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ABSTRACT 
 

Robust Confidence Intervals for Average Treatment Effects 
under Limited Overlap* 

 
Estimators of average treatment effects under unconfounded treatment assignment are 
known to become rather imprecise if there is limited overlap in the covariate distributions 
between the treatment groups. But such limited overlap can also have a detrimental effect on 
inference, and lead for example to highly distorted confidence intervals. This paper shows 
that this is because the coverage error of traditional confidence intervals is not so much 
driven by the total sample size, but by the number of observations in the areas of limited 
overlap. At least some of these “local sample sizes” are often very small in applications, up to 
the point where distributional approximation derived from the Central Limit Theorem become 
unreliable. Building on this observation, the paper proposes two new robust confidence 
intervals that are extensions of classical approaches to small sample inference. It shows that 
these approaches are easy to implement, and have superior theoretical and practical 
properties relative to standard methods in empirically relevant settings. They should thus be 
useful for practitioners. 
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1. Introduction

There are many empirical studies in economics whose goal it is to assess the effect of a binary

treatment, such as the participation in an active labor market program, on some outcome

of interest. The main empirical challenge in such studies is that differences in the outcomes

of treated and non-treated units may not only be caused by the treatment, but can also

be due to selection effects. Following the seminal work of Rubin (1974) and Rosenbaum

and Rubin (1983), one important strand of the program evaluation literature addresses this

issue by imposing the assumption that the treatment is unconfounded. This means that

the selection into the treatment is modeled as being independent of the potential outcomes

if certain observable covariates are held constant. A large number of estimators of average

treatment effects that exploit this structure have been proposed in the literature, and these

procedures have become increasingly popular in applications. See, among others, Hahn

(1998), Heckman, Ichimura, and Todd (1998), Hirano, Imbens, and Ridder (2003), Abadie

and Imbens (2006), Imbens, Newey, and Ridder (2007) or Chen, Hong, and Tarozzi (2008);

and Imbens (2004) or Imbens and Wooldridge (2009) for comprehensive surveys.

A common concern for empirical practice is that these estimators can become rather

imprecise if there are regions of the covariate space with only few observations in either the

treatment or the non-treatment group. Such areas of limited overlap naturally arise if the

overall sample size is relatively small to begin with. However, they can also occur in very large

samples if the propensity score, which is defined as the conditional probability of taking the

treatment given the covariates, takes on values that are close to either 0 or 1 (relative to the

sample size). Since the variance of treatment effect estimators generally depends inversely on

these conditional treatment and non-treatment probabilities, it can potentially be very large

in this case. Moreover, Khan and Tamer (2010) show that if propensity scores can become

arbitrarily close to 0 or 1, nonparametric estimators of average treatment effects can exhibit

irregular behavior, and might converge at rates slower than the usual parametric one; see
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also Khan and Nekipelov (2013) and Chaudhuri and Hill (2014). Appropriate overlap is thus

important for obtaining precise point estimates of average treatment effects, and this fact

seems to be widely appreciated by practitioners (see Imbens, 2004, Section 5.C, for example).

A more subtle issue that has received relatively little attention in the literature is that

limited overlap also has a detrimental effect on inference. If propensity scores are close

to 0 or 1, average treatment effects are only weakly identified, in the sense that the data

generating process is close to one in which point identification fails. Weak identification

of the parameter of interest is known to cause problems for inference in many econometric

models, such as instrumental variables regressions with weak instruments (e.g. Staiger and

Stock, 1997). For the treatment effect models with unconfoundedness, similar problems

occur. For example, Kahn and Tamer’s (2010) results imply that nonparametric estimators

of treatment effects may no longer be
√
n-consistent and asymptotically normal if propensity

scores are arbitrarily close to 0 or 1, and thus the justification for the usual 95% confidence

interval of the form “point estimate±1.96×standard error” breaks down. By extension, one

should also be concerned about the accuracy of such a confidence interval in applications

where the propensity score is bounded away from 0 and 1, but only by a relatively small

constant. In a simulation study reported in this paper, we demonstrate that the actual

coverage probability of such a confidence interval can indeed be substantially below the

nominal level of 95%, making estimates seem more precise than they are. It is important to

note that this phenomenon cannot be explained by the fact that standard errors are generally

larger under limited overlap, as this by itself only affects the length but not the coverage

probability of the confidence interval. Roughly speaking, under limited overlap standard

confidence intervals tend to be “too short” even though they are typically rather wide to

begin with.

This paper explores the channels through which limited overlap affects the accuracy of

inference, and provides some practical solutions to the challenges created by this issue. We
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begin by considering a “small” nonparametric model in which the covariates have known

finite support. This benchmark setup has the advantage that many commonly used estima-

tion strategies are numerically identical here. Our first main contribution is then to show

that the order of the coverage error of a standard confidence interval is not driven by the

total sample size, but by the numbers of observations in the smallest covariate-treatment

cells. Since under limited overlap some of these numbers are only modest, the coverage

error of such a confidence interval can be substantial. Inference on average treatment effects

under limited overlap is therefore essentially a problem of locally small sample sizes, even

if the overall sample size is large. The issue is thus conceptually quite different from the

problems for inference caused by weak identification in other econometric models, such weak

IV models. To the best of our knowledge, this paper is the first to formally make this point.

Moving from a description towards a solution of the problem, we consider the construc-

tion of robust confidence intervals that maintain approximately correct coverage probability

by adapting automatically to the degree of overlap in a data-driven way. Given our previous

analysis, the usefulness of traditional first order large sample arguments for addressing this

issue seems limited at best. We therefore do not pursue an approach based on a drifting

sequence of propensity scores, for example. Instead, we propose to extend classical methods

that were specifically designed for small sample inference to our setting. This is the second

main contribution of this paper. We exploit the fact that with discrete covariates the es-

timators of average treatment effects take the form of a linear combination of independent

sample means. Inference on treatment effects can thus be thought of as a generalized version

of the Behrens-Fisher problem (Behrens, 1928; Fisher, 1935), which has a long tradition in

the statistics literature.

We consider two different ways to construct robust confidence intervals for average treat-

ment effects. Both are formally derived under the assumption that the data are distributed

as a scale mixture of normals. While this class contains a wide range of continuous, unimodal
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and symmetric distributions, the condition is clearly restrictive and somewhat unusual in the

context of nonparametric treatment effect inference. We treat it as an auxiliary assumption

for the construction of our robust confidence intervals, in the sense that these procedures

will have good properties if the condition is either literally or approximately satisfied, and

are at least not going to be invalid in a classical sense if this assumption is violated. Without

some restrictions of the data distribution of this type, it would seem impossible to obtain

meaningful theoretical statements about the distribution of (studentized) average outcomes

in covariate-treatment cells with very few observations, as first-order asymptotic approxima-

tions are going to be unreliable.

Our first approach to constructing a robust confidence intervals can be interpreted as

bounding the distribution of the studentized estimator by a “squeezed” version of a t distri-

bution with degrees of freedom equal to the number of observations in the smallest covariate-

treatment cell minus one. This then leads to a conservative confidence interval that is valid

for any finite sample size irrespective of the degree of overlap (under our distributional as-

sumption). This type of inference is similar in spirit to that in Ibragimov and Müller (2013),

although the problem considered by them is quite different.

Our second approach is to approximate the distribution of the studentized estimate by a t

distribution with data-dependent degrees of freedom determined by the Welch-Satterthwaite

formula (Welch, 1938, 1947; Satterthwaite, 1946). For the case of two cells, this approxi-

mation has long been known to be very accurate even for relatively small group sizes (e.g.

Wang, 1971; Lee and Gurland, 1975; Best and Rayner, 1987), and our simulations suggest

that this also extends to settings with a larger number of cells. We also show that this

approach formally leads to a higher-order asymptotic correction in the coverage error of the

confidence interval, although in practice it seems to work better than this result alone would

suggest.

Our proposed confidence intervals are easy to implement as they both take the familiar
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form “point estimate±critical value×standard error”, where only the critical value differs

relative to the usual construction. No modifications of the treatment effect estimator or the

estimate of its variance are required, and no additional tuning parameters need to be chosen.

The critical values are adaptive in the sense that they are larger for data sets where overlap

is more severely limited, thus providing an accurate reflection of sampling uncertainty in

such settings. At the nominal 95% level, for example, our robust confidence intervals can

potentially be up to six and a half times longer than the traditional one that uses the critical

value 1.96, although in empirical applications an increase in length by 10%-30% seems to

be more typical. Under strong overlap, our robust intervals are virtually identical to the

traditional one if the overall sample size is large.

The third main contribution of this paper is to show how to extend our methods to “large”

nonparametric models with continuously distributed covariates. Here the main idea is that

the techniques we developed for the discrete case can be applied with very little modification

if treatment effects are estimated by first partitioning the covariate space into a finite number

of cells, and then fitting a constant or some higher-order polynomial within each element

of the partition by least squares. Such an approach is often referred to as partitioning

regression. See Györfi, Krzyzak, Kohler, and Walk (2002) for a textbook treatment, and

Cattaneo and Farrell (2011, 2013) for some recent applications in econometrics. In this case,

our approach yields robust confidence intervals for the sum of the true treatment effect and

the bias resulting from the “piecewise constant” or “piecewise polynomial” approximation.

This bias can be made negligible for practical purposes by choosing the partition and the

order of the local polynomial appropriately.

In a simulation study, we show that our construction leads to confidence intervals with

good finite-sample coverage properties under limited overlap, even if the auxillary assump-

tion about the data distribution is substantially violated. We also apply our methods to

the National Supported Work (NSW) demonstration data, analyzed originally by LaLonde
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(1986). There we show that for a partition chosen by a modern machine learning algorithm

our methods suggest confidence intervals that are up to about 15% wider than the standard

one, which shows the practical relevance of our correction.

In empirical practice, concerns about limited overlap are commonly addressed by redefin-

ing the population of interest, i.e. by estimating the average treatment effect only for that

part of the population with propensity scores that are well-separated from the boundaries

of the unit interval; see for example Crump, Hotz, Imbens, and Mitnik (2009). Our robust

confidence intervals should be seen as a complement to such an approach, and not as a

replacement. Trimming observations with very low or very high propensity scores has the

advantage that the resulting redefined average treatment effect parameter can typically be

estimated with greater precision, and there are no concerns about the validity of standard

confidence intervals in this context. On the other hand, if treatment effects are heteroge-

neous, their average might be very different in the trimmed population relative to the original

one. If the entire population is of policy relevance, trimming therefore introduces a bias.

