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ABSTRACT

A New View on Panel Econometrics:
Is Probit Feasible After All?

Mundlak (1978) proposed the addition of time averages to the usual panel equation in order
to remove the fixed effects bias. We extend this Mundlak equation further by replacing the
time-varying explanatory variables by the corresponding deviations from the averages over
time, while keeping the time averages in the equation. It appears that regression on this
extended equation provides simultaneously the within and in-between estimator, while the
pooled data estimator is a weighted average of the within and in-between estimator. In
Section 3 we introduce observed and unobserved fixed effects In Section 4 we demonstrate
that in this extended setup Probit estimation on panel data sets does not pose a specific
problem. The usual software will do. In Section 5 we give an empirical example.
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1.Introduction

An important field of econometrics is panel econometrics. In most textbooks
separate chapters are devoted to panel analysis, and several textbooks like
Baltagi (2006) and Wooldrich (2002) are almost exclusively focusing on panel
econometrics. The main difficulty in panel econometrics is that the traditional
linear model Y. = f'X, + 7'z + &, offers at least three ways of estimating the

coefficients. We may apply OLS on the pooled data (yit , Xit) , we may apply OLS
on the differences (Y, ,X,) from the mean (within), and we may apply OLS on

the averages over time (Vit,Yit (in -between). The empirical problem is that
the results of these three estimation methods for f may yield very different
results. Mostly, it is explained by the existence of unobserved individual effects
o; that are correlated with the x- variables. This is actually a special case of

omitted variables bias and/or correlation between the x and the errors.

Mundlak (1978) and Chamberlain (1984) show that, if the ¢r; are correlated with

X, they may be decomposed into a linear function of the time averages 5'Yi and

an independent error. Hence, they add the time averages as a second set of
explanatory variables and take for basic model Yy, = f'X, +0'X + 'z, + ¢, .

If the individual effects ¢, happen to be uncorrelated with x and/or z, they are

called random effects.

In this paper we go one step further and replace the X, in the last equation by

X, = X, — X , yielding the extended model y;, = B'X'it —I—,E'Yi + 7/’2i + &, . This
implies a loosening of the implicit assumption of the traditional model that

p = ,g It may be true or not and empirical testing will decide on it.
In this paper we will demonstrate in Section 2 that regression on this extended

model will provide us simultaneously with an estimator of # ,which is identical

to the within- or fixed- effects estimator b , and with an estimator of ,E

within

which equals the in-between estimatorb . When we apply regression under

inbet

~

the constraint that b_... =b =D , then b will be a weighted average of the

within inbet —



~ ~

estimators b ... and b

\within In Section 3 we introduce the observed time-

inbet *
constant variables Z, and the (possibly correlated) unobserved fixed effects ¢
. In Section 4 we demonstrate that this approach works for the Probit- version of
the model as well. Contrary to the idea that the Probit model is impossible to
estimate for panel data and that consequently we have to take recourse to a
Logit specification, we show that such estimation is possible on the extended
model by standard software. In Section 5 we give an empirical example. In

Section 6 we draw some conclusions.

The upshot of this is that linear panel analysis, based on the model
Vi = ,[.3.')'(it +,E’Yi +y'2. + &, does not pose special ‘panel problems’, although
we may still encounter the usual problems found in classical multivariate
statistics in general and in linear econometrics in particular. It is therefore that
we argue that panel analysis can be re-integrated in traditional classical

econometrics, when we replace the traditional model Y. = f'X, + 7'z, + &, by

the extended model y , = #'%, + B'X +7'2, + &,.

2. Comparison of the traditional estimators with the estimators of the extended
model.

First, we consider the linear panel data model in its most simple form. This is

Yie = BXi Tt B X ie + By + & (2.1)

where i (i=1,..,N) stands for the it" observation unit and t ( t=1,..,T) for the
different observation moments. The errors are assumed to be mutually
independent. Moreover, we assume for the errors zero expectation and homo-

- : i 2
skedasticity. The error covariance matrixis X =0, .l ;.



The T observations per observation unit i are denoted as (yit’xl,it""’XK,it’l)

or for short aS(Yinn)- We notice that X is a (K+1)-vector, where we include

the constant 1.

