rise to a pure-strategy equilibrium when 20  , results in equal 

(expected) efforts and elimination of the surplus of both of the contestants. This result 

implies that the optimal logit lottery (that need not satisfy the constraint 20  )  

cannot be dominated by the APA. 

Proposition 2 establishes that the intuition mentioned above that a larger 

exponent   would induce greater expenditures is, again, not valid. Under optimal 

discrimination, even the use of an optimal APA by designers who are maximally 

receptive to the contestants' efforts, would not induce greater efforts than those 

obtained by designers who are less receptive to the contestants' efforts, 2*  , 

allowing random winning. Recall that in both cases bids are optimally discriminated, 

the optimal degree of discrimination being equal to k. Nevertheless, the valid part of 

the above intuition is that a larger exponent   indeed induces greater efforts under 

the logit lottery provided that the exponent   gives rise to a pure-strategy 

equilibrium.  

 

5. Relationship to the literature 

To clarify the novelty of our results, let us discuss the difference between the two 

settings we have focused on and the settings examined in Fang (2002), Epstein et al. 

(2011), Epstein and Nitzan (2006) and Franke et al. (2011). 

 Fang (2002) has shown that, under asymmetric prize valuations, a simple 

lottery yields larger efforts than the expected efforts under an APA provided that the 

gap between the contestants’ stakes is sufficiently large. Our first result, Proposition 

1, considerably strengthens this result by establishing that in a fair contest ( 1 ), if 

1k  , then a designer who can select the exponent  , always prefers a logit lottery to 

an APA, even when Fang's sufficient condition is not satisfied. In fact, the exponent 
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of the preferred lottery satisfies 0 ( ) 2k  , which means that the corresponding 

contest game has a unique pure-strategy equilibrium.  

Epstein et al. (2011) have studied an extended setting where discrimination is 

allowed, the objective function of the contest designer is a weighted average of the 

contestants' expected welfare and their aggregate expenditures, however, the exponent 

  is given and restricted to 1  . They have not dealt therefore with our first setting 

where the entire weight is put on efforts because we have not allowed discrimination. 

They have also not dealt with our second setting where the entire weight is put on 

efforts and discrimination is allowed because, first, we have allowed the contest 

designer to control   and, second, we have dealt with a less restricted  , 2  . No 

wonder than that our two results differ from Proposition 5 in Epstein et al. (2011) that 

establishes the superiority of the optimal APA relative to any optimal lottery.  

Epstein and Nitzan (2006) compared between the contestants' efforts under an 

APA and a lottery assuming that discrimination is not allowed where both   and 

k are given (clearly, the assumed   need not be the optimal exponent corresponding 

to the given parameter k). The first settings in the current paper is fundamentally 

different because the exponent   is assumed to be optimally determined by the 

contest designer, given the parameter k. For this reason our Proposition 1 and the 

result reported in section 4.2.2 in Epstein and Nitzan (2006) are different.11  

Franke et al. (2011) have recently compared the performance of the optimal 

APA and the optimal simple lottery in an extended n-player contest with 

discrimination. They have been able to prove the superiority of the APA assuming a 

simple lottery, viz., 1  . They have not allowed, however, control of the exponent 

  as in our second setting where 2  . Hence their main result differs from our 

Proposition 2 that establishes the equivalence between the performance of the optimal 

APA and the optimal lottery. 

 

6. Conclusion 

a. Extraction of the contestants' surplus and the designer's payoff 

In the unconstrained environment that allows discrimination, the designer always 

captures all the surplus of the two contestants. In the constrained fair environment, 

this is not the case although under the APA the designer always captures the surplus 

                                                 
11

In fact, the latter result has to be amended because it disregards the non-negativity constraints on the 

contestants’ utilities as in our derivation of Proposition 1. 
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of contestant 2. The difference between the two competitive environments is the 

extent of the contestants' incentives to make efforts. This hinges on the possibility of 

discrimination between the contestants. The possibility of discrimination increases the 

intensity of competition enabling the designer to increase his payoff. 