Since observations are sparse in the trimmed areas by construction, the magnitude of this

bias is difficult to determine from the data.1 In an empirical application with limited overlap,

it would therefore seem reasonable to present point estimates and confidence intervals for

both a trimmed and the original population, thus offering readers a more nuanced view of

the informational content of the data.

The remainder of this paper is structured as follows. In Section 2, we introduce the basic

setup. In Section 3, we show the detrimental effect of limited overlap on the performance of

standard methods for inference in a setting with discrete covariates. In Section 4, we propose

two new robust confidence intervals. In Section 5, we extend our approach to settings with

1A similar comment applies to methods using a “vanishing” trimming approach based on an asymptotic
experiment in which an ever smaller proportion of observations is trimmed as the same size increases (e.g.
Khan and Tamer, 2010; Chaudhuri and Hill, 2014; Yang, 2014). Similarly to fixed trimming, such methods
face a bias/variance-type trade-off which due to the special structure of treatment effect models is generally
very challenging to resolve in finite samples.
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continuously distributed covariates. Section 6 contains the result of a simulation study and

an empirical illustration using the well known LaLonde data. Finally, Section 7 concludes.

All proofs are collected in the appendix.

2. The Basic Setup

2.1. Model. We are interested in determining the causal effect of a binary treatment

on some economic outcome. Let D be a treatment indicator that takes the value 1 if the

treatment is received, and 0 otherwise. Define Y (1) as the potential outcome of an individual

if the treatment is imposed exogenously, and Y (0) as the corresponding potential outcome

in the absence of the treatment. The realized outcome is then given by Y ≡ Y (D). Also,

let X be a vector of covariates measured prior to the treatment. The analyst observes n

realizations of (Y,D,X), where one should think of n as a relatively large integer. We make

the following assumption about the sampling scheme.

Assumption 1 (Sampling). The data {(Yi, Di, Xi) : i ≤ n} are an independent and identi-

cally distributed sample from the distribution of the random vector (Y,D,X).

There are several parameters that can be used to summarize the distribution of individual

level causal effects Y (1)−Y (0) in this context. We primarily focus on the population average

treatment effect (PATE) and sample average treatment effect (SATE), which are given by

τP ≡ E(Y (1)− Y (0)) and τS ≡ 1

n

n∑
i=1

τ(Xi),

respectively. Here τ(x) ≡ E(Y (1) − Y (0)|X = x) is the conditional average treatment

effect (CATE) given X.2 However, the analysis in this paper can easily be extended to

other common estimands, such as the population and sample average treatment effect on

2Our terminology in this paper follows that of Crump et al. (2009). We remark that the terms conditional
and sample average treatment effect are sometimes used differently in the literature; see Imbens (2004) for
example.
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the treated. See Imbens (2004) for a discussion of these and other related estimands. In the

following, we use the notation that µd(x) ≡ E(Y |D = d,X = x) and σ2
d(x) ≡ Var(Y |D =

d,X = x). We refer to pd(x) ≡ P (D = d|X = x) as the generalized propensity score (GPS),

and write p(x) ≡ p1(x) for the “ordinary” propensity score.

Throughout the paper, we maintain the ignorability condition of Rosenbaum and Rubin

(1983), which asserts that conditional on the covariates, the treatment indicator is indepen-

dent of the potential outcomes, and that the distribution of the covariates has the same

support among the treated and the untreated. These conditions are strong and arguably not

realistic in certain empirical settings; but see Imbens (2004) for a discussion of their merit

in those cases. They can be stated formally as follows:

Assumption 2 (Unconfoundedness). (Y (1), Y (0))⊥D|X.

Assumption 3 (Overlap). 0 < p(X) < 1 with probability 1.

Under Assumptions 2–3 the conditional average treatment effect τ(x) is identified from

the joint distribution of (Y,D,X) over the entire support of X through the relationship

τ(x) = µ1(x) − µ0(x). The population and sample average treatment effects can then be

identified by averaging τ(x) over the population and sampling distribution ofX, respectively:

τP = E(τ(X)) and τS =
1

n

n∑
i=1

τ(Xi). (2.1)

See e.g. Imbens (2004) for an overview of other representations of average treatment effects

in terms of the distribution of observable quantities, such as inverse probability weighting.

2.2. Estimation, Inference, and the Overlap Condition. Estimators of the PATE

that are semiparametrically efficient under Assumptions 1–3 and certain additional regularity

conditions have been proposed for example by Hahn (1998), Hirano et al. (2003) and Imbens

et al. (2007). These estimators are also appropriate and efficient for the SATE (Imbens,
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2004). In addition to smoothness conditions on functions such as µd(x) or p(x), the regularity

conditions required by these estimators include that Assumption 3 is strengthened to:

ϵ < p(X) < 1− ϵ with probability 1 for some ϵ > 0. (2.2)

Condition (2.2) is often referred to as strong overlap in the literature. Khan and Tamer

(2010) show that without this condition the semiparametric efficiency bound for estimating

τP or τS is not finite, and thus no
√
n-consistent and asymptotically normal (

√
n-CAN)

semiparametric estimator of these parameters exists. This has important implications for

empirical practice, because it does not only imply that standard estimators might have poor

finite sample properties, but potentially also a failure of commonly used methods for inference

that build on these estimators. For example, if (2.2) does not hold, the actual coverage

probability of a standard confidence interval of the form “point estimate±1.96×standard

error” can differ substantially from its 95% nominal level even if the available sample is very

large, because the formal justification of such confidence intervals is precisely a “
√
n-CAN”-

type result.

By extension, one would also be concerned that standard inference could be unreliable

if (2.2) only holds for some ϵ > 0 that is very small relative to the sample size (in some

appropriate sense). We will be particularly concerned with this case in our paper, and will

informally refer to such a setting where the generalized propensity score takes on values

that are “close” to but bounded away from 0 as having limited overlap. While
√
n-CAN

estimators formally exist in such settings, one would expect methods for inference justified

by this property to perform rather poorly.

2.3. A Simple Estimator. Our aim in this paper is to provide some further insights into

why exactly limited overlap causes problems for inference, and to derive simple confidence

intervals that have good coverage properties in finite samples if (2.2) holds for some ϵ > 0
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that is very close to zero. To do this, we begin with adopting the assumption that the

covariates X have known finite support, and denote the corresponding probability density

function by f(x).

Assumption 4 (Finite Support). The distribution of X has finite support X = {x1, . . . , xJ}

and probability density function f(x) = P (X = x).

Assumption 4 is a modeling device that will simplify the following theoretical arguments.

The condition is not overly restrictive as any continuous distribution can be arbitrarily well

approximated by a discrete one with J large enough.3 Our main motivation for using this

setup is that with discrete covariates most popular estimators of average treatment effects,

including those proposed by Hahn (1998), Hirano et al. (2003) and Imbens et al. (2007), are

all numerically identical. This shows that the complications caused by limited overlap are

not specific to a particular estimation strategy. Finally, our proposed solution for improving

inference under limited overlap, which we present in Section 4, will be motivated by a setting

with discrete covariates, although we also discuss an extension of our method to settings with

continuously distributed covariates in Section 5.

Next, we introduce some additional notation. For d ∈ {0, 1} and x ∈ X , let Md(x) =

{i : Di = d,Xi = x} be the set of indices of those observations with treatment status

Di = d and covariates Xi = x, let Nd(x) = #Md(x) be the cardinality of this set, and put

N(x) = N1(x) + N0(x). We will refer to Nd(x) as the realized local sample size at (d, x)

in the following. Another quantity that will be of central importance is the expected local

sample size at (d, x), defined as

nd(x) ≡ E(Nd(x)).

This is the number of observations we expect to observe in any given covariate-treatment

3That is, if X contains some continuously distributed components, we can form cells over their support,
discretize the data, and re-define X accordingly. While such a discretization results in a bias in the estimator
τ̂ , this bias can be made small by choosing a suitably fine partition of the support. We discuss this issue
more formally in Section 5 below.
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cell. Note that in our setup we have that

nd(x) = nf(x)pd(x).

With this notation, the natural estimators of the density function f(x) and the generalized

propensity score pd(x) are

f̂(x) =
N(x)

n
and p̂d(x) =

Nd(x)

N(x)
,

respectively, and we write p̂(x) = p̂1(x) for the estimate of the usual propensity score. We also

define estimators of the conditional expectation µd(x) and the conditional average treatment

effect τ(x) as

µ̂d(x) =
1

Nd(x)

∑
i∈Md(x)

Yi and τ̂(x) = µ̂1(x)− µ̂0(x).

The natural estimator of both the PATE and the SATE is then given by

τ̂ =
J∑

j=1

f̂(xj)τ̂(xj) =
1

n

n∑
i=1

τ̂(Xi).

Note that while this estimator is expressed as a sample analogue of the moment condi-

tion (2.1) here, with discrete covariates this estimator is actually numerically identical to

other popular estimators based on sample analogues of alternative representations of average

treatment effects. For example, our estimator could also be written in “inverse probability

weighting” form as τ̂ = n−1
∑n

i=1 Yi(Di − p̂(Xi)) · (p̂(Xi)(1 − p̂(Xi)))
−1, as in Hirano et al.

(2003). We use the expression given above merely for notational convenience.

3. The Impact of Limited Overlap

Conventional estimators of average treatment effects can have large variances under limited

overlap, and can thus be rather imprecise in finite samples (e.g. Imbens, 2004; Crump et al.,
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2009). While large variances are of course undesirable from an empirical point of view, their

presence alone does not cause the usual methods for inference to break down. Generally

speaking, even if the variance of some parameter estimate is large, a confidence interval con-

structed by inverting the decision of the corresponding t-test should still have approximately

correct coverage probability; it will just be rather wide. We now show that the situation

is different for treatment effect estimation under limited overlap. In particular, we argue

that low values of the generalized propensity score have a strongly detrimental effect on the

coverage error of standard confidence intervals.

To understand the nature of the problems for inference caused by limited overlap, consider

the task of deriving a confidence interval for the SATE τS. Under our Assumptions 1–4, it

would seem that this can formally be done in the usual way, as the estimator τ̂ has standard

asymptotic properties. In particular, as n → ∞, we have that

√
n(τ̂ − τS)

d→ N
(
0, ω2

S

)
with ω2

S ≡ E
(
σ2
1(X)

p1(X)
+

σ2
0(X)

p0(X)

)
.

In our setup with discrete covariates, an equivalent expression for the asymptotic variance

ω2
S is given by

ω2
S =

∑
d,j

f(xj)

pd(xj)
· σ2

d(xj).