If we consider all T observations for unit i we store them as the T x(K+2)- matrix

( Yio Xpjrenn X ) or ( Y, X, ) . Allindividual observations, including the constant,
are stored in the NT x (K+2)- matrix (y , X )

In this paper we will use semi-definite symmetric (TxT)- matrices 2, M and their

generalized inverses .The generalized inverse will be denoted by X" and it is
defined as the matrix with the same eigenvectors as those of X ; they share the
zero eigenvalues, while their corresponding non-zero eigenvalues are the

reciprocals of those of 2. While those matrices are generally TxT-matrices, we

will use incidentally block-diagonal (NTxNT) -matrices like 28 = |N ®2€.They

will be denoted by bold symbols.

1
Let us denote the averaging matrixby M , where M =—¢{' is a (TXT) —-matrix

with each cell equaling 1/T. The matrix M is idempotent of rank 1. We have for
the vector of averages X, = MX.. Similarly, the demeaning procedure can be

described by the matrix (I — M) with rank (T-1) and we have for the deviations
from the mean X, = (1 =M )X, .

Due to the fact that M is idempotent, we have M(I-M)=0 and hence
X/X. =X/ (1-M)MX, =0. In a similar way it may be shown, for example, that
Xy =X'(§+V) =Xy, X'€=0. In short, the deviations are not correlated with
the time- constant variables. Similarly, we find that
XT=X'"(Z,+Z,)=X"(MZM +(I-M)Z(I-M))=X'"Z, .

There are in the literature three basic methods to estimate the parameter vector

S . The first method is of course OLS applied on (2.1).



The second method is the so-called in- between estimation. We consider the

average observations over time. We denote the time averages for observation
unitiby (V;,X;,...,Xy ;) and the average error by &; . Then (2.1) implies for the

averages
Vi = 6%+t BXi + By + & (i=1,.,N) (2.2)

1
where 2_ = ?GE'IN .So it follows that f may be estimated by OLS on (2.2) as

well. This estimator is called the in-between estimator bib . We may rewrite (2.2)

as

My, = MX. 8+ Me, (2.3)

The third estimator is found by taking the differences from the means. Let us
denote Y, =Y, — Y, and let us use the same notation for the other variables.

Then we find that there holds
Vi = BXj +oo+ B X i + & (121N, t=1,..,T) (2.4)

or

(1=M)y, =(1 =M)X.B+(I —-M)e& (2.5)

Applying OLS (without intercept) on (2.4), yields a third estimator. It is the so-

called within-estimator of 3, which we denote by b,; .

We see that the error vector [9} = (gi 1,...,éfi T ) has a non-diagonal covariance

matrix
2.=(1-M)c’(1-M) (2.6)

This matrix 2 is singular of rank T-1. This follows automatically as there are only

(T-1) independent equations for observation unit i, reflecting the fact that the
equation for observation (i ,T) follows automatically from the fact that the T



demeaned observations add up to zero. In the following context we might, as
usual, drop the last observation for each observation unit i, which removes the
singularity. For our following analysis we prefer to use all T data. Then we have

to replace the usual inverse by the generalized inverse Z; which has the same

eigenvectors asX,, while the non-zero eigenvalues are replaced by their

reciprocals. The three OLS- estimators being consistent, they are estimating the
same parameter vector 5, except for the within-estimator which does not

estimate the intercept 3, .

Now we add a fourth extended model

Yie = B’Xit + E'Zt t & (2.7)

or
i =(1-M)X,B+MX,B+Me, +(I —M)¢, (2.8)

This model leaves explicitly open that,B % ,E If there holds equality, we are back
in the traditional case, since (X, + X, ) = f'X, . Hence (2.1) is a special case of
the more general model (2.7). The implicit traditional assumption that ﬂ = E
may now be tested as a hypothesis. We notice that XI is a (TxK)- matrix while

X.is a (Tx(K+1))- matrix, including the intercept.

The first term in (2.7) refers to the differences and the second term to the
averages. Since both terms are uncorrelated we may apply the Frisch —-Waugh-
Lovell theorem (Frisch, Waugh (1933), Lovell (1963)).

Since X'y =Xy and X'e¢ = X'& we find that regression on X only, i.e.,

yit = ﬁrx'it + git (29)

A oL
will yield the estimator b =b ithin=( XX ) XY, identical with the result when

Wi

regressing on Y, asin (2.4).