 

b. The shadow price of the competitiveness constraint  

The competitiveness constraint means that we deal with interior contest equilibria 

such that the ability of the contest designer to induce efforts is limited to the average 

value of the contested prize. Without this constraint, the designer could yield a total 

effort of 1n  by excluding the rivals of the contestant with the maximal valuation of the 

contested prize and then exploiting his political power or bargaining advantage to 

extract (almost) all his surplus, as in Nti (2004). We should point out that several 

different mechanisms can be used to implement the optimal design. For example, we 

could use an auction mechanism where the prize is awarded to the highest bidder but 

the contest designer has a reserve price equal to 1n  (see Glazer, 1993) or, 

alternatively, use a first-price APA with a reservation price of 1n  (see Hillman and 

Riley, 1989). The CSFs on which we focus do conform to the competitive 

environment and the maximal efforts are equal to  215.0 nn  . This result is 

consistent with the constraint on the ability of the designer to induce efforts being 

binding. The shadow price of the competitiveness constraint is therefore equal to 

   21211 5.05.0 nnnnn  . This is then the price of competition for the designer. 

 

c. The shadow price of the equalitarian constraint 

Equalitarianism results in reduced payoff for the designer relative to the 

unconstrained environment when 1k . In this case the shadow price of this 

constraint is positive, the exact value depending on the gap between the contestants' 

prize valuations that gives a Tullock's lottery a clear-cut advantage over the APA, as 

implied by Proposition 1. This may certainly support an ideology protecting the 

equalitarian 'welfare state'. Simply, in our setting, such equalitarianism limits the 

ability of the political-economic entrepreneur to extract resources from the 

contestants. 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V97-4C4X1WP-1&_user=626711&_coverDate=11%2F30%2F2004&_rdoc=1&_fmt=full&_orig=search&_cdi=5891&_sort=d&_docanchor=&view=c&_acct=C000032999&_version=1&_urlVersion=0&_userid=626711&md5=af2acad8cda57c7a3d0a35b9da51926e#bib5
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V97-4C4X1WP-1&_user=626711&_coverDate=11%2F30%2F2004&_rdoc=1&_fmt=full&_orig=search&_cdi=5891&_sort=d&_docanchor=&view=c&_acct=C000032999&_version=1&_urlVersion=0&_userid=626711&md5=af2acad8cda57c7a3d0a35b9da51926e#bib8
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V97-4C4X1WP-1&_user=626711&_coverDate=11%2F30%2F2004&_rdoc=1&_fmt=full&_orig=search&_cdi=5891&_sort=d&_docanchor=&view=c&_acct=C000032999&_version=1&_urlVersion=0&_userid=626711&md5=af2acad8cda57c7a3d0a35b9da51926e#bib8
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d. Generalization to n-player contests 

A potential interesting extension of our study is the analysis of the multiple-player 

case. Results for the all-pay auction should be robust with respect to the number of 

players because only two players will actively participate in equilibrium. This is not 

the case for lotteries. However increasing the number of contestants intensifies 

competition so our results might remain valid for more than two contestants both in 

fair and unfair contests. The case of optimal discrimination by control of the bias 

scheme has been recently analyzed in Franke et al. (2011) assuming the simple lottery 

case where 1 ; the contestants’ winning probabilities are equal to their relative 

exerted efforts. Even the analysis of this relatively simple case is rather complex. Its 

extension to our more general setting of Tullock lotteries, where  20  , seems a 

worthwhile yet an especially demanding challenge. 
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Appendix A: Proof of Proposition 1 

When discrimination is not allowed, 1 , and the exponent   is chosen optimally 

taking the form )(k , by Nti (2004), in the range 20   the pure-strategy 

equilibrium results in
12

 

 
2

21

)1( 








k

nnk
G ps

L  

This result is obtained assuming that the second order conditions for maximization are 

satisfied and that the contestants’ utilities are not negative. In this case the 

contestants’ efforts, winning probabilities and utilities are equal to those specified in 

Appendix B, substituting 1  in 3.B-5.B. Since the second order conditions and the 

conditions ensuring the non-negativity of the contestants’ utilities are given by 6.B- 

                                                 
12

 Notice that Nti defines k as the inverse of our k, that is, in his case 12 nnk  . Consequently, his 

result is presented with the appropriate modification. 

http://www.sciencedirect.com/science/journal/01762680
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7.B, the designer’s problem is given by 8.B (substituting 1 ). Since 1  the third 

constraints in 8.B is satisfied. The first constraint is satisfied (the utility of contestant 

1 is not negative) if the second constraint is satisfied (the utility of contestant 2 is not 

negative). Therefore, when 1 , the designer maximizes ps

LG  only subject to the 

second constraint,   11   k . 