This representation shows that low generalized propensity scores will drive up the value of

ω2
S if they occur in areas where the covariate density is (relatively) high. The asymptotic

variance ω2
S can then be estimated consistently by

ω̂2
S =

∑
d,j

f̂(xj)

p̂d(xj)
σ̂2
d(xj),
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where

σ̂2
d(x) =

1

Nd(x)− 1

∑
i∈Md(x)

(Yi − µ̂d(x))
2

is the natural estimator of σ2
d(x). This estimator is numerically well-defined as long as

mind,x Nd(x) ≥ 2, and all our analysis in the following is to be understood conditional on

that event taking place. We then find that as n → ∞ the studentized version of our estimator

is asymptotically standard normal; that is

TS,n ≡
√
n(τ̂ − τS)

ω̂S

d→ N (0, 1) . (3.1)

A result like (3.1) would then commonly used to justify a Gaussian approximation to the

sampling distribution of TS,n, that is P (TS,n ≤ c) ≈ Φ(c), which in turn justifies the usual

two-sided confidence interval for τS with nominal level 1− α:

IS,1 =

(
τ̂ − zα × ω̂S√

n
, τ̂ + zα × ω̂S√

n

)
,

where zα = Φ−1(1 − α/2). The next proposition studies the coverage properties of this

confidence interval.

Proposition 1. Suppose that Assumptions 1–4 hold, and put γd(x) = E((Y − µd(x))
3|D =

d,X = x) and κd(x) = E((Y − µd(x))
4|D = d,X = x)− 3 for all (d, x) ∈ {0, 1}×X . Under

regularity conditions (Hall and Martin, 1988; Hall, 1992), it holds that

P (τS ∈ IS,1) = 1− α + n−1ϕ(zα)q2(zα) +O
(
n−2
)
,
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where ϕ denotes the standard normal density function,

q2(t) =
t3 − 3t

6ω4
S

·
∑
d,j

f(xj)κd(xj)

pd(xj)3
− t5 + 2t3 − 3t

9ω6
S

·

(∑
d,j

f(xj)γd(xj)(−1)1−d

pd(xj)2

)2

− t

ω4
S

·
∑

(d,j) ̸=(d′,j′)

σ2
d(xj)σ

2
d′(xj′)(f(xj)pd(xj) + f(xj′)pd′(xj′))

(pd(xj)pd′(xj′))2

− (t3 + 3t)

2ω4
S

·
∑
d,j

f(xj)σ
4
d(xj)

pd(xj)3
,

and ω2
S =

∑
d,j f(xj)σ

2
d(xj)/pd(xj) is as defined above.

Proposition 1 follows from a standard Edgeworth expansion of the distribution of TS,n

(Hall and Martin, 1988; Hall, 1992). Formally, the coverage error of IS,1 is of the order

n−1, which is the order we generally expect for confidence intervals of this type based on

a regular parametric estimator (Hall, 1992). However, such an interpretation of the result

can be misleading in finite samples of any size, as both the covariate density f(x) and the

generalized propensity score pd(x) strongly affect the constant associated with this rate. For

any fixed sample size n, there exist data generating processes for which this constant, and

thus the coverage error, can be very large. The following result shows that it is therefore

better to think of the accuracy of IS,1 as not being driven by the total sample size n, but

but the expected local sample sizes.

Proposition 2. Recall that nd(x) = nf(x)pd(x), and consider a sequence of covariate den-

sities f(x) and generalized propensity scores pd(x) such that mind,x nd(x) → ∞ as n → ∞.

Then it holds that

n−1ϕ(zα)q2(zα) = O(nd∗(x
∗)−1),

where (d∗, x∗) is the point at which the ratio pd(x)/f(x) takes its smallest value; that is,

(d∗, x∗) is such that pd∗(x
∗)/f(x∗) = mind,x pd(x)/f(x).

Proposition 2 derives an approximation to the leading term n−1ϕ(zα)q2(zα) of the Edge-

worth expansion in Proposition 1 that allows for the possibility that at least some values of
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the generalized propensity score are close to 0. It shows that in practice the accuracy of the

interval IS,1 is effectively similar to that of a confidence interval computed from a sample

of the expected local sample size nd∗(x
∗) in the covariate-treatment cell where the ratio of

the generalized propensity score and the covariate density takes its smallest value, instead

of size n. Under limited overlap, where pd∗(x
∗) is potentially small, the local sample size

nd∗(x
∗) = nf(x∗)pd∗(x

∗) can easily be of an order of magnitude at which asymptotic approx-

imations based on the Central Limit Theorem and Slutsky’s Theorem are deemed unreliable.

As a consequence, the probability that τS is contained in IS,1 can deviate substantially from

the nominal level 1− α even if the overall sample size n is very large. This is an important

practical impediment for valid inference under limited overlap.

The proposition also shows that low generalized propensity scores are not problematic

for inference by themselves, but only if they occur in areas where the covariate density is

(relatively) high. This is because inference is based on a density weighted average of the

sample means in each covariate- treatment cell. Even if some local sample size is small,

the resulting uncertainty is dampened if the corresponding density weight is small as well.

This mirrors the structure of the asymptotic variance discussed above. A mere inspection

of the generalized propensity score alone does therefore in general not conclusively indicate

whether standard confidence intervals are likely to be misleading; one would have to study

the covariate density as well to make this determination.

A result analogous to Propositions 1–2 could also be derived for confidence intervals

for the PATE, but we omit the details in the interest of brevity. To sketch the argument,

note that τ̂ − τP = (τ̂ − τS) + (τS − τP ). and that the two terms in this decomposition

are asymptotically independent. Moreover, the first term is the one we studied above, and

the second term τS − τP = n−1
∑n

i=1 τ(Xi) − E(τ(X)) is simply a sample average of n

random variables with mean zero and finite variance that does not depend on the propensity

score. This term is therefore unproblematic, as its distribution can be well approximated
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by a Gaussian one irrespective of the degree of overlap. Taken together, the accuracy of a

Gaussian approximation to the sampling distribution of a studentized version of τ̂ − τP will

be driven by the accuracy of such an approximation to the studentized version of τ̂ − τS,

and this result carries over to the corresponding confidence intervals.

4. Robust Confidence Intervals under Limited Overlap

The result of the previous section shows that inference on average treatment effects under

limited overlap is essentially a small sample problem, even if the overall sample size n is large.

For this reason, traditional arguments based on first order large sample approximations seem

not very promising for addressing this issue. In this section, we therefore argue in favor of

alternative approaches to constructing confidence intervals, which are based on extending

classical methods specifically devised for small sample inference to our setting.

4.1. Robust Confidence Intervals for the SATE. As in the previous section, we begin

by studying inference on the SATE. Robust confidence intervals for the PATE can be derived

similarly, as discussed in Section 4.2.

4.1.1. Preliminaries. To motivate our approach, consider the simple case in which the co-

variates X are absent from the model, and the data are thus generated from a randomized

experiment. In this case, the statistic TS,n defined in (3.1) is analogous to the test statistic

of a standard two-sample t-test. Indeed, conditional on the number of treated and untreated

individuals, inference on τS reduces to the Behrens-Fisher problem (Behrens, 1928; Fisher,

1935), i.e. the problem of conducting inference on the difference of the means of two popula-

tions with unknown and potentially different variances. Our setting with covariates can be

thought of as a generalized version of the Behrens-Fisher problem, since conditional on the
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set M = {(Xi, Di), i ≤ n} of treatment indicators and covariates,4 the statistic TS,n is the

studentized version of a linear combination of 2J independent sample means, each calculated

from Nd(x) realizations of a random variable with mean (−1)1−d · f̂(x)µd(x) and variance

f̂(x)2σ2
d(x). The advantage of taking this point of view is that there is a longstanding litera-

ture in statistics that has studied solutions to Behrens-Fisher-type problems with relatively

small group sizes. Instead of relying on first-order asymptotic theory, this literature exploits

assumptions about the distribution of the data. Our aim is to extend some of these ap-

proaches to the context of treatment effect estimation under limited overlap. To this end,

we introduce the following auxiliary assumption.

Assumption 5 (Data Distribution). Y (d) = µd(X) + σd(X) · εd(X) · ηd(X), where ε ≡

{εd(x) : (d, x) ∈ {0, 1} × X} is a collection of standard normal random variables, η ≡

{ηd(x) : (d, x) ∈ {0, 1} × X} is a collection of positive random variables with unit variance,

and the components of ε and η are all independent of the data and of each other.

Assumption 5 states that Y |D,X is distributed as a scale mixture of normals,5 which

is clearly restrictive. Still, this assumption covers a wide class of continuous, unimodal and

symmetric distributions on the real line, which includes the normal distribution, discrete

mixtures and contaminated normals, the Student t family, the Logistic distribution, and

the double-exponential distribution, among many others. We will use this condition to

construct confidence intervals for average treatment effects that are robust to limited overlap,

in the sense that they have good properties if Assumption 5 is either literally or at least

approximately satisfied. While derived under a distributional assumption, these confidence

intervals are not going to be invalid if this assumption is violated, in the sense that they

will at least not be worse than the traditional confidence interval IS,1 in such settings. One

4Note that the set {Nd(x) : (d, x) ∈ {0, 1}×X} of realized local sample sizes would be a sufficient statistic
for M in the following context.

5The distribution of a generic random variable Z = A · B is referred to as a scale mixture of normals
if A follows a standard normal distribution, B is a strictly positive random variable, and A and B are
stochastically independent.
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can therefore think of Assumption 5 as an asymptotically irrelevant parametrization, in the

sense that results obtained without this condition via standard asymptotic arguments do

not change if this assumption holds.6

4.1.2. A Conservative Approach. Our first approach is to construct a confidence interval

for the SATE that is guaranteed to meet the specified confidence level in any finite sample

under Assumption 5. The price one has to pay for this desirable property is that the resulting

interval will generally be conservative.