Similarly, dropping the differences in (2.8), OLS vyields only the in-between

~

estimator. Inshort b =h Regression on (2.8) will simultaneously provide

inbetween *
us with the within — and the in-between estimator.

We get the explicit formulae:

b=(X'X)" X'y
b, :(X ')'(')_1)'(' 'y (2.10)
Bib:(_|>?)_l>?|y

where 25 = |N ® 25 isa (TN x TN) — block- diagonal matrix. For X we remark
that the first T rows are identical, and so for the second T-tuple, and so on. We

may also interpret X in the formula (2.5) as a (N x(K+1))-matrix, and Vas an N
~vector Y = (V,,..., Yy ) - Then the (TN x TN) — block- diagonal matrix X_=

|, ®Z_ has to be replaced by the (N x N) - matrix 2_ as well.

Since the OLS- estimators are unbiased, we may write the differences of the

- VAL AREAR
estimators with their expectations as 0., — p= ( X'X ) X'e
" > VALVARRVA IS .
and bib - p =(X X) X '€ . Since the errors &, are uncorrelated, it

follows that the estimators bwi’bib are uncorrelated as well. If they are

(asymptotically) normal, they are mutually independent.

The covariance matrices of the estimators are:



2

cov(h,;) = g;_ (X'X )_1

) (2.11)

cov(b,) = %()? ! )?)_l

where X is a (NT x(K+1))-matrix. When we take X to be a (N x(K+1)) the first

2
factor becomes O, /N .

N N

It is now easy to test the equality of b, andb,. We notice that

cov(BWi —Bib) = cov(Bwi) +cov(6ib) =X .- Hence, we have the test
criterion (6wi - Bib)’z_lwi.ib (Bwi - l:,)\no) ~ X

- 1 -1 1
The pooled estimator D Z(X X) XY, where we estimate under the

~

additional constraint bWi = bib =D, orin terms of the population parameters

B == /3, may now be interpreted as a weighted sum of the within- and in-

between estimator. We write the sum of squared residuals using the zero-

correlation of the means and the deviations as
2 2
S°= Z(yit _ﬂ,xit)
it

:Z(yit—ﬂ'i('it)2+T.Z(7i _ﬂ,x)z (2.12)
it i
=S24+7.8?
Differentiation with respect to £ yields the normal equation
(XX +T.)?>?)6: X§+T.XY .

We solve for f and get
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b=(XX +T.XX) (Xy+T.Xy)=
(XX +T.XK) " (XK)(XX) Xy +(XX +T.XK)" (XX )(XX) T.X¥)

This is a matrix-weighted average Db :Wwi6wi +Wib6ib with weights
e ee — —\—1 e e e es — —\-1, — —
W, :(XX +T.XX) (XX) and W, :(XX +T.XX) (XX) , respectively. We

may write the weights even more elegantly as Wiz(XX)_l(XX)and

w
-1 —_—

W, = (XX) " (XX).

We see that the within-estimator gets the upper weight if the inter-temporal

variation is large and inter-individual variation is small, while the within —

estimator becomes relatively unimportant if inter-temporal variations per

individual are small, but inter-individual variations are relatively large.

~ ~

If the equality b,,=b, holds, we have for their joint estimatorb

A 2
cov(b) = "; (X'X)™

3. Observed and unobserved fixed effects.

It is frequently found that the estimators bwi,bib yield statistically different
estimates of the parameter vector 5, which contradicts the model equation

(2.1). The traditional way to repair this contradiction is to extend the model by

adding a vector of M observed effects Z and/or an unobserved individual fixed

effect ; .The equation runs

Vi =B % +7'Zi +a; + By + & (3.1)

The corresponding extended version is
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V. =% + X +y'Z +a, + B, +s, (3.2)

We notice that (3.2) is again a sum of two uncorrelated sets of explanatory
variables, viz., X and ()?,Z,a) .The role of X and Z are the same. The role

of « is that of an omitted variable. If it correlates with X orZ , it creates an

‘omitted variable’- bias for the estimators of B and y . If it does not correlate,
it is just a random effect, which may be added to the in-between error yielding
a composite in-between error 7, =& +; with corresponding co-variance

. (=2 2
matrix 277 —(Gg +Ga)| )

We may regress y on X only, yielding the within-estimator. The within- estimator
is estimated from the normal equation

(XX)B=Xy (3.3)
The within —estimator is not affected by the presence of Z and « , since

X, y,é‘ are uncorrelated with Z and « . For the same reason the within-

estimator and its covariance- matrix is not affected by the presence of random

effects.