Under the APA, where  , the mixed-strategy equilibrium results in  

 
k

nn

n

nnn
GA

22

21

1

212 



  

Denote by  , which is a function of the parameter k,  the solution of  

   11   k                                             (1.A) 

Under such equality the expected utility of contestant 2 is equal to zero. Equality 

(1.A) implies that 1 , 1  kk  , 0




k


, 2)1( k  and ( k ) 

 ( 1 ), Hence, for every 1k , 21  . 

Nti (2004, Theorem 3) has shown that for 509.3k , the solution (in implicit 

form) of equation (1.A),  , is the optimal solution that maximizes ps

LG . Otherwise 

the solution differs from  . This means that  

   

  











k

nn

k

nnk

k

nnk
GMax ps

L
21

2

21

2

21

)1(
 










  

Therefore, when AG
k

nn





21  we get that A

ps

L GGMax  . That is,  

k

nn

k

nn

2

2121 





 

or 

 12k  

By (1.A),   
1

1


k . Substituting k in the latter inequality we get: 

   




1

12  or    



5.01
1




 or : 

                            05.01
1


 

                                        (2.A) 
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Notice that if inequality (2.A) holds for 21  , then it is satisfied for every 1k .
13

 

The reason is that an increase in k reduces   and for 1k , 2  whereas for  

k ,   converges to 1. 

Let     1

1





f  and     5.0g . To prove inequality (2.A), we have 

to show that for 21  ,     gf  .
14

 

 Consider first the two functions f and g at 21  . It can be verified that 

  1lim
1







f ,   12 f  and 
      1ln11

1







 

d

df
. Therefore, for 21  , 

 f is minimized at 
11  e , where     6922.0min

1
1 


 e

ef  . In contrast, for 

21  , we get that 
       05.0ln15.0  


 

d

dg
. That is, the function g is 

increasing in the domain 21  . 

Partitioning this domain, 21  , into two subsets: 
111  e  and 

21 1   e  , let us show that in each of these sub-domains inequality (2.A) is 

satisfied. 

Consider first the sub-domain 
111  e . Since at 

11  e , 

   feg min6922.05947.01 1  
, and since, as noted above,  g is increasing in 

the domain 21  , we get that for 
111  e ,     gf  . 

To complete the proof, let us show that the latter inequality is also satisfied for 

21 1   e . In this subset of the domain of f and g, 
115.0  e  or 

    1ln1ln5.0ln  e  or     11ln5.0ln    or 

    01ln15.0ln1    or 
 
 

1
1ln1

5.0ln1









. Note that when 2 , 

 
 

1
1ln1

5.0ln1









. To sum up, when 21 1   e , we get that 

 
 

1
1ln1

5.0ln1









 and 

when 2 , 
 
 

1
1ln1

5.0ln1









. 

                                                 
13

 When 1k , 2  and we get that   1215.0 nnnGGMax A
ps
L  . 

14
 We are indebted to Arkadi Koziashvili for his help in establishing this part of the proof. 
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Let       gfh  . This function is continuous and differentiable in the 

interval 21 1   e  and 
           



5.0ln11ln1  gf

d

dh
. When the 

function  h  has an extremum, 
 

0




d

dh
 or 

          05.0ln11ln1   gf  or: 

    
 
 

 
 1ln1

5.0ln1














g

f
                                                 (3.A) 

We therefore get that: 

1. The latter equality is satisfied for 2  which means that this value is an 

extremum value. In addition, for this extremum value,     gf   or 

  0h . 