Let cα(δ) = F−1
t (1 − α/2, δ), where Ft(·, δ) denotes the CDF of Student’s t-distribution

with δ degrees of freedom, and put δdj = Nd(xj) − 1 and δmin = mind,j δdj for notational

simplicity. The studentized statistic TS,n would seem like a natural starting point for the

construction of a confidence interval, but it will be beneficial to begin with considering the

larger class of test statistics of the form

TS,n(h) =

√
n(τ̂ − τS)

ω̂S(h)
,

where

ω̂2
S(h) =

∑
d,j

hdj ·
f̂(xj)

pd(xj)
· σ̂2

d(xj)

and h = {hdj : d = 0, 1; j = 1, . . . , J} is a vector of 2J positive constants. Our statistic

TS,n is obtained by setting h ≡ 1. From an extension of the argument in Mickey and Brown

(1966) similar to that in Hayter (2014), it follows that for every u > 0 and every vector h

P (TS,n(h) ≤ u|M, η) ≥ max
d,j

Ft(uh
1/2
dj , δdj);

see the appendix. This lower bound on the CDF of TS,n(h) translates directly into a bound

6This would be the case for the normality result in (3.1) or Propositions 1–2, for example. Note that
since the distribution of Y |D,X is symmetric under Assumption 5, the summands in the definition of q2(t)
in Proposition 1 that involve γd(x) will vanish, but the order of the coverage error and the statement of
Proposition 2 remain the same in this case.
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on its quantiles, which in turn motivates conservative confidence intervals with nominal level

1− α of the form (
τ̂ −max

d,j

cα(δdj)

h
1/2
dj

× ω̂S(h)√
n

, τ̂ +max
d,j

cα(δdj)

h
1/2
dj

× ω̂S(h)√
n

)
.

It is easily verified that the length of such a confidence interval is minimized by putting

h
1/2
dj ∝ cα(δdj) for all (d, j). Denoting such a choice of h by h∗, we obtain the “optimal”

conservative confidence interval within this class as

IS,2 =

(
τ̂ − ω̂S(h

∗)√
n

, τ̂ +
ω̂S(h

∗)√
n

)
.

This confidence interval can be expressed in the more familiar form “point estimate±critical

value×standard error” as

IS,2 =

(
τ̂ − cα(δmin)ρα × ω̂S√

n
, τ̂ + cα(δmin)ρα × ω̂S√

n

)
,

where

ρα =

(∑
d,j(cα(δdj)/cα(δmin))

2 · f̂(xj)
2σ̂2

d(xj)/Nd(xj)∑
d,j f̂(xj)2σ̂2

d(xj)/Nd(xj)

)1/2

.

For numerical purposes, this confidence interval can heuristically be interpreted as being

derived from a (conservative) approximation to the distribution of the usual t-statistic TS,n;

namely that P (TS,n ≤ u|M, η) ≈ Ft(u/ρα(u), δmin), where α(u) solves u/cα(δmin) = ρa in a.

This view will be helpful when extending this approach to confidence intervals for the PATE

in the following section.

In contrast to IS,1, the new interval adapts automatically to the severity of the issue of

limited overlap. One can show that cα(δmin)ρα ≥ cα(n−2J) > zα, and hence by construction

the new interval IS,2 is always wider than IS,1. If the generalized propensity score takes on

values close to zero relative to the overall sample size, and thus the realized size of some local

samples is likely to be small, the difference in length can be substantial. In the extreme case
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where δmin = 1, which is the smallest value for which our confidence intervals are numerically

well-defined, the new interval could be up to six and a half times wider than the original

one for α = .05. This is because cα(δmin)ρα ≤ cα(δmin), with equality if δdj = δmin for all

(d, j), and cα(1)/zα = 6.48 for α = .05. On the other hand, if the propensity score, the

covariate density and the overall sample size are such that δmin is larger than about 50 with

high probability, the difference between IS,1 and IS,2 is not going to be of much practical

relevance. This is because at conventional significance levels the quantiles of the standard

normal distribution do not differ much from those of a t distribution with more than 50

degrees of freedom.

The next proposition formally shows that under Assumption 5 the interval IS,2 does

not under-cover the parameter of interest in finite samples, and is asymptotically valid in a

traditional sense if Assumption 5 does not hold.

Proposition 3. (i) Under Assumptions 1–5, we have that

P (τS ∈ IS,2) ≥ 1− α.

(ii) Under Assumptions 1–4 and the regularity conditions of Proposition 1, we have that

P (τS ∈ IS,2) = P (τS ∈ IS,1) +O(n−2).

Proposition 3(i) is a finite sample result that holds for all values of the covariate density

and the generalized propensity score, and is thus robust to weak overlap. Note that the

bound on the coverage probability is sharp, in the sense that it holds with equality if the

variance of the group with the smallest local sample size tends to infinity. Proposition 3(ii)

shows that if Assumption 5 does not hold the new interval has the same first-order asymptotic

coverage error as IS,1, and is thus equally valid from a traditional large sample point of view.

We remark that confidence intervals of the form of IS,2 are not new in principle, but go

back to at least Banerjee (1960); see also Hayter (2014) for a more recent reference. Also
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note that our confidence interval is potentially much shorter than the one resulting from the

bounds in Mickey and Brown (1966), which would correspond to the case that ρα = 1.

4.1.3. A Welch-Approximation Approach. The confidence interval IS,2 is generally conser-

vative, and can potentially have coverage probability much larger than 1− α. We therefore

also consider an alternative approach in which P (TS,n ≤ c|M, η) is approximated by a t

distribution with data-dependent degrees of freedom δ∗ ∈ (δmin, n− 2J), which are given by

δ∗ ≡

(∑
d,j

f̂(xj)
2σ̂2

d(xj)

Nd(xj)

)2/(∑
d,j

f̂(xj)
4σ̂4

d(xj)

δdjNd(xj)2

)
.

=

(∑
d,j

f̂(xj)
σ̂2
d(xj)

p̂d(xj)

)2/(∑
d,j

f̂(xj)
2σ̂4

d(xj)

δdj p̂d(xj)2

)
.

This so-called Welch-Satterthwaite approximation, due to Welch (1938, 1947) and Satterth-

waite (1946), has a long history in statistics. When applied to the standard two-sample

t-statistic, it leads to Welch’s two-sample t-test, which is implemented in all standard statis-

tical software packages. This test is known to have a number of desirable properties. First, it

is approximately similar7 with only minor deviations from its nominal level when the small-

est group has as few as four observations (e.g. Wang, 1971; Lee and Gurland, 1975; Best

and Rayner, 1987). Second, it is asymptotically uniformly most powerful against one-sided

alternatives in the class of all translation invariant tests (Pfanzagl, 1974). Third, it is robust

to moderate departures from the distributional assumptions about the data (Scheffé, 1970).

This all suggests that the following confidence interval for τS resulting from the approxima-

tion that P (TS,n ≤ u|M, η) ≈ Ft(u, δ∗) should have analogously attractive properties:

IS,3 =

(
τ̂ − cα(δ∗)×

ω̂S√
n
, τ̂ + cα(δ∗)×

ω̂S√
n

)
.

7The work of Linnik (1966, 1968) and Salaevskii (1963) has shown that exactly similar test for the
Behrens-Fisher problem necessarily have highly undesirable properties, and thus the literature has since
focused on approximate solutions.
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As IS,2, the length of IS,3 does not only depend on the vector of realized local sample sizes,

but also on the corresponding empirical variances. In particular, if the term f̂(x)σ̂2
d(x)/p̂d(x)

is very large at some point (d, x) relative its values elsewhere, then δ∗ will be approximately

equal to δdj, the realized local sample size at this point (minus one). In the extreme case

that δ∗ = δmin, the intervals can again be up to about six and a half times wider than the

conventional interval IS,1 when α = .05. If the propensity score, the covariate density and

the overall sample size are such that δmin is larger than about 50 with high probability, the

difference between IS,1, IS,2 and IS,3 is again not going to be of much practical relevance.

The extensive existing simulation evidence on the Welch-Satterthwaite approximation for

the case of two groups suggests that under our Assumptions 1–5 one should find in finite

samples that

P (τS ∈ IS,3|min
d,x

Nd(x) ≥ 4) ≈ 1− α (4.1)

with very high accuracy for conventional significance levels α ∈ (0.01, 0.1). This is confirmed

by our own simulation experiments reported in Section 6. These simulations also show that

the approximation is robust to certain reasonable departures from Assumption 5. More

formally, we show that using the Welch-Satterthwaite approximation instead of a standard

normal critical value leads to a higher-order correction in the asymptotic coverage error of the

corresponding confidence interval if Assumption 5 holds, and does not affect the asymptotic

coverage error otherwise. To simplify the exposition, we only state this result for the special

case that Assumption 5 holds with Y |D,X being normally distributed; but an analogous

result holds with Y |D,X following a scale mixture of normals.

Proposition 4. (i) Suppose that Assumptions 1–4 hold, and that Assumption 5 holds with

ηd(x) ≡ 1. Then we have that

P (τS ∈ IS,3) = 1− α + n−2ϕ(zα)q̃2(zα) +O
(
n−3
)
,
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where

q̃2(t) =
3t+ 5t3 + t5

3
·

 1

ω3
S

∑
j,d

f(xj)
2σ6

d(xj)

pd(xj)5
− 1

ω4
S

(∑
j,d

f(xj)σ
4
d(xj)

pd(xj)3

)2


and ω2
S =

∑
j,d f(xj)σ

2
d(xj)/pd(xj) as defined above.

(ii) Under Assumptions 1–4 and the regularity conditions of Proposition 1, we have that

P (τS ∈ IS,3) = P (τS ∈ IS,1) +O(n−2).

Proposition 4(ii) shows that if Assumption 5 fails the new interval has again the same

first-order asymptotic coverage error as IS,1, and is thus equally valid from a traditional

large sample point of view. Proposition 4(i) implies that if Assumption 5 holds, the coverage

error of IS,3 is formally of the order n−2, which is better than the rate of n−1 we obtained

for IS,1 in Proposition 1. Under limited overlap, the effective order of accuracy of IS,3 is

again much smaller, but we nevertheless find a substantial improvement over IS,1. This is

formally shown in the following proposition.

Proposition 5. Recall that nd(x) = nf(x)pd(x), and consider a sequence of covariate densi-

ties f(x) and generalized propensity scores pd(x) such that n ·mind,x nd(x) → ∞ as n → ∞.

Then it holds that

n−2ϕ(zα)q̃2(zα) = O(nd∗(x
∗)−2),

where (d∗, x∗) is the point at which the ratio pd(x)/f(x) takes its smallest value; that is,

(d∗, x∗) is such that pd∗(x
∗)/f(x∗) = mind,x pd(x)/f(x).