We denote the extended matrix of explanatory variables by XZ = ()?, Z) .
The in - between estimator is estimated from the normal equations

(X'X) (X'2)|rz ol

et 3 R
where we notice that the relevant covariance matrix is % = (ng + O'j) | .The
estimators of ,E and y are not consistent if ()?)' a # 0 and/or Z'a #0.This

is nothing else than the omitted variable bias when we apply OLS on the
equation YV, = X +y'Z. + o + B, + &, .
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Notice that the pooled estimator is also affected by the presence of Z and « .

This is easily shown by the fact that the pooled estimator, as we saw in the
previous section, may be interpreted as a weighted sum of the within- and in-
between -estimator. If one of the two estimators is biased, it is obvious that the
weighted average will be biased as well.

Alternative interpretation

An alternative explanation for an observed difference between the estimators
bWi , bib is that the difference is not caused by an imperfect specification of the

model equation, but that the two estimators stand for two different effects.
We may interpret (3.2) as a decomposition between the structural time invariant
effects of the average )?i X and Z, and the effect of the temporal deviation

Xit. An example of an economic theory where such a model seems relevant is
Friedman’s (1956) permanent income theory. Consumption Y, is there
explained by permanent income )?i and the income fluctuations Xit about the

mean.

As said before, whether the hypothesis ,Bib = [, is justified can be statistically

tested.
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4. Application to qualitative panels.

The present findings facilitate our approach to linear panel analysis. However,
the main surprising novel result of this analysis is its consequence for the
Ordered Probit analysis of panel data. In the established literature it is taken for
granted that panel equations cannot be estimated by Ordered Probit. See, for
instance, Chamberlain (1984), or Cameron and Trivedi (2005), who state in
Section 23.4.3. of their magnificent book “ Fixed Effects estimation is possible for
the panel logit model, using the conditional MLE, but not for other binary panel
models such as panel probit’. This is based on the following reasoning.

Let the latent model be the traditional version
Yi = BX V'L + o+ By + & (4.1)
where the error according to the Ordered Probit — model is assumed to follow

a N(0,1)- distribution. We can apply OP on (4.1) .In that case the established

result is that the OP-estimators are ML-estimators; consequently, the ML-

estimators bop will tend to the probability limits b0|_s obtained by OLS on (4.1).

~

However, if there are fixed effects, bOLS will be biased as we saw.

The usual way out in the panel- OLS-model is to look at the equation (2.4), viz.,
Vi = Xy b+ Eq (4.2)

However, now we observe the y’s only qualitatively as belonging to one of J

ordered response categories{,uj_1 <Y=u, }; we do not have the qualitative

analogue of y., . Hence, we cannot apply OP on (4.2).

Let us now apply OP on the latent model
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Vi =B% + BX +7' L+ + By + & (4.3)
where the erroris assumed to follow a N(0,1)- distribution. When we could apply

OLS on the quantitative observations Y, following (4.3), the within — and in-
between estimators would be simultaneously and consistently be estimated on
(4.3) by b,; and b, . It is well-known that if we only know the observations as

belonging to ordered classes, while the errors are N(0,1)- distributed, then we
may apply OP and the OP-estimators, being M L- estimators, are consistent.
However, we are still assuming that errors are N(0,1)- distributed. The latter
assumption is unnecessarily restrictive. If the errors have an arbitrary variance
o >0, the estimation under the false assumption that o =1will yield OP-
estimators which are all multiplied by 1/ o, but which have the same ratio to
each other.

In the qualitative panel context the observations of Y, are belonging to known
ordered classes. Hence, we may apply OP on (4.3) and we estimate the
parameters ,[7,,6’ or ﬂib,ﬂwi up to an unknown proportionality factor ¥ =1/ o

(>0).

