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1 Introduction

In virtually every real-life treatment situation, both the treatment and the out-

come of interest are realized at speci�c points in time. Examples in economics

include the e�ect of training programs or punitive bene�ts reductions on un-

employment durations, the e�ect of the hiring of replacement workers on strike

durations, and the e�ect of promotions on tenure. Typically, the empirical anal-

ysis of the treatment e�ect is hampered by selection problems: individuals who

obtain a treatment may have systematically di�erent outcomes than those who

do not. This creates non-trivial problems for inference. An extensive literature

on the evaluation of treatment e�ects exists, but in general this literature does

not address the speci�c timing of events in conjunction with selection problems

(see for instance Heckman, LaLonde and Smith, 1999, for an overview of this

literature). This paper is concerned with the evaluation of treatment e�ects in

such a dynamic context. Consider a subject in a certain state. After a certain

stochastic amount of time, the subject leaves this state. The subject may receive

a treatment at some stochastic moment before it leaves the state. We are inter-

ested in the e�ect of the treatment on the duration in the state, or, equivalently,

on the exit rate out of the state.

We develop a user-friendly method for obtaining evidence on the presence of

a treatment e�ect from single-spell data that allows for possible selection e�ects.

The method focuses on the sign of the treatment e�ect and not on its magnitude.

We provide two complementary implementations of our method. First, it may be

implemented as a graphical procedure. At �rst sight it may seem diÆcult to ob-

tain a simple graphical representation of the sign of a treatment e�ect. A natural

starting point would be to consider all individuals who have not yet received a

treatment at a given point of time and who have not left the state of interest,

and to compare those who do get a treatment to those who do not. However, a

di�erence in the level of the exit rate out of this state may be due to the fact

that one examines selected subsets of individuals. Alternatively, by analogy to

di�erence-in-di�erence estimators of treatment e�ects, one may condition on the

moment of treatment and compare what happens before and after this moment.

However, to observe the moment of treatment one has to condition on not having

left the state of interest before that moment, so one does not observe the exit

rate out of the state of interest before the moment of treatment. In this paper

we condition instead on the moment of exit and to examine the rate at which a

treatment is given before that. We then focus on properties of this rate as a func-

tion of time, for di�erent moments of exit, and we demonstrate that these rates
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are informative on the treatment e�ect. Basically, one has to examine whether

the treatment rate increases more for individuals with a short stay in the state

of interest than for individuals with a long stay in that state.

The second implementation of our method amounts to the estimation of an

auxiliary parametric single-spell duration model for the conditional rates at which

treatments are given. The estimates allow for a simple parameter test. Both im-

plementations involve only straightforward manipulation of raw data. In both

cases, it is the interaction between the moment of exit and the moment of treat-

ment in the conditional treatment rate that allows one to distinguish between a

causal treatment e�ect and selectivity.

Our point of departure is a nonparametric bivariate hazard rate model for

the treatment and outcome hazard rates. Both hazard rates are taken to be

multiplicative in duration dependence and unobserved heterogeneity terms, and

a causal e�ect of the realized treatment works on the hazard rate for the outcome

of interest from the moment the treatment is realized onwards. We do not exploit

variation in observed covariates. If such covariates are available, the method can

be applied to subsamples strati�ed with respect to the covariates. As such, our

analysis implicitly allows for maximum interaction between duration dependence,

unobserved heterogeneity and treatment e�ects on the one hand and the observed

covariates on the other hand. This is a major advantage over the usual approach

to identi�cation of single-spell duration models, which rests heavily on covariate

variation and assumptions with respect to the covariate e�ects (see Van den Berg,

2001, for an overview). Alternatively, one may discard covariates, in which case

they can be absorbed by the unobserved heterogeneity term.

As a result, our method of inference does not require exclusion restrictions on

observed covariates, so the data need not contain an explanatory variable that

a�ects the treatment assignment but does not a�ect the outcome of interest other

than by way of the treatment. Also, our method does not need conditional inde-

pendence assumptions stating that the data capture all systematic determinants

of the process of treatment assignment so that the remaining observed variation

in the treatment assignment is independent of the determinants of the outcome of

interest. Both exclusion restrictions and conditional independence assumptions

are often diÆcult to justify.1 Standard methods of treatment evaluation often

1If a variable is observed by the analyst then it is often also observable to the individuals

under consideration. If the variable a�ects the probability of treatment, and the individual

knows that he may be subject to treatment, then he takes his value of the variable into account

to determine his optimal strategy, and this strategy a�ects the rate at which the individual

leaves the state of interest. Indeed, if the individual knows that the variable is an important

determinant of the treatment assignment process then he may have a strong incentive to in-
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rely on exclusion restrictions, parametric functional form assumptions on the

joint distribution of the \error terms" in the model, or conditional independence

assumptions, to identify the treatment e�ect. In this sense, our method compares

favorably to those methods.

At stated above, it is the interaction between the moment of exit and the

moment of treatment in the conditional treatment rate that allows one to distin-

guish between a causal treatment e�ect and selectivity. Di�erence-in-di�erences

methods of treatment evaluation in regression-type models2 also use interactions

in the data to make inference on treatment e�ects, and these methods also do

not require observed covariates (the main di�erence with our approach is that we

compare di�erent individuals over time when quantifying the interaction e�ect.)

Our results therefore illustrate the usefulness of the information in the timing of

events to assess the treatment e�ect. We return to this in Subsection 4.1 below.

The paper is organized as follows. In Section 2 we discuss the model frame-

work. Section 3 contains the analysis underlying our method. Section 4 discusses

the implementation of the method. Section 5 brie
y examines an alternative

graphical procedure. Section 6 concludes.

2 The model framework

For the sake of convenience, we use the term \individual" in general to denote a

subject in a state of interest. We normalize the point of time at which the individ-

ual enters the state to zero. The durations Tm and Tp measure the duration until

the event of interest and the duration until treatment, respectively. The popula-

tion that we consider concerns the in
ow into the state, and the unconditional

probability distributions that are de�ned below are distributions in the in
ow

into the state. Whether this is the in
ow at a �xed point of calendar time or the

total in
ow over time (or the in
ow at another range of in
ow dates) depends on

the application at hand.

The two durations are random variables. We use tm and tp to denote their

realizations. We assume that, for a given individual in the population, the dura-

tion variables are absolutely-continuous random variables. We assume that the

quire the actual value of the variable. All of this is inconsistent with exclusion restrictions.

Conditional independence may be diÆcult to justify if the treatment assignment is carried out

by case workers who use discretionary power, taking individual characteristics of the subject

into account that are unobserved to the analyst.
2See Angrist and Krueger (1999), Blundell and MaCurdy (1999), and Heckman, LaLonde

and Smith (1999), for overviews.
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e�ect of individual di�erences on the joint distribution of Tm; Tp can be captured

by explanatory variables V that are unobserved to the analyst. As discussed in

the introduction, we do not explicitly include observed covariates X in our anal-

ysis. It is implicitly understood that all our results are valid conditional on such

covariates and therefore extend to a model that allows for arbitrary e�ects of X

on the joint duration distribution and for dependence of V on X. Note that this

implies that we do not exploit covariates for inference on the treatment e�ect.

Of course, the joint distribution of Tm; TpjV can be expressed in terms of

the distributions of TpjV and TmjTp = tp; V . The latter distributions are in turn

characterized by their hazard rates �p(tjV ) and �m(tjtp; V ), respectively.3
As noted in the introduction, we are interested in the causal e�ect of treatment

on the exit out of the current state (see Abbring and Van den Berg, 2003, for

a presentation in terms of potential-outcome variables). The treatment and the

exit are characterized by the moments at which they occur, and we are interested

in the e�ect of the realization of Tp on the distribution of Tm. To proceed, we

assume that, conditional on V , the relation between Tm and Tp is characterized as

follows: the realization of Tp a�ects the shape of the hazard of Tm from tp onwards,

in a deterministic way. In Abbring and Van den Berg (2003), this fundamental

assumption is discussed in great detail. It implies that the causal e�ect is captured

by the e�ect of tp on �m(tjtp; V ) for t > tp. Note that it is ruled out that tp a�ects

�m(tjtp; V ) on t 2 [0; tp]. In a behavioral model, a natural interpretation of this

\`no-feedback" assumption is that it excludes anticipation e�ects.4

3For a nonnegative random (duration) variable T , the hazard rate is de�ned as �(t) =

limdt#0 Pr(T 2 [t; t + dt)jT � t)=dt. Somewhat loosely, this is the rate at which the spell is

completed at t given that it has not been completed before, as a function of t. It provides a full

characterization of the distribution of T (see Lancaster, 1990, and Van den Berg, 2001). Consider

the distribution of a duration variable conditional on some other variables. It is customary to

use a vertical \conditioning line" within the argument of a hazard rate in order to distinguish

between (on the left-hand side) the value of the duration variable at which the hazard rate is

evaluated, and (on the right-hand side) the variables that are conditioned upon.
4In reality, there is often no information available on the degree to which an actual treatment

is anticipated. Even if some anticipation cannot be ruled out, there is virtually never any

information on the moment at which the individual receives information on the moment of

treatment unless the moment of treatment is fully predictable at the individual level. The fact

that a realization of the event of interest could be due to the anticipation of a future treatment

has haunted the empirical literature on treatment e�ects. Many standard treatment evaluation

studies su�er from a potential bias due to anticipatory e�ects. This includes studies using

\di�erence-in-di�erences" methods where one \di�erence" concerns a comparison between pre-

and post-treatment circumstances (see Heckman, LaLonde and Smith, 1999, for an overview).

Now suppose that the determinants of the stochastic process of treatment assignment af-

fect the individual's exit rate out of the state of interest before the actual realization of the
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Let V := (Vm; Vp)
0 be a (2 � 1)-vector of unobserved covariates, with a dis-

tribution G (in the in
ow) such that Pr(0 < Vm < 1; 0 < Vp < 1) = 1. Let

Tp??VmjVp, implying that �p(tjV ) = �p(tjVp). Furthermore, let Tm??VpjTp; Vm,
so that �m(tjtp; V ) = �m(tjtp; Vm). Somewhat loosely, one may say that Vp (Vm)

captures the unobserved determinants of Tp (Tm). Now let us turn to the spec-

i�cations of the hazard rates �m(tjtp; Vm) and �p(tjVp). We adopt the following

model:

�p(tjVp) = �p(t)Vp

�m(tjtp; Vm) = �m(t)Æ
I(t>tp)Vm;

(1)

where I(.) denotes the indicator function, which is 1 if its argument is true and 0

otherwise.

The functions �m : [0;1) ! (0;1) and �p : [0;1) ! (0;1) are called

\baseline hazards". A hazard rate is said to be duration dependent if its value

changes over t. Positive (negative) duration dependence means that �i(t) increases

(decreases). For expositional convenience only, we assume that �m and �p are

di�erentiable on (0;1). Note that this does not exclude that limt#0 �i(t) = 1
for i = m and/or i = p, which implies that the popular Weibull speci�cation

�i(t) = �it
�i�1 with �i > 0 for the baseline hazards is included.5 We also assume

that �i(t) :=
R t

0
�i(�)d� < 1 (i = m; p) for every t � 0. Finally, we assume

that limt!1�m(t) = 1. As we have also excluded a mass point at 0 in the

distribution of Vm, this implies that the distribution of Tm cannot be defective.

The model does allow for a defective distribution of Tp, through the possibility

of limt!1�p(t) <1. In the latter case each individual has a positive probability

of never receiving a treatment even if they never leave the state of interest.