Proposition 5 derives an approximation to the leading term n−1ϕ(zα)q̃2(zα) of the Edge-

worth expansion in Proposition 4 that allows for the possibility that at least some values of

the generalized propensity score are close to 0. It shows that the coverage error of IS,3 is

effectively similar to that of a confidence interval computed from a sample of size nd∗(x
∗)2

instead of size n. This result should be contrasted with Proposition 2, which showed that
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the coverage error of the traditional interval IS,1 effectively behaved as if a sample of size

nd∗(x
∗) was used. The Welch-Satterthwaite approximation thus improves the accuracy of

the confidence interval by an order of magnitude.8

4.2. Robust Confidence Intervals for the PATE. In this subsection, we show how the

idea behind the construction of the new confidence intervals IS,2 and IS,3 for the SATE can

be extended to obtain robust confidence intervals for the PATE, which is arguably a more

commonly used parameter in applications. To begin with, note that τ̂ is also an appropriate

estimator of τP , and that when viewed as such it has standard asymptotic properties under

our Assumptions 1–4. In particular, we have that

√
n(τ̂ − τP )

d→ N
(
0, ω2

)
with ω2 ≡ E

(
σ2
1(X)

p1(X)
+

σ2
0(X)

p0(X)
+ (τ(X)− τP )

2

)
,

as n → ∞, and that the asymptotic variance ω2 can be consistently estimated by

ω̂2 = ω̂2
S + ω̂2

P , where ω̂2
P =

∑
j

f̂(xj)(τ̂(xj)− τ̂)2

and ω̂2
S is as defined above. The studentized version of our estimator is again asymptotically

standard normal as n → ∞, that is

Tn ≡
√
n(τ̂ − τP )

ω̂

d→ N (0, 1) ,

which leads to the usual two-sided confidence interval for τP with nominal level 1−α, namely

IP,1 =

(
τ̂ − zα × ω̂√

n
, τ̂ + zα × ω̂√

n

)
,

Following the argument at the end of Section 3, one can show that IP,1 has poor coverage

properties for any finite sample size under limited overlap, with effective coverage error of

8We remark that Beran (1988) showed that in a two-sample setting with Gaussian data the higher
order improvements achieved by the Welch-Satterthwaite approximation are asymptotically similar to those
achieved by the parametric bootstrap.
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the order nd∗(x
∗)−1, where (d∗, x∗) is as defined in Proposition 2.

To motivate alternative confidence intervals similar to those we proposed for the SATE,

note that the statistic Tn can be decomposed as

Tn =
ω̂S

ω̂
· TS,n +

ω̂P

ω̂
· TP,n, where TP,n ≡

√
n(τS − τP )

ω̂P

and TS,n is as defined above. Under our assumptions, it holds (ω̂S, ω̂P , ω̂)
p→ (ωS, ωP , ω),

and that TS,n and TP,n are asymptotically independent. Moreover, it is easily seen that

TP,n
d→ N (0, 1), and given the discussion at the end of Section 3, we expect the approxima-

tion that P (TP,n ≤ u) ≈ Φ(u) to be reasonably accurate in large samples irrespective of the

values of the generalized propensity score. While it also formally holds that TS,n
d→ N (0, 1),

we have seen in Section 3 that the approximation that P (TS,n ≤ u) ≈ Φ(u) is not reliable

under limited overlap. However, we have seen that under Assumption 5 the finite sample

distribution of TS,n given M, η can be conservatively approximated by a “squeezed” t dis-

tribution with δmin degrees of freedom, or alternatively through the Welch approach by a

t distribution with δ∗ degrees of freedom with very good accuracy (at least if Nd(x) ≥ 4).

We therefore consider approximating the distribution of Tn by a (data-dependent) weighted

mixture of one of these two distributions with a standard normal. Specifically, for positive

constants ω1, ω2, δ, and ρ we define the distribution functions

GC(u;ω1, ω2, δ, ρ) ≡ P

(
ω1UC(δ, ρ) + ω2V

(ω2
1 + ω2

2)
1/2

≤ u

)
and

GW (u;ω1, ω2, δ, ) ≡ P

(
ω1UW (δ) + ω2V

(ω2
1 + ω2

2)
1/2

≤ u

)
,

where UC(δ, ρ), UW (δ) and V are independent random variables such that P (UC(δ, ρ) ≤

u) = Ft(u/ρ, δ), P (UW (δ) ≤ u) = Ft(u, δ), and P (V ≤ u) = Φ(u). Given the number

of arguments, these distribution functions are difficult to tabulate, but they can easily be
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computed numerically or by simulation methods. Now let

gC,α(δ, ρ) = G−1
C (1− α/2; ω̂S, ω̂P , δ, ρ) and

gW,α(δ) = G−1
W (1− α/2; ω̂S, ω̂P , δ)

be the corresponding (1− α/2)–quantiles for α ∈ (0, 0.5). Then an extension of our conser-

vative confidence interval IS,2 to inference on τP is given by

IP,2 =

(
τ̂ − gC,α(δmin, ρα)×

ω̂√
n
, τ̂ + gC,α(δmin, ρα)×

ω̂√
n

)
;

and an extension of our Welch-type confidence interval IS,3 to inference on τP is given by

IP,3 =

(
τ̂ − gW,α(δ∗)×

ω̂√
n
, τ̂ + gW,α(δ∗)×

ω̂√
n

)
.

The theoretical properties of these intervals are analogous to those of IS,2 and IS,3, respec-

tively. In particular, both can be shown to be robust to limited overlap in a similar sense.

We omit a formal result in the interest of brevity.

5. Extensions to Continuously Distributed Covariates

We have introduced the assumption that the covariates X have known finite support as a

modeling device that substantially simplified the theoretical arguments. We now describe a

more formal way of dealing with continuously distributed covariates.

5.1. Overview and Main Ideas. If the covariates X are continuously distributed, one

simple way to implement an estimator of the SATE or the PATE is discretize them and

proceed as described above. That is, one could partition the support of X into J disjoint

cells, recode the covariates such they take the value j if the original realization is within

the jth cell, and then use the estimator we described in Section 2.3. Following Cochran

(1968), such an estimation strategy is often referred to as subclassification. The discretization
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involved in this procedure generally introduces a bias, but if the partition is not too coarse

this quantity should be small. A way to further reduce the bias is to fit a more complex

local model within each cell, such as a higher-order polynomial in the covariates rather than

just a constant. Such an approach is often referred to as partitioning regression. See Györfi

et al. (2002) for a textbook treatment, and Cattaneo and Farrell (2011, 2013) for some recent

applications in econometrics.

Our main idea is that the techniques developed in Section 4 can be applied with very

little modification to estimators of average treatment effects based on partitioning regression.

We will consider an auxiliary setup that treats the local models within each cell as correctly

specified linear regressions with error terms of a particular structure, and uses classical results

for finite sample inference in linear regression models to construct confidence intervals for

average treatment effects. We then show that these new intervals are robust to limited

overlap in the sense that they have good coverage properties if the auxiliary setup is at

least approximately correct, and are as good as standard approaches from a traditional large

sample point of view.

5.2. Partitioning Regression. Suppose that the covariates X are continuously dis-

tributed with compact support X ⊂ Rs. Then a simple way to estimate the function µd(x)

is to partition X into Jd disjoint cells, approximate the function by a polynomial of order Kdj

within the jth cell, and estimate the corresponding coefficients by ordinary least squares.

The partition and the order of the approximating polynomials can be different for d ∈ {0, 1},

and our empirical application below studies such a case.

An estimator of µd(x) of this form is generally referred to as a partitioning regression

estimator, and can formally be defined as follows. For d ∈ {0, 1}, let Ad = {Ad1, . . . , AdJd}

be a partition of X into Jd disjoint cells, and put Idj(x) = I(x ∈ Adj) and Sd,i = I(Di = d).

For any x ∈ Rs and k ∈ N, let Rk(x) be a column vector containing all polynomials of the
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form xu = xu1
1 · . . . · xus

s , where u ∈ Ns is such that
∑s

t=1 ut ∈ {0, . . . , k − 1}. For example,

if s = 1 we have that Rk(x) = (1, x, x2, . . . , xk−1). With Kd = (Kd1, . . . , KdJd) a vector of

integers, we then write Rdj(x) = Idj(x)R
Kdj(x) for the restriction of the polynomial basis

RKdj(x) to the cell Adj, and define

β̂dj = argmin
β

n∑
i=1

Sd,i (Yi −Rdj(Xi)
′β)

2
,

where the “argmin” operator is to be understood such that it returns the solution with the

smallest Euclidean length in case the set of minimizers of the corresponding least squares

problem is not unique. This definition ensures that β̂dj is well-defined even if the “local

design matrix” (Sd1Rdj(X1), . . . , SdnRdj(Xn))
′ is not of full rank. With this notation, the

partitioning regression estimator of µd(x) is then given by

µ̂d(x) =

Jd∑
j=1

Rdj(x)
′β̂dj.

The partitioning scheme Ad and the degree of the polynomial approximation Kd are user-

determined tuning parameters that affect the properties of µ̂d(x). A finer partition generally

decreases its bias but increases its variance; while increasing the components of Kd decreases

the bias if the underlying function is sufficiently smooth, but might increase the variance

because of the larger number of local parameters that need to be fitted. In view of (2.1), a

natural estimator of both the PATE and the SATE is then given by

τ̂ =
1

n

n∑
i=1

τ̂(Xi), with τ̂(x) = µ̂1(x)− µ̂0(x).

This estimator is a generalization of the one we defined in Section 2.3 to a setup with

continuously distributed covariates, as it would be exactly the same if the covariates X had

finite support and we set K1 = K0 = 1 and A1 = A0 = X .

29



5.3. Properties under “J → ∞ Asymptotics”. The estimator τ̂ can be interpreted

as a semiparametric two-step estimator that uses a particular linear sieve estimator for the

nuisance function µd(x) in its first stage. The asymptotic properties of such estimators have

been studied in Cattaneo and Farrell (2013); and Cattaneo and Farrell (2011) apply these

result to a treatment effect estimator similar to ours.

Following arguments in Cattaneo and Farrell (2011, 2013), one can show that under As-

sumptions 1–3, equation (2.2) and certain regularity conditions on the shape of the elements

of A1 and A0, and the orders K1, K0 of the local polynomials the estimator τ̂ is
√
n-CAN

and semiparametrically efficient for both the SATE and the PATE if J1, J0 → ∞ as n → ∞

at an appropriate rate; that is

√
n(τ̂ − τS)

d→ N
(
0, ω2

S

)
with ω2

S ≡ E
(
σ2
1(X)

p1(X)
+

σ2
0(X)

p0(X)

)
, and

√
n(τ̂ − τP )

d→ N
(
0, ω2

)
with ω2 ≡ E

(
σ2
1(X)

p1(X)
+

σ2
0(X)

p0(X)
+ (τ(X)− τP )

2

)
.