The coefficients and their covariance matrix may be estimated by OP by using

traditional software. The estimators are consistent. Hence D, = /.0, s and

~ ~

bOP ~ W-bOLs- If there are fixed effects & we encounter the same problems as

in the OLS-case for the in-between and the pooled case. In case of correlation

the estimators bOP’j/\OP will be biased. However, bop will be consistent. It is

immune for fixed effects. Again, it is possible to test whether Bop = EOP .This is

~

relatively easy as the estimators bop , bop are uncorrelated. This follows when we
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-1
N
consider the joint covariance matrix. It may be written as {Zwi Xi Xi'} (see

i=1
Cameron and Trivedi, p.469), where Xi' = [Xi’,fi'} . It is easy to see that the
non-diagonal blocks in this matrix are a sum of zeroes and therefore zero

themselves.

The difference between the traditional model and our model is that the existing

literature states that the within- estimator ,Bwi can only be derived by regressing
on the differences Y, , while we showed above that regressing on the original
observations Y, yields the same estimator. This fact sets us free from the
necessity to find a counterpart for the difference Y, in the Probit —context. The

impossibility to define the difference ., in the Probit —context led researchers

to the conviction that estimation of a qualitative linear panel model by OP was

impossible. However, since it appears that also for the quantitative model using

Y. is not needed at all, it follows logically that this is not necessary for OP either.

Analogously to (2.8) we may estimate ﬂwifrom the latent model (2.9)

Yii = IB’Xit T &
5. Empirical example

As an illustration of the above we use the data of Vella and Verbeek (1998)?.First,
we estimate an equation where the variable y to be explained is continuously
observed. Then we discretize y into two events: positive or negative and we

explain those discrete events by Probit, assuming the same now latent model

! These data are downloadable from the Journal of Applied Econometrics-data archive.
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equation?. Vella and Verbeek use data from the National Longitudinal Survey
(Youth Sample). The set consists of 545 observations of young full-time working
males who have completed their schooling by 1980. Annual observations of the
wage are available for 1980-1987. Here we use the data to estimate a standard
Mincerian wage equation with some additional explanatory variables. We use
the following time-constant explanatory variables: years of schooling (School),
Black and Hispanic. The time -varying explanatory variables are: a proxy for labor
market experience (Experience = Age - 6 - School) and its square, being married
or not (Married), and union membership (Union). Controls for region of
residence are added as well. We distinguish three kinds of variables: the time
constant variables Z, the demeaned variables X and the averages of X, denoted

by X.

OLS-results.

The results of five different estimation methods are presented in Table 1. First
we look at OLS on AX =X and X alone. Then we add other Z —variables. Then
we add the random effects error structure (see e.g. Cameron and Trivedi,Section
23.2.3). Finally, we look at the fixed effects estimation where y ( not ) is
regressed on AX =X only and the in-between method where y ( not y) is
regressed on X and Z.

First, we look at the middle panel. It appears that the estimates of the time-
varying explanatory variables are exactly the same under the four methods by
which they are estimated. Second, we see from the first and third panel that the

estimates are identical as well. The standard errors of the random effects model

2 Discretizing into two classes only yields the hardest case. The more classes are distinguished, the more the
data will look like continuously observed.
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and the in-between estimation are identical. The Random Effects-standard
errors are the correct ones, and as expected the Pooled OLS-standard errors
differ considerably. Comparing the first and second column of Table 1 we see
that adding the Z- variables changes the time- constant - effects, but not the
effects of Ax. There are indeed individual fixed effects, which are (partly)
covered by the Z- variables. All the results are in line with the theory developed
above. Finally, comparison of the second and third panel of Table 1 shows that
the coefficients of xand X are dramatically different, while the traditional model

y=f'X= X+ X would suggest that they not differ statistically. Our
conclusion for this data set is that the model Yy = ,B'X is not appropriate and

that Y = f'X+ B'X is the preferred alternative.

HERE TABLE 1

Probit results.

In Section 4 we argued that Probit may be applied on the latent model
Yie = X' Bui + Xi' By +Ziy + By + a; + & (5.1)

In the continuous model the presence of the fixed effect «; gives difficulties if it is

correlated with X.