2. As noted above, when 21 1   e , we get that 
 
 

1
1ln1

5.0ln1









 and, in 

addition, by (3.A), 
 
 

 
 1ln1

5.0ln1














g

f
. Therefore, every extremum value in 

this sub-domain, 21 1   e , satisfies the inequality 

 
 

 
 

1
1ln1

5.0ln1















g

f
 or 

 
 

1




g

f
. Hence, every extremum value in this 

sub-domain satisfies     gf   or   0h . 

3. Also note that   0975.01 1  eh . 

By 1 - 3, we get that in the interval 21 1   e , the point     0,2,  h  is an 

absolute minimum point. In other words, in the interval 21 1   e ,   0h  or 

    gf  .                                                                                                           Q.E.D 

 

Appendix B: The optimal logit CSF under discrimination 

The designer controls the parameters   and  . For 20  ,
15

 which ensures the 

existence of an interior equilibrium, see Konrad (2009), and for 0 , the expected  

                                                 
15

 Notice that the proof in our case where 20   is not a straightforward extension of the proof of 

Proposition 1 in Epstein et al. (2011) where 10  . When 10  , (6B) and (7B) are 

automatically satisfied and, in turn, the second order conditions are satisfied and the utility of every 



 18 

payoff of the contestants are: 
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The first order conditions are: 

      

   

  
01

2

21

21

1

1

1

1 





 









xx

xnx

x

uE
 and 

 

  
01

2

21

12

1

2

2

2 





 









xx

xnx

x

uE
             (2.B) 

and, after rearranging, we get that in equilibrium: 
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The second order equilibrium conditions (SOC) are: 
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In equilibrium we obtain that k
x

x


*

2

*

1 , therefore the SOC can be written as: 

                         011    k  and     011    k               (6.B) 

Also, in equilibrium, the expected contestants' payoffs must be non-negative, that is, 

  0*

1 uE  and   0*

2 uE , which requires (see (5.B)) that 

                               0)1(   k  and 0)1(    k                              (7.B) 

Note that the conditions in (7.B) ensure that the SOC in (6.B) are also satisfied.  

 Now, anticipating the equilibrium efforts of the contestants, the designer's 

objective is to maximize 
   

 2
21*

2

*

1











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k

nnk
xx . For 20  , the designer's 

                                                                                                                                            
contestant is not negative. However, when 21  , (6B) and (7B) are not automatically satisfied. 

Hence, in the current proof of Proposition 2, we have to take into account constraints that were not 

relevant when 10  , as pointed out in the sequel, see problem (8B). 
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problem is:                                                                                                          
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The first two constraints ensure that the SOC for the equilibrium strategies of the two 

contestants are satisfied and that their expected payoffs are non-negative. Let us 

temporarily ignore these conditions and solve the designer's unconstrained problem in 

two stages. In the first stage,   is considered as given and   is computed from the 

first order condition for the (unconstrained) maximization of LG : 

                                          
  
 

0
3

21

12









 









 k

knnkGL

                     
  (9.B)  

which yields 

                                                                 k *

                                         (10.B) 

Substituting this value into 
2

2



 LG
, we get that the SOC of the designer's problem is 

satisfied. That is, 

 
0

32 23

21

3

2

2












 k

nnGL  

Furthermore, the optimal bias in (10.B) also satisfies all the constraints of problem 

(8.B).   k *  is therefore the optimal bias for any  , 20  . Substituting 

  k *  in equations (3.B)-(5.B), we get that 1

*

1 25.0 nx  , 2

*

2 25.0 nx  , 

5.021  pp ,     225.0 1

*

1 nuE ,     225.0 2

*

2 nuE  and 

 2125.0 nnGL   . This implies that 2 16
 is optimal for the designer yielding 

the maximal certain aggregate efforts of  215.0 nnGL  . 

Q.E.D 
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 Notice that Nti (2004) has established that for the existence of a unique pure-strategy equilibrium 

when 1k  it must be the case that 2 . In our case, we allow discrimination between the 

contestants. Therefore we obtain that even though 1k , in a unique pure-strategy equilibrium 2 . 