The precise nature of the conditions under which these results hold are interesting and

delicate (see Cattaneo and Farrell, 2011, 2013), but they are not important for our paper

and thus omitted. In the following, we will simply refer to a theoretically valid argument

in which the partition becomes increasingly fine when the sample size increases as “J → ∞

asymptotics”.

The asymptotic variances in the last two equations can be estimated in a variety of ways.

Since a linear regression model is fitted within each cell, one way to estimate ω2
S is the

homoskedasticity-based estimator

ω̂2
S =

J∑
j=1

L̂′
djΣ̂

−1
dj L̂djσ̂

2
dj,
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where we use the notation that

L̂dj =
1

n

n∑
i=1

Rdj(Xi), Σ̂dj =
1

n

n∑
i=1

Rdj(Xi)Rdj(Xi)
′, and

σ̂2
dj =

1

Ndj −Kdj

n∑
i=1

Idj(Xi)Sdi(Yi − µ̂d(Xi))
2,

with Ndj =
∑n

i=1 Idj(Xi)Sd,i be the number of observations with treatment status d in the

jth cell of Ad. A simple estimator of ω2 is then given by

ω̂2 = ω̂2
S + ω̂2

P where ω̂2
P =

1

n

n∑
i=1

(τ̂(Xi)− τ̂)2.

Note that if the covariates X had finite support, these estimators would be numerically

identical the ones defined in Sections 3–4 if we set K1 = K0 ≡ 1 and A1 = A0 = X .

Following the arguments in Cattaneo and Farrell (2011, 2013), one can show that these

estimators are consistent under “J → ∞ asymptotics” even if the data are conditionally

heteroskedastic, as long as the conditional variance function is sufficiently smooth. This is

because under this rather weak regularity condition the conditional variance of Y |D,X can

be well approximated as constant within each (small) cell of the partition.9 These results

then motivate the usual confidence intervals for the SATE and the PATE with nominal level

1− α are given by

ĪS,1 =

(
τ̂ − zα × ω̂S√

n
, zα × ω̂S√

n

)
and ĪP,1 =

(
τ̂ − zα × ω̂S√

n
, τ̂ + zα × ω̂S√

n

)
,

respectively; and under “J → ∞ asymptotics” the coverage probability of these intervals

formally converges to 1− α for every fixed data generating process satisfying the necessary

regularity conditions.

9We could also use Eicker-White-type variance estimators here as in Cattaneo and Farrell (2011, 2013), but
this would complicate the formal justification of the robust confidence intervals we develop in the following
subsection, as we are not aware of any exact finite sample results for studentized statistics based on such
estimators. In practice, their use might still be worthwhile.
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5.4. The Impact of Limited Overlap. For reasons given above, we are concerned

that under limited overlap the confidence intervals ĪS,1 and ĪP,1 might have poor coverage

properties even when the total sample size is very large. Showing this formally is difficult

under “J → ∞ asymptotics”, but some insightful results are straightforward to obtain in a

setting for which the number of cells is fixed as n → ∞. Under such “fixed J asymptotics”, τ̂

can be though of as an estimator of biased versions of the SATE and the PATE, say B-SATE

and B-PATE, which are formally defined as

τ̄S =
1

n

n∑
i=1

τ̄(Xi) and τ̄P = E(τ̄(X)),

respectively. Here we use the notation that

τ̄(x) ≡ µ̄1(x)− µ̄0(x),

and let µ̄d(x) be the probability limit of µ̂d(x) as n → ∞ if Jd stays fixed; that is

µ̄d(x) ≡
Jd∑
j=1

Rdj(x)
′βdj with βdj ≡ argmin

β
E((Y −Rdj(X)′β)2|D = d,X ∈ Adj).

The difference between the actual SATE τS and the B-SATE τ̄S can be made arbitrarily small

by choosing J1, J0 and the components of K1, K0 sufficiently large; and the same applies to

the difference between the PATE τP and the B-PATE τ̄P . In particular, standard results

from approximation theory suggest that if the volume of all cells in Ad is proportional to

J−1
d for d ∈ {0, 1}, then τj − τ̄j = O(J

−min{K1}/s
1 + J

−min{K0}/s
0 ) for j = {S, P} if τ(x) is

sufficiently smooth. In practice, one might be willing to assume that the analyst is able to

choose J and K such that the difference between the actual parameters and their biased

version is of practically negligible magnitude for the purpose of inference in finite samples.

The properties of confidence intervals for the B-SATE or the B-PATE should thus carry over

if they are interpreted as confidence intervals for the SATE or the PATE instead.

For the remainder of this section, we focus on the B-SATE and the SATE as the parameter
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of interest, but all results holds similarly for the B-PATE and PATE as well. We also

introduce the notation that Ax
d denotes the cell of Ad that contains x, that is Ax

d = Adj if

x ∈ Adj, and write f̄d(x) ≡ P (X ∈ Ax
d), p̄d(x) ≡ P (D = d|X ∈ Ax

d), σ̄
2
d(x) ≡ Var(Y |D =

d,X ∈ Ax
d). Now suppose for simplicity that σ2

d(x) = σ̄2
d(x) for all (d, x). In this case, it is

easy to see that under “fixed J asymptotics” we have that

T̄S,n ≡
√
n(τ̂ − τ̄S)

ω̂2
S

d→ N (0, 1)

as n → ∞, The interval ĪS,1 can therefore be interpreted as a confidence interval for the

B-SATE, and thus also as an approximate confidence interval for the SATE. The following

proposition suggests that under limited overlap the finite sample coverage properties of this

interval are generally poor.

Proposition 6. (i) Suppose that Assumptions 1–3 hold, and that σ2
d(x) = σ̄2

d(x) for all

(d, x). Under regularity conditions (Hall, 1992; Hall and Martin, 1988), it holds that

P (τ̄S ∈ ĪS,1) = 1− α + n−1ϕ(zα)q̄2(zα) +O
(
n−2
)

where ϕ denotes the standard normal density function, and q̄2(t) is an odd function.

(ii) Consider a sequence of covariate densities f(x) and generalized propensity scores pd(x)

such that mind,x nd(x) → ∞ as n → ∞. Then n−1ϕ(zα)q̄2(zα) = O(nd∗(x
∗)−1), where

(d∗, x∗) ∈ {0, 1} × X is such that p̄d∗(x
∗)/f̄d∗(x

∗) = mind,x p̄d(x)/f̄d(x).

This result is a minor variation of Propositions 1–2 above, showing that, just as in the

case of discrete covariates, the accuracy of the confidence interval is driven by the local

sample size nd∗(x
∗) instead of the total sample size n. The coverage error of ĪS,1 can thus

be substantial under limited overlap.

5.5. Robust Confidence Intervals. In order to derive confidence intervals that are

robust to limited overlap, we consider the following generalization of Assumption 5.
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Assumption 6 (Auxiliary Model). Y (d) = µ̄d(X) + σ̄d(X) · εd(X) · ηd(X), where ε ≡

{εd(x) : (d, x) ∈ {0, 1} × X} is a collection standard normal random variables, η ≡ {ηd(x) :

(d, x) ∈ {0, 1} × X} is a collection of positive random variables with unit variance, and the

components of ε and η are all independent of the data and of each other.

This assumption postulates that within a typical cell Adj of Ad a polynomial regression

model of orderKdj with homoskedastic errors following a scale mixture of normals is correctly

specified. This assumption is clearly unrealistic, and we do not believe that it literally holds

in our setting. If Jd and the components of Kd are sufficiently large, however, it might

constitute a reasonable approximation to a large class of data generating processes. We will

proceed as in Section 4 and construct confidence intervals for our parameters of interest

under this auxiliary assumption. We will then argue that these new intervals are robust

to limited overlap if Assumption 6 is literally correct, and should thus perform well if the

assumption is at least approximately true. The new intervals are also at least not worse than

ones like ĪS,1, which use critical values based on “J → ∞ asymptotics”.

Since the motivation is similar to the one used in Section 4, we present our new confidence

intervals in rather concise form. Recall the definition that M = {(Xi, Di), i ≤ n}, and put

δ̄min = min
d,j

Ndj −Kdj, δ̄dj = min
d,j

Ndj −Kdj,

δ̄∗ =

(∑
d,j

λ̂djσ̂
2
dj

)2/(∑
d,j

λ̂2
djσ̂

4
dj/δ̄dj

)
, and

ρ̄α =

(∑
d,j(cα(δ̄dj)/cα(δ̄min))

2 · λ̂djσ̂
2
dj/Ndj∑

d,j λ̂djσ̂2
dj/Ndj

)1/2

,

where λ̂dj = L̂′
djΣ̂

−1
dj L̂dj. It then follows from elementary results on linear regression with

fixed regressors and homoskedastic normal errors that conditional on M and η we can write

the statistic T̄S,n as the ratio of a standard normally distributed random variable and the

square root of a linear combination of J1 + J0 independent χ2-distributed random variables
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scaled by the respective degrees of freedom. Arguing as in Section 4.1, we obtain again the

conservative heuristic approximation that

P (T̄S,n ≤ u|M, η) ≈ Ft(u/ρ̄α(u), δ̄min),

On the other hand, when applying the Welch–Satterthwaite approach to the distribution of

TS,n|M, η, we obtain the approximation that

P (T̄S,n ≤ u|M, η) ≈ Ft(u, δ̄∗),

which as we mentioned above is very accurate in mind,j(Ndj −Kdj) ≥ 3. Conservative and

Welch-type confidence intervals with nominal level 1− α for the SATE are then given by

ĪS,2 =

(
τ̂ − cα(δ̄min)ρ̄α × ω̂S√

n
, τ̂ + cα(δ̄min)ρ̄α × ω̂S√

n

)
and

ĪS,3 =

(
τ̂ − cα(δ̄∗)×

ω̂S√
n
, τ̂ + cα(δ̄∗)×

ω̂S√
n

)
,

respectively. We have the following result about their coverage properties under “fixed J

asymptotics”.

Proposition 7. (i) Suppose that Assumptions 1–3 and 6 hold. Then

P (τ̄S ∈ ĪS,2) ≥ 1− α and P (τ̄S ∈ ĪS,3) = 1− α+ n−2ϕ(zα)¯̃q2(zα) +O
(
n−3
)
,

where ϕ denotes the standard normal density function, and ¯̃q2(t) is an odd function.