; and/or Zi. The same difficulty appears in the Probit —context as

well.
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When we like to compare the outcomes of the OP-estimation with the OLS-results of

the same data set, we have at first to create discrete events. Therefore, we discretize

the data set by distinguishing the two discrete events Y, <0, Y, >0.

The problem when applying Probit is that the error variance o, in the original data set

will not be equal to one, as is usually assumed when applying Probit. However, (5.1)
is equivalent to

iyit:).(.itlﬁ"_)?ilﬂ +Zi' 4 +ﬂ0+(xi +git (5.2)
o, o, o, o, o, O, O,

This equation has error variance equal to one. Hence, it follows that if we apply
standard Probit on (5.1) we will get consistent estimators of the ratios between the

coefficients.

Now we apply Probit on the discretized versions of the equations estimated in Table 1.
This yields Table 2.

HERE TABLE 2

Comparing the ratios is facilitated by constructing Table 2A where we divided the first
column in Table 2 by 0.243, the coefficient of AExperience . Similar divisions are
applied to columns 2,3,4. In this way all coefficients of AExperience are set equal to
one and comparison of the different methods becomes easy. This division is, of course,
also applied for the standard deviations. This yields the four corresponding columns in
table 2 A, which are easily compared. For the last column we multiply the cells in the
last column by the factor 335/313. This yields a comparable version of the fifth column.
This yields an auxiliary table 2A, where the columns are comparable, and ideally,

should be equal.

HERE TABLE 2A
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Taking into account the standard deviations we see that the columns are roughly
equivalent and also equivalent to the results in Table 1. Looking at the second
column in the second panel we find from Table 1 that the ratios are -0.004/0.116
=-0.034, and then 0.38, 0.71. The corresponding ratios in Table 2A are -0.031,
0.363, and 0.988.

Taking into account the standard deviations we see that the columns in Table2

are not significantly different and also in line with the results in Table 1.

Our main conclusion is that Probit on panel data is possible and yields consistent

estimators.

6. Conclusion

In this paper we reconsidered the econometric approach to linear panel data
analysis. We argue that the usual panel data model should be replaced by a
model that at least includes two sets of variables: the deviations from the mean
and the averages over time. We call this the extended model. When we do that
we find that the in- between estimator and the within-estimator can be found
simultaneously from the same regression equation. The two estimators appear
to be uncorrelated. The pooled estimator is a weighted average of the first two
estimators. By this simple extension of the model it is possible to analyze linear
panels by the usual cross-section methodology. In other words, we can get rid of
the rather ad hoc specifications focusing on within or in-between effects. In this

extended model there is no need for an a priori assumption on equality of the
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inter-temporal and inter- individual effects. It is rather a hypothesis which can
be tested empirically. The extension of OLS to qualitatively ordered variables to
be explained by means of Ordered Probit does not offer any special problem for
the extended panel model. Henceforth, Ordered Probit can be used for the

analysis of qualitative panel data.

The results obviously are also relevant for regional panels, and treatment
evaluations (dif- in- dif studies ). In this paper we looked only at one-way models
(see Cameron and Trivedi ,section 21.8.) , variables are only indexed by i orj,t
but generalizations to two-way models where variables are indexed by i or t or

i,t are obvious. Also this approach seems applicable to more than two indexes.

The results of this study suggest that a special place for linear panel data analysis
in econometrics as a specific subfield of econometrics is perhaps less obvious

than it is thought by now.
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Table 1: Estimation on the Vella and Verbeek (1998)-data.

Variable OLS OLS Random Fixed Between
Effects Effects
Time constant explanatory variables
Constant 0.572 0.572 0.572
(0.109)** (0.224)* (0.224)*
School 0.092 0.092 0.092
(0.005)** (0.011)** (0.011)**
Black -0.129 -0.129 -0.129
(0.024)** (0.049)** (0.049)**
Hispanic -0.034 -0.034 -0.034
(0.022) (0.046) (0.046)
Time varying explanatory variables
AExperience 0.116 0.116 0.116 0.116
(0.012)** (0.011)** (0.008)** (0.008)**
AEXxperience? -0.004 -0.004 -0.004 -0.004
(0.001)** (0.001)** (0.001)** (0.001)**
AMarried 0.045 0.045 0.045 0.045
(0.026) (0.025) (0.018)* (0.018)*
AUnion 0.082 0.082 0.082 0.082
(0.027)** (0.026)** (0.019)** (0.019)**
Time-means of the time varying explanatory variables
M: Experience -0.023 -0.048 -0.048 -0.048
(0.025) (0.024)* (0.050) (0.050)
M: Experience? -0.001 0.005 0.005 0.005
(0.002) (0.002)** (0.003) (0.003)
M: Married 0.225 0.160 0.160 0.160
(0.020)** (0.020)** (0.041)** (0.041)**
M: Union 0.246 0.273 0.273 0.273
(0.023)** (0.023)** (0.046)** (0.046)**