Because of the assumptions on �p and Vp, the distributions of Tp and TpjVp are
not degenerate. This implies that at the individual level there is variation in the

moment of treatment.

treatment. Then the treatment program is said to have an ex ante e�ect on exit out of the

state of interest. Such an e�ect is to be expected in well-established programs. The ex ante

e�ect should not be confused with anticipation of the realization of the process of treatment

assignment, because in the latter case the individual knows the stochastic outcome rather than

the determinants of the process. The ex ante e�ect can be contrasted to the ex post e�ect of

treatment, which is the e�ect of a realized treatment on the individual exit rate { this is of

course the e�ect we focus on in this paper.
5In that case, the value of �i at 0 needs to be an arbitrary positive number.
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The term ÆI(t>tp) captures the treatment e�ect. Clearly, treatment is ine�ective

if and only if Æ = 1. Now suppose that Æ > 1. If Tp is realized then the level of

the individual exit rate out of the current state increases by a �xed factor. This

stochastically reduces the remaining duration in that state, in comparison to the

case where the treatment is given at a later point of time.

The model does not impose parametric functional form assumptions on the

baseline hazards or the probability distribution of the unobserved heterogeneity

terms. As we allow for full interaction with observed covariates X, we do not

impose that there are X that do a�ect Tp but do not a�ect Tm other than by way

of tp, so we do not impose an exclusion restriction.

Many empirical studies have estimated models that are closely similar to our

model framework. All of these include e�ects of observed covariates as additional

multiplicative terms in �m(tjtp; Vm) and �p(tjVp). For example, Card and Sullivan

(1988), Gritz (1993), Bonnal, Foug�ere and S�erandon (1997), Abbring, Van den

Berg and Van Ours (1997), and Van den Berg, Van der Klaauw and Van Ours

(2004) study the e�ect of a treatment of unemployed workers on the transition

rate from unemployment to work. Lillard (1993) estimates a model for the joint

durations of marriage and time until conception of a child, and his model allows

the rate at which the marriage dissolves to shift to another level at moments

of child birth. Our model then describes a part of a two-dimensional stochastic

process in which the occurrence of an event in one dimension a�ects the hazard

rate in the other dimension. Lillard and Panis (1996) estimate a model on the

joint durations of marriage, non-marriage, and life, and their model allows the

death rate to shift to another level at moments of marriage formation and dis-

solution. Abbring and Van den Berg (2003) prove full identi�cation of models

with covariates and with treatment e�ects that depend on model variables. They

also provide ample discussion of the model as an econometric model of treatment

e�ects.

If we abstract from duration dependence and unobserved heterogeneity terms

then the model is essentially equivalent to the bivariate exponential distribution

developed by Freund (1961). This model is usually motivated by the example of a

machine with two components, where one component may fail at a higher rate if

the other component has already failed. The Freund (1961) model is symmetric to

the extent that it allows each component to be a�ected by the failure of the other.

However, if the observational plan is such that observation stops at the moment at

which one speci�c component fails then this model is observationally equivalent to

our model with constant baseline hazards, absence of unobserved heterogeneity,

and constant Æ. Similarly, our model can be extended to a symmetric setup by
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specifying the distribution of [TpjTm = tm; Tp � tm]. Note that the assumption

that failure of one component induces a higher failure rate for the other means

that Æ > 1.

We now discuss the general problem of inference on the treatment e�ect in

the context of our model. The data provide observations on realizations of Tm.

In addition, if Tp is completed before the realization tm then we also observe the

realization tp, otherwise we merely observe that Tp exceeds tm. The individuals

who are observed to receive a treatment at a date tp are a selected subset from the

population under study. The most important reason for this is that the distribu-

tion of Vp among them does not equal the corresponding population distribution,

because most individuals with high values of Vp have already had the treatment

before. If Vp and Vm are dependent, then by implication the distribution of Vm
among them does not equal the corresponding population distribution either. A

second reason for why the individuals who are observed to receive a treatment at

a date tp are a selected subset is that, in order to observe the fact that treatment

occurs at tp, the individual should not have left the state of interest before tp.

Because of all this, the treatment e�ect cannot be inferred from a direct com-

parison of realized durations tm of these individuals to the realized durations of

other individuals. If the individuals with a treatment at tp have relatively short

durations then this can be for two reasons: (1) the individual treatment e�ect

is positive, or (2) these individuals have relatively high values of Vm and would

have left the state of interest relatively fast anyway. The second relation is called

a spurious relation as it is merely due to the limited observability of the set of

explanatory variables. This relation is also referred to as \selectivity". If Vm and

Vp are independent then I(t > tp) is an \ordinary" exogenous time-varying co-

variate for Tm, and one may infer the treatment e�ect from a univariate duration

analysis based on the distribution of TmjTp = tp; Vm mixed over the distribution

of Vm. However, in general there is no reason to assume independence of Vm and

Vp, and if this possible dependence is ignored then inference on the treatment

e�ect may lead to incorrect conclusions.

3 Opposite cases

3.1 The pure treatment e�ect case

Our empirical procedure to assess whether Æ >< 1 is based on the following idea.

Consider the subset of individuals whose spells end at a given duration Tm = tm.

Note that Tm is always observed, whether Tp < Tm or not, so any tm can be
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chosen here. If treatment increases the exit rate (i.e. if Æ > 1) then a relatively

large fraction of those who exit at tm have been treated shortly before tm. Thus,

conditional on tm, the rate at which treatment is given �p(tjTm = tm) will tend to

increase shortly before t = tm. Of course, it still remains to show that this cannot

be explained by duration dependence or unobserved heterogeneity as well. To

deal with this, we will compare aspects of �p(tjTm = tm) for di�erent values of

tm. In Section 5 we discuss an alternative approach which compares aspects of

�m(tjTp = tp) as a function of t, for di�erent values of tp, and at values of t that

exceed the largest tp. We argue that this approach is less attractive than the one

based on �p(tjTm = tm).

We analyze the behavior of �p(tjTm = tm) (or, in short-hand notation, �p(tjtm))
in two opposite extreme cases. Case I concerns the \pure treatment e�ect" case,

where Æ may di�er from 1 but a selection e�ect is absent. The latter amounts

to the assumption that Vm and Vp are independent. Case II concerns the \pure

selection" case, where there can be dependent heterogeneity but Æ = 1. In this

subsection and the next we show that these cases can be distinguished by ex-

amining the dependence of �p(tjtm) on t and tm. This enables us to construct a

simple empirical check on whether there is a positive treatment e�ect.

The present subsection deals with the �rst case,

Case I (Pure treatment e�ect). Vm??Vp.

We denote the marginal distributions of Vm and Vp by Gm and Gp, respectively,

so that in Case I, G(vm; vp) = Gm(vm)Gp(vp). We are able to derive more elegant

and slightly stronger results under a more stringent version of our Case I, denoted

as Case Ia:

Case Ia (Pure treatment e�ect). Gm is degenerate.

For expositional reasons we start by considering an even simpler model version

in which there is no duration dependence or unobserved heterogeneity. As noted

above, we expect �p(tjtm) to increase as a function of t if and only if Æ > 1.

This can be con�rmed easily for this model version. We write �p(tjVp) = e�p and
�m(tjtp; Vm) = e�m � ÆI(t>tp). It is also useful to de�ne Æ� := e�p + (1� Æ)e�m. After
some calculations, using Bayes' rule, it follows that

�p(tjtm) = Æ�Æe�p
Æe�p + (1� Æ)(e�m + e�p)e�Æ�(tm�t) with t 2 [0; tm] (2)
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for the generic case in which Æ� 6= 0. Note that numerator and denominator in

the right-hand side of equation (2) both have the same sign as Æ�. For the special

case in which Æ� = 0 (which implies that Æ > 1) we obtain

�p(tjtm) = Æe�p
1 + Æe�p(tm � t)

with t 2 [0; tm] (3)

As a result, �p(tjtm) increases in t if and only if Æ > 1. This is true for all parameter

values and for any tm, and, given tm, for any t 2 [0; tm].
6 Moreover, Æ > 1 if and

only if �p(tjtm) decreases in tm, since �p(tjtm) only depends on the di�erence of

tm and t.

Now let us examine what happens if we allow for duration dependence, i.e.

if �m and �p are allowed to depend on the corresponding elapsed duration. The

shape of �p(tjtm) as a function of t will re
ect this. For example, if �p(t) displays a

spike at a certain value of t then �p(tjtm) also displays a spike at t. This is true for
any given value of tm > t. This can be illustrated by the following identity which

can be shown to hold by de�nition (using Bayes' rule) for any continuous-time

bivariate duration model,

�p(tjtm) = �p(t) � lim
dt#0

Pr(Tm 2 [tm; tm + dt)jTp = t)

Pr(Tm 2 [tm; tm + dt)jTp � t)
(4)

where �p(t) is the hazard rate of the marginal distribution of Tp. Under Case I,

Tp is an exogenous determinant of Tm, so the value of the duration dependence

term �p at t enters the right-hand side only by way of its e�ect on �p(t). The

latter is independent of tm and acts multiplicatively on �p(tjtm), so we can get

rid of the e�ect of the duration dependence term �p on �p(t� tm) by comparing

@ log �p(tjtm)=@t for di�erent values of tm. Basically, �p(tjtm) may increase shortly

before a given tm because of duration dependence, but this can be corrected for by

comparing the curve to curves corresponding to larger values of tm. More precisely,

it can be shown that the derivative of @ log �p(tjtm)=@t with respect to tm, which

is of course the cross-derivative @2 log �p(tjtm)=@t@tm, always has the same sign as

1� Æ for t < tm. Thus, without heterogeneity, the cross-derivative of log �p(tjtm)
at a point t < tm provides suÆcient information to infer the sign of Æ�1. If Æ > 1

then log �p(tjt0m) increases in t relative to log �p(tjtm), for each 0 < t < t0m < tm.

It can also be shown that, without heterogeneity, @ log �p(tjtm)=@tm has the same

sign as 1 � Æ for t < tm. This re
ects the fact that Æ < 1 (Æ > 1) generates a

6In fact, Æ > 1 if and only if �p(tjtm) is convex in t on (0; tm).
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negative (positive) association between Tm and Tp, which translates in a positive

(negative) relation between tm and log �p(tjtm). So, if Æ > 1 then the graph of

log �p(tjtm) as a function of t is lower for higher values of tm.

Now let us examine what happens if we also allow for independent heterogene-

ity of Vp and Vm. This generates (additional sources of) negative duration depen-

dence in the observable hazard rates due to \dynamic selection". This selection

mechanism should not be confused with selectivity in the treatment assignment.

Dynamic selection concerns the fact that, as time proceeds, the composition of

survivors shifts towards subjects with unfavorable unobserved heterogeneity val-

ues. Intuitively, this dynamic selection does not lead to duration dependence

patterns in the observable hazard rates that vary substantially with tm. Indeed,

we prove that the comparison across various tm of @ log �p(tjtm)=@t as a function
of t also e�ectively deals with the heterogeneity e�ects. The expected value of Vp
conditional on survival up to time t is decreasing in t, but this e�ect is the same

for every tm. The heterogeneity in Vm complicates the derivations but does not

lead to substantially weaker results. Concerning the e�ect of tm on the level of

�p(tjtm), we �nd that this is also still informative on the sign of Æ � 1.

Speci�cally,

Proposition 1. In Case I,

lim
t"t0m

log

�
�p(tjtm)
�p(tjt0m)

� 8><>:
> 0 if Æ < 1

= 0 if Æ = 1

< 0 if Æ > 1

and

lim
t"t0m

�
@ log �p(tjtm)

@t
� @ log �p(tjt0m)

@t

� 8><>:
> 0 if Æ < 1

= 0 if Æ = 1

< 0 if Æ > 1

for all 0 < t0m < tm.