(ii) Consider a sequence of covariate densities f(x) and generalized propensity scores pd(x)

such that mind,x nd(x) → ∞ as n → ∞. Then ¯̃q2(zα) = O(nd∗(x
∗)−2), where (d∗, x∗) ∈

{0, 1} × X is such that p̄d∗(x
∗)/f̄d∗(x

∗) = mind,x p̄d(x)/f̄d(x).

(iii) Under Assumptions 1–3 and the regularity conditions of Proposition 6, we have that

P (τ̄S ∈ ĪS,2) = P (τ̄S ∈ ĪS,1) +O(n−2) and P (τ̄S ∈ ĪS,3) = P (τ̄S ∈ ĪS,1) +O(n−2).
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The proposition shows that the robust confidence intervals τ̄S ∈ ĪS,2 and τ̄S ∈ ĪS,3 achieve

improvements over the standard interval τ̄S ∈ ĪS,1 that are qualitatively analogous to their

counterparts in a setting with discrete covariates.10 A similar result could also be obtained

for the following conservative and Welch-type confidence intervals with nominal level 1− α

for the PATE:

ĪP,2 =

(
τ̂ − gC,α(δ̄min, ρ̄α)

ω̂√
n
, τ̂ + gC,α(δ̄min, ρ̄α)×

ω̂√
n

)
and

ĪP,3 =

(
τ̂ − gW,α(δ̄min)×

ω̂√
n
, τ̂ + gW,α(δ̄min)×

ω̂√
n

)
,

where the critical values gC,α(·) and gW,α(·) are exactly as defined in Section 4. We omit the

details in the interest of brevity.

6. Numerical Evidence

In this section, we report the results of a small simulation study, and of the application of

our data to the LaLonde (1986) data on the evaluation of a labor market program.

6.1. A Small Simulation Study. We conducted several Monte Carlo experiments to

investigate the performance of our proposed robust confidence intervals in finite samples.

For simplicity, here we only report results for inference on the SATE in a setting where

X is binary, and thus X = {0, 1}. In order to ensure that the SATE remains constant

across simulation runs, we hold the data M = {(Di, Xi), i ≤ n} on covariates and treatment

indicators constant in each repetition, and only simulate new values of the outcome variables.

Specifically, with a total sample size of n = 1, 000, we construct the set M such that N0 =

N1 = 500 and N0(0) = N0(1) = 250. We then vary the value of N1(1) = N1−N1(0) over the

set {250, 125, 75, 25, 15, 10, 8, 6, 4, 3, 2}. This is equivalent to setting f̂(0) = f̂(1) = p̂(0) =

10In view of Ibragimov and Müller (2013), we conjecture that the result concerning ĪS,2 might also continue
to hold if Assumption 6 is weakened to allow for within-cell heteroskedasticity, although a formal proof of
this is far beyond the scope of this paper.
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1/2, and letting p̂(1) range over the set {0.5, 0.25, . . . , 0.006, 0.004}. Our simulations thus

include settings with good, moderate and extremely limited overlap. We conduct 100,000

replications for every value of the propensity score. We also put µd(x) ≡ 0, σ2
0(0) = σ2

0(1) =

σ2
1(0) = 1, and consider the cases σ2

1(1) = 4 and σ2
1(1) = .25 for our study. We generate

outcomes as Yi = µDi
(Xi) + σDi

(Xi) · εDi
(Xi), where the distribution of the error term is a

mixture of a standard normal distribution and a standard exponential distribution centered

at zero. That is, we have εd(x) ∼ λ · N (0, 1) + (1 − λ) · (Exp(1) − 1), where λ ∈ [0, 1] is

the mixture weight. For our simulations, we consider the cases λ = 1 and λ = .5. The

first type of error distribution satisfies out Assumption 5, whereas the second one does not

and is included to check the robustness of our methods against deviations from the auxiliary

distributional assumption.

The top panels of Figure 1 shows the simulated finite sample coverage probabilities of the

three confidence intervals IS,1 (standard; black line), IS,2 (conservative; blue line) and IS,3

(Welch; red line) for the different values of the empirical propensity score p̂(1) and λ = 1.

The top left panel reports results for σ2
1(1) = 4, where as the top right panel reports results

for σ2
1(1) = .25 In both cases, the standard interval’s coverage rate is close to the nominal

level for p̂(1) ≥ 0.05, which corresponds to realized local sample sizes such that N1(1) ≥

25. For smaller values of the propensity score, IS,1 becomes more and more distorted,

eventually deviating from the nominal level by almost 25 percentage points. As suggested

by its construction, the coverage probability of our conservative interval IS,2 exceeds its

nominal level for all values of the propensity score. However, the deviations are surprisingly

minor, becoming noticeable only for p̂(1) ≤ 0.04 and σ2
1(1) = .25, and even then never exceed

one percentage point. Our Welch-type interval IS,3 also has correct coverage probability for

most values of the propensity score. However, it shows some distortions for p̂(1) ≤ 0.02,

which corresponds to settings with realized local sample sizes such that N1(1) ≤ 4.

In the bottom panel of Figure 1, we report the results of our simulation experiments in
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Figure 1: Empirical coverage probabilities of IS,1 (standard; black line), IS,2 (conservative; blue
line) and IS,3 (Welch; red line) for the different values of the empirical propensity score p̂(1) between
0.004 and 0.5 (or, equivalently, values of realized local sample size N1(1) between 2 and 250). The
parameters being used are λ = 1, σ2

1(1) = 4 (top left panel), λ = 1, σ2
1(1) = .25 (top right panel),

λ = .5, σ2
1(1) = 4 (bottom left panel), and λ = .5, σ2

1(1) = .25 (bottom right panel).

which λ = .5. The bottom left panel reports results for σ2
1(1) = 4, whereas the bottom right

panel reports results for σ2
1(1) = .25. These are both settings in which our Assumption 5

does not hold. Following Propositions 3 and 4, our robust confidence intervals formally only
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have the same asymptotic coverage error as the standard interval in this case. However,

since the distribution of the errors is not “too different” from Gaussian in this experiment,

one would hope that some of the robustness properties are preserved. Our simulations show

that this is indeed the case. The results for all three confidence intervals are qualitatively

very similar to the case where λ = 1. Our robust confidence intervals suffer from a slight

additional distortion for low values of the propensity score, but those are very mild relative

to those of the standard intervals. This suggests our constructions remains beneficial even

if our stringent distributional assumptions are substantially violated.

6.2. An Empirical Illustration. In this subsection, we apply the methods proposed in

this paper to data from the National Supported Work (NSW) demonstration, an evaluation

of an active labor market program first analyzed by LaLonde (1986), and then subsequently

by Dehejia and Wahba (1999) and many others. The NSW demonstration was a federally

and privately funded program implented in the mid-1970’s in which hard-to-employ people

were given work experience for 12 to 18 months in a supportive but performance-oriented

environment. The data set that we use here (taken from Dehejia and Wahba, 1999) is

a combination of a sample of 185 participants from a randomized evaluation of the NSW

program, and a sample of 2490 non-participants taken from the Panel Study of Income

Dynamics (PSID). For the purpose of illustration, we ignore the fact that the data combine

two populations, and treat them as being a single sample from “pseudo-population” for

which we wish to determine the average treatment effect of the NSW program.

The left panel of Table 1 presents some summary statistics for the data used in our

analysis. Note that there are major differences in pre-treatment characteristics between

individuals that participate in the program and those who do not. A practical concern is

thus that there might be no overlap in larger parts of the covariate space. We therefore first

estimated the propensity score using a partitioning approach to investigate this issue. Since
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Table 1: Descriptive Statistics

Original Data Trimmed Data
Treated (185) Control (2490) Treated (178) Control (475)
Mean SD Mean SD Mean SD Mean SD

Covariates
Age 25.81 7.15 34.85 10.44 25.66 7.18 35.84 11.46
Education 10.34 2.01 12.12 3.08 10.33 2.01 11.44 3.34
Black 0.84 0.36 0.25 0.43 0.84 0.37 0.30 0.46
Hispanic 0.06 0.24 0.03 0.17 0.06 0.24 0.04 0.21
Married 0.19 0.39 0.87 0.34 0.17 0.38 0.78 0.42
Earnings ’74 2.10 4.89 19.43 13.41 1.45 3.27 5.33 8.23
Earnings ’75 1.53 3.22 19.06 13.59 1.06 1.88 3.41 7.29

Outcome
Earnings ’78 6.34 7.86 21.55 15.55 6.11 7.61 8.81 14.50

Note: Earnings data are in thousands of 1978 dollars.

the covariates we consider here include both binary and continuously distributed variables,

we partition their support using the Classification and Regression Trees (CART) algorithm

(Breiman, Friedman, Stone, and Olshen, 1984) as implemented in the library rpart of the

statistical software package R (Ihaka and Gentleman, 1996). CART can be thought of as

a local constant partitioning regression estimator with a data-dependent partition of the

covariate space. Specifically, CART creates a partition through a series of binary splits,

chosen such that at each step the greatest possible reduction in the total within-cell sum of

squares is achieved.

Figure 2 shows the CART estimate of the propensity score; that is the structure of the

partition, the resulting cell sizes, and the local estimates p̂(x). The graph indicates that

there is indeed a large group of 2022 units, defined as those with earnings in 1974 greater

than 2.3 and earnings in 1975 greater than 6.1, in which the share of treated individuals is

extremely low at 0.0035. This indicates that estimating the function µ1(x) would require a

rather coarse partition of the covariate space in this region, which in turn would likely lead to

a substantial partitioning bias. We therefore remove these observations from the sample, and

consider estimating the ATE for the remaining 178 treated and 475 control units. Summary
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Propensity Score Estimate Before Trimming
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Figure 2: Estimated propensity score in the full sample. Tree represents the partition of the covari-
ate space as determined by the CART algorithm for treated and untreated individuals. Numbers
in boxes denote the respective local estimate of the propensity score p(x), and the corresponding
realized local sample size N(x).

statistics for this trimmed sample are given in the right panel of Table 1.

Note that while the use of CART is somewhat unusual in treatment effects applications,

their structure makes regression trees particularly suitable for identifying regions on the

covariate space with no or limited overlap. If the propensity score had been estimated by,

say, a Logit or Probit model, it would have been much harder to characterize the regions of

the covariate space in which treated observations are only sparsely located.