Dependent variable: log(hourly wage). Standard errors between parenthesis. **,* = significant at 1%, 5%. Dummies for living in the North
East, North Central and South (reference West, in deviation from their mean) and their means across time were also added to the
specification.



23

Table 2: Probit estimation on the Vella and Verbeek (1998)-data.

Variable Probit Probit Random Fixed Between
Effects Effects
Probit
Time constant explanatory variables
Constant -2.974 -4.699 -2.802
(0.315)** (1.008)** (0.306)**
School 0.236 0.385 0.218
(0.016)** (0.050)** (0.015)
Black -0.335 -0.619 -0.313
(0.069)** (0.225)** (0.067)**
Hispanic -0.079 -0.183 -0.074
(0.063) (0.206) (0.061)
Time varying explanatory variables
AExperience 0.243 0.256 0.409 0.239
(0.032)** (0.033)** (0.042)** (0.031)**
AEXxperience? -0.008 -0.008 -0.012 -0.008
(0.002)** (0.002)** (0.003)** (0.002)**
AMarried 0.082 0.093 0.154 0.081
(0.068) (0.070) (0.092) (0.067)
AUnion 0.244 0.253 0.407 0.235
(0.071)** (0.073)** (0.093)** (0.070)**
Time-means of the time varying explanatory variables
M: Experience 0.051 -0.026 -0.110 -0.007
(0.070) (0.072) (0.223) (0.070)
M: Experience? -0.010 0.005 0.013 0.003
(0.004)* (0.005) (0.014) (0.005)
M: Married 0.476 0.332 0.575 0.315
(0.054)** (0.056)** (0.185)** (0.055)**
M: Union 0.688 0.790 1.357 0.743
(0.063)** (0.065)** (0.215)** (0.064)**

Dependent variable: log(hourly wage). Standard errors between parenthesis. The standard errors reported for the Pooled OLS-estimation
are OLS- and clustered across individuals-standard errors. **,* = significant at 1%, 5%. Dummies for living in the North East, North Central
and South (reference West, in deviation from their mean) and their means across time were also added to the specification.



Table 2A: Probit estimates normalized.
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Variable Probit Probit Random Dummy Dummy
Effects
Probit
Time constant explanatory variables
Constant -11.62 -11.49 -11.72
(1.230)** (2.465)** (1.280)**
School 0.922 0.941 0.912
(0.062)** (0.122)** (0.063)
Black -1.309 -1.513 -1.309
(0.270)** (0.550)** (0.280)**
Hispanic -0.309 -0.447 -0.309
(0.246) (0.504) (0.255)
Time varying explanatory variables
AExperience 1.000 1.000 1.000 1.000
(0.132)** (0.129)** (0.103)** (0.130)**
AExperience? -0.033 -0.031 -0.029 -0.033
(0.008)** (0.008)** (0.007)** (0.008)**
AMarried 0.337 0.363 0.377 0.339
(0.280) (0.273) (0.225) (0.280)
AUnion 1.004 0.988 0.995 0.983
(0.292)** (0.285)** (0.227)** (0.293)**
Time-means of the time varying explanatory variables
M: Experience 0.210 -0.102 -0.269 -0.029
(0.288) (0.281) (0.545) (0.293)
M: Experience? -0.041 0.020 0.032 0.013
(0.016)* (0.020) (0.034) (0.021)
M: Married 1.959 1.297 1.406 1.317
(0.222)** (0.219)** (0.452)** (0.230)**
M: Union 2.831 3.086 3.318 3.107
(0.259)** (0.254)** (0.526)** (0.268)**