Proof. See Appendix 1, and Appendix 1.2 in particular.

Suppose that Æ > 1, and let t0m < tm. The graph of log �p(tjt0m) as a function

of t 2 (0; t0m) lies above that of log �p(tjtm), at least for t just below t0m. Moreover,

the graphs of the log hazard rates diverge as functions of t, at least for t just

below t0m. Somewhat loosely, log �p(tjt0m) increases relatively strongly in t if t0m is

small. For Æ < 1, the ordering is reversed.7

7Instead of examining di�erences between expressions for tm and t0m in Proposition 1, we

could as well have focused on derivatives with respect to tm at a value tm. However, the former

is more general. Proposition 1 allows for a global comparison of the expressions for various

values of tm and t0m.
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In Appendix 1.3 we show by way of an example that there are distributions

of Vm for which the results in Proposition 1 can not be generalized to hold for all

t 2 (0; t0m). However, in the more restrictive Case Ia,

Proposition 2. In Case Ia,

@ log �p(tjtm)
@tm

8><>:
> 0 if Æ < 1

= 0 if Æ = 1

< 0 if Æ > 1

and

@2 log �p(tjtm)
@t@tm

8><>:
> 0 if Æ < 1

= 0 if Æ = 1

< 0 if Æ > 1

for all 0 < t < tm.

Proof. See Appendix 1.4.

We illustrate these results by way of a number of examples. First, consider the

special case of Case Ia where there is no heterogeneity and no duration depen-

dence (see equations (2) and (3)). We normalize time by �xing e�p � 1. Figures

1 and 2 plot log �p(tjtm) for e�m = 4, and Æ = 0:8 and Æ = 1:2, respectively. In

either �gure, each curve corresponds to log �p(tjtm) on (0; tm) for a single value of

tm (tm = 0:5; 1; : : : ; 10). As the end points of the intervals on which log �p(tjtm)
is plotted coincide with tm, we omit the legend from the graph. It is easy to see

that the graphs are consistent with Proposition 2.

Figures 3 and 4 provide similar graphs for the case in which Gm and Gp are

both unit exponential (so Gi(vi) = 1� e�vi). The results are basically the same

as in Figures 1 and 2, but the e�ects are attenuated at higher levels of tm due to

the e�ects of the unobserved heterogeneity.

3.2 The pure selection case

Before we provide a full characterization of Case II, we introduce some termi-

nology and notation. For positive functions k and l, let k(y)
y#a� l(y) denote

limy#a k(y)=l(y) = 1 (see Feller, 1971).

De�nition 1. A positive function L de�ned on (0;1) is slowly varying at 0 if

limy#0 L(y�)=L(y) = 1 for every �xed � 2 (0;1).

11



De�nition 2. A positive function k de�ned on (0;1) is regularly varying with

exponent �1 < � < 1 at 0 if k(y)
y#0� y�L(y) for a function L that is slowly

varying at 0.

Case II is de�ned by

Case II (Pure selection). Æ � 1. Furthermore, the joint distribution G of

(Vm; Vp) is such that Vp = V �
m for some � � 0, where Vm has an absolutely con-

tinuous distribution function F . The corresponding density f is regularly varying

at 0 with exponent �1 < � <1.

This de�nition imposes that the relation between Vm and Vp is deterministic

and nonnegative with one unknown parameter, that Vm and Vp are continuously

distributed, and that the densities have a regular left-hand tail. We will show

that this actually covers a very wide range of 
exible speci�cations. In Appendix

2 we consider more general relations Vp = h(Vm) between Vm and Vp, where h

is not required to be non-decreasing, and we show that the results below can

be generalized to include such relations. In Appendix 2 we also allow for certain

classes of discrete distributions. For expositional convenience, we do not present

those general results here. We brie
y turn to them at the end of this subsection,

and we also discuss results for other distributions there.

We proceed to discuss the notable features of Case II in some more detail.

First, consider the relation between Vm and Vp. It can be generalized to Vp = c�V �
m

with c > 0, but this is equivalent to changing the scale of the baseline haz-

ards. The deterministic relation e�ectively imposes that Vm and Vp satisfy a

one-factor loading speci�cation. This speci�cation is best known in the repre-

sentation Vm = exp(cm!); Vp = exp(cp!), where ! is a random variable with

suitably normalized moments (note that we take � := cp=cm). The one-factor

loading speci�cation for unobserved heterogeneity in multivariate duration mod-

els was introduced by Flinn and Heckman (1982) and has become extremely

popular in empirical research (see Van den Berg, 2001, for an overview).

Another notable feature is that the relation between Vm and Vp is assumed

to be nonnegative (speci�cally, the correlation between logVm and logVp is zero

or one). This is not so restrictive as it may seem. Often, the economically inter-

esting issue is whether Æ > 1 or Æ = 1. This is because an intervention is often

intended to increase the exit rate out of an undesirable state. If we are interested

in testing Æ > 1 versus Æ = 1, the main problem is that both Æ > 1 and positively

related unobservables induce a positive association between Tm and Tp. As such,

the restriction to positively related unobservables does not solve the selectivity

12



problem, and leaves a non-trivial identi�cation task.

Yet another notable feature concerns the restriction to densities that are regu-

larly varying at zero. This basically requires that the density just above 0 should

not be too thin and should not have an irregular shape. Examples include densi-

ties with �nite positive limits at 0 (like exponential and uniform densities) and a

wide variety of densities truncated at 0 (like truncated normal densities). It also

includes densities that converge to 0 at a polynomial rate as v # 0, like gamma

densities and densities kvk on (0; 1), for k > 0. Furthermore, it includes certain

densities that have in�nite limits at 0 (see also Feller, 1971). The rationale be-

hind this requirement is that it facilitates the analysis of the observed hazard

rates at high durations. As time proceeds, the individuals with high values of the

unobserved heterogeneity terms leave the state of interest, and the shape of F

near the lower bound of its support determines \how much" heterogeneity is left

among the survivors. Somewhat loosely, one may say that if the density of Vm just

above 0 is not very thin then the heterogeneity among survivors is suÆcient to

a�ect the observed hazard rates at high durations. It should be noted, however,

that our method of inference often also works well if the distribution of Vm is not

covered by Case II (or by the more general case discussed in Appendix 2), i.e, if

the density just above 0 is actually very thin (see below).

The condition on Gm in Case II should not be confused with a �nite mean

condition like E(Vm) < 1 that is typically imposed on the unobserved hetero-

geneity term in non-parametric analyses of the mixed proportional hazard model

(e.g., Elbers and Ridder, 1982). Our condition deals with the left-hand tail of

Gm, whereas the �nite mean assumption from the non-parametric mixed propor-

tional hazard model literature deals with the right-hand tail. We do not make

assumptions on the right-hand tail or the moments of Vm.

We aim to contrast the behavior of �p(tjtm) in Case II to the behavior in Case

I. It is easy to see that in the model laid out by equations (1) with Æ = 1,

�p(tjtm) = �p(t) E(VpjTp � t; Tm = tm) (5)

regardless of whether Case II holds or not. Let G have density g. By Bayes' rule,

the distribution of VpjTp � t; Tm = tm has density

R1
0

vm e��p(t)vp��m(tm)vm g(vm; vp) dvmR1
0

R1
0

vm e��p(t)vs��m(tm)vm dG(vm; vs)
(6)

If t increases then there are two e�ects on �p(tjtm). First, there is the proportional
duration dependence e�ect �p(t). Secondly, there is the e�ect on the distribution
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of unobserved heterogeneity Vp: a large value of t makes smaller values of Vp more

likely, and this reduces the level of the hazard rate aggregated over Vp.

If tm increases then there is only one e�ect on �p(tmjt), and this works by way

of the distribution of Vp. A large value of tm makes smaller values of Vm more

likely. If Vm and Vp are positively related (as in Case II), then this makes smaller

values of Vp more likely. As a result, we expect tm to have a negative e�ect on

the level of �p(tmjt). This sign is the same as in Case I, so it seems that the e�ect

of tm on �p(tmjt) cannot be used to distinguish between Case I and (positively

related unobservables in) Case II.

Now consider the interaction between t and tm in log �p(tjtm). By analogy to

Case I, the evaluation of @ log �p(tjtm)=@t at various values of tm serves to elim-

inate the proportional duration dependence e�ect on �p(tmjt) (see also equation

(5)). It turns out that the interaction can indeed be used to distinguish between

Case I and Case II,

Proposition 3. In Case II, for each t > 0,

lim
tm!1

�m(tm)

�m(tm)

@ log �p(tjtm)
@tm

= �� � 0;

and

lim
tm!1

�m(tm)
�+1

�m(tm)

@2 log �p(tjtm)
@t@tm

=

��p(t)

�
�(� + 2 + 2�)

�(� + 2 + �)
� �(� + 2 + �)

�(� + 2)

� (
> 0 if � > 0

= 0 if � = 0

Proof. See Appendix 2, which includes the proof of the proposition for an exten-

sion of Case II.

In words, suppose that there is positive selection (i.e., individuals with a high

treatment rate also have a high exit rate out of the current state). Then the graph

of log �p(tjtm) is lower if tm is larger, at least if the values of tm are suÆciently

large. Moreover, in that case, the graphs of the log hazard rates converge as

functions of t.

Note that Proposition 3 examines derivatives in the limit as tm !1, whereas

Proposition 1 for Case I examines derivatives at arbitrary tm. This may make

Proposition 3 look restrictive and less relevant. However, for reasons of smooth-

ness, the derivatives in Case II with � > 0 generally have the limiting sign well

before the limit is reached. Below we show in detail that in many instances the

predictions in Proposition 3 hold true for every tm, even when the distribution
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G does not satisfy the description of Case II at all. In practice, to distinguish

between Case I and Case II one would have to examine large values of tm.

We provide intuition behind Proposition 3 by considering the special case

where � = 1, i.e. Vp = V , Vm = V , and V has distribution function F concentrated

on (0;1). In that case, equation (5) reduces to �p(tjtm) = �p(t)E(V jTp � t; Tm =

tm). Moreover, derivatives of log �p(tjtm) with respect to t and/or tm can be

expressed in terms of moments of [V jTm = tm; Tp � t]. The family of gamma

distributions plays an important role in the intuition that we give. It is not

diÆcult to see that if F is a gamma distribution with parameters r; a, i.e., if the

density f(v) equals

f(v) =
ar

�(r)
vr�1e�av with a; r > 0

then the equations in Proposition 3 hold, with � = 1 and � := r � 1, for every

tm > 0, i.e., not just in the limit as tm ! 1. Now suppose that F is, more

generally, a distribution that satis�es Case II. We introduce short-hand notation

z := �m(tm) + �p(t):

From the results in Appendix 2 it follows that the moments of z �[V jTm = tm; Tp �
t] converge to the moments of a gamma distribution with parameters � + 1; 1.

This suggests that the distribution of [V jTm = tm; Tp � t] becomes more and

more similar to a gamma distribution, as time proceeds.

Hougaard, Harvald and Holm (1992) study the (non-causal) e�ect of condi-

tioning on the realization of one duration variable on the log hazard rate for the

other, if both share the same unknown unobserved heterogeneity term V . Speci�-

cally, they examine to what extent this e�ect depends on the type of distribution

of V across duration pairs. For the gamma distribution, the e�ect increases in

the time distance since the realization of the �rst duration variable (on which we

condition). Let us translate this to our Case II model with Vm = Vp = V . We

examine the e�ect of knowing that Tm = tm on the log hazard rate of Tp. Let V

have a gamma distribution. If Tp = t is close to tm then the e�ect is relatively

small, whereas if Tp = t is much smaller than tm then the e�ect is much larger.