In the next step, we then estimated the function µd(x) on the trimmed data, using

again the CART algorithm to determine the partition of the covariate space. This was
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Outcomes of Treated
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Outcomes of Untreated
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Figure 3: Partition of the covariate space as determined by the CART algorithm for treated and
untreated individuals. Numbers in boxes denote the respective local estimate of the function µd(x),
and the corresponding realized local sample size Nd(x).

done separately for treated and untreated units.11 Figure 3 shows the findings, namely the

structure of the partition, the cell sizes Nd(x), and the estimates of µd(x) obtained by fitting

a constant to the data on earnings in 1978 within each cell (in multiples of $1,000, and

rounded to the nearest decimal). The graph is to be read as follows: CART created a cell

containing all 104 treated units with less than 26 years of age (with average 1978 earnings of

4.8); another cell containing all 30 treated units that are 26 or older and have less than 10

years of education (with average 1978 earnings of 5.2); and so forth. In total, we partition

the treatment and non-treatment groups into 6 and 9 cells, respectively. Cell sizes show

a substantial amount of heterogeneity, ranging from 7 to 224, and there are a number of

11There is no need for the partition to be constant across treatment status, in the same way that there
is no need to use the same smoothing parameter for the treated and untreated samples if any other type of
nonparametric estimator was being used to estimate µd(x).
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Table 2: Effect of NSW program on Earnings ’78

SATE Inference PATE Inference
Estimation results
Point Estimate -0.74 -0.74
Standard Error 0.96 1.03

Critical value (nominal 95% level)
Standard 1.96 1.96
Welch 2.01 2.01
Conservative 2.25 2.20

Two-sided confidence interval (nominal 95% level)
Standard [ -2.62, 1.25] [-2.75, -1.27]
Welch [ -2.67, 1.20] [ -2.80, -1.32]
Conservative [-2.91, 1.44] [ -3.00, -1.52]

Note: The outcome is earning in 1978 in thousands of 1978 dollars.

small cells with less than 20 observations. This suggests that limited overlap might be a

concern for inference.12 Note that the covariates used by the CART algorithm to define the

partition differ between the two treatment groups, and some covariates are not used at all.

The non-inclusion of a covariate means that a split based on its realizations does not lead

to sufficiently large improvement in fit according to CART’s default stopping criteria.

In Table 2, we report the final results of applying our methods to the data.13 We consider

both inference on the SATE and the PATE. The point estimate of both parameters is −0.74,

which is larger than the unadjusted difference in outcomes of treated and untreated individ-

uals of −2.70 we obtain from the right panel of Table 1. Our results show that in order to

conduct overlap-robust inference on the SATE using the Welch correction, one should use a

critical value of cα(δ̄∗) = 2.01 (45.8 degrees of freedom) for α = 0.05 in this case, which trans-

lates into a confidence interval that is only 3% longer than the standard one using the critical

value 1.96. Using our conservative approach leads to a critical value of cα(δ̄min)ρ̄α = 2.25,

12Some additional calculations show that the cell with the lowest ratio of the estimated generalized propen-
sity score and the estimated covariate density, i.e. the sample analogue of the point (d∗, x∗) we defined above,
is the one containing treated units with age ≥ 26, educ ≥ 10 and earn74 ≥ 0.96, which contains 8 obser-
vations.

13Note that our results formally do not cover the case of a data-driven partition, but we ignore this
additional source of variation for simplicity here.
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which gives a confidence interval that is about 15% wider. Given our simulation results, this

would be our preferred confidence interval. Inference results for the PATE are qualitatively

similar, with robust confidence intervals being a little less wide relative to the standard one.

7. Conclusions

Limited overlap creates a number of challenges for empirical studies that wish to quantify

the average effect of a treatment under the assumption of unconfounded assignment. In

addition to point estimates being rather imprecise, an important practical problem is that

standard methods for inference can break down. For example, commonly used confidence

intervals of the form “point estimate±1.96×standard error” can have coverage probability

substantially below their nominal level of 95% even in very large, but finite, samples. This

paper has provided some insights for why this phenomenon occurs, and proposed new robust

confidence intervals that have good theoretical and practical properties in many empirically

relevant settings.

A. Proofs

A.1. Proof of Propositions 1 and 2. Proposition 1 can be shown by adapting a result of Hall

and Martin (1988), who study the form of the Edgeworth expansion of the two-sample t-statistic;

see also Hall (1992). One only requires the insight that Hall and Martin’s (1988) arguments remain

valid if the number of samples is increased from 2 to 2J . Denoting the distribution function of TS,n

given M by Hn(·|M), it follows from their reasoning that under the conditions of the proposition

Hn(·|M) satisfies the following Edgeworth expansion:

Hn(t|M) = Φ(t) + n−1/2ϕ(t)q̂1(t) + n−1ϕ(t)q̂2(t) + n−3/2ϕ(t)q̂3(t) +OP (n
−2),
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where Φ and ϕ denote the standard normal distribution and density functions, respectively,

q̂1(t) =
2t2 + 1

6ω̄3
S

·
∑
d,j

f̂(xj)

p̂d(xj)2
γd(xj),

q̂2(t) =
t3 − 3t

12ω̄4
S

·
∑
d,j

f̂(xj)κd(xj)

p̂d(xj)3
− t5 + 2t3 − 3t

18ω̄6
S

·

∑
d,j

f̂(xj)γd(xj)(−1)1−d

p̂d(xj)2

2

− t

2ω̄4
S

·
∑

(d,j) ̸=(d′,j′)

σ2
d(xj)σ

2
d′(xj′)(f̂(xj)p̂d(xj) + f̂(xj′)p̂d′(xj′))

(p̂d(xj)p̂d′(xj′))2

− (t3 + 3t)

4ω̄4
S

·
∑
d,j

f̂(xj)σ
4
d(xj)

p̂d(xj)3
,

ω̄2
S =

∑
d,j f̂(xj)σ

2
d(xj)/p̂d(xj), and q̂3 is another even function whose exact form is not important

for the purpose of this argument. The conditional coverage probability of the confidence interval

IS,n given M is given by

P (τS ∈ IS,n|M) = P (TS,n ≤ zα|M)− P (TS,n ≤ −zα|M) = Hn(zα|M)−Hn(−zα|M).

Substituting the Edgeworth expansion for Hn(·|M) into this expression, we find that

P (τS ∈ IS,n|M) = 1− α+ n−1ϕ(zα)q̂2(zα) +O
(
n−2

)
,

The result of Proposition 1 then follows from the fact that E(q̂2(zα)) = q2(zα) + O(n−1), the

relationship that P (τS ∈ IS,n) = E(P (τS ∈ IS,n|M)), and dominated convergence. Proposition 2

follows from some simple algebra.

A.2. Proof of Proposition 3. To show part (i) we first prove the following auxiliary result,

which is similar to a finding of Hayter (2014).

Lemma 1. Let X be be normally distributed with mean zero and unit variance, and let W =

(a1W1, . . . , aKWK)′ be a random vector with ak a positive constant and Wk a random variable

following a χ2-distribution with sk degrees of freedom for k = 1, . . . ,K, and such that X and the

components of W are mutually independent. Also define the set Γ = {(γ1, . . . , γK) : γk ≥ 0 for k =

1, . . . ,K and
∑K

k=1 γk ≤ 1} with typical element γ, and let Vγ = X/(W ′γ)1/2. Then for u > 0 it
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holds that

P (Vγ ≤ u) ≥ max
k=1,...,K

Ft(u/a
1/2
k , sk)

for all γ ∈ Γ.

Proof. With Φ the CDF of the standard normal distribution and u > 0, the function Φ(ut1/2) is

strictly concave in t for t ≥ 0, as it is the combination of a strictly concave function and a strictly

increasing function. Therefore it holds that

P (Vγ ≤ u|W ) = P (X ≤ u(W ′γ)1/2|W ) = Φ(u(W ′γ)1/2)

is a strictly concave function in γ for γ ∈ Γ with probability one, and consequently

P (Vγ ≤ u) = E(Φ(u(W ′γ)1/2))

is strictly concave in γ for γ ∈ Γ. Since P (Vγ ≤ u) is also continuous in γ, and Γ is a convex

compact set, the term P (Vγ ≤ u) attains a minimum in γ on the boundary of Γ. It remains to

be shown that the minimum occurs for γ = ek for some k, where ek denotes the K-vector whose

kth entry is 1 and whose other entries are all 0. We prove this by induction. For K = 1 and

K = 2 this is trivial, as the boundary of Γ only contains elements of the required form in those

cases. For K = 3, the boundary of Γ is a triangle. If the minimum occurs on the side given by

{(0, γ2, γ3) : γ2, γ3 ≥ 0, γ2 + γ3 = 1}, it follows from the case K = 2 that the minimum occurs for

γ = e2 or γ = e3. By repeating this argument for the other sides of the triangle, it follows that the

minimum must occur at γ = ek for some k = 1, 2, 3, which is what we needed to show. We then

continue analogously for the cases K = 4, 5, . . ., by always “going through” all (K−1)-dimensional

“sides” of the K-dimensional simplex Γ. Since P (Vek ≤ u) = Ft(u/a
1/2
k , sk), it then follows that

P (Vek ≤ u) ≥ maxk=1,...,K Ft(u/a
1/2
k , sk). This completes our proof.

The statement of part (i) of the proposition then follows from applying the Lemma to the
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conditional distribution of TS,n(h
∗) given (M,η), by putting (with a slight abuse of notation) that

X =
√
n(τ̂ − τS)/

∑
d,j

cα(δdj)
2f̂(xj)

2ηd(xj)
2σ2

d(xj)/Nd(xj)


γk = (f̂(xj)

2ηd(xj)
2σ2

d(xj)/Nd(xj))/

∑
d,j

f̂(xj)
2ηd(xj)

2σ2
d(xj)/Nd(xj)


Wk = σ̂2

d(xj)/σ
2
d(xj), sk = Nd(xj)− 1, and ak = cα(δdj)

2,

and by noting that since the inequality holds conditional on (M,η) it must also hold unconditionally.

Part (ii) follows from the fact that cα(δ) = zα+O(δ−1), which implies that cα(δmin) = zα+O(n−1),

and that ρα = 1 +O(n−1).

A.3. Proof of Propositions 4 and 5. Proposition 4(i) is follows from a classical result

in Welch (1947) and arguments similar to those used to prove Proposition 1. Proposition 4(ii)

follows from the fact that cα(δ) = zα +O(δ−1), which implies that cα(δ∗) = zα +O(n−1). Finally,

Proposition 5 follows from some simple algebra in the same way as Proposition 2.

A.4. Proof of Propositions 6 and 7. The results follow from minor modifications of the ar-

guments used to prove Propositions 1–5 and standard results for concerning the finite sample prop-

erties of least squares estimators in correctly specified linear regression models with homoskedastic

Gaussian errors. Details are omitted.
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