This implies that if one compares the function log �p(tjtm) for di�erent values of
tm, then the e�ect of tm is larger for small t. If V does not have a gamma distri-

bution but satis�es Case II then this result holds as the tm values become large.

This explains the convergence of the graphs of the log hazard rates as given in

Proposition 3. If Vp = V �
m then the moments of [z� �VpjTm = tm; Tp � t] converge

to the moments of a generalized gamma distribution (see McDonald, 1984, for a

description of this distribution), and a similar intuition can be given.
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We now examine the special case with Vm = Vp = V from another angle. By

analogy to (6), it follows that [V jTm = tm; Tp � t] has the distribution function

Fz(v) :=
R v

0
dFz(�) with

dFz(v) :=
v exp(�zv)dF (v)R1
0

v exp(�zv)dF (v) (7)

if tm > 0 and t > 0. For convenience, we de�ne Vz := [V jTm = tm; Tp � t]. Let

�(z) denote the expectation of the distribution Fz, so �(z) := E(Vz). Equation

(5) then reduces to �p(tjtm) = �p(t)�(z). We denote the normalized centralized

moments of Vz by e
i(z) := E(Vz � �(z))i=�(z)i. In addition, we denote the coef-

�cient of variation by �2(z) :=
pe
2(z), and Cox and Oakes' (1984) standardized

index of skewness by �3(z) := e
3(z)=e
2(z)3=2. Using the equations in Appendix

2.2, it is easy to verify that

@ log �p(tjtm)
@tm

= ��m(tm)�(z)e
2(z)
and

@2 log �p(tjtm)
@t@tm

= �p(t)�m(tm)�(z)
2e
2(z)3=2 [�3(z)� �2(z)] ;

Clearly, @ log �p(tjtm)=@tm < 0. Note that this is true for all tm > 0 if Vm = Vp =

V , and that this is true regardless of whether the left-hand tail of the density

has a regular shape, and, indeed, regardless of whether V is continuous. The

interaction e�ect @2 log �p(tjtm)=@t@tm is positive if and only if

�3(z) > �2(z); (8)

i.e. if the distribution of Vz is suÆciently skewed to the right relative to its

dispersion.

Normalized variation and skewness indicators like �2 and �3 are frequently

used to classify scale families of distributions (see e.g. Cox and Oakes, 1984).

The inequality (8) is satis�ed by all log-logistic, log-normal, and gamma distri-

butions, and by some distributions in the Weibull class. Intuitively, this result

is not surprising, as these distributions all resemble gamma distributions, and

we know that the interaction e�ect is positive for all tm if V has a gamma dis-

tribution. Note however that the inequality (8) concerns the distribution Fz of

Vz := [V jTm = tm; Tp � t]. If Fz belongs to a well-known family of distributions

then the underlying distribution F of V does not necessarily belong to a well-

known family, and vice versa. The exception is when F is a gamma distribution
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with parameters r; a, since then Fz also is a gamma distribution with parameters

r + 1; a+ z, and �2(z) = 1=
p
r, �3(z) = 2=

p
r, and �3(z)=�2(z) = 2 for all z � 0.

A special case of this is when V has an exponential distribution: then r = 1, and

therefore �2(z) = 1 and �3(z) = 2.

The \skewness" condition in equation (8) which ensures the desired sign of

the interaction between t and tm in log �(tjtm) does not refer to the \regularity"

condition on f(v) close to v = 0 in the characterization of Case II and its gener-

alization in Appendix 2. For example, if V has a log-normal distribution and z is

close to zero then the \skewness" condition is satis�ed whereas the \regularity"

condition is not, as log-normal densities are not regularly varying at zero (we

return to log-normal heterogeneity distributions below). This suggests that the

\regularity" condition in Case II is by no means necessary to obtain the desired

interaction sign.

Now let us examine discrete distributions for Vm with a �nite number of

positive points of support. Such distributions have zero probability mass right

next to 0, so they are not covered by Case II or its generalization in Appendix

2. As time proceeds, individuals with Vm exceeding the smallest point of support

leave the state of interest rather quickly, and at very large t the survivors are

virtually homogeneous. In such a case, for suÆciently large tm, the conditional

hazard rate �p(tjtm) behaves as in the model without unobserved heterogeneity,

so the interaction e�ect @2 log �p(tjtm)=@t@tm converges to zero.8

In Appendix 2 we consider more general relations Vp = h(Vm) between Vm
and Vp, where h is not required to be non-decreasing. Basically, if Tm and Tp
are negatively related then the e�ect of tm on log �p(tjtm) is positive. It turns
out that, in addition, the limiting interaction e�ect may be positive or zero. This

means that on the basis of these signs it cannot be distinguished from Case I

with Æ � 1.

We illustrate the results of this subsection by plotting log �p(tjtm) in some

speci�c examples. Like in Subsection 3.1, we exclude duration dependence and

we take �p � 1 and �m � 4. Figure 5 plots log �p(tjtm) for the case that F

is unit exponential and Vm = Vp. This is a case in which there is a positive

association between Tm and Tp, which is potentially confused with a positive

e�ect of treatment (Æ > 1). We indeed �nd a negative e�ect of tm on the level of

log �p(tjtm) for given t, as in Figures 2 and 4 for Case I. However, consistent with

8If Vm has a continuous distribution F concentrated on (v;1), for some v 2 (0;1), and

where F0(vm) := F (vm + v) satis�es Case II, then our results can be translated to this case by

using properties of Laplace transforms of translated random variables. We do not pursue this

further here.
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the propositions above, the interaction e�ect is now reversed relative to Case I.

So, we are able to distinguish between these cases by exploiting the interaction

e�ect. It should be noted that the e�ects of varying tm disappear quite rapidly

with increasing t.

In this example, the results hold for all t; tm, so we do not need to restrict

attention to large values of tm only. Figure 6 provides an example where it is

necessary to restrict attention to large tm. In this example, Vm = Vp = V , and F

is a left-skewed beta-distribution on (0; 1) (F (v) = v11, which satis�es Case II).

At all values of tm, the log hazard log �p(tjtm) decreases in tm. However, the sign

of the interaction e�ect may lead to confusion with Æ > 1 in Case I (see Figures 2

and 4) if one examines small values of tm. In particular, for small values of tm, the

change in the slope of log �p(tjtm) with tm resembles Case I with Æ > 1. However,

this changes rapidly with increasing tm.

Figure 7 shows that the distinction between treatment e�ect and selectivity

may also work well for heterogeneity distributions that are excluded under Case

II and its generalization in Appendix 2. It plots log �p(tjtm) for the case that F
is a standard log-normal distribution truncated from above at 2, and Vm = Vp.

The resulting graph is not much di�erent from that in Figure 5.

If Vp = � log(Vm), then Tm and Tp are negatively related. With F being unit

exponential truncated from above at 1, this case is in the domain of the more

general Proposition 4 in Appendix 2. As is to be expected, we �nd a positive e�ect

of tm on log �p(tjtm) (see Figure 8). We also �nd a positive interaction e�ect. This

means that in terms of these signs it cannot be distinguished from Case I with

Æ < 1 (see Figures 1 and 3). It can however be distinguished from Case I with

Æ > 1.

4 Inference of a causal e�ect

4.1 A graphical check

The results of the previous section enable the construction of an informal test on

a positive treatment e�ect. The basic procedure is as follows. First, choose some

large values of tm. Secondly, draw log �p(tjtm) as a function of t for each of these

values of tm. If the line is higher for the smaller tm (in particular at durations

t just below this tm) then this means that there is a positive treatment e�ect

and/or there are positively related unobserved determinants of Tm and Tp. If, in

addition to this, the lines diverge, then there must be a positive treatment e�ect.

If they converge then there must be positively related unobserved determinants. If
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they diverge then there may also be positively related unobserved determinants,

but the selection e�ect is dominated by the positive treatment e�ect. Similarly,

if the lines converge then there may also be a positive treatment e�ect but this

is dominated by the selection e�ect. If the lines are parallel then both e�ects are

present.

We now brie
y compare our method of inference to the di�erence-in-di�erences

method of inference on treatment e�ects in panel data. In both approaches, the

data and model have time dimensions, and the treatment e�ect works from a

speci�c point of time onwards, whereas the selection e�ect works at all points of

time in a more permanent way. In both approaches, the inference focuses on in-

teraction e�ects in the data, and one needs to make separability assumptions that

rule out certain interaction e�ects of the determinants of the individual outcome

of interest. In particular, in panel data models, additivity of the treatment e�ect,

the unobserved heterogeneity, and the residual error term in the individual out-

come equation is crucial. In our approach, additivity of the determinants of the

individual log outcome hazard rate log �m(tjtp; Vm) is crucial. These separability
assumptions at the individual level enable an empirical distinction between the

treatment e�ect, that works from a speci�c point of time, and the selection e�ect

that works at all points of time. Observed covariates do not play an important

role in either case.

However, our approach is more involved, for the reason that we essentially

only observe one outcome per individual (which implies that the composition in

terms of unobserved heterogeneity terms changes over time). As a result, we can-

not straightforwardly apply di�erence-in-di�erences. The individual-speci�c un-

observed heterogeneity terms cannot be treated as incidental parameters or �xed

e�ects but are treated as realizations of random variables, and our examination

of interaction e�ects involves a comparison over time of di�erent individuals. The

prices to be paid (relative to the panel data approach) are that the treatment as-

signment process has to be speci�ed, that we have to assume that the individual

treatment e�ect is constant after imposition, and that we are only able to make

inference on the sign of the treatment e�ect.

Nevertheless, our results highlight the usefulness of the information in the

timing of events to assess the treatment e�ect on a transition rate. This informa-

tion is discarded in a binary treatment framework. Intuitively, if treatment and

outcome are typically realized very quickly after each other, no matter what the

values of the other observed outcome determinants are, then this is evidence of

a positive causal treatment e�ect on the individual transition rate. The selection

e�ect does not give rise to the same type of quick succession of events.
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We now turn to some practical issues that arise when implementing our infor-

mal test. To plot the conditional log hazard rate log �p(tjtm) for given tm we have

to select the subsample of individuals with realization Tm = tm. In fact, to obtain

a positive subsample size, we have to select individuals with realizations in an

interval around tm, say (a; b). It is straightforward to nonparametrically estimate

and plot �p(tjtm) at values t < a. If b # a then this estimator converges to a

consistent estimator of the underlying hazard rate. Some care has to be taken

to estimate the terminal value limt"tm �p(tjtm), though. The observed empirical

equivalent of Pr(a � Tp < Tmja � Tm < b; Tp � a) = (b � a) is not a consistent

estimator of this, because, basically, it ignores the probability that the latent

variable Tp is realized in the interval (Tm; b). In fact, it can be shown that

lim
b#a

Pr(a � Tp < Tmja � Tm < b; Tp � a)

b� a
=

1

2
� �p(ajTm = a)

(this holds for any bivariate distribution). As a result, limt"tm �p(tjtm) can be

estimated by the observed empirical equivalent of 2 Pr(a � Tp < Tmja � Tm <

b; Tp � a)=(b�a). For sizeable intervals (a; b), and with relatively smooth duration

dependence, this may actually underestimate limt"tm �p(tjtm), for the reason that

most realizations of Tm and Tp are at the lower end of the interval.

This highlights the fact that the intervals for the values of tm should be small.

At the same time, it is useful to have large subsamples of individuals in a given

interval for tm, because that makes the plotted hazard rates less prone to sampling

error, By conditioning tm to be in a small time interval, we e�ectively consider a

small subsample. Note that, at the same time, the chosen values of tm should be

rather large.9 These demands can only be reconciled if the data set is very large.

4.2 Examples

In general, recipients of unemployment bene�ts have to comply with minimum

requirements concerning search behavior. Compliance is imperfectly monitored.

If violation of the search rules is detected, then a punitive sanction is imposed,

consisting of a bene�ts reduction, and entailing an increase of monitoring in the

9One may wonder whether a particular tm is suÆciently large. This can be investigated by

examining �m(tjTp = t)=�m(tjTp > t) as a function of t, which is directly estimable from the

raw data. In Case II, as t!1, this converges to a constant, and this re
ects the convergence

of the partial derivatives in Proposition 3. In Case I, �m(tjTp = t)=�m(tjTp > t) = Æ, which

is also constant. Somewhat loosely, one may therefore argue that tm is suÆciently large if the

plot of �m(tjTp = t)=�m(tjTp > t) as a function of t is 
at at t = tm.
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future. A sanction can thus be expected to a�ect the re-employment rate of the

individual. Abbring, Van den Berg and Van Ours (1997) and Van den Berg,

Van der Klaauw and Van Ours (2004) analyze the e�ect of, respectively, unem-

ployment insurance and welfare sanctions on re-employment rates by estimating

models that are extensions of the model in this paper.

In Abbring, Van den Berg and Van Ours (1997), the full sample of unemploy-

ment insurance recipients contains about 148,000 individuals. Only about 4300

of these are observed to receive a \sanction" treatment, while about 44% of the

spells are right-censored. It turns out that this sample is suÆciently large to con-

struct graphical checks that are robust with respect to the choice of (the intervals

of) the tm values. (The graphical analysis does not stratify on X.) The graphical

check provides strong evidence for the presence of a positive sanction e�ect on

the individual transition rate into employment.10 Estimation of the full bivariate

duration model results in an estimate of Æ that is signi�cantly larger than one

and in signi�cant positively related unobserved heterogeneity. The latter suggests

that both reasons for a positive relation between Tm and Tp given X are present,

and that the causal treatment e�ect dominates in the interaction e�ect of t and

tm in log �p(tjtm).
In Van den Berg, Van der Klaauw and Van Ours (2004), the full sample

of welfare recipients contains about 8,000 individuals. About 1100 of these are

observed to receive a \sanction" treatment, and about 60% of the spells are

right-censored. This sample is too limited to construct sensible graphical checks.

The plotted shapes of the hazard rates are erratic and strongly dependent on

the choice of (the intervals of) the tm values.11 The estimate of Æ obtained by

estimation of the full bivariate duration model is signi�cantly larger than one,

and there is signi�cant positively related unobserved heterogeneity. We tackle the

problems with small sample sizes in Subsection 4.3 below.

Richardson and Van den Berg (2002) study the e�ect of participation in a

vocational training program by unemployed workers on their transition rate to

work. Individuals spend on average 6 months in training. Presumably, job search

continues during the training. The data show that a large fraction of individuals

move to work in the days following exit from the training program. This can not

be captured by the model of Section 2. Whether one halts the time clock during

the training or not, the transition rate to work depends on the time since the

start of the treatment. If one halts the clock then the �gure produced by the

graphical check merely displays enormous peaks at the moment of exit to work.

10See Abbring, Van den Berg and Van Ours (1997) for the �gure.
11This is not discussed in Van den Berg, Van der Klaauw and Van Ours (2004).
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If one does not then then these peaks occur 6 months before exit to work. The

graphical check is better suited for situations in which the treatment is permanent

and the treatment is either instantaneous or is time consuming but takes place in

\quarantine" (i.e., all activities regarding the outcome of interest other than the

treatment are put on hold). However, it is not diÆcult to envisage modi�cations

of the graphical check that allow for a positive joint occurrence of treatment and

outcome and for a treatment e�ect that decreases as a function of the time since

treatment. We leave this for future work.

4.3 Estimation of an auxiliary duration model

To get around the practical problems of discretization and sample size require-

ments, one may formalize our preferred graphical procedure by estimating an

ad hoc descriptive speci�cation for �p(tjtm) and test the signs of the estimated

e�ects of t and tm (and their interaction) on log �p(tjtm). This way, we may simul-

taneously use the information on all individuals in the sample who are observed

to realize Tm, including those who are not observed to receive a treatment. In

addition, we may allow the parameters of the ad hoc speci�cation to depend on

X. The speci�cation is only relevant for Tp < tm.

For example, we may specify for t < tm that

�p(tjx; tm) = exp(x0�1 + �2 log tm) �(tm) t
�(tm)�1 (9)

with �(tm) = exp(�0 + �1 log tm)

It should be stressed that this speci�cation merely summarizes the data. The

parameters should not be given causal interpretations. Rather, they represent

patterns across individuals, between X and Tm on the one hand and Tp on the

other.

The above speci�cation is a univariate duration model, where the hazard

rate �p(tjtm) follows a Weibull speci�cation, with the duration dependence pa-

rameter � being dependent on the \explanatory" variable tm. It is straightfor-

ward to derive the likelihood function corresponding to i.i.d. observations of

TpjX = x; Tm = tm, where Tp may be right-censored. Note that the censoring

variable is the \explanatory" variable Tm. One may also restrict attention to

relatively large values of Tp (i.e. truncate Tp from below). The parameter es-

timates can be used to test the signs of the e�ects of t and tm. Notably, the

cross-derivative of log �p(tjtm) with respect to t and tm is positive (negative) if
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�1 > 0 (if �1 < 0).12

Note that we have thus e�ectively reduced the dimension of the duration

analysis from 2 (in the full model) to 1. Of course, the speci�cation (9) does not

follow from the full model. It is desirable that the sign of the probability limit of

the estimator of �1 equals the sign of the cross-derivative in the underlying full

model. We feel that the derivation of results on this is beyond the scope of the

paper.

We applied the above univariate approach to the data on sanctions of welfare

recipients. It turns out that �p(tjtm) is estimated to decrease with tm while the

estimate of �1 is insigni�cantly di�erent from zero.13 This implies that there

is a positive treatment e�ect as well as a positive selection e�ect, which is in

agreement to the estimates for the corresponding full bivariate model.

5 An alternative graphical check

We now discuss the extent to which �m(tjTp = tp) (or, in short-hand notation,

�m(tjtp)) can be used for an alternative graphical check on the treatment e�ect.

The idea is that the log of this hazard rate can be plotted for say two di�erent

values of tp, and that the resulting lines can be compared for t exceeding the

largest of the two values of tp. In fact, in Case II, the hazard rates �m(tjtp) and
�p(tjtm) are closely related. This is easy to see if Vm � Vp. For example, we then

have that

�p(tjtm;1)

�p(tjtm;2)
=

�m(tm;1jt)
�m(tm;2jt) and

@2 log �p(tjtm)
@t@tm

=
@2 log �m(tmjt)

@t@tm

for all possible realizations t; tm; tm;1; tm;2.
14

12One may of course adopt alternative speci�cations, like �p(tjx; tm) = exp(x0�1+�2 log tm+

�0 log t + �1(log t) � (log tm)), which is also a Weibull speci�cation. Here as well, the cross-

derivative is positive (negative) if �1 > 0 (if �1 < 0). More general speci�cations may allow the

cross-derivative to vary with t; tm and x in a 
exible way, but then the simplicity appeal of the

estimation procedure is lost.
13These results are not reported in Van den Berg, Van der Klaauw and Van Ours (2004).
14In fact, in Case II, the properties of the hazard rates are closely related to the properties of

�m(tjTp = tp)=�m(tjTp > t) as a function of t for di�erent tp. The latter is often used to study

the way in which the dependence of two duration variables changes over time if the dependence

runs by way of a common unobserved heterogeneity term (see e.g. Hougaard, Harvald and

Holm, 1992, and Yashin and Iachine, 1999). We conjecture that this can also be used for a

graphical check for our purposes, but we do not pursue this further.
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It is easy to show that with Vm � Vp in Case II, the hazard �m(tjtp) as seen
as a function of t is always higher for smaller tp. It can also be shown that in

Case I with Æ > 1, �m(tjtp) is always lower for smaller tp. The latter result can

be understood as follows: if there is a positive treatment e�ect at say tp = 1 then

the individuals with high values of Vm leave the state very quickly, so that the

survivors at say tp = 2 have smaller values of Vm than if the treatment would be

given at tp = 2. Note that in Case Ia, the hazard �m(tjtp) as a function of t on

(tp;1) does not depend on tp at all. If Vm 6= Vp in Case II then we have to focus

on high durations again.

This implies that a sensible check on the treatment e�ect can be based on

�m(tjtp), and, indeed, on the sign of the e�ect of tp on this hazard rate. There

are however a number of reasons to prefer the check based on �p(tjtm). Taken
in isolation, neither of these reasons may be suÆciently convincing, but taken

together we feel that they are.15 First of all, consider the result that �m(tjtp)
increases with tp in Case I with Æ > 1. The above-mentioned intuition behind it

makes clear that this is critically dependent on the proportionality of the treat-

ment e�ect and the unobserved heterogeneity term in the individual hazard rate

�m(tjtp; Vm). The shape of �p(tjtm) in Case I is likely to be less sensitive to this

assumption. For example, the sign results on �p(tjtm) in Case I do not depend

on whether there is unobserved heterogeneity or not, whereas the sign results on

�m(tjtp) in Case I do. Also, suppose that Æ is a not constant but instead decreases

slightly with the realization of Tp, while Æ(tp) > 1 everywhere. Then in Case Ia,

�m(tjtp) is always higher for smaller tp, so that the check based on �m(tjtp) leads
to the wrong conclusion, whereas the check based on �p(tjtm) does not.

Another reason concerns the fact that with �m(tjtp) it is diÆcult to distinguish

between Æ < 1 and positively related unobserved heterogeneity. In both of these

cases, log �m(tjtp) may be larger for small tp, and in both cases the interaction

term may be positive, so that the lines corresponding to di�erent tp converge

to each other. Yet another reason concerns the fact that the check based on

�p(tjtm) also detects a treatment e�ect in structural nested failure time models

(see Robins, 1998, and Keiding, 1999) whereas the check based on �m(tjtp) does
not. Structural nested failure time models are popular in biostatistics as a frame-

work to study the e�ect of treatments over time on duration variables. In our

terminology, it is assumed that Vp is degenerate, so that all systematic deter-

15One may wonder whether a graphical check based on �m(tjtp) can be designed for multiple-

spell data, using variation in tp across spells for given individuals. However, there is often

insuÆcient information for such a graphical approach. The partial likelihood approach in Ab-

bring and Van den Berg (2003) formalizes the underlying idea.
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minants of whether an individual gets a treatment at a duration tp are known.

This implies that selectivity due to related unobserved heterogeneity is absent.

The models do however allow for time-varying confounders, which are basically

time-varying explanatory variables for �m that may depend on the (moment of)

treatment.16

6 Conclusion

In this paper, we have developed a simple procedure to infer the presence of a

positive treatment e�ect on a transition rate. The procedure can be implemented

as a graphical check. In this check, one has to condition on the moment of exit

and examine what happens before that (rather than condition on the moment

of treatment and examines what happens after that). The check focuses on the

shape of the rate at which a treatment is given conditional on the moment of exit,

and as such it is easy to use. In practical cases where sample sizes are too small to

rely on the graphical check, it can be replaced by a formalized version in which the

key properties of the shape are represented by parameters in an ad hoc auxiliary

duration model. Our method demonstrates that variation in the duration until

treatment relative to the duration until the outcome of interest conveys useful

information on the causal treatment e�ect in the presence of selection e�ects. If

treatment and outcome are typically realized very quickly after each other, no

matter what the values of the other outcome determinants are, then this is taken

as evidence of a positive causal treatment e�ect. The selection e�ect does not

give rise to the same type of quick succession of events.

Some topics for further research remain. The results on the graphical pro-

cedure are derived conditional on the assumption that the treatment e�ect, the

unobserved heterogeneity term, and the duration dependence term act multi-

plicatively on the hazard rates. Concerning the unobserved heterogeneity term,

16Yet another reason for preferring the check based on �p(tjtm) follows from the fact that

we need the durations tm and/or tp to be large. Consider again for convenience the special

case that Vm � Vp. Both in �p(tpjtm) and in �m(tmjtp) the relevant unobserved heterogeneity

distribution is a�ected by a multiplicative term exp(�(�m(tm) + �p(tp))v) (this can be seen

from equation (7) for �p(tjtm)), and from Appendix 2 it follows that �m(tm) +�p(tp) needs to

be large. Typically, in practical applications, �m(t) >> �p(t) for all suÆciently large t. Also,

in practice, both Tm and Tp are right-censored at a common value, say T . Suppose that T is

suÆciently large for the \large duration approximation" to be valid at some points tm; tp < T .

We may plot �p(tjtm) for a few tm just below T , and the resulting lines may be compared in an

interval for t. We may also plot �m(tjtp) for a few tp below T , but the interval in which these

lines may be compared is much smaller, which is unattractive.
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this is essential for reasons of tractability, as this allows us to rely on the pow-

erful Laplace transformation theory. The proportionality of the treatment e�ect

and the duration dependence term may however be violated in practice, and it

remains to be seen to what extent our results are robust with respect to this.
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Appendix

Appendix 1 Results for Case I: pure treatment e�ect

Appendix 1.1 Characterization of the data

The results in Appendix 1.1 apply to all Cases. By analogy to Tsiatis (1975), it is not diÆcult to

see that the observed joint distribution of Tm; I(Tm > Tp); and Tp � I(Tm > Tp) is characterized

by the functions

Qm (t) := Pr (Tm > t; Tp > Tm) and (10)

Qp (t; tp) := Pr (Tm > t; Tp > tp; Tm > Tp) : (11)

(see also Lancaster, 1990).

By di�erentiation of (10) and (11) we obtain, in notation to be explained below,

@Qm (t)

@t
= �m (t) � L

(m)
G (�m (t) ;�p (t)) (12)

and

@Qp (t; tp)

@tp
= �p (tp) � L

(p)
G ([�m (tp) + � (tjtp; x)] ;�p (tp)) ; (13)

for t; tp 2 (0;1) and tp < t. LG is the bivariate Laplace transform of G,

LG(sm; sp) :=

Z 1

0

Z 1

0

exp(�smvm � spvp)dG(vm; vp)

and L
(i)
G (sm; sp) (i = m; p) is the partial derivative of LG(sm; sp) with respect to si.

Appendix 1.2 Proof of Proposition 1

Expressions for �p(tjtm).

Note that G(vm; vp) = Gm(vm)Gp(vp) implies that L(s; t) = Lm(s)Lp(t), where Lm and Lp
are the Laplace transforms of respectively Gm and Gp. Let MÆ(t; tm) := �m(t) + �(tm; t) =

(1� Æ)�m(t) + Æ�m(tm). De�ne the following notational short hands:

MÆ := MÆ(t; tm) or MÆ(z; tm);

�p := �p(t) or �p(z);

�m := �m(tm);

Lm := Lm(MÆ); and

Lp := Lp(�p);

where the argument is z (instead of t) if and only if the function is part of the integrand, and

integration is with respect to dz. We also use the same short hands for derivatives of Lm and

Lp, in obvious notation.
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We can express �p(tjtm) in terms of the probability function Qp de�ned in Appendix 1.1,

�p(tjtm) = �
@

@t
log

�
�
@Qp(tm; t)

@tm

�

=
@2Qp(tm; t)=@tm@t

�@Qp(tm; t)=@tm
;

(14)

for t < tm. An explicit expression for the numerator of this is easily found by taking the

derivative of equation (13) with respect to tm, which gives (under Case I),

@2Qp(tm; t)

@tm@t
= Æ�m(tm)�p(t)L

0
m[MÆ(t; tm)]L

0
p[�p(t)]; (15)

for t < tm. For t � tm the joint density of T := Tp and Tm at (t; tm) is given by

�m(tm)�p(t)L
0
m[�m(tm)]L

0
p[�p(t)];

so the denominator of (14) is given by

�
@Qp(tm; t)

@tm
=

Z 1

t

@2Qp(tm; z)

@tm@z
dz

=

Z tm

t

Æ�m(tm)�p(z)L
0
m[MÆ(z; tm)]L

0
p[�p(z)]dz

+

Z 1

tm

�m(tm)�p(z)L
0
m[�m(tm)]L

0
p[�p(z)]dz

=

Z tm

t

Æ�m(tm)�p(z)L
0
m[MÆ(z; tm)]L

0
p[�p(z)]dz

� �m(tm)L
0
m[�m(tm)]Lp[�p(tm)];

(16)

for t < tm. Here, we have used that limt!1 �p(t) =1. Dropping �m(tm) from both (15) and

(16) gives

�p(tjtm) =
Æ�p(t)L

0
mL

0
pR tm

t
Æ�p(z)L0mL

0
pdz �L0m[�m(tm)]Lp[�p(tm)]

; (17)

for t < tm. Note that the denominator in (17) is positive due to the fact that derivatives of

Laplace transforms are negative.

Expressions for @ log �p(tjtm)=@t.

First note that @MÆ(t; tm)=@t = (1� Æ)�m(t). The derivative of the log numerator in equation

(17) is

@

@t
log

�
�m(tm)

�1 @
2Qp(tm; t)

@tm@t

�
=

�0p(t)

�p(t)
+ (1� Æ)�m(t)

L00m[MÆ(t; tm)]

L0m[MÆ(t; tm)]
+ �p(t)

L00p [�p(t)]

L0m[�p(t)]
:

(18)

The derivative of the log denominator in equation (17) is

@

@t
log

�
��m(tm)

�1 @Qp(tm; t)

@tm

�
= ��p(tjtm): (19)
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Subtracting (19) from (18) gives

@ log �p(tjtm)

@t
=

�0p(t)

�p(t)
+ (Æ � 1)�m(t)

L00m
�L0m

� �p(t)
L00p
�L0p

+ �p(tjtm); (20)

for t < tm. The second term is positive (negative) if Æ > 1 (Æ < 1). The �rst term on the

r.h.s. represents individual duration dependence in �p, and could be either positive or negative,

independent of Æ. Also, the combined e�ect of the last two terms does not necessarily have the

sign of Æ � 1.

Using limt"tm MÆ(t; tm) = �m(tm) and limt"tm �p(tjtm) = �Æ�p(tm)� L
0
p[�p(tm)]=Lp[�p(tm)]

gives

lim
t"tm

@ log �p(tjtm)

@t
=

�0p(tm)

�p(tm)
� Æ�p(tm)

�
L00p [�p(tm)]

�L0p[�p(tm)]
�
�L0p[�p(tm)]

Lp[�p(tm)]

�

+ (Æ � 1)

�
�m(tm)

L00m[�m(tm)]

�L0m[�m(tm)]
+ �p(tm)

L00p [�p(tm)]

�L0p[�p(tm)]

�
;

(21)

but the ambiguity does not disappear. The third term in the right hand side of (21) has the

same sign as Æ�1. However, the �rst term shows that any increase (decrease) in �p(tjtm) near tm
could be due to positive (negative) duration dependence of �p(t). Furthermore, the second term

is (strictly) negative if Gp is not degenerate. This is the observed duration dependence caused

by heterogeneity: the expected value of Vp conditional on survival up to time t is decreasing in

t.

Let 0 < t0m < tm. Then it follows from (20) and (21) that

lim
t"t0m

�
@ log �p(tjtm)

@t
�
@ log �p(tjt

0
m)

@t

�
=

(1� Æ)�m(t
0
m)

�
L00m[�m(t

0
m)]

�L0m[�m(t0m)]
�

L00m[MÆ(t
0
m; tm)]

�L0m[MÆ(t0m; tm)]

�
+ �p(t

0
mjtm)� lim

t"t0m
�p(tjt

0
m);

(22)

for 0 < t0m < tm. Note that @MÆ(t; tm)=@tm = Æ�m(tm) > 0 implies thatMÆ(t; tm) > MÆ(t; t) =

�m(t) for all Æ > 0 and 0 < t < tm. Also, note that @[L00(s)=L0(s)]=@s = L000(s)=L0(s) �

[L00(s)=L0(s)]2 � 0 if L is a Laplace transform. Using these results, it can easily been seen that

the �rst term on the r.h.s. of (22) has the sign of 1� Æ. Next, let

DÆ(t
0
m; tm) :=�L0m[MÆ(t

0
m; tm)]Lp[�p(t

0
m)]

�

Z tm

t0m

Æ�p(z)L
0
mL

0
pdz + L0m[�m(tm)]Lp[�p(tm)]:

(23)

and note that

lim
t"t0m

�p(tjt
0
m) = Æ�p(t

0
m)
�L0p[�p(t

0
m)]

Lp[�p(t0m)]
: (24)

31



Then, the remaining terms in the r.h.s. of (22) satisfy

�p(t
0
mjtm)� lim

t"t0m
�p(tjt

0
m) =Æ�p(t

0
m)
�L0p[�p(t

0
m)]

Lp[�p(t0m)]
�

DÆ(t
0
m; tm)R tm

t0m
Æ�p(z)L0mL

0
pdz �L0m[�m(tm)]Lp[�p(tm)]

:

We now show that DÆ has the sign of 1� Æ.

Lemma 1. Under Case I,

DÆ(t
0
m; tm)

8><
>:

> 0 if Æ < 1

= 0 if Æ = 1

< 0 if Æ > 1

for all 0 < t0m < tm.

Proof. The integral in DÆ can be expanded by partial integration toZ tm

t0m

Æ�p(z)L
0
m[MÆ(z; tm)]L

0
p[�p(z)]dz

= Æ

"
L0m[MÆ(z; tm)]Lp[�p(z)]

#tm
t0m

�

Z tm

t0m

Æ(1� Æ)�m(z)L
00
m[MÆ(z; tm)]Lp[�p(z)]dz

= Æ

(
L0m[�m(tm)]Lp[�p(tm)]�L0m[MÆ(t

0
m; tm)]Lp[�p(t

0
m)]

)

�

Z tm

t0m

Æ(1� Æ)�m(z)L
00
m[MÆ(z; tm)]Lp[�p(z)]dz:

(25)

Substituting (25) in (23) gives

DÆ(t
0
m; tm) =(1� Æ)

(
�L0m[MÆ(t

0
m; tm)]Lp[�p(t

0
m)] + L0m[�m(tm)]Lp[�p(tm)]

+

Z tm

t0m

Æ�m(z)L
00
m[MÆ(z; tm)]Lp[�p(z)]dz:

) (26)

Note that @MÆ(t; tm)=@t = (1� Æ)�m(t) implies that MÆ(t
0
m; tm) < MÆ(tm; tm) = �m(tm), and

therefore that the term between brackets in (26) is positive, for all Æ < 1 and 0 < t0m < tm. So,

for Æ � 1 it is immediately clear that DÆ has the sign of 1� Æ, and it only remains to be shown

that the term between brackets is also positive for Æ > 1. If Æ > 1, we can bound this term from
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below by

�L0m[MÆ(t
0
m; tm)]Lp[�p(t

0
m)] + L0m[�m(tm)]Lp[�p(tm)]

+

Z tm

t0m

Æ�m(z)L
00
m[MÆ(z; tm)]Lp[�p(z)]dz

� �L0m[MÆ(t
0
m; tm)]Lp[�p(tm)] + L0m[�m(tm)]Lp[�p(tm)]

+

Z tm

t0m

Æ�m(z)L
00
m[MÆ(z; tm)]Lp[�p(tm)]dz

= �L0m[MÆ(t
0
m; tm)]Lp[�p(tm)] + L0m[�m(tm)]Lp[�p(tm)]

�
Æ

Æ � 1
Lp[�p(tm)] fL

0
m[�m(tm)]�L0m[MÆ(t

0
m; tm)]g

=
1

Æ � 1
Lp[�p(tm)]

(
�L0m[�m(tm)] + L0m[MÆ(t

0
m; tm)]

)
� 0;

where the last inequality follows from the fact that MÆ(t
0
m; tm) > MÆ(tm; tm) = �m(tm) if

Æ > 1.

As a result, �p(t
0
mjtm)� limt"t0m

�p(tjt
0
m) also has the sign of 1�Æ, and the whole expression

in (22) has the sign of 1 � Æ. In sum, if Æ > 1 (Æ < 1) then log �p(tjt
0
m) increases (decreases)

relative to log �p(tjtm), for t near t
0
m and all 0 < t0m < tm.

Now let us turn to the e�ect of tm on the level of �p(tjtm). Lemma 1 is also of direct use

here. Evaluating (17) at t = t0m, dividing by (24), and taking logs gives

lim
t"t0m

log

�
�p(tjtm)

�p(tjt0m)

�
=� log

(Z tm

t0m

Æ�p(z)L
0
mL

0
pdz �L0m[�m(tm)]Lp[�p(tm)]

)

+ log f�L0m[MÆ(t
0
m; tm)]Lp[�p(t

0
m)]g :

(27)

Clearly, limt"t0m log [�p(tjtm)=�p(tjt
0
m)] has the same sign as DÆ(t

0
m; tm) and thus, by Lemma 1,

as 1� Æ.

This proves Proposition 1.

Appendix 1.3 Additional results for Case I

Expressions for @ log �p(tjtm)=@tm.

Note that @MÆ(t; tm)=@tm = Æ�m(tm), MÆ(t; t) = �m(t), and

@

@tm

�
��m(tm)

�1 @Qp(tm; t)

@tm

�
=

(Æ � 1)�p(tm)L
0
m[�m(tm)]L

0
p[�p(tm)]

+

Z tm

t

Æ2�p(z)�m(tm)L
00
m[MÆ(z; tm)]L

0
p[�p(z)]dz

� �m(tm)L
00
m[�m(tm)]Lp[�p(tm)]:

(28)

The derivative of the log denominator in (17) is given by

@

@tm
log

�
�m(tm)

�1 @
2Qp(tm; t)

@tm@t

�
= Æ�m(tm)

L00m[MÆ(t; tm)]

L0m[MÆ(t; tm)]
(29)
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The derivative of (17) with respect to tm is then given by

@ log �p(tjtm)

@tm
=

@

@tm
log

�
�m(tm)

�1 @
2Qp(tm; t)

@tm@t

�
�

@

@tm

"
��m(tm)

�1
@Qp(tm; t)

@tm

#
"
��m(tm)�1

@Qp(tm; t)

@tm

# (30)

To evaluate the sign of this derivative, we multiply (30) with the positive numerator�
��m(tm)

�1@Qp(tm; t)=@tm
�
, which gives�

��m(tm)
�1 @Qp(tm; t)

@tm

�
@ log �p(tjtm)

@tm
=

(1� Æ)�p(tm)L
0
m[�m(tm)]L

0
p[�p(tm)] + Æ2�m(tm)�Z tm

t

�p(z)L
0
p[�p(z)]L

0
m[MÆ(z; tm)]

�
L00m[MÆ(t; tm)]

L0m[MÆ(t; tm)]
�
L00m[MÆ(z; tm)]

L0m[MÆ(z; tm)]

�
dz

� �m(tm)Lp[�p(tm)]L
0
m[�m(tm)]

�
Æ
L00m[MÆ(t; tm)]

L0m[MÆ(t; tm)]
�
L00m[�m(tm)]

L0m[�m(tm)]

�
:

(31)

Recall that @MÆ(t; tm)=@t = (1 � Æ)�m(t) implies that MÆ(t; tm) > MÆ(z; tm) if Æ > 1 and

MÆ(t; tm) < MÆ(z; tm) if Æ < 1, for t < z � tm. In particular,MÆ(t; tm) > MÆ(tm; tm) = �m(tm)

if Æ > 1 and MÆ(t; tm) < �m(tm) if Æ < 1, for t < tm. Also, note that @[L00(s)=L0(s)]=@s =

L000(s)=L0(s) � [L00(s)=L0(s)]2 � 0 if L is a Laplace transform. Collecting these results, it is

clear that the term between brackets in the integrand of the second term on the r.h.s. has the

same sign as Æ�1. Again, this causes ambiguity, as the �rst term in the r.h.s. has the sign of 1�Æ.

Expressions for @2 log �p(tjtm)=@t@tm.

The cross-derivative of log �p(tjtm) is given by

@2 log �p(tjtm)

@t@tm
=Æ(1� Æ)�m(t)�m(tm)

(
L000m[MÆ(t; tm]

L0m[MÆ(t; tm]
�

�
L00m[MÆ(t; tm]

L0m[MÆ(t; tm]

�2
)

+
@�p(tjtm)

@tm
:

(32)

The �rst term in the r.h.s. of (32) has the sign of 1 � Æ, but the second term has the sign of

@ log �p(tjtm)=@tm, which we cannot sign unambiguously, as argued before.

An example.

Let Æ = 1=2, �m(t) � 1 and �p(t) � 1. Furthermore, let Gm be discrete with support f1; 2g

and Pr(Vm = 1) = Pr(Vm = 2) = 1=2, and let Gp be degenerate at 1. Then, Lm(s) =

[exp(�s) + exp(�2s)]=2, Lp(s) = exp(�s), and �m(t) = �p(t) = t. For simplicity we give

results for t # 0. It can be shown that the numerator and denominator of �p(tjtm) satisfy

� lim
t#0

�m(tm)
�1 @Qp(tm; t)

@tm
=

4 exp(�2tm) + 9 exp(�3tm) + 2 exp(�tm=2) + 3 exp(�tm)

12
; (33)

and

lim
t#0

�m(tm)
�1 @

2Qp(tm; t)

@tm@t
=

exp(�tm=2) + 2 exp(�tm)

4
; (34)
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respectively. Dividing (34) by (33) gives

�p(0 + jtm) =
3 exp(5tm=2) + 6 exp(2tm)

4 exp(tm) + 9 + 2 exp(5tm=2) + 3 exp(2tm)
: (35)

Note that limtm#0 �p(0+; tm) = 1=2 and limtm!1 �p(0+; tm) = 3=2. As a function of tm,

limt#0 �p(tjtm) is increasing for small tm and decreasing for large tm. This can also be learned

directly from the fact that, for t # 0, the expression in (31) equals

(
[24 exp(tm=2) + 48] [exp(�tm=2) + 2 exp(�tm)]

)�1

�

"
12 exp(�2tm) + 40 exp(�5tm=2)+

77 exp(�3tm) + 162 exp(�7tm=2) + 144 exp(�4tm)� exp(�tm)� 2 exp(�3tm=2)

#

in this case. Multiplying with (33) gives

@ log �p(0 + jtm)

@tm
=

12 exp(tm) + 40 exp(tm=2) + 77 + 162 exp(�tm=2) + 144 exp(�tm)� exp(2tm)� 2 exp(3tm=2)

[2 exp(tm=2) + 4] [exp(�tm=2) + 2 exp(�tm)] [4 exp(tm) + 9 + 2 exp(5tm=2) + 3 exp(2tm)]
:

(36)

Now note that limtm#0 �p(0+; tm) = 4=3 and limtm!1 exp(tm=2)�p(0+; tm) = �1=4. So, �p(0+; tm)

is positive near 0 and negative for suÆciently large tm. More precisely, exp(tm=2)�p(0+; tm) is

monotonically decreasing from 4=3 at 0 to �1=4 at in�nity. So, we can conclude that we get

ambiguous results on the sign of @ log �p(tjtm)=@tm for �xed Æ < 1.

It is easy to extend this example to @2 log �p(tjtm)=@t@tm by noting that the second term

in the r.h.s. of (32) equals �p(tjtm)@ log[�p(tjtm)]=@tm. As �p(0+; tm) is positive and has a �nite

limit as tm ! 1, for t # 0 this term behaves much like @ log[�p(0 + jtm)]=@tm. The �rst term

on the r.h.s. of (32) has the sign of 1 � Æ, but can be suppressed for t # 0 by changing �p in

a neighborhood of 0 such that �p(0+) = 0. The e�ects of this change on the results for the

second term can be made arbitrarily small by changing �p on a suÆciently small neighborhood

of 0. Concluding, the �rst term can be made to vanish without changing much of the results

concerning the second term, for t # 0, and the ambiguity result concerning the �rst derivative

carries over to the cross-derivative. A speci�c example that produces the desired ambiguity in

both derivatives is the example above with �p(t) = 1=10 for t < 1 and �p(t) = 1 for t � 1.

Appendix 1.4 Proof of Proposition 2

If Gm is degenerate, say at 1, then L
(i)
m (s) = (�1)i exp(�s). This implies that L00m(s)=L

0
m(s) =

�1, and is independent of s. Therefore, the second term in the r.h.s. of (31) vanishes, and

the third term reduces to �(1 � Æ)Lp[�p(tm)]L
0
m[�m(tm)], which carries the sign of 1 � Æ.

Therefore, @ log �p(tjtm)=@tm has the sign of 1�Æ, which proves the �rst assertion in Proposition

2. The proof of the second assertion easily follows from the observation that L000m(s)=L
0
m(s) �

[L00m(s)=L
0
m(s)]

2 = 0 for all s, as Gm is degenerate. Substitution in equation (32) shows that

@2 log �p(tjtm)=@t@tm = @�p(tjtm)=@tm, which has the same sign as @ log �p(tjtm)=@tm.
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Appendix 2 Proofs for Case II: pure selection

In this appendix we analyze a generalized version of Case II, denoted by Case IIa (recall that

Case Ia is actually a more restrictive version of Case I).

Appendix 2.1 De�nition of the more general Case IIa

Case IIa: Æ � 1. Furthermore, the joint distribution G of (Vm; Vp) is such that Vp = h(Vm) for

some nonnegative h which is regularly varying at 0 with exponent � � 0,

h(v)
v#0
� v�M(v);

where M is an arbitrary function that is slowly varying at 0. The random variable Vm has a

distribution function F concentrated on (0;1). We denote Ft to be the class of (improper)

distribution functions that satisfy dFt(v) := exp[��p(t)h(v)]dF (v). We assume that the model

determinants are such that Ft satis�es either one of the following conditions.

(i). Ft is absolutely continuous with density ft. Let t � 0 be given. Then, ft is regularly

varying at 0 with exponent �1 < �t <1, or

ft(v)
v#0
� v�tLt(v);

where Lt is slowly varying at 0.

(ii). Ft is in�nitely discrete, i.e. concentrated on a countable subset S � (0;1), with dense

support near 0. Denote the elements of S by the sequence v0 > v1 > v2 > � � � > 0, and

let17

dFt(v) =

(
pkjt if v = vk; k = 0; 1; 2; � � �

0 elsewhere

for some 0 < pkjt < 1, k = 0; 1; 2; � � � . Let t � 0 be given. Then, pk is regularly varying

at in�nity with exponent �1 < ��t < �1, or

pkjt
k!1
� k��tLt(k);

where Lt is slowly varying at 1. Furthermore, vk is regularly varying at in�nity with

exponent �1 < �� < 0, or

vk
k!1
� k��L(k);

where L is slowly varying at in�nity.

(which is where the de�nition of Case IIa ends.) In the proofs, we focus on continuous dis-

tributions of type (i). Discrete distributions of type (ii) can basically be treated in the same

way.

17Note that we are focusing on the behavior of Ft near 0, and that the restriction to a support

bounded from above by v0 is immaterial and only made for notational convenience.
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Appendix 2.2 Proof for Case IIa and Proof of Proposition 3

It can easily be shown that, in the notation introduced in Appendix 1.1,

�p(tjtm) = ��p(t)
L
(m;p)
G [�m(tm);�p(t)]

L
(m)
G [�m(tm);�p(t)]

; (37)

where

L
(mi;pj)
G (s; t) :=

@i+jLG(s; t)

@si@tj

denotes the (i; j)-th cross-derivative of LG. Note that these exist for all t; tm > 0. Taking the

derivatives to tm and then to t of (37) in logs gives

@ log �p(tjtm)

@tm
= �m(tm)

"
L
(m2;p)
G [�m(tm);�p(t)]

L
(m;p)
G [�m(tm);�p(t)]

�
L
(m2)
G [�m(tm);�p(t)]

L
(m)
G [�m(tm);�p(t)]

#
(38)

and

@2 log �p(tjtm)

@t@tm
= �p(t)�m(tm)� (39)"

L
(m2)
G (�)L

(m;p)
G (�)

L
(m)
G (�)2

�
L
(m2;p)
G (�)

L
(m)
G (�)

+
L
(m2;p2)
G (�)

L
(m;p)
G (�)

�
L
(m2;p)
G (�)L

(m;p2)
G (�)

L
(m;p)
G (�)2

#
:

It will prove useful to rewrite equations (37), (38) and (39) in terms of the conditional moments

�i;j := E[V i
mV

j
p jTm � tm; Tp � t], which are given by

�i;j(tm; t) = (�1)i+j
L
(mi;pj)
G [�m(tm);�p(t)]

LG[�m(tm);�p(t)]
:

Also, using the normalized moments


i;j(tm; t) :=
�i;j(tm; t)

�1;0(tm; t)i�0;1(tm; t)j

we can write

�p(tjtm) = �p(t)�0;1(tm; t)
1;1(tm; t); (40)

@ log �p(tjtm)

@tm
= �m(tm)�1;0(tm; t)

�

2;0(tm; t)�


2;1(tm; t)


1;1(tm; t)

�
(41)

and

@2 log �p(tjtm)

@t@tm
= �p(t)�m(tm)�1;0(tm; t)�0;1(tm; t)��


2;0(tm; t)
1;1(tm; t)� 
2;1(tm; t) +

2;2(tm; t)


1;1(tm; t)
�

2;1(tm; t)
1;2(tm; t)


1;1(tm; t)2

�
:

(42)

We now present some lemmas that are used in proving the results for the absolutely con-

tinuous version of Case IIa. First, we need two results from the theory of regular variation. The

�rst lemma mirrors part of the lemma from Feller (1971), Section VIII.9.
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Lemma 2. Let L > 0 vary slowly at 0. Then, for i > �1,
R v
0 �iL(�)d� varies regularly at 0

with exponent i+ 1.

Proof. De�ne Fi(v) :=
R v
0
�iL(�)d�. As L is slowly varying, for each � > 0 and � > 0, (1 �

�)L(v) < L(�v) < (1 + �)L(v) for all suÆciently small v. Therefore,

(1� �)�i+1Fi(v) � Fi(�v) � (1 + �)�i+1Fi(v) (43)

for all suÆciently small v. Note that from (43) it is clear that Fi converges for v # 0 for all

i > �1. Dividing (43) by Fi(v) gives

(1� �)�i+1 �
Fi(�v)

Fi(v)
� (1 + �)�i+1:

Because this is true for arbitrary � > 0 the claimed result follows.

Next, let F be a distribution function and let Ft denote a class of (improper) distribution

functions such that dFt(v) := exp[��p(t)h(v)]dF (v). Let Fi;j(vjt) :=
R v
0 �ih(�)jdFt(�), and

assume that Ft is absolutely continuous with density ft. By analogy to Feller (1971), Section

VIII.9, Theorem 1,

Lemma 3. Let t > 0 be given. If Lt > 0 and M > 0 are slowly varying at 0, �1 < �t < 1,

0 � � <1, ft(v)
v#0
� v�tLt(v), and h(v)

v#0
� v�M(v), then

Fi;j(vjt)
v#0
� v�t+1+i+�j Lt(v)M(v)j

�t + 1 + i+ �j
; for �t + 1 + i+ �j > 0:

Proof. Let Z(v) be such that

Z(v)

v
=

vih(v)jft(v)

Fi;j(vjt)
: (44)

As ft varies regularly with exponent �t, h(v) varies regularly with exponent � , and �t+1+ i+

�j > 0, vih(v)jft(v) varies regularly with exponent �t + i+ �j, and, by Lemma 2, Fi;j varies

regularly with exponent �t + 1 + i+ �j. Therefore, Z(v)=v varies regularly with exponent �1,

and Z(v) is slowly varying at 0. As the numerator in the r.h.s. of (44) is almost everywhere the

derivative of the denominator, we can integrate between v and �v, which gives

log
Fi;j(�vjt)

Fi;j(vjt)
=

Z �v

v

Z(�)

�
d�

=

Z �

1

Z(�v)

�
d�

= Z(v)

Z �

1

Z(�v)

Z(v)

1

�
d�:

(45)

Due to regular variation, the l.h.s. of (45) tends to (�t+1+ i+ �j) log� if v # 0. Let v # 0 such

that the integral in the last line converges to a limit l � 1. Because Z is slowly varying, the

integrand in the last line converges to ��1 if v # 0. Therefore, by Fatou's Lemma, l � log�. This

implies that Z(v)! m if v # 0, where m � �t+1+ i+�j <1. Therefore, Z is bounded near 0,

and limv#0 Z(�v) = m for all �. As the integrand in the second line is bounded for suÆciently

small v, limv#0

R �
1
[Z(�v)=�]d� = m log�, and therefore m = �t + 1 + i + �j. Combining with

(44) gives the desired result.
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Without proof we state the following well known Abelian theorem (see e.g. Feller, 1971, Section

XIII.5, Theorem 3).

Lemma 4. If L is slowly varying at 0 and 0 � � <1, then H(v)
v#0
� v�L(v) implies LH(s)

s!1
�

�(�+ 1)s��L(1=s).

We can apply this to Fi;j .

Lemma 5. Let t > 0 be given. If Lt > 0 and M > 0 are slowly varying at 0, �1 < �t < 1,

0 � � <1, ft(v)
v#0
� v�tLt(v), and h(v)

v#0
� v�M(v), then

LFi;j jt[�m(tm)]
tm!1
� �(�t + 2 + i+ �j)�m(tm)

�(�t+1+i+�j) �

Lt[�m(tm)
�1]M [�m(tm)

�1]j

�t + 1 + i+ �j
;

where LFi;j jt is the Laplace transform of Fi;j(vjt).

Proof. This is a direct consequence of Lemmas 3 and 4.

As a result of this lemma, we have

Lemma 6. Let t > 0 be given. If Lt > 0 and M > 0 are slowly varying at 0, �1 < �t < 1,

0 � � <1, ft(v)
v#0
� v�tLt(v), and h(v)

v#0
� v�M(v), then

�i;j(tm; t)
tm!1
�

�(�t + 1 + i+ �j)

�(�t + 1)
�m(tm)

�(i+�j)M [�m(tm)
�1]j ;

and therefore


i;j(1; t) := lim
tm!1


i;j(tm; t) =
�(�t + 1 + i+ �j)

(� + 1)i�(�t + 1)

�
�(�t + 1)

�(�t + 1 + �)

�j

:

Proof. Follows directly from Lemma 5.

We are now in a position to prove

Proposition 4. In Case IIa, with a non-degenerate F , there holds for each t > 0 that

lim
tm!1

�m(tm)

�m(tm)

@ log �p(tjtm)

@tm
= �� � 0;

and

lim
tm!1

�m(tm)
�+1

�m(tm)M [�m(tm)�1]

@2 log �p(tjtm)

@t@tm
=

��p(t)

�
�(�t + 2 + 2�)

�(�t + 2+ �)
�
�(�t + 2 + �)

�(�t + 2)

� (
> 0 if � > 0

= 0 if � = 0

Proof. Follows directly from Lemma 6. The last assertion follows from log-convexity of the

Gamma function.

Finally, note that in Case II, h(v) = v� , so that Case II is the special case of Case IIa with

M(v) = 1, �t = � and Lt(v) = exp[��p(t)v
� ]L(v).18 It is easy to check that Proposition 4

reduces to Proposition 3 under these restrictions, which proves Proposition 3.

18We could also simply take Lt(v) = L(v) if � > 0, and Lt(v) = exp[��p(t)]L(v) if � = 0.

39



Figure 1: log �p(tjtm) for various values of tm (Case I: Æ = 0:8; Gm and Gp degen-

erate at 1)

Note: Each curve corresponds to a tm equal to the largest value of t for which it is drawn.

Figure 2: log �p(tjtm) for various values of tm (Case I: Æ = 1:2; Gm and Gp degen-

erate at 1)

Note: Each curve corresponds to a tm equal to the largest value of t for which it is drawn.
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Figure 3: log �p(tjtm) for various values of tm (Case I: Æ = 0:8; Gm and Gp unit

exponential)

Note: Each curve corresponds to a tm equal to the largest value of t for which it is drawn.

Figure 4: log �p(tjtm) for various values of tm (Case I: Æ = 1:2; Gm and Gp unit

exponential)

Note: Each curve corresponds to a tm equal to the largest value of t for which it is drawn.
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Figure 5: log �p(tjtm) for various values of tm (Case II: f(v) = exp(�v); Vp = Vm)

Note: Each curve corresponds to a tm equal to the largest value of t for which it is drawn.

Figure 6: log �p(tjtm) for various values of tm (Case II: f(v) = 11v10; Vp = Vm)

Note: Each curve corresponds to a tm equal to the largest value of t for which it is drawn.
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Figure 7: log �p(tjtm) for various values of tm (Case II: f(v) / exp(�(log v)2=2)=v;
Vp = Vm; 0 < v < 2)

Note: Each curve corresponds to a tm equal to the largest value of t for which it is drawn.

Figure 8: log �p(tjtm) for various values of tm (Case II: f(v) / exp(�v); Vp =

� logVm; 0 < v < 1)

Note: Each curve corresponds to a tm equal to the largest value of t for which it is drawn.
